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Introduction

Basic ideas:
I Relative vs. absolute periodic orbits,
I 3-body problem in reduced, regularised coordinates,
I Discrete symmetry,
I Geometric phase,
I Theorem on geometric phase.



Relative and absolute periodic orbits in the 3-body
problem

I Three point masses in the plane, mj ∈ R+, j = 1, 2, 3.
I Each position denoted by Xj ∈ C.
I Each momentum denoted by Pj ∈ C.
I Centre of mass O = 1

m

∑
mjXj (with m =

∑
mj),

I Angular momentum pφ = Im
∑

X̄jPj.



The 3-body problem

Described by the Hamiltonian:

H =
∑ |Pj|2

2mj
−
∑ mkml

|Xl − Xk|
(1)

producing Hamilton’s equations

z′ = J∇H(z) = F(z), (2)

where

J =

(
0 I
−I 0

)
,

z = (X1,X2,X3,P1,P2,P3)T ∈ Ω,

and Ω = C6 is the phase space.



Reduce to the shape sphere

EA O

C MB

“Shape space” (w1,w2,w3) ∈ R3. “Shape sphere”
w2

1 + w2
2 + w2

3 = 1. Features when m1 = m2 = m3:
I Equilateral points (Lagrange configurations): E±, (0, 0,±1).
I Isosceles curves: A±j (acute), O±j (obtuse).
I Collinear curves: Cj,k w3 = 0.
I Isosceles collinear points (Euler configurations): Mj.
I Binary collision points: Bkl.
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Discrete symmetries
Original configuration.
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Discrete symmetries
σj swaps indices k, l (mk = ml).
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Discrete symmetries
c = σl ◦ σk cycles indices: (1, 2, 3)→ (2, 3, 1) (m1 = m2 = m3).
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Discrete symmetries
ρ reflects whole configuration in space (any masses).
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Discrete symmetries
τ reflects in time: Pj → −Pj, each j (any masses).
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Reversing symmetries

I Define S : Ω−→Ω: symmetry of vector field F(z) iff
S ◦ F(z) = F ◦ S(z).

I Define
GS = {I, σ1, σ2, σ3, c, c2, ρ, ρσ1, ρσ2, ρσ3, ρc, ρc2} ∼= S3 × Z2
(order 12), a group under composition.

I Observe that τ ◦ F(z) = −F ◦ τ(z) means τ is an
antisymmetry of F.

I We call τ a reversing symmetry. Composition R = τ ◦ S is
also a reversing symmetry.

We now have a reversing symmetry group GR ∼= S3 × Z2
2 (order

24). Note that Z2
2 = V4 = {I, ρ, τ, τρ} is the centre of GR.
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Regularisation
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Simultaneous regularisation of all binary collisions (due to
Lemaître [1]):

I New coordinates αj ∈ R such that aj = α2
k + α2

l , aj ≥ 0 side
length opposite mj.

I αj = 0 gives collinearity with mj in eclipse.
I αk = αl = 0 gives collision between mk and ml.
I Signed area S = α1α2α3α, where α =

√
α2

1 + α2
2 + α2

3.

I Canonical momenta πj ∈ R.
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Regularisation

I Define fictional time τ by dt
dτ = a1a2a3, then

I define new Hamiltonian K = (H − h)a1a2a3 ≡ 0, h is
physical energy.

I Shape changes by α̇j, π̇j. New phase space is Ω = R6.
I Shape dynamics alone govern rotation dynamics when

pφ = 0.



Discrete symmetries in regularised coordinates

Preserve physical meanings of symmetries. With
z = (α1, α2, α3, π1, π2, π3), choose:

σ1(z) = −(α1, α2, α3, π1, π3, π2), etc.,
c(z) = (α2, α3, α1, π2, π3, π1),

ρ(z) = −(α1, α2, α3, π1, π2, π3),

τ(z) = (α1, α2, α3,−π1,−π2,−π3), and
s1(z) = (α1,−α2,−α3, π1,−π2,−π3), etc.,

Subgroup {I, s1, s2, s3} ∼= V4. Elements interact with S3 by
semidirect product S3 o V4 = S4 (order 24). Elements written
uniquely as composition S ◦ sj, S ∈ S3.
New (reversing) symmetry group G̃R ∼= S4 × Z2

2 (order 96), with
same centre as before.
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Reversing fixed sets

Fixed set of symmetry S: {z ∈ Ω: S(z) = z, S ∈ G̃R}.
I Fixed sets of reversing symmetries are not invariant.
I Solution with points in fixed sets of reversing involutions

run in reverse possibly with some other symmetry applied
after that instant in time.

