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Hamiltonian of the planar 3-body Problem in Cartesian Coordinates

Let (j, k, l) be cyclic permutations of (1, 2, 3). Let Xj be the complex cartesian coordinates of mj and Pj be its
canonically conjugated momentum. The Hamiltonian of the planar 3-body problem in these coordinates is

H =
∑ |Pj|

2

2mj
+
1

2

∑ mkml

|Xl −Xk|
.

Following Waldvogel [3], introduce symmetric coordinates aj, φ and canonically conjugated momenta pj, pφ, where
aj is the length of the side opposite mj. φ is the angle of orientation of the triangle, of interest in discovering the
geometric phase of relative periodic orbits in the regularised coordinates. When pφ = 0 its equation of motion is

dφ

dt
=

2

3

∑ S

mjakal

(

pk
al

−
pl
ak

)

,

where S =
√

σ(σ − a1)(σ − a2)(σ − a3) is the signed area of the triangle and σ = 1
2(a1 + a2 + a3).

Figure 1: Geometry of the physical coordinates Xj, symmetric coordi-
nates aj and regularised coordinates αj, including the angles θj and φj
involved in the transformations.
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Figure 2: α-space, showing the orientation of triangles in the octants.

Regularised Coordinates

Introduce αj such that aj = α2k + α2l and canonically conjugated momenta πj. In these coordinates, each non-
degenerate oriented triangle is represented four times (Figure 2). Degenerate triangles are given by:

• αj = 0, αk, αl 6= 0 a collinear configuration with mj between mk and ml;

• αj = αk = 0, αl 6= 0 a binary collision between mj and mk; and

• αj = αk = αl = 0 the triple collision.

See Waldvogel for details of the transformations and their inverses. Note: care must be taken in the conversion back
to Cartesian coordinates. The exterior angles θj must be adjusted so that

∑

θj = 0. Pick θj = θk + θl − 2π for the
initial configuration and label this state s = j. At a collinearity, αj changes sign, so label this transition t = j. The
table below shows to which state the system moves with each transition:

t s 1 2 3
1 1 3 2
2 3 2 1
3 2 1 3

E.g., start in state 1 and α1 changes sign, then remain in state 1. Continue with θ1 = θ2+ θ3− 2π. If next α2 changes
sign (t = 2), we go from s = 1 to s = 3 and reconstruct the cartesian coordinates by using θ3 = θ1 + θ2 − 2π..

Hamiltonian of 3-body Problem in Regularised Coordinates

Rescale time such that dt
dτ = a1a2a3. Then let the new Hamiltonian K = a1a2a3(H − h), where h is the physical

energy of the system, calculated from the initial conditions, and only solutions with K = 0 have physical meaning.
Introduce 3-vectors α = (α1, α2, α3)

T , π = (π1, π2, π3)
T and write K = K0(α,π, pφ)− ha1a2a3, where in the case

of pφ = 0,

K0(α,π, 0) =
1

8

∑

(

aj

mj

(

α2π2j + (αkπl − αlπk)
2
)

−mkmlakal

)

,

where α2 =
∑

α2j. The equations of motion, dαdτ = ∂K
∂π

, dπdτ = −∂K
∂α

are regularised in every binary collision simulta-
neously.

Let dφ
dτ = dφ

dt
dt
dτ be written in terms of the new variables; it is also regularised at every binary collision.
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Figure 3: Figure 8 choreography integrated
using regularised coordinates. Time step
δτ = 10−5.
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Figure 4: Continued figure 8 choreography
integrated using regularised coordinates.
m1 = 0.995, δτ = 10−5.
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Figure 5: A periodic orbit that lies near the
figure 8. Equal masses m1 = m2 = m3 =
1, δτ = 10−5.

Explicit Symplectic Splitting Integrator

If H =
∑

Hi, each Hi exactly integrable, then the flow of H can be approximated to first order in time step t by
following the flow of each Hi for time t, [2]. Reversing the order in which each flow is applied gives the adjoint of this
map. The first order flow and its adoint can be composed with half steps to produce a generalised midpoint integrator.
This method is reversible and second order, so Yoshida’s trick [4] can be used to build higher even order integrators.

Solution Forms for Monomial Hamiltonians

Channell & Neri [1] provide a theorem that a monomial Hamiltonian is integrable. The p-th term of H =
∑

Hi is

Hp = Apq
mppnp,

where mp, np ∈ Z
+. It has integrals Ipj = q

mpj

j p
npj
j . When mp 6= np

q(t) = q0 (1 + (np −mp) Ap q
mp−1
0 p

np−1
0 t)

np
np−mp

p(t) = p0 (1 + (np −mp) Ap q
mp−1
0 p

np−1
0 t)

mp
mp−np .

When mp = np,

q(t) = q0 exp(mp Ap (q0 p0)
mp−1 t)

p(t) = p0 exp(−mp Ap (q0 p0)
mp−1 t).

In a system with M degrees of freedom, consider each pair (qi, pi) by itself and hide every other pair inside

Ap = Bp
∏M
j 6=i Ipj, where Bp is the actual constant coefficient of the p-th term of the full polynomial.

With z = (q, p)T , the full solution for the p-th monomial is like

zp(t) = (. . . , qi(t), . . . , qk(t), . . . , pi(t), . . . , pk(t), . . . )
T ,

where

qi(t) = qi,0 exp(mpi Bp
∏

j 6=i

Ipj (qi,0 pi,0)
mpi−1t)

pi(t) = pi,0 exp(−mpi Bp
∏

j 6=i

Ipj (qi,0 pi,0)
mpi−1t)

qk(t) = qk,0(1 + (npk −mpk) Bp
∏

j 6=k

Ipj q
mpk−1
k,0 p

npk−1
k,0 t)

npk
npk−mpk

pk(t) = pk,0(1 + (npk −mpk) Bp
∏

j 6=k

Ipj q
mpk−1
k,0 p

npk−1
k,0 t)

mpk
mpk−npk .

The terms Ipj must be calculated anew at each stage of each step.

Represent the solution above by zp(t) = ψtpz0, where z(0) = z0 is the initial condition.

Explicit Symplectic Integrator

Let z(t) = ψtN ψtN−1 . . . ψ
t
2 ψ

t
1 z0 + O(t2), denoted by ψt, be a first order approximation of H . The adjoint of this

method is
(

ψt
)∗
, where the solutions ψtp are applied in the reverse order.

A reversible second order approximation is given by z(t) =
(

ψ
t
2

)∗
ψ

t
2 z0+O(t

3) = ψ
t
2

1 . . . ψ
t
2

N−1 ψ
t
N ψ

t
2

N−1 . . . ψ
t
2

1 z0+

O(t3), denoted by φt2.

Implementation

MATLAB’s symbolic algebra toolbox was used to represent the Hamiltonian of the planar 3-body problem in the
regularised coordinates, and the integrator was built as above. Simplifications may be made when several monomials
are functions of coordinates or momenta only. K is a polynomial with 34 terms; collecting terms so reduces the number
of stages from 34 to 22.
A trajectory with several close encounters, one a near collision with separation ∼ 10−4, is shown in α-space in Figure
6, and its behaviour vs scaled time τ is shown in Figure 7. The shape of the corresponding orbit in physical space is
shown in Figure 8, and its progression in physical time t in Figure 9.
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Figure 6: Trajectory in α-space. Figures 7, 8 and 9 are based
on the same integration of 106 time steps at δτ = 10−5.
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Figure 7: α and error in K versus scaled time τ for the initial
conditions in Figure 6. There are close encounters between m1

andm2 at τ ≈ 1, 2 and a near collision (distance between bodies
≈ 10−4) between m1 and m3 at τ ≈ 9.7.
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Figure 8: Physical trajectories of the three bodies integrated
from initial conditions in Figure 6, with φ(0) = 0.
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Figure 9: Physical x and y coordinates and error in K vs phys-
ical time t for the three bodies from Figure 6. Note the time
scaling coming into effect near close encounters compared to K
vs τ in Figure 7.

Application and results

Newton’s method is used on the Poincaré section to discover periodic orbits in the regularised coordinates. Starting
from the classic figure-8 choreography (Figure 3), one of the masses is modified, and a nearby periodic orbit is found.
This was repeated to discover the orbit shown in Figure 4, with m1 = 0.995.
A 1-dimensional periodic collision orbit is shown in Figures 10 and 11, and the energy error is shown in Figure 12.
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Figure 10: Trajectory in α-space of peri-
odic collision orbit in one dimension. Inte-
grated with time step δτ = 10−5.
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Periodic orbit in 1D in physical coordinates

Figure 11: Physical trajectories of the
three bodies in one dimension vs time.
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Figure 12: Energy error for one dimen-
sional periodic collision orbit vs scaled
time.
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