SYMPLECTIC INTEGRATION OF THE REDUCED, ZERO ANGULAR MOMENTUM 3-BODY PROBLEM IN REGULARISED COORDINATES

Hamiltonian of the planar 3-body Problem in Cartesian Coordinates
Let (j, k, l) be cyclic permutations of $(1,2,3)$. Let X_{j} be the complex cartesian coordinates of m_{j} and P_{j} be its canonically conjugated momentum. The Hamiltonian of the planar 3-body problem in these coordinates is

$$
\left.H=\sum \frac{\left|P_{j}\right|^{2}}{2 m_{j}}+\frac{1}{2} \sum \frac{m_{m} m_{l}}{\left|X_{l}-X_{k}\right|} \right\rvert\,
$$

Following Waldvogel [3], introduce symmetric coordinates a_{j}, ϕ and canonically conjugated momenta p_{j}, p_{ϕ}, where a_{j} is the length of the side opposite $m_{j} . \phi$ is the angle of orientation of the triangle, of interest in discovering the geometric phase of relative periodic orbits in the regularised coordinates. When $p_{\phi}=0$ its equation of motion is

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} t}=\frac{2}{3} \sum \frac{S}{m_{j} a_{k} a_{l}}\left(\frac{p_{k}}{a_{l}}-\frac{p_{l}}{a_{k}}\right)
$$

where $S=\sqrt{\sigma\left(\sigma-a_{1}\right)\left(\sigma-a_{2}\right)\left(\sigma-a_{3}\right)}$ is the signed area of the triangle and $\sigma=\frac{1}{2}\left(a_{1}+a_{2}+a_{3}\right)$.

Figure 1: Geometry of the physical coordinates X_{j}, symmetric coordi- Figure 2: α-space, showing the orientation of triangles in the octants. nates a_{j} and regularised coordinates α_{j}, including the angles θ_{j} and ϕ_{j} involved in the transformations.

Regularised Coordinates

Introduce α_{j} such that $a_{j}=\alpha_{k}^{2}+\alpha_{l}^{2}$ and canonically conjugated momenta π_{j}. In these coordinates, each nondegenerate oriented triangle is represented four times (Figure 2). Degenerate triangles are given by

- $\alpha_{j}=0, \alpha_{k}, \alpha_{l} \neq 0$ a collinear configuration with m_{j} between m_{k} and m_{l};
- $\alpha_{j}=\alpha_{k}=0, \alpha_{l} \neq 0$ a binary collision between m_{j} and m_{k}; and
- $\alpha_{j}=\alpha_{k}=\alpha_{l}=0$ the triple collision.

See Waldvogel for details of the transformations and their inverses. Note: care must be taken in the conversion back to Cartesian coordinates. The exterior angles θ_{j} must be adjusted so that $\sum \theta_{j}=0$. Pick $\theta_{j}=\theta_{k}+\theta_{l}-2 \pi$ for the initial configuration and label this state $s=j$. At a collinearity, α_{j} changes sign, so label this transition $t=j$. The table below shows to which state the system moves with each transition:

$$
\begin{array}{c|c|c|c}
t & 1 & 2 & 3 \\
\hline 1 & 1 & 3 & 2 \\
\hline 2 & 3 & 2 & 1 \\
\hline 3 & 2 & 1 & 3
\end{array}
$$

E.g., start in state 1 and α_{1} changes sign, then remain in state 1 . Continue with $\theta_{1}=\theta_{2}+\theta_{3}-2 \pi$. If next α_{2} changes $\operatorname{sign}(t=2)$, we go from $s=1$ to $s=3$ and reconstruct the cartesian coordinates by using $\theta_{3}=\theta_{1}+\theta_{2}-2 \pi$.

Hamiltonian of 3-body Problem in Regularised Coordinates

Rescale time such that $\frac{\mathrm{d} t}{\mathrm{~d} \tau}=a_{1} a_{2} a_{3}$. Then let the new Hamiltonian $K=a_{1} a_{2} a_{3}(H-h)$, where h is the physical energy of the system, calculated from the initial conditions, and only solutions with $K=0$ have physical meaning. Introduce 3-vectors $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)^{T}, \boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)^{T}$ and write $K=K_{0}\left(\boldsymbol{\alpha}, \boldsymbol{\pi}, p_{\phi}\right)-h a_{1} a_{2} a_{3}$, where in the case of $p_{\phi}=0$,

