Finding absolutely and relatively periodic orbits in the equal mass 3-body problem with vanishing angular momentum

Danya Rose, joint work with Holger Dullin

59th Annual Meeting of the Australian Mathematical Society, 28th September - 1st October, 2015

Introduction

Basic ideas:

- Relative vs. absolute periodic orbits,
- 3-body problem in reduced, regularised coordinates,
- Discrete symmetry,
- Geometric phase,
- Theorem on geometric phase.

Relative and absolute periodic orbits in the 3-body problem

- Three point masses in the plane, $m_{j} \in \mathbb{R}^{+}, j=1,2,3$.
- Each position denoted by $X_{j} \in \mathbb{C}$.
- Each momentum denoted by $P_{j} \in \mathbb{C}$.
- Centre of mass $O=\frac{1}{m} \sum m_{j} X_{j}$ (with $m=\sum m_{j}$),
- Angular momentum $p_{\phi}=\operatorname{Im} \sum \bar{X}_{j} P_{j}$.

The 3-body problem

Described by the Hamiltonian:

$$
\begin{equation*}
H=\sum \frac{\left|P_{j}\right|^{2}}{2 m_{j}}-\sum \frac{m_{k} m_{l}}{\left|X_{l}-X_{k}\right|} \tag{1}
\end{equation*}
$$

producing Hamilton's equations

$$
\begin{equation*}
z^{\prime}=J \nabla H(z)=F(z) \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& J=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right) \\
& z=\left(X_{1}, X_{2}, X_{3}, P_{1}, P_{2}, P_{3}\right)^{T} \in \Omega
\end{aligned}
$$

and $\Omega=\mathbb{C}^{6}$ is the phase space.

Reduce to the shape sphere

C
M
"Shape space" $\left(w_{1}, w_{2}, w_{3}\right) \in \mathbb{R}^{3}$. "Shape sphere" $w_{1}^{2}+w_{2}^{2}+w_{3}^{2}=1$.

- Equilateral points (Lagrange configurations): $E^{ \pm},(0,0, \pm 1)$.
- Isosceles curves: $A_{j}^{ \pm}$(acute), $O_{j}^{ \pm}$(obtuse).
- Collinear curves: $C_{j, k} w_{3}=0$.
- Isosceles collinear points (Euler configurations): M_{j}
- Binary collision points: $B_{k l}$.

Reduce to the shape sphere

C
M
"Shape space" $\left(w_{1}, w_{2}, w_{3}\right) \in \mathbb{R}^{3}$. "Shape sphere" $w_{1}^{2}+w_{2}^{2}+w_{3}^{2}=1$. Features when $m_{1}=m_{2}=m_{3}$:

- Equilateral points (Lagrange configurations): $E^{ \pm},(0,0, \pm 1)$.
- Isosceles curves: $A_{j}^{ \pm}$(acute), $O_{j}^{ \pm}$(obtuse).
- Collinear curves: $C_{j, k} w_{3}=0$.
- Isosceles collinear points (Euler configurations): M_{j}.
- Binary collision points: $B_{k l}$.

Discrete symmetries

Original configuration.

Discrete symmetries

σ_{j} swaps indices $k, l\left(m_{k}=m_{l}\right)$.

Discrete symmetries

$$
c=\sigma_{l} \circ \sigma_{k} \text { cycles indices: }(1,2,3) \rightarrow(2,3,1)\left(m_{1}=m_{2}=m_{3}\right) .
$$

Discrete symmetries

ρ reflects whole configuration in space (any masses).

Discrete symmetries

τ reflects in time: $P_{j} \rightarrow-P_{j}$, each j (any masses).

Reversing symmetries

- Define $S: \Omega \longrightarrow \Omega$: symmetry of vector field $F(z)$ iff $S \circ F(z)=F \circ S(z)$.
- Define
$\mathfrak{G}_{S}=\left\{I, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}, \rho, \rho \sigma_{1}, \rho \sigma_{2}, \rho \sigma_{3}, \rho c, \rho c^{2}\right\} \cong S_{3} \times Z_{2}$ (order 12), a group under composition.
antisymmetry of F
also a reversing symmetry.