Theorem
A solution connecting two points in the fixed sets of reversing
involutions R1, R2 is periodic, if (R2R1) has finite order.

Proof.
Suppose z(0) ∈ Fix R1 and z(τ0) ∈ Fix R2. Observe that
z(2τ0) ∈ Fix R1R2R1 = Fix R1S, where S is non-reversing of order
k, as G̃R is finite. If R1 = R2 then S = I and orbit is periodic with
period 2τ0. Else periodic with period 2kτ0.
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Example reversing orbit

I An orbit generated by R1 = R2 = τσ1s1,
Fix R1 = (0, α2, α2, π1, π2,−π2) (which looks like...)

I Observe symmetry at τ = T
2 : swap blue, green and sign of

red, reflect about τ = T
2 .

I Ditto at τ = 0.
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Reversing fixed sets

Five classes of reversing fixed sets in regularised system: 1.
Collinear (τρsj), 2. Isosceles (τρσj or τρσjsj), 3. Isosceles
collinear (τσj or τσjsj), 4. Brake-collision (τsj), 5. Brake (τ ,
example in [3])



Montgomery’s formula for geometric phase

Montgomery [2] shows calculation of geometric phase. “Area
enclosed by a loop on the shape sphere.”

dG = −1
2

w3dθ, where θ = arg(w1 + iw2)

=: U(z)dτ,

We calculate geometric phase over an orbit of period T by

G(T) =

∫ T

0
U(z(τ))dτ. (3)
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Geometric interpretation: symmetries/antisymmetries
of U

Consider S ∈ S4.
I U ◦ S(z) = U ◦ (τ ◦ρ ◦ S)(z) = U(z).
I Symmetries S and reversing

symmetries τ ◦ ρ ◦ S leave dG
invariant.

I U◦(τ ◦S)(z) = U◦(ρ◦S)(z) = −U.
I Symmetries ρ ◦ S and reversing

symmetries τ ◦ S send
dG→ −dG.

I Antisymmetries of U have even
order.
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Cancellation of geometric phase

Define isotropy subgroup of T-periodic solution z(τ) by
Σz = {S ∈ G̃R: S(z) = z}.
Theorem
If a T-periodic solution z(τ) of the regularised equations of
motion has isotropy subgroup Σz containing any antisymmetry
of U, then the geometric phase G(T) =

∫ T
0 U(z(τ))dτ = 0.



Outline of proof
Consider orbit with isotropy subgroup generated by reversing
involutions R1, R2 such that (R2R1)k = I. W.l.o.g. at least R1
antisymmetry of U and R1(z(τ)) = z( T

2k − τ).
Consider 0 ≤ τ ≤ T

k .

G( T
k ) =

∫ T
2k

0
U(z(τ))dτ +

∫ T
k

T
2k

U(z(τ))dτ = . . . = 0.

Now whether or not (R2R1) (of order k) is an antisymmetry of U,
result follows for reversing case. Non-reversing case similar.
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A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U
are the only ones whose geometric phase is forced to vanish.
Supported by extensive numerical evidence. 363 orbits obeying
Theorem 2 or its converse.
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Conclusion

I Regularised system has reversing symmetry group
G̃R ∼= S4 × Z2

2 .
I Antisymmetries of U present in isotropy subgroups of

periodic orbits dictate that geometric phase vanishes, by
Theorem 2.

I Can use Theorem 2 to choose symmetries to impose to
obtain absolute periodic orbits.

I Choosing other symmetries allows relative periodic orbits
with vanishing angular momentum.
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