$$
K_{0}(\boldsymbol{\alpha}, \boldsymbol{\pi}, 0)=\frac{1}{8} \sum\left(\frac{a_{j}}{m_{j}}\left(\alpha^{2} \pi_{j}^{2}+\left(\alpha_{k} \pi_{l}-\alpha_{l} \pi_{k}\right)^{2}\right)-m_{k} m_{l} a_{k} a_{l}\right)
$$

where $\alpha^{2}=\sum \alpha_{j}^{2}$. The equations of motion, $\frac{\mathrm{d} \boldsymbol{\alpha}}{\mathrm{d} \tau}=\frac{\partial K}{\partial \pi}, \frac{\mathrm{~d} \boldsymbol{\pi}}{\mathrm{~d} \tau}=-\frac{\partial K}{\partial \boldsymbol{\alpha}}$ are regularised in every binary collision simultaneously.
Let $\frac{\mathrm{d} \phi}{\mathrm{d} \tau}=\frac{\mathrm{d} \phi}{\mathrm{d} t} \mathrm{~d} \tau$ be written in terms of the new variables; it is also regularised at every binary collision.

Figure 3: Figure 8 choreography integrated Figure 4: Continued figure 8 choreography Figure 5: A periodic orbit that lies near the using regularised coordinates. Time step integrated using regularised coordinates. figure 8. Equal masses $m_{1}=m_{2}=m_{3}=$
$\delta \tau=10^{-5}$.
$m_{1}=0.995, \delta \tau=10^{-5}$.

Explicit Symplectic Splitting Integrator

If $H=\sum H_{i}$, each H_{i} exactly integrable, then the flow of H can be approximated to first order in time step t by following the flow of each H_{i} for time $t,[2]$. Reversing the order in which each flow is applied gives the adjoint of this map. The first order flow and its adoint can be composed with half steps to produce a generalised midpoint integrator This method is reversible and second order, so Yoshida's trick [4] can be used to build higher even order integrators.

Solution Forms for Monomial Hamiltonians

Channell \& Neri [1] provide a theorem that a monomial Hamiltonian is integrable. The p-th term of $H=\sum H_{i}$ is

$$
H_{p}=A_{p} q^{m_{p}} p^{n_{p}},
$$

where $m_{p}, n_{p} \in \mathbb{Z}^{+}$. It has integrals $I_{p j}=q_{j}^{m_{p j}} p_{j}^{n_{p j}}$. When $m_{p} \neq n_{p}$

$$
\begin{aligned}
& q(t)=q_{0}\left(1+\left(n_{p}-m_{p}\right) A_{p} q_{0}^{m_{p}-1} p_{0}^{n_{p}-1} t\right)^{\frac{n_{p}}{n_{p}-m_{p}}} \\
& p(t)=p_{0}\left(1+\left(n_{p}-m_{p}\right) A_{p} q_{0}^{m_{p}-1} p_{0}^{n_{p}-1} t\right)^{\frac{m_{p}}{m_{p}-n_{p}}} .
\end{aligned}
$$

When $m_{p}=n_{p}$,
$q(t)=q_{0} \exp \left(m_{p} A_{p}\left(q_{0} p_{0}\right)^{m_{p}-1} t\right)$
$p(t)=p_{0} \exp \left(-m_{p} A_{p}\left(q_{0} p_{0}\right)^{m_{p}-1} t\right)$.

In a system with M degrees of freedom, consider each pair $\left(q_{i}, p_{i}\right)$ by itself and hide every other pair inside $A_{p}=B_{p} \prod_{j \neq i}^{M} I_{p j}$, where B_{p} is the actual constant coefficient of the p-th term of the full polynomial.

With $z=(q, p)^{T}$, the full solution for the p-th monomial is like

$$
z_{p}(t)=\left(\ldots, q_{i}(t), \ldots, q_{k}(t), \ldots, p_{i}(t), \ldots, p_{k}(t), \ldots\right)^{T}
$$

where

$$
\begin{aligned}
& q_{i}(t)=q_{i, 0} \exp \left(m_{p i} B_{p} \prod_{j \neq i} I_{p j}\left(q_{i, 0} p_{i, 0}\right)^{m_{p i}-1} t\right) \\
& p_{i}(t)=p_{i, 0} \exp \left(-m_{p i} B_{p} \prod_{j \neq i} I_{p j}\left(q_{i, 0} p_{i, 0}\right)^{m_{p i}-1} t\right) \\
& q_{k}(t)=q_{k, 0}\left(1+\left(n_{p k}-m_{p k}\right) B_{p} \prod_{j \neq k} I_{p j} q_{k, 0}^{m_{p k}-1} p_{k, 0}^{n_{p k}-1} t\right)^{\frac{n_{p k}}{n_{p k}-m_{p k}}} \\
& p_{k}(t)=p_{k, 0}\left(1+\left(n_{p k}-m_{p k}\right) B_{p} \prod_{j \neq k} I_{p j} q_{k, 0}^{m_{p k}-1} p_{k, 0}^{n_{p k}-1} t\right)^{\frac{m_{p k}}{m_{p k}-n_{p k}}} .
\end{aligned}
$$

The terms $I_{p j}$ must be calculated anew at each stage of each step.
Represent the solution above by $z_{p}(t)=\psi_{p}^{t} z_{0}$, where $z(0)=z_{0}$ is the initial condition.

