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Introduction

Basic ideas:
Relative vs. absolute periodic orbits,
3-body problem in reduced, regularised coordinates,

v

v

v

Discrete symmetry,

v

Geometric phase,

v

Theorem on geometric phase.
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Relative and absolute periodic orbits in the 3-body
problem

v

Three point masses in the plane, m; € R™, j = 1,2,3.
Each position denoted by X; € C.

Each momentum denoted by P; € C.

Centre of mass O = L S m;X; (with m = > m;),
Angular momentum py = Im Y X;P;.
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The 3-body problem

Described by the Hamiltonian:

P mm
H=S 1L _
Z ij Z |Xl —Xk‘

producing Hamilton’s equations

7 =JVH(z) = F(2),

0 1
=5 o)

where

7= (X1,X2,X3,P1, P2, P3)" € Q,

and Q = C¢ is the phase space.
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Reduce to the shape sphere

At

B C

“Shape space” (wi, wz, ws) € R3. “Shape sphere”
w% + w% + w% = 1.
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Reduce to the shape sphere

INVANEN

oy . 3 B C M

“Shape space” (wi, wz, ws) € R3. “Shape sphere”

w? +w} + w3 = 1. Features when m; = m, = ms:

Equilateral points (Lagrange configurations): E*, (0,0, +1).
Isosceles curves: A;" (acute), O; (obtuse).

Collinear curves: Cj; w3 = 0.

Isosceles collinear points (Euler configurations): M;.
Binary collision points: By;.

vV vV vV VY
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Discrete symmetries

Original configuration.




Discrete symmetries

oj swaps indices k, [ (m; = my).




Discrete symmetries

¢ = o0 oy cycles indices: (1,2,3) — (2,3,1) (m; = my = m3).




Discrete symmetries

p reflects whole configuration in space (any masses).




Discrete symmetries

7 reflects in time: P; — —P;, each j (any masses).




Reversing symmetries

» Define §: Q— Q: symmetry of vector field F(z) iff
SoF(z) =FoS(z).

» Define
&5 = {I,01,02,03,¢,¢%, p, po1, poa, po3, pc, pc*} = Sz x Zy
(order 12), a group under composition.
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Reversing symmetries

» Define §: Q— Q: symmetry of vector field F(z) iff
SoF(z) =FoS(z).

» Define
&s = {l,01,02,03,¢,¢%, p, po1, poa, pos, pe, pc?} =2 S3 X Zy
(order 12), a group under composition.

» Observe that 7 o F(z) = —F o 7(z) means 7 is an
antisymmetry of F.

» We call 7 a reversing symmetry. Composition R =70 S is
also a reversing symmetry.
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Reversing symmetries

» Define §: Q— Q: symmetry of vector field F(z) iff
SoF(z) =FoS(z).

» Define
65 = {17 01,02,03,C, C27 P, P01, pO2, PO3, PC, IOCZ} =83 X 2
(order 12), a group under composition.

» Observe that 7 o F(z) = —F o 7(z) means 7 is an
antisymmetry of F.

» We call 7 a reversing symmetry. Composition R =70 S is
also a reversing symmetry.

We now have a reversing symmetry group &g = S; x Z3 (order
24). Note that Z2 = V4, = {I, p, 7, 7p} is the centre of &x.
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Regularisation

my

Simultaneous regularisation of all binary collisions (due to
Lemaitre [1]):
» New coordinates «; € R such that a; = o + o7, a; > 0 side
length opposite m;.
» o; = 0 gives collinearity with m; in eclipse.
» oy = oy = 0 gives collision between m; and m;.
» Signed area S = ajazaza, Where a = /a3 + o + 3.

» Canonical momenta 7; € R.
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Regularisation

my

my

Simultaneous regularisation of all binary collisions (due to
Lemaitre [1]):
» New coordinates o; € R such that a; = a7 + a7, a; > 0 side
length opposite m;.
» «; = 0 gives collinearity with m; in eclipse.
» o = oy = 0 gives collision between m; and m;.

» Signed area S = ajazaza, Where a = /a2 + o + a3.

» Canonical momenta 7; € R.

iy



Regularisation

v

Define fictional time 7 by 4 = aasas, then

define new Hamiltonian K = (H — h)ajaas =0, his
physical energy.

