

SYMPLECTIC INTEGRATION OF THE REDUCED, ZERO ANGULAR MOMENTUM 3-BODY PROBLEM IN REGULARISED COORDINATES

Danya Rose, Holger Dullin

School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia

where

Hamiltonian of the planar 3-body Problem in Cartesian Coordinates

Let (j, k, l) be cyclic permutations of (1, 2, 3). Let X_j be the complex cartesian coordinates of m_j and P_j be its canonically conjugated momentum. The Hamiltonian of the planar 3-body problem in these coordinates is

 $H = \sum \frac{|P_j|^2}{2m_i} + \frac{1}{2} \sum \frac{m_k m_l}{|X_l - X_l|}.$

Following Waldvogel [3], introduce symmetric coordinates a_i , ϕ and canonically conjugated momenta p_i , p_{ϕ} , where a_j is the length of the side opposite m_j . ϕ is the angle of orientation of the triangle, of interest in discovering the geometric phase of relative periodic orbits in the regularised coordinates. When $p_{\phi} = 0$ its equation of motion is

 $\frac{\mathrm{d}\phi}{\mathrm{d}t} = \frac{2}{3} \sum \frac{S}{m_j a_k a_l} \left(\frac{p_k}{a_l} - \frac{p_l}{a_k} \right),$

where $S = \sqrt{\sigma(\sigma - a_1)(\sigma - a_2)(\sigma - a_3)}$ is the signed area of the triangle and $\sigma = \frac{1}{2}(a_1 + a_2 + a_3)$.

With $z = (q, p)^T$, the full solution for the *p*-th monomial is like

 $z_{p}(t) = (\ldots, q_{i}(t), \ldots, q_{k}(t), \ldots, p_{i}(t), \ldots, p_{k}(t), \ldots)^{T},$

$$q_{i}(t) = q_{i,0} \exp(m_{pi} B_{p} \prod_{j \neq i} I_{pj} (q_{i,0} p_{i,0})^{m_{pi}-1}t)$$

$$p_{i}(t) = p_{i,0} \exp(-m_{pi} B_{p} \prod_{j \neq i} I_{pj} (q_{i,0} p_{i,0})^{m_{pi}-1}t)$$

$$q_{k}(t) = q_{k,0}(1 + (n_{pk} - m_{pk}) B_{p} \prod_{j \neq k} I_{pj} q_{k,0}^{m_{pk}-1} p_{k,0}^{n_{pk}-1}t)^{\frac{n_{pk}}{m_{pk}-m_{pk}}}$$

$$p_{k}(t) = p_{k,0}(1 + (n_{pk} - m_{pk}) B_{p} \prod_{j \neq k} I_{pj} q_{k,0}^{m_{pk}-1} p_{k,0}^{n_{pk}-1}t)^{\frac{m_{pk}}{m_{pk}-m_{pk}}}.$$

Figure 2: α -space, showing the orientation of triangles in the octants. Figure 1: Geometry of the physical coordinates X_i , symmetric coordinates a_i and regularised coordinates α_i , including the angles θ_i and ϕ_i involved in the transformations.

Regularised Coordinates

Introduce α_j such that $a_j = \alpha_k^2 + \alpha_l^2$ and canonically conjugated momenta π_j . In these coordinates, each nondegenerate oriented triangle is represented four times (Figure 2). Degenerate triangles are given by:

• $\alpha_j = 0, \ \alpha_k, \ \alpha_l \neq 0$ a collinear configuration with m_j between m_k and m_l ;

• $\alpha_i = \alpha_k = 0$, $\alpha_l \neq 0$ a binary collision between m_i and m_k ; and

• $\alpha_i = \alpha_k = \alpha_l = 0$ the triple collision.

