Finding absolutely and relatively periodic orbits in the equal mass 3-body problem with vanishing angular momentum

Danya Rose, joint work with Holger Dullin

School of Mathematics & Statistics University of Sydney

59th Annual Meeting of the Australian Mathematical Society, 28th September - 1st October, 2015

Introduction

Basic ideas:

- Relative vs. absolute periodic orbits,
- 3-body problem in reduced, regularised coordinates,

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

- Discrete symmetry,
- Geometric phase,
- Theorem on geometric phase.

Relative and absolute periodic orbits in the 3-body problem

- Three point masses in the plane, $m_j \in \mathbb{R}^+$, j = 1, 2, 3.
- Each position denoted by $X_j \in \mathbb{C}$.
- Each momentum denoted by $P_j \in \mathbb{C}$.
- Centre of mass $O = \frac{1}{m} \sum m_j X_j$ (with $m = \sum m_j$),
- Angular momentum $p_{\phi} = \text{Im} \sum \bar{X}_j P_j$.

The 3-body problem

Described by the Hamiltonian:

$$H = \sum \frac{|P_j|^2}{2m_j} - \sum \frac{m_k m_l}{|X_l - X_k|}$$
(1)

producing Hamilton's equations

$$z' = J\nabla H(z) = F(z),$$
(2)

where

$$J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix},$$

$$z = (X_1, X_2, X_3, P_1, P_2, P_3)^T \in \Omega,$$

and $\Omega = \mathbb{C}^6$ is the phase space.

Reduce to the shape sphere

"Shape space" $(w_1, w_2, w_3) \in \mathbb{R}^3$. "Shape sphere" $w_1^2 + w_2^2 + w_3^2 = 1$. Features when $m_1 = m_2 = m_3$:

- Equilateral points (Lagrange configurations): E^{\pm} , $(0, 0, \pm 1)$.
- ► Isosceles curves: A_i^{\pm} (acute), O_i^{\pm} (obtuse).
- Collinear curves: $C_{j,k} w_3 = 0$.
- Isosceles collinear points (Euler configurations): M_j.
- Binary collision points: B_{kl} .

・ロン ・四 と ・ 回 と ・ 回 と

Reduce to the shape sphere

"Shape space" $(w_1, w_2, w_3) \in \mathbb{R}^3$. "Shape sphere" $w_1^2 + w_2^2 + w_3^2 = 1$. Features when $m_1 = m_2 = m_3$:

- Equilateral points (Lagrange configurations): E^{\pm} , $(0, 0, \pm 1)$.
- ► Isosceles curves: A_i^{\pm} (acute), O_i^{\pm} (obtuse).
- Collinear curves: $C_{j,k} w_3 = 0$.
- Isosceles collinear points (Euler configurations): M_j.
- Binary collision points: B_{kl} .

・ロット 小型マネ ヨマ

Original configuration.

 σ_i swaps indices k, l ($m_k = m_l$).

イロト イ理ト イヨト イヨト

æ

 $c = \sigma_l \circ \sigma_k$ cycles indices: $(1, 2, 3) \to (2, 3, 1)$ $(m_1 = m_2 = m_3)$.

イロト イ理ト イヨト イヨト

э

 ρ reflects whole configuration in space (any masses).

(日)

э

 τ reflects in time: $P_j \rightarrow -P_j$, each *j* (any masses).

Reversing symmetries

- Define $S: \Omega \longrightarrow \Omega$: symmetry of vector field F(z) iff $S \circ F(z) = F \circ S(z)$.
- Define

 $\mathfrak{G}_S = \{I, \sigma_1, \sigma_2, \sigma_3, c, c^2, \rho, \rho\sigma_1, \rho\sigma_2, \rho\sigma_3, \rho c, \rho c^2\} \cong S_3 \times Z_2$ (order 12), a group under composition.

- Observe that $\tau \circ F(z) = -F \circ \tau(z)$ means τ is an *antisymmetry* of *F*.
- We call *τ* a *reversing symmetry*. Composition *R* = *τ S* is also a reversing symmetry.