Reversing symmetries

- Define $S: \Omega \longrightarrow \Omega$: symmetry of vector field $F(z)$ iff $S \circ F(z)=F \circ S(z)$.
- Define
$\mathfrak{G}_{S}=\left\{I, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}, \rho, \rho \sigma_{1}, \rho \sigma_{2}, \rho \sigma_{3}, \rho c, \rho c^{2}\right\} \cong S_{3} \times Z_{2}$ (order 12), a group under composition.
- Observe that $\tau \circ F(z)=-F \circ \tau(z)$ means τ is an antisymmetry of F.
- We call τ a reversing symmetry. Composition $R=\tau \circ S$ is also a reversing symmetry.

Reversing symmetries

- Define $S: \Omega \longrightarrow \Omega$: symmetry of vector field $F(z)$ iff $S \circ F(z)=F \circ S(z)$.
- Define $\mathfrak{G}_{S}=\left\{I, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}, \rho, \rho \sigma_{1}, \rho \sigma_{2}, \rho \sigma_{3}, \rho c, \rho c^{2}\right\} \cong S_{3} \times Z_{2}$ (order 12), a group under composition.
- Observe that $\tau \circ F(z)=-F \circ \tau(z)$ means τ is an antisymmetry of F.
- We call τ a reversing symmetry. Composition $R=\tau \circ S$ is also a reversing symmetry.

We now have a reversing symmetry group $\mathfrak{G}_{R} \cong S_{3} \times Z_{2}^{2}$ (order 24). Note that $Z_{2}^{2}=V_{4}=\{I, \rho, \tau, \tau \rho\}$ is the centre of \mathfrak{G}_{R}.

Regularisation

Simultaneous regularisation of all binary collisions (due to Lemaître [1]):

- New coordinates $\alpha_{j} \in \mathbb{R}$ such that $a_{j}=\alpha_{k}^{2}+\alpha_{l}^{2}, a_{j} \geq 0$ side length opposite m_{j}.
- $\alpha_{j}=0$ gives collinearity with m_{j} in eclipse.
- $\alpha_{k}=\alpha_{l}=0$ gives collision between m_{k} and m_{l}.
- Signed area $S=\alpha_{1} \alpha_{2} \alpha_{3} \alpha$, where $\alpha=\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}}$.
- Canonical momenta $\pi_{j} \in \mathbb{R}$.

Regularisation

Simultaneous regularisation of all binary collisions (due to Lemaître [1]):

- New coordinates $\alpha_{j} \in \mathbb{R}$ such that $a_{j}=\alpha_{k}^{2}+\alpha_{l}^{2}, a_{j} \geq 0$ side length opposite m_{j}.
- $\alpha_{j}=0$ gives collinearity with m_{j} in eclipse.
- $\alpha_{k}=\alpha_{l}=0$ gives collision between m_{k} and m_{l}.
- Signed area $S=\alpha_{1} \alpha_{2} \alpha_{3} \alpha$, where $\alpha=\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}}$.
- Canonical momenta $\pi_{j} \in \mathbb{R}$.

Regularisation

- Define fictional time τ by $\frac{d t}{d \tau}=a_{1} a_{2} a_{3}$, then
- define new Hamiltonian $K=(H-h) a_{1} a_{2} a_{3} \equiv 0, h$ is physical energy.
- Shape changes by $\dot{\alpha}_{j}, \dot{\pi}_{j}$. New phase space is $\Omega=\mathbb{R}^{6}$.
- Shape dynamics alone govern rotation dynamics when $p_{\phi}=0$.

Discrete symmetries in regularised coordinates

Preserve physical meanings of symmetries. With
$z=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)$, choose:

$$
\begin{aligned}
\sigma_{1}(z) & =-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{3}, \pi_{2}\right), \text { etc. } \\
c(z) & =\left(\alpha_{2}, \alpha_{3}, \alpha_{1}, \pi_{2}, \pi_{3}, \pi_{1}\right) \\
\rho(z) & =-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right) \\
\tau(z) & =\left(\alpha_{1}, \alpha_{2}, \alpha_{3},-\pi_{1},-\pi_{2},-\pi_{3}\right), \text { and } \\
s_{1}(z) & =\left(\alpha_{1},-\alpha_{2},-\alpha_{3}, \pi_{1},-\pi_{2},-\pi_{3}\right), \text { etc. }
\end{aligned}
$$