See Waldvogel for details of the transformations and their inverses. Note: care must be taken in the conversion back to Cartesian coordinates. The exterior angles θ_j must be adjusted so that $\sum \theta_j = 0$. Pick $\theta_j = \theta_k + \theta_l - 2\pi$ for the initial configuration and label this state s = j. At a collinearity, α_i changes sign, so label this transition t = j. The table below shows to which state the system moves with each transition:

$t \ s$	1	2	3
1	1	3	2
2	3	2	1
3	2	1	3

The terms I_{pj} must be calculated anew at each stage of each step. Represent the solution above by $z_p(t) = \psi_p^t z_0$, where $z(0) = z_0$ is the initial condition.

Explicit Symplectic Integrator

Let $z(t) = \psi_N^t \psi_{N-1}^t \dots \psi_2^t \psi_1^t z_0 + O(t^2)$, denoted by ψ^t , be a first order approximation of H. The adjoint of this method is $(\psi^t)^*$, where the solutions ψ_p^t are applied in the reverse order. A reversible second order approximation is given by $z(t) = \left(\psi^{\frac{t}{2}}\right)^* \psi^{\frac{t}{2}} z_0 + O(t^3) = \psi_1^{\frac{t}{2}} \dots \psi_{N-1}^t \psi_N^t \psi_{N-1}^{\frac{t}{2}} \dots \psi_1^{\frac{t}{2}} z_0 + O(t^3)$ $O(t^3)$, denoted by ϕ_2^t .

Implementation

MATLAB's symbolic algebra toolbox was used to represent the Hamiltonian of the planar 3-body problem in the regularised coordinates, and the integrator was built as above. Simplifications may be made when several monomials are functions of coordinates or momenta only. K is a polynomial with 34 terms; collecting terms so reduces the number of stages from 34 to 22.

A trajectory with several close encounters, one a near collision with separation ~ 10^{-4} , is shown in α -space in Figure 6, and its behaviour vs scaled time τ is shown in Figure 7. The shape of the corresponding orbit in physical space is shown in Figure 8, and its progression in physical time t in Figure 9.

0.5 -0.5 0.5

ory in α -space from randomly chosen ICs

E.g., start in state 1 and α_1 changes sign, then remain in state 1. Continue with $\theta_1 = \theta_2 + \theta_3 - 2\pi$. If next α_2 changes sign (t=2), we go from s=1 to s=3 and reconstruct the cartesian coordinates by using $\theta_3 = \theta_1 + \theta_2 - 2\pi$.

Hamiltonian of 3-body Problem in Regularised Coordinates

Rescale time such that $\frac{dt}{d\tau} = a_1 a_2 a_3$. Then let the new Hamiltonian $K = a_1 a_2 a_3 (H - h)$, where h is the physical energy of the system, calculated from the initial conditions, and only solutions with K = 0 have physical meaning. Introduce 3-vectors $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \alpha_3)^T$, $\boldsymbol{\pi} = (\pi_1, \pi_2, \pi_3)^T$ and write $K = K_0(\boldsymbol{\alpha}, \boldsymbol{\pi}, p_{\phi}) - ha_1 a_2 a_3$, where in the case of $p_{\phi} = 0$,

$$K_0(\boldsymbol{\alpha}, \boldsymbol{\pi}, 0) = \frac{1}{8} \sum \left(\frac{a_j}{m_j} \left(\alpha^2 \pi_j^2 + (\alpha_k \pi_l - \alpha_l \pi_k)^2 \right) - m_k m_l a_k a_l \right),$$

where $\alpha^2 = \sum \alpha_j^2$. The equations of motion, $\frac{d\alpha}{d\tau} = \frac{\partial K}{\partial \pi}$, $\frac{d\pi}{d\tau} = -\frac{\partial K}{\partial \alpha}$ are regularised in every binary collision simultaneously.