We now have a *reversing symmetry group* $\mathfrak{G}_R \cong S_3 \times Z_2^2$ (order 24). Note that $Z_2^2 = V_4 = \{I, \rho, \tau, \tau \rho\}$ is the centre of \mathfrak{G}_R .

Reversing symmetries

- Define $S: \Omega \longrightarrow \Omega$: symmetry of vector field F(z) iff $S \circ F(z) = F \circ S(z)$.
- Define

 $\mathfrak{G}_{S} = \{I, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}, \rho, \rho\sigma_{1}, \rho\sigma_{2}, \rho\sigma_{3}, \rho c, \rho c^{2}\} \cong S_{3} \times Z_{2}$ (order 12), a group under composition.

- ► Observe that \(\tau \circ F(z) = -F \circ \tau(z)\) means \(\tau\) is an antisymmetry of F.
- We call *τ* a *reversing symmetry*. Composition *R* = *τ S* is also a reversing symmetry.

We now have a *reversing symmetry group* $\mathfrak{G}_R \cong S_3 \times Z_2^2$ (order 24). Note that $Z_2^2 = V_4 = \{I, \rho, \tau, \tau \rho\}$ is the centre of \mathfrak{G}_R .

Reversing symmetries

- Define $S: \Omega \longrightarrow \Omega$: symmetry of vector field F(z) iff $S \circ F(z) = F \circ S(z)$.
- Define

 $\mathfrak{G}_S = \{I, \sigma_1, \sigma_2, \sigma_3, c, c^2, \rho, \rho\sigma_1, \rho\sigma_2, \rho\sigma_3, \rho c, \rho c^2\} \cong S_3 \times Z_2$ (order 12), a group under composition.

- ► Observe that \(\tau \circ F(z) = -F \circ \tau(z)\) means \(\tau\) is an antisymmetry of F.
- We call τ a reversing symmetry. Composition R = τ ∘ S is also a reversing symmetry.

We now have a *reversing symmetry group* $\mathfrak{G}_R \cong S_3 \times Z_2^2$ (order 24). Note that $Z_2^2 = V_4 = \{I, \rho, \tau, \tau\rho\}$ is the centre of \mathfrak{G}_R .

Regularisation

Simultaneous regularisation of all binary collisions (due to Lemaître [1]):

- New coordinates α_j ∈ ℝ such that a_j = α_k² + α_l², a_j ≥ 0 side length opposite m_j.
 - $\alpha_j = 0$ gives collinearity with m_j in eclipse.
 - $\alpha_k = \alpha_l = 0$ gives collision between m_k and m_l .
 - Signed area $S = \alpha_1 \alpha_2 \alpha_3 \alpha$, where $\alpha = \sqrt{\alpha_1^2 + \alpha_2^2 + \alpha_3^2}$.

・ ロ ト ・ 雪 ト ・ ヨ ト ・

э

• Canonical momenta $\pi_i \in \mathbb{R}$.

Regularisation

Simultaneous regularisation of all binary collisions (due to Lemaître [1]):

- New coordinates α_j ∈ ℝ such that a_j = α_k² + α_l², a_j ≥ 0 side length opposite m_j.
 - $\alpha_j = 0$ gives collinearity with m_j in eclipse.
 - $\alpha_k = \alpha_l = 0$ gives collision between m_k and m_l .
 - Signed area $S = \alpha_1 \alpha_2 \alpha_3 \alpha$, where $\alpha = \sqrt{\alpha_1^2 + \alpha_2^2 + \alpha_3^2}$.

• Canonical momenta $\pi_j \in \mathbb{R}$.

Regularisation

- Define fictional time τ by $\frac{dt}{d\tau} = a_1 a_2 a_3$, then
- ► define new Hamiltonian $K = (H h)a_1a_2a_3 \equiv 0$, *h* is physical energy.
- Shape changes by $\dot{\alpha}_j$, $\dot{\pi}_j$. New phase space is $\Omega = \mathbb{R}^6$.
- Shape dynamics alone govern rotation dynamics when $p_{\phi} = 0$.