Discrete symmetries in regularised coordinates

Preserve physical meanings of symmetries. With
$z=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)$, choose:

$$
\begin{aligned}
\sigma_{1}(z) & =-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{3}, \pi_{2}\right), \text { etc. }, \\
c(z) & =\left(\alpha_{2}, \alpha_{3}, \alpha_{1}, \pi_{2}, \pi_{3}, \pi_{1}\right), \\
\rho(z) & =-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right), \\
\tau(z) & =\left(\alpha_{1}, \alpha_{2}, \alpha_{3},-\pi_{1},-\pi_{2},-\pi_{3}\right), \text { and } \\
s_{1}(z) & =\left(\alpha_{1},-\alpha_{2},-\alpha_{3}, \pi_{1},-\pi_{2},-\pi_{3}\right), \text { etc. },
\end{aligned}
$$

Subgroup $\left\{I, s_{1}, s_{2}, s_{3}\right\} \cong V_{4}$. Elements interact with S_{3} by semidirect product $S_{3} \rtimes V_{4}=S_{4}$ (order 24). Elements written uniquely as composition $S \circ s_{j}, S \in S_{3}$.

Discrete symmetries in regularised coordinates

Preserve physical meanings of symmetries. With
$z=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)$, choose:

$$
\begin{aligned}
\sigma_{1}(z) & =-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{3}, \pi_{2}\right), \text { etc. }, \\
c(z) & =\left(\alpha_{2}, \alpha_{3}, \alpha_{1}, \pi_{2}, \pi_{3}, \pi_{1}\right), \\
\rho(z) & =-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right), \\
\tau(z) & =\left(\alpha_{1}, \alpha_{2}, \alpha_{3},-\pi_{1},-\pi_{2},-\pi_{3}\right), \text { and } \\
s_{1}(z) & =\left(\alpha_{1},-\alpha_{2},-\alpha_{3}, \pi_{1},-\pi_{2},-\pi_{3}\right), \text { etc. },
\end{aligned}
$$

Subgroup $\left\{I, s_{1}, s_{2}, s_{3}\right\} \cong V_{4}$. Elements interact with S_{3} by semidirect product $S_{3} \rtimes V_{4}=S_{4}$ (order 24). Elements written uniquely as composition $S \circ s_{j}, S \in S_{3}$.
New (reversing) symmetry group $\widetilde{\mathfrak{G}}_{R} \cong S_{4} \times Z_{2}^{2}$ (order 96), with same centre as before.

Reversing fixed sets

Fixed set of symmetry $S:\left\{z \in \Omega: S(z)=z, S \in \widetilde{\mathfrak{G}}_{R}\right\}$.

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse possibly with some other symmetry applied after that instant in time.

Reversing fixed sets

Fixed set of symmetry $S:\left\{z \in \Omega: S(z)=z, S \in \widetilde{\mathfrak{G}}_{R}\right\}$.

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse possibly with some other symmetry applied after that instant in time.

Theorem
A solution connecting two points in the fixed sets of reversing involutions R_{1}, R_{2} is periodic, if $\left(R_{2} R_{1}\right)$ has finite order.

Reversing fixed sets

Fixed set of symmetry $S:\left\{z \in \Omega: S(z)=z, S \in \widetilde{\mathfrak{G}}_{R}\right\}$.

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse possibly with some other symmetry applied after that instant in time.

Theorem

A solution connecting two points in the fixed sets of reversing involutions R_{1}, R_{2} is periodic, if $\left(R_{2} R_{1}\right)$ has finite order.

Proof.

Suppose $z(0) \in \operatorname{Fix} R_{1}$ and $z\left(\tau_{0}\right) \in \operatorname{Fix} R_{2}$. Observe that $z\left(2 \tau_{0}\right) \in \operatorname{Fix} R_{1} R_{2} R_{1}=$ Fix $R_{1} S$, where S is non-reversing of order k, as \mathfrak{G}_{R} is finite. If $R_{1}=R_{2}$ then $S=I$ and orbit is periodic with period $2 \tau_{0}$. Else periodic with period $2 k \tau_{0}$.