Explicit Symplectic Integrator

Let $z(t)=\psi_{N}^{t} \psi_{N-1}^{t} \ldots \psi_{2}^{t} \psi_{1}^{t} z_{0}+O\left(t^{2}\right)$, denoted by ψ^{t}, be a first order approximation of H. The adjoint of this method is $\left(\psi^{t}\right)^{*}$, where the solutions ψ_{p}^{t} are applied in the reverse order.
A reversible second order approximation is given by $z(t)=\left(\psi^{\frac{t}{2}}\right)^{*} \psi^{\frac{t}{2}} z_{0}+O\left(t^{3}\right)=\psi_{1}^{\frac{t}{2}} \ldots \psi_{N-1}^{\frac{t}{2}} \psi_{N}^{t} \psi_{N-1}^{\frac{t}{2}} \ldots \psi_{1}^{\frac{t}{2}} z_{0}+$ $O\left(t^{3}\right)$, denoted by ϕ_{2}^{t}.

Implementation

MATLAB's symbolic algebra toolbox was used to represent the Hamiltonian of the planar 3-body problem in the regularised coordinates, and the integrator was built as above. Simplifications may be made when several monomials are functions of coordinates or momenta only. K is a polynomial with 34 terms; collecting terms so reduces the number of stages from 34 to 22
A trajectory with several close encounters, one a near collision with separation $\sim 10^{-4}$, is shown in $\boldsymbol{\alpha}$-space in Figure 6 , and its behaviour vs scaled time τ is shown in Figure 7. The shape of the corresponding orbit in physical space is shown in Figure 8, and its progression in physical time t in Figure 9 .

Figure 6: Trajectory in $\boldsymbol{\alpha}$-space. Figures 7, 8 and 9 are based Figure 8: Physical trajectories of the three bodies integrated on the same integration of 10^{6} time steps at $\delta \tau=10^{-5}$. from initial conditions in Figure 6, with $\phi(0)=0$.

Figure 7: α and error in K versus scaled time τ for the initial conditions in Figure 6. There are close encounters between m_{1} and m_{2} at $\tau \approx 1,2$ and a near collision (distance between bodies $\approx 10^{-4}$ between m_{1} and m_{3} at $\tau \approx 9.7$

Figure 9: Physical x and y coordinates and error in K vs physical time t for the three bodies from Figure 6. Note the time scaling coming into effect near close encounters compared to K
Application and results
Newton's method is used on the Poincaré section to discover periodic orbits in the regularised coordinates. Starting from the classic figure-8 choreography (Figure 3), one of the masses is modified, and a nearby periodic orbit is found. This was repeated to discover the orbit shown in Figure 4 , with $m_{1}=0.995$.
A 1-dimensional periodic collision orbit is shown in Figures 10 and 11, and the energy error is shown in Figure 12.

Figure 10: Trajectory in $\boldsymbol{\alpha}$-space of peri- Figure 11: Physical trajectories of the Figure 12: Energy error for one dimen$\begin{array}{ll}\text { Figure 10: frajectory in } \alpha \text {-space of peri- } & \text { Figure 11: Physical trajectories of the Figure 12: Energy error for one dimen- } \\ \text { odic collision orbit in one dimension. Inte- } & \text { three bodies in one dimension vs time. }\end{array}$ odic colisision orbit in one dimension. Inte- three bodies in one dimension vs time. $\begin{aligned} & \text { sion } \\ & \text { grated with time step } \delta \tau=10^{-5} \text {. }\end{aligned}$ time.

References

[1] Paul J. Channell and Filippo R. Neri. An introduction to symplectic integrators. Fields Institute Communications, 10:45-58, 1996.
[2] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical Integration. Springer, 2002.
[3] Jörg Waldvogel. Symmetric and regularized coordinates on the plane triple collision manifold. Celestial Mechanics, 28:69-82, 1982.
[4] Haruo Yoshida. Construction of higher order symplectic integrators. Physics Letters A, 150:262-268, 1990.