Discrete symmetries in regularised coordinates

Preserve physical meanings of symmetries. With $z = (\alpha_1, \alpha_2, \alpha_3, \pi_1, \pi_2, \pi_3)$, choose:

$$\sigma_{1}(z) = -(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{3}, \pi_{2}), \text{ etc.},$$

$$c(z) = (\alpha_{2}, \alpha_{3}, \alpha_{1}, \pi_{2}, \pi_{3}, \pi_{1}),$$

$$\rho(z) = -(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}),$$

$$\tau(z) = (\alpha_{1}, \alpha_{2}, \alpha_{3}, -\pi_{1}, -\pi_{2}, -\pi_{3}), \text{ and }$$

$$s_{1}(z) = (\alpha_{1}, -\alpha_{2}, -\alpha_{3}, \pi_{1}, -\pi_{2}, -\pi_{3}), \text{ etc.},$$

Subgroup $\{I, s_1, s_2, s_3\} \cong V_4$. Elements interact with S_3 by semidirect product $S_3 \rtimes V_4 = S_4$ (order 24). Elements written uniquely as composition $S \circ s_j, S \in S_3$. New (reversing) symmetry group $\widetilde{\mathfrak{G}}_R \cong S_4 \times Z_2^2$ (order 96), with same centre as before.

Discrete symmetries in regularised coordinates

Preserve physical meanings of symmetries. With $z = (\alpha_1, \alpha_2, \alpha_3, \pi_1, \pi_2, \pi_3)$, choose:

$$\sigma_{1}(z) = -(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{3}, \pi_{2}), \text{ etc.},$$

$$c(z) = (\alpha_{2}, \alpha_{3}, \alpha_{1}, \pi_{2}, \pi_{3}, \pi_{1}),$$

$$\rho(z) = -(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}),$$

$$\tau(z) = (\alpha_{1}, \alpha_{2}, \alpha_{3}, -\pi_{1}, -\pi_{2}, -\pi_{3}), \text{ and }$$

$$s_{1}(z) = (\alpha_{1}, -\alpha_{2}, -\alpha_{3}, \pi_{1}, -\pi_{2}, -\pi_{3}), \text{ etc.},$$

Subgroup $\{I, s_1, s_2, s_3\} \cong V_4$. Elements interact with S_3 by semidirect product $S_3 \rtimes V_4 = S_4$ (order 24). Elements written uniquely as composition $S \circ s_i, S \in S_3$.

New (reversing) symmetry group $\mathfrak{G}_R \cong S_4 \times Z_2^2$ (order 96), with same centre as before.

Discrete symmetries in regularised coordinates

Preserve physical meanings of symmetries. With $z = (\alpha_1, \alpha_2, \alpha_3, \pi_1, \pi_2, \pi_3)$, choose:

$$\sigma_{1}(z) = -(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{3}, \pi_{2}), \text{ etc.},$$

$$c(z) = (\alpha_{2}, \alpha_{3}, \alpha_{1}, \pi_{2}, \pi_{3}, \pi_{1}),$$

$$\rho(z) = -(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}),$$

$$\tau(z) = (\alpha_{1}, \alpha_{2}, \alpha_{3}, -\pi_{1}, -\pi_{2}, -\pi_{3}), \text{ and }$$

$$s_{1}(z) = (\alpha_{1}, -\alpha_{2}, -\alpha_{3}, \pi_{1}, -\pi_{2}, -\pi_{3}), \text{ etc.},$$

Subgroup $\{I, s_1, s_2, s_3\} \cong V_4$. Elements interact with S_3 by semidirect product $S_3 \rtimes V_4 = S_4$ (order 24). Elements written uniquely as composition $S \circ s_j, S \in S_3$. New (reversing) symmetry group $\mathfrak{G}_R \cong S_4 \times Z_2^2$ (order 96), with same centre as before.