Example reversing orbit

- An orbit generated by $R_{1}=R_{2}=\tau \sigma_{1} s_{1}$,

Fix $R_{1}=\left(0, \alpha_{2}, \alpha_{2}, \pi_{1}, \pi_{2},-\pi_{2}\right)$

Example reversing orbit

- An orbit generated by $R_{1}=R_{2}=\tau \sigma_{1} s_{1}$,

Fix $R_{1}=\left(0, \alpha_{2}, \alpha_{2}, \pi_{1}, \pi_{2},-\pi_{2}\right)$ (which looks like...)

Example reversing orbit

- An orbit generated by $R_{1}=R_{2}=\tau \sigma_{1} s_{1}$, Fix $R_{1}=\left(0, \alpha_{2}, \alpha_{2}, \pi_{1}, \pi_{2},-\pi_{2}\right)$ (which looks like...)
- Observe symmetry at $\tau=\frac{T}{2}$: swap blue, green and sign of red, reflect about $\tau=\frac{T}{2}$.
- Ditto at $\tau=0$.

Reversing fixed sets

Five classes of reversing fixed sets in regularised system: 1. Collinear ($\tau \rho s_{j}$), 2. Isosceles ($\tau \rho \sigma_{j}$ or $\tau \rho \sigma_{j} s_{j}$), 3. Isosceles collinear ($\tau \sigma_{j}$ or $\tau \sigma_{j} s_{j}$), 4. Brake-collision (τs_{j}), 5. Brake (τ, example in [3])

Montgomery's formula for geometric phase

Montgomery [2] shows calculation of geometric phase. "Area enclosed by a loop on the shape sphere."

Montgomery's formula for geometric phase

Montgomery [2] shows calculation of geometric phase. "Area enclosed by a loop on the shape sphere."

$$
\begin{aligned}
d G & =-\frac{1}{2} w_{3} d \theta, \text { where } \theta=\arg \left(w_{1}+i w_{2}\right) \\
& =: U(z) d \tau
\end{aligned}
$$

We calculate geometric phase over an orbit of period T by

Montgomery's formula for geometric phase

Montgomery [2] shows calculation of geometric phase. "Area enclosed by a loop on the shape sphere."

$$
\begin{aligned}
d G & =-\frac{1}{2} w_{3} d \theta, \text { where } \theta=\arg \left(w_{1}+i w_{2}\right) \\
& =: U(z) d \tau
\end{aligned}
$$

We calculate geometric phase over an orbit of period T by

$$
\begin{equation*}
G(T)=\int_{0}^{T} U(z(\tau)) d \tau \tag{3}
\end{equation*}
$$

Geometric interpretation: symmetries/antisymmetries of U

Consider $S \in S_{4}$.

- $U \circ S(z)=U \circ(\tau \circ \rho \circ S)(z)=U(z)$.
- Symmetries S and reversing symmetries $\tau \circ \rho \circ S$ leave $d G$ invariant.
- Symmetries $\rho \circ S$ and reversing symmetries $\tau \circ S$ send

- Antismmerifies of t have even
order.

Geometric interpretation: symmetries/antisymmetries of U

Consider $S \in S_{4}$.

- $U \circ S(z)=U \circ(\tau \circ \rho \circ S)(z)=U(z)$.
- Symmetries S and reversing symmetries $\tau \circ \rho \circ S$ leave $d G$ invariant.
- $U \circ(\tau \circ S)(z)=U \circ(\rho \circ S)(z)=-U$.
- Symmetries $\rho \circ S$ and reversing symmetries $\tau \circ S$ send $d G \rightarrow-d G$.

Geometric interpretation: symmetries/antisymmetries of U

Consider $S \in S_{4}$.

- $U \circ S(z)=U \circ(\tau \circ \rho \circ S)(z)=U(z)$.
- Symmetries S and reversing symmetries $\tau \circ \rho \circ S$ leave $d G$ invariant.
- $U \circ(\tau \circ S)(z)=U \circ(\rho \circ S)(z)=-U$.
- Symmetries $\rho \circ S$ and reversing symmetries $\tau \circ S$ send $d G \rightarrow-d G$.
- Antisymmetries of U have even order.