Shape changes by ¢;, 7;. New phase space is Q = R®.
Shape dynamics alone govern rotation dynamics when
ps = 0.

v

v

v
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Discrete symmetries in regularised coordinates

Preserve physical meanings of symmetries. With
z = (a1, a2, 03,1, ™, T3), choose:

o1(z) = —(o1, a2, 3, m1, 3, M2), €fc.,
c(z) = (a2, 3, a1, m2, 3, 1),
p(z) = —(a1, a2, a3, m1, M2, 73),
7(z) = (a1, 0, a3, —my, —m2, —73), and
s1(z) = (o1, —a2, —a3, m1, —m2, —73), efc.,
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Discrete symmetries in regularised coordinates

Preserve physical meanings of symmetries. With
7= (Od] , 0, (3, T, T2, 7'('3), choose:

01(z) = — (a1, az, a3, Ty, T3, M), €tc.,
c(z) = (a2, a3, a1, M2, 73, 1),

p(z) = —(a1, a2, 3, 1, M2, 73),

7(z) = (a1, 0, a3, —my, —m2, —73), and
51(z) = (a1, —, —a3, my, —m2, —m3), €tc.,

Subgroup {1, s1, 52,53} = V4. Elements interact with S5 by
semidirect product S3 x V4 = S, (order 24). Elements written
uniquely as composition S o s;, S € Ss.
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Discrete symmetries in regularised coordinates

Preserve physical meanings of symmetries. With
7= (Od] , 0, (3, T, T2, 7'('3), choose:

01(z) = — (a1, az, a3, Ty, T3, M), €tc.,

c(z) = (a2, a3, 1, ™2, 73, 71),

p(z) = —(a1, a2, 3, 1, M2, 73),

7(z) = (a1, 0, a3, —my, —m2, —73), and
s1(z) = (o1, —a2, —a3, m1, —m2, —73), efc.,

Subgroup {1, s1, 52,53} = V4. Elements interact with S5 by
semidirect product S3 x V4 = S, (order 24). Elements written
uniquely as composition S o s;, S € Ss.

New (reversing) symmetry group &z = S, x Z2 (order 96), with
same centre as before.
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Reversing fixed sets

Fixed set of symmetry S: {z € Q:S(z) =z, 5 € &g}.
» Fixed sets of reversing symmetries are not invariant.

» Solution with points in fixed sets of reversing involutions
run in reverse possibly with some other symmetry applied
after that instant in time.
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Reversing fixed sets

Fixed set of symmetry S: {z € Q:S(z) =z, 5 € &g}.
» Fixed sets of reversing symmetries are not invariant.
» Solution with points in fixed sets of reversing involutions

run in reverse possibly with some other symmetry applied
after that instant in time.

Theorem
A solution connecting two points in the fixed sets of reversing
involutions Ry, R, is periodic, if (RyR) has finite order.
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Reversing fixed sets

Fixed set of symmetry S: {z € Q:S(z) =z, 5 € &g}.
» Fixed sets of reversing symmetries are not invariant.

» Solution with points in fixed sets of reversing involutions
run in reverse possibly with some other symmetry applied
after that instant in time.

Theorem
A solution connecting two points in the fixed sets of reversing
involutions Ry, R, is periodic, if (RyR) has finite order.

Proof.

Suppose z(0) € FixR; and z(7y) € Fix R,. Observe that

7(270) € FixRiRyR1 = Fix RS, where S is non-reversing of order
k, as ®p is finite. If Ry = R, then § = I and orbit is periodic with
period 27y. Else periodic with period 2kT. O
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Example reversing orbit

» An orbit generated by R} = R, = 70151,
FiXR] - (07 a2, Qp, T, T2, _71-2)

P, P3
I
X, \ X,
Py
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Example reversing orbit

» An orbit generated by R} = R, = 70151,
FixR; = (O, o, 0, T, T2, —71'2) (WhICh looks |Ike)

P, Py
LR
X, \ X;

P,
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Example reversing orbit

» An orbit generated by R} = R, = 70151,
FixR; = (0, o, 0, T, T2, —71'2) (WhICh looks |Ike)

» Observe symmetry at T = %: swap blue, green and sign of

red, reflect about 7 = Z.
» Dittoat 7 = 0.
a; .
0
1 T
P, P
N KN
X X3
5
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Reversing fixed sets

Five classes of reversing fixed sets in regularised system: 1.
Collinear (7ps)), 2. Isosceles (rpo; or Tpojs;), 3. Isosceles
collinear (ro; or To;s;), 4. Brake-collision (7s;), 5. Brake (7,

example in [3])
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Montgomery’s formula for geometric phase

Montgomery [2] shows calculation of geometric phase. “Area
enclosed by a loop on the shape sphere.”
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Montgomery’s formula for geometric phase
Montgomery [2] shows calculation of geometric phase. “Area
enclosed by a loop on the shape sphere.”