Fixed set of symmetry *S*: $\{z \in \Omega: S(z) = z, S \in \widetilde{\mathfrak{G}}_R\}$.

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse possibly with some other symmetry applied after that instant in time.

Theorem

A solution connecting two points in the fixed sets of reversing involutions R_1 , R_2 is periodic, if (R_2R_1) has finite order.

Proof.

Suppose $z(0) \in \text{Fix } R_1$ and $z(\tau_0) \in \text{Fix } R_2$. Observe that $z(2\tau_0) \in \text{Fix } R_1R_2R_1 = \text{Fix } R_1S$, where *S* is non-reversing of order *k*, as \mathfrak{S}_R is finite. If $R_1 = R_2$ then S = I and orbit is periodic with period $2\tau_0$. Else periodic with period $2k\tau_0$.

Fixed set of symmetry *S*: { $z \in \Omega$: $S(z) = z, S \in \widetilde{\mathfrak{G}}_R$ }.

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse possibly with some other symmetry applied after that instant in time.

Theorem

A solution connecting two points in the fixed sets of reversing involutions R_1 , R_2 is periodic, if (R_2R_1) has finite order.

Proof.

Suppose $z(0) \in \text{Fix } R_1$ and $z(\tau_0) \in \text{Fix } R_2$. Observe that $z(2\tau_0) \in \text{Fix } R_1R_2R_1 = \text{Fix } R_1S$, where *S* is non-reversing of order *k*, as \mathfrak{S}_R is finite. If $R_1 = R_2$ then S = I and orbit is periodic with period $2\tau_0$. Else periodic with period $2k\tau_0$.

Fixed set of symmetry *S*: { $z \in \Omega$: $S(z) = z, S \in \widetilde{\mathfrak{G}}_R$ }.

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse possibly with some other symmetry applied after that instant in time.

Theorem

A solution connecting two points in the fixed sets of reversing involutions R_1 , R_2 is periodic, if (R_2R_1) has finite order.

Proof.

Suppose $z(0) \in \text{Fix } R_1$ and $z(\tau_0) \in \text{Fix } R_2$. Observe that $z(2\tau_0) \in \text{Fix } R_1R_2R_1 = \text{Fix } R_1S$, where *S* is non-reversing of order *k*, as \mathfrak{S}_R is finite. If $R_1 = R_2$ then S = I and orbit is periodic with period $2\tau_0$. Else periodic with period $2k\tau_0$.

Example reversing orbit

- An orbit generated by $R_1 = R_2 = \tau \sigma_1 s_1$, Fix $R_1 = (0, \alpha_2, \alpha_2, \pi_1, \pi_2, -\pi_2)$ (which looks like...)
- ► Observe symmetry at \(\tau = \frac{T}{2}\): swap blue, green and sign of red, reflect about \(\tau = \frac{T}{2}\).

• Ditto at $\tau = 0$.

Example reversing orbit

An orbit generated by $R_1 = R_2 = \tau \sigma_1 s_1$, Fix $R_1 = (0, \alpha_2, \alpha_2, \pi_1, \pi_2, -\pi_2)$ (which looks like...)

► Observe symmetry at \(\tau = \frac{T}{2}\): swap blue, green and sign of red, reflect about \(\tau = \frac{T}{2}\).

• Ditto at $\tau = 0$.

Example reversing orbit

- An orbit generated by $R_1 = R_2 = \tau \sigma_1 s_1$, Fix $R_1 = (0, \alpha_2, \alpha_2, \pi_1, \pi_2, -\pi_2)$ (which looks like...)
- Observe symmetry at $\tau = \frac{T}{2}$: swap blue, green and sign of red, reflect about $\tau = \frac{T}{2}$.

• Ditto at
$$\tau = 0$$
.