Cancellation of geometric phase

Define isotropy subgroup of T-periodic solution $z(\tau)$ by

$$
\Sigma_{z}=\left\{S \in \widetilde{\mathfrak{G}}_{R}: S(z)=z\right\}
$$

Theorem
If a T-periodic solution $z(\tau)$ of the regularised equations of motion has isotropy subgroup Σ_{z} containing any antisymmetry of U, then the geometric phase $G(T)=\int_{0}^{T} U(z(\tau)) d \tau=0$.

Outline of proof

Consider orbit with isotropy subgroup generated by reversing involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$. W.I.o.g. at least R_{1} antisymmetry of U and $R_{1}(z(\tau))=z\left(\frac{T}{2 k}-\tau\right)$.
Consider $0 \leq \tau \leq \frac{T}{k}$.

Outline of proof

Consider orbit with isotropy subgroup generated by reversing involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$. W.I.o.g. at least R_{1} antisymmetry of U and $R_{1}(z(\tau))=z\left(\frac{T}{2 k}-\tau\right)$.
Consider $0 \leq \tau \leq \frac{T}{k}$.

$$
G\left(\frac{T}{k}\right)=\int_{0}^{\frac{T}{2 k}} U(z(\tau)) d \tau+
$$

Outline of proof

Consider orbit with isotropy subgroup generated by reversing involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$. W.I.o.g. at least R_{1} antisymmetry of U and $R_{1}(z(\tau))=z\left(\frac{T}{2 k}-\tau\right)$.
Consider $0 \leq \tau \leq \frac{T}{k}$.

$$
G\left(\frac{T}{k}\right)=\int_{0}^{\frac{T}{2 k}} U(z(\tau)) d \tau+\int_{\frac{T}{2 k}}^{\frac{T}{k}} U(z(\tau)) d \tau=\ldots
$$

Outline of proof

Consider orbit with isotropy subgroup generated by reversing involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$. W.I.o.g. at least R_{1} antisymmetry of U and $R_{1}(z(\tau))=z\left(\frac{T}{2 k}-\tau\right)$.
Consider $0 \leq \tau \leq \frac{T}{k}$.

$$
G\left(\frac{T}{k}\right)=\int_{0}^{\frac{T}{2 k}} U(z(\tau)) d \tau+\int_{\frac{T}{2 k}}^{\frac{T}{k}} U(z(\tau)) d \tau=\ldots=0
$$

Outline of proof

Consider orbit with isotropy subgroup generated by reversing involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$. W.I.o.g. at least R_{1} antisymmetry of U and $R_{1}(z(\tau))=z\left(\frac{T}{2 k}-\tau\right)$.
Consider $0 \leq \tau \leq \frac{T}{k}$.

$$
G\left(\frac{T}{k}\right)=\int_{0}^{\frac{T}{2 k}} U(z(\tau)) d \tau+\int_{\frac{T}{2 k}}^{\frac{T}{k}} U(z(\tau)) d \tau=\ldots=0 .
$$

Now whether or not $\left(R_{2} R_{1}\right)$ (of order k) is an antisymmetry of U, result follows for reversing case. Non-reversing case similar.

A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U are the only ones whose geometric phase is forced to vanish. Supported by extensive numerical evidence. 363 orbits obeying Theorem 2 or its converse.

A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U are the only ones whose geometric phase is forced to vanish. Supported by extensive numerical evidence. 363 orbits obeying Theorem 2 or its converse.

Conclusion

- Regularised system has reversing symmetry group $\widetilde{\mathfrak{G}}_{R} \cong S_{4} \times Z_{2}^{2}$.
- Antisymmetries of U present in isotropy subgroups of periodic orbits dictate that geometric phase vanishes, by Theorem 2.
- Can use Theorem 2 to choose symmetries to impose to obtain absolute periodic orbits.
- Choosing other symmetries allows relative periodic orbits with vanishing angular momentum.

References

B
C.G. Lemaître.

The three body problem.
Technical report, NASA CR-110, http://ntrs.nasa.gov/, 1964.
R. Montgomery.

The geometric phase of the three-body problem.
Nonlinearity, 9:1341-1360, 1996.
豆
V. Titov.

Three-body problem periodic orbits with vanishing angular momentum.
Astronomische Nachrichten, 336(3):271-275, 2015.
fin.