1
dG = —§W3d0, where 6 = arg(w; + iwy)
=: U(z)dr,
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Montgomery’s formula for geometric phase

Montgomery [2] shows calculation of geometric phase. “Area
enclosed by a loop on the shape sphere.”
1
dG = —§W3d0, where 6 = arg(w; + iwy)
=: U(z)dr,

We calculate geometric phase over an orbit of period T by

G(T) = /O U(z(r))dr. (3)
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Geometric interpretation: symmetries/antisymmetries
of U

Consider S € Ss.
> UoS(z) = Uo(ropoS)(s) = U().
» Symmetries S and reversing

symmetries 7 o p o S leave dG
invariant.




Geometric interpretation: symmetries/antisymmetries
of U

Consider S € Ss.
> UoS() = Uo(ropoS)(z) = U).
» Symmetries S and reversing
symmetries 7 o p o S leave dG
invariant.
> Uo(70S)(z) = Uo(poS)(z) = —U.
» Symmetries p o S and reversing

symmetries 7 o S send
dG — —dG.
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Geometric interpretation: symmetries/antisymmetries

of U

Consider S € S4.

>

>

UoS(z) = Uo(ropoS)(z) = U(z).
Symmetries S and reversing
symmetries 7 o p o S leave dG
invariant.

Uo(r0S)(z) = Uc(poS)(z) = —U.
Symmetries p o S and reversing
symmetries 7 o S send

dG — —dG.

Antisymmetries of U have even
order.




Cancellation of geometric phase

Define isotropy subgroup of T-periodic solution z(7) by
Zz = {S S @R:S(Z) = Z}.

Theorem

If a T-periodic solution z(r) of the regularised equations of
motion has isotropy subgroup ¥, conta/n/ng any antisymmetry
of U, then the geometric phase G(T fo ))dT = 0.
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Outline of proof
Consider orbit with isotropy subgroup generated by reversing
involutions Ry, R, such that (RyR;)* = 1. W.l.o.g. at least R,
antisymmetry of U and R, (z(7)) = z(% — 7).
Consider 0 < 7 < I.

Q
T
Bl
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Outline of proof
Consider orbit with isotropy subgroup generated by reversing
involutions Ry, R, such that (RyR;)* = 1. W.l.o.g. at least R,
antisymmetry of U and R, (z(7)) = z(% — 7).
Consider 0 < 7 < I.
T

6(h = [ vte(ryar +

(=]

Rl

=
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Outline of proof

Consider orbit with isotropy subgroup generated by reversing
involutions Ry, R, such that (RyR;)* = 1. W.l.o.g. at least R,
antisymmetry of U and R, (z(7)) = z(% — 7)

Consider 0 < 7 < I.

T

G(L) = /O * Ula(r))ar + /T U(z(7))dr

2k

1~

Eall] 4

oL
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Outline of proof

Consider orbit with isotropy subgroup generated by reversing
involutions Ry, R, such that (RyR;)* = 1. W.l.o.g. at least R,
antisymmetry of U and R, (z(7)) = z(% — 7)

Consider 0 < 7 < I.

T

G(L) = /O * Ula(r))ar + /T U(z(7))dr

2k

Eall] 4

oL
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Outline of proof
Consider orbit with isotropy subgroup generated by reversing
involutions Ry, R, such that (RyR;)* = 1. W.l.o.g. at least R,
antisymmetry of U and R, (z(7)) = z(% — 7).
Consider 0 < 7 < I.

T T

2%k x
G(%) = / U(z(7))dT + /T U(z(r))dr=... =0.

0 %
Now whether or not (R,R;) (of order k) is an antisymmetry of U,
result follows for reversing case. Non-reversing case similar.

O

T
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A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U
are the only ones whose geometric phase is forced to vanish.
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A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U
are the only ones whose geometric phase is forced to vanish.
Supported by extensive numerical evidence. 363 orbits obeying
Theorem 2 or its converse.
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Conclusion

» Regularised system has reversing symmetry group
B Sy x Z3.

» Antisymmetries of U present in isotropy subgroups of
periodic orbits dictate that geometric phase vanishes, by
Theorem 2.

» Can use Theorem 2 to choose symmetries to impose to
obtain absolute periodic orbits.

» Choosing other symmetries allows relative periodic orbits
with vanishing angular momentum.
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