Five classes of reversing fixed sets in regularised system: 1. Collinear ($\tau \rho s_j$), 2. Isosceles ($\tau \rho \sigma_j$ or $\tau \rho \sigma_j s_j$), 3. Isosceles collinear ($\tau \sigma_j$ or $\tau \sigma_j s_j$), 4. Brake-collision (τs_j), 5. Brake (τ , example in [3])

(日)

Montgomery's formula for geometric phase

Montgomery [2] shows calculation of geometric phase. "Area enclosed by a loop on the shape sphere."

$$dG = -\frac{1}{2}w_3d\theta$$
, where $\theta = \arg(w_1 + iw_2)$
=: $U(z)d\tau$,

We calculate geometric phase over an orbit of period T by

$$G(T) = \int_0^T U(z(\tau))d\tau.$$
 (3)

Montgomery's formula for geometric phase

Montgomery [2] shows calculation of geometric phase. "Area enclosed by a loop on the shape sphere."

$$dG = -\frac{1}{2}w_3d\theta$$
, where $\theta = \arg(w_1 + iw_2)$
=: $U(z)d\tau$,

We calculate geometric phase over an orbit of period T by

$$G(T) = \int_0^T U(z(\tau))d\tau.$$
 (3)

Montgomery's formula for geometric phase

Montgomery [2] shows calculation of geometric phase. "Area enclosed by a loop on the shape sphere."

$$dG = -\frac{1}{2}w_3d\theta$$
, where $\theta = \arg(w_1 + iw_2)$
=: $U(z)d\tau$,

We calculate geometric phase over an orbit of period T by

$$G(T) = \int_0^T U(z(\tau))d\tau.$$
 (3)

Geometric interpretation: symmetries/antisymmetries of U

Consider $S \in S_4$.

- $U \circ S(z) = U \circ (\tau \circ \rho \circ S)(z) = U(z).$
- Symmetries S and reversing symmetries τ ∘ ρ ∘ S leave dG invariant.
- Symmetries ρ ∘ S and reversing symmetries τ ∘ S send dG → −dG.
- Antisymmetries of U have even order.

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Geometric interpretation: symmetries/antisymmetries of U

Consider $S \in S_4$.

- $U \circ S(z) = U \circ (\tau \circ \rho \circ S)(z) = U(z).$
- Symmetries S and reversing symmetries τ ∘ ρ ∘ S leave dG invariant.
- $U \circ (\tau \circ S)(z) = U \circ (\rho \circ S)(z) = -U.$
- Symmetries ρ ∘ S and reversing symmetries τ ∘ S send dG → −dG.
- ► Antisymmetries of *U* have even order.

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

э

Geometric interpretation: symmetries/antisymmetries of U

Consider $S \in S_4$.

- $U \circ S(z) = U \circ (\tau \circ \rho \circ S)(z) = U(z).$
- Symmetries S and reversing symmetries τ ∘ ρ ∘ S leave dG invariant.
- $U \circ (\tau \circ S)(z) = U \circ (\rho \circ S)(z) = -U.$
- Symmetries ρ ∘ S and reversing symmetries τ ∘ S send dG → −dG.
- Antisymmetries of U have even order.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Cancellation of geometric phase

Define isotropy subgroup of *T*-periodic solution $z(\tau)$ by $\Sigma_z = \{S \in \widetilde{\mathfrak{G}}_R : S(z) = z\}.$

Theorem

If a *T*-periodic solution $z(\tau)$ of the regularised equations of motion has isotropy subgroup Σ_z containing any antisymmetry of *U*, then the geometric phase $G(T) = \int_0^T U(z(\tau))d\tau = 0$.

