
Geometric phase and periodic orbits of
the equal-mass, planar three-body

problem with vanishing angular
momentum

Danya Rose, joint work with Holger Dullin

School of Mathematics & Statistics
University of Sydney

Mathematics Postgraduate Seminar Series



Introduction

I Basic ideas:
I Geometric phase
I 3-body problem
I Symmetry
I Symmetry reduction
I Regularisation
I Periodic orbits

I A theorem about geometric phase with illustrations.
I More detailed results and observations.



Introduction

I Basic ideas:
I Geometric phase
I 3-body problem
I Symmetry
I Symmetry reduction
I Regularisation
I Periodic orbits

I A theorem about geometric phase with illustrations.
I More detailed results and observations.



Introduction

I Basic ideas:
I Geometric phase
I 3-body problem
I Symmetry
I Symmetry reduction
I Regularisation
I Periodic orbits

I A theorem about geometric phase with illustrations.
I More detailed results and observations.



Introduction

I Basic ideas:
I Geometric phase
I 3-body problem
I Symmetry
I Symmetry reduction
I Regularisation
I Periodic orbits

I A theorem about geometric phase with illustrations.
I More detailed results and observations.



Introduction

I Basic ideas:
I Geometric phase
I 3-body problem
I Symmetry
I Symmetry reduction
I Regularisation
I Periodic orbits

I A theorem about geometric phase with illustrations.
I More detailed results and observations.



Introduction

I Basic ideas:
I Geometric phase
I 3-body problem
I Symmetry
I Symmetry reduction
I Regularisation
I Periodic orbits

I A theorem about geometric phase with illustrations.
I More detailed results and observations.



Introduction

I Basic ideas:
I Geometric phase
I 3-body problem
I Symmetry
I Symmetry reduction
I Regularisation
I Periodic orbits

I A theorem about geometric phase with illustrations.
I More detailed results and observations.



Introduction

I Basic ideas:
I Geometric phase
I 3-body problem
I Symmetry
I Symmetry reduction
I Regularisation
I Periodic orbits

I A theorem about geometric phase with illustrations.
I More detailed results and observations.



Introduction

I Basic ideas:
I Geometric phase
I 3-body problem
I Symmetry
I Symmetry reduction
I Regularisation
I Periodic orbits

I A theorem about geometric phase with illustrations.
I More detailed results and observations.



Introduction

I Basic ideas:
I Geometric phase
I 3-body problem
I Symmetry
I Symmetry reduction
I Regularisation
I Periodic orbits

I A theorem about geometric phase with illustrations.
I More detailed results and observations.



Geometric phase in cats

Cat: a non-rigid system of connected weights with an inbuilt
control system.

I When dropped from an inverted position, able to land on its
feet.
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I By exploiting geometric phase: rotation independent of
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Save the cats! (Or: let’s do something that hasn’t been
done already)

I An antique problem: that of three bodies under mutual
gravitation.

I The 3-body problem is intractable. Many questions remain
open, such as: do periodic orbits exist with geometric
phase at zero angular momentum? If so, when or why it
occurs? (Or doesn’t...)

I Why should we care? Aside from the fact that maths for its
own sake is and has always been beautiful and valuable in
unpredictable ways?

I Direct applications: understanding astronomical systems.
I Transferable solutions