Figure 3: Figure 8 choreography integrated Figure 4: Continued figure 8 choreography Figure 5: A periodic orbit that lies near the using regularised coordinates. Time step integrated using regularised coordinates. figure 8. Equal masses $m_1 = m_2 = m_3 = m_3$ $m_1 = 0.995, \, \delta \tau = 10^{-5}.$ $\delta \tau = 10^{-5}.$ 1, $\delta \tau = 10^{-5}$

Explicit Symplectic Splitting Integrator

If $H = \sum H_i$, each H_i exactly integrable, then the flow of H can be approximated to first order in time step t by following the flow of each H_i for time t, [2]. Reversing the order in which each flow is applied gives the adjoint of this map. The first order flow and its adoint can be composed with half steps to produce a generalised midpoint integrator. This method is reversible and second order, so Yoshida's trick [4] can be used to build higher even order integrators. Solution Forms for Monomial Hamiltonians Channell & Neri [1] provide a theorem that a monomial Hamiltonian is integrable. The p-th term of $H = \sum H_i$ is

Figure 8: Physical trajectories of the three bodies integrated Figure 6: Trajectory in α -space. Figures 7, 8 and 9 are based on the same integration of 10^6 time steps at $\delta \tau = 10^{-5}$. from initial conditions in Figure 6, with $\phi(0) = 0$.

Figure 7: α and error in K versus scaled time τ for the initial conditions in Figure 6. There are close encounters between m_1 and m_2 at $\tau \approx 1$, 2 and a near collision (distance between bodies) $\approx 10^{-4}$) between m_1 and m_3 at $\tau \approx 9.7$.

Figure 9: Physical x and y coordinates and error in K vs physical time t for the three bodies from Figure 6. Note the time scaling coming into effect near close encounters compared to Kvs τ in Figure 7.

Application and results

Newton's method is used on the Poincaré section to discover periodic orbits in the regularised coordinates. Starting from the classic figure-8 choreography (Figure 3), one of the masses is modified, and a nearby periodic orbit is found. This was repeated to discover the orbit shown in Figure 4, with $m_1 = 0.995$.

A 1-dimensional periodic collision orbit is shown in Figures 10 and 11, and the energy error is shown in Figure 12.

 $H_p = A_p q^{m_p} p^{n_p},$

where $m_p, n_p \in \mathbb{Z}^+$. It has integrals $I_{pj} = q_j^{m_{pj}} p_j^{n_{pj}}$. When $m_p \neq n_p$

 $q(t) = q_0 \left(1 + (n_p - m_p) A_p q_0^{m_p - 1} p_0^{n_p - 1} t\right)^{\frac{n_p}{n_p - m_p}}$ $p(t) = p_0 \left(1 + (n_p - m_p) A_p q_0^{m_p - 1} p_0^{n_p - 1} t\right)^{\frac{m_p}{m_p - n_p}}.$

When $m_p = n_p$,

 $q(t) = q_0 \exp(m_p A_p (q_0 p_0)^{m_p - 1} t)$ $p(t) = p_0 \exp(-m_p A_p (q_0 p_0)^{m_p - 1} t).$

In a system with M degrees of freedom, consider each pair (q_i, p_i) by itself and hide every other pair inside $A_p = B_p \prod_{i \neq i}^M I_{pi}$, where B_p is the actual constant coefficient of the *p*-th term of the full polynomial.

Figure 11: Physical trajectories of the Figure 12: Energy error for one dimen-Figure 10: Trajectory in α -space of periodic collision orbit in one dimension. Intethree bodies in one dimension vs time. sional periodic collision orbit vs scaled grated with time step $\delta \tau = 10^{-5}$. time.

References

[1] Paul J. Channell and Filippo R. Neri. An introduction to symplectic integrators. *Fields Institute Communications*, 10:45-58, 1996.

[2] Ernst Hairer, Christian Lubich, and Gerhard Wanner. *Geometric Numerical Integration*. Springer, 2002.

[3] Jörg Waldvogel. Symmetric and regularized coordinates on the plane triple collision manifold. *Celestial Mechanics*, 28:69-82, 1982.

[4] Haruo Yoshida. Construction of higher order symplectic integrators. *Physics Letters A*, 150:262–268, 1990.