Consider orbit with isotropy subgroup generated by reversing involutions R_1 , R_2 such that $(R_2R_1)^k = I$. W.I.o.g. at least R_1 antisymmetry of U and $R_1(z(\tau)) = z(\frac{T}{2k} - \tau)$. Consider $0 \le \tau \le \frac{T}{k}$.

$$G(\tfrac{T}{k}) = \int_0^{\tfrac{T}{2k}} U(z(\tau))d\tau + \int_{\tfrac{T}{2k}}^{\tfrac{T}{k}} U(z(\tau))d\tau = \dots = 0.$$

Consider orbit with isotropy subgroup generated by reversing involutions R_1 , R_2 such that $(R_2R_1)^k = I$. W.I.o.g. at least R_1 antisymmetry of U and $R_1(z(\tau)) = z(\frac{T}{2k} - \tau)$. Consider $0 \le \tau \le \frac{T}{k}$.

$$G(\tfrac{T}{k}) = \int_0^{\tfrac{T}{2k}} U(z(\tau))d\tau + \int_{\tfrac{T}{2k}}^{\tfrac{T}{k}} U(z(\tau))d\tau = \dots = 0.$$

Consider orbit with isotropy subgroup generated by reversing involutions R_1 , R_2 such that $(R_2R_1)^k = I$. W.I.o.g. at least R_1 antisymmetry of U and $R_1(z(\tau)) = z(\frac{T}{2k} - \tau)$. Consider $0 \le \tau \le \frac{T}{k}$.

$$G(\tfrac{T}{k}) = \int_0^{\tfrac{T}{2k}} U(z(\tau)) d\tau + \int_{\tfrac{T}{2k}}^{\tfrac{T}{k}} U(z(\tau)) d\tau = \ldots = 0.$$

Consider orbit with isotropy subgroup generated by reversing involutions R_1 , R_2 such that $(R_2R_1)^k = I$. W.I.o.g. at least R_1 antisymmetry of U and $R_1(z(\tau)) = z(\frac{T}{2k} - \tau)$. Consider $0 \le \tau \le \frac{T}{k}$.

$$G(\tfrac{T}{k}) = \int_0^{\tfrac{T}{2k}} U(z(\tau))d\tau + \int_{\tfrac{T}{2k}}^{\tfrac{T}{k}} U(z(\tau))d\tau = \ldots = 0.$$

G

Consider orbit with isotropy subgroup generated by reversing involutions R_1 , R_2 such that $(R_2R_1)^k = I$. W.I.o.g. at least R_1 antisymmetry of U and $R_1(z(\tau)) = z(\frac{T}{2k} - \tau)$. Consider $0 \le \tau \le \frac{T}{k}$.

$$G(\tfrac{T}{k}) = \int_0^{\tfrac{T}{2k}} U(z(\tau))d\tau + \int_{\tfrac{T}{2k}}^{\tfrac{T}{k}} U(z(\tau))d\tau = \ldots = 0.$$

Now whether or not (R_2R_1) (of order *k*) is an antisymmetry of *U*, result follows for reversing case. Non-reversing case similar.

A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U are the only ones whose geometric phase is forced to vanish. Supported by extensive numerical evidence. 363 orbits obeying Theorem 2 or its converse.

A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U are the only ones whose geometric phase is forced to vanish. Supported by extensive numerical evidence. 363 orbits obeying Theorem 2 or its converse.

Conclusion

- Regularised system has reversing symmetry group $\widetilde{\mathfrak{G}}_R \cong S_4 \times Z_2^2$.
- Antisymmetries of U present in isotropy subgroups of periodic orbits dictate that geometric phase vanishes, by Theorem 2.
- Can use Theorem 2 to choose symmetries to impose to obtain absolute periodic orbits.
- Choosing other symmetries allows relative periodic orbits with vanishing angular momentum.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

References

C.G. Lemaître.

The three body problem.

Technical report, NASA CR-110, http://ntrs.nasa.gov/, 1964.

R. Montgomery.

The geometric phase of the three-body problem. *Nonlinearity*, 9:1341–1360, 1996.

V. Titov.

Three-body problem periodic orbits with vanishing angular momentum. *Astronomische Nachrichten*, 336(3):271–275, 2015.

fin.

- ロ > < 雪 > < 言 > < 言 > < 三 > 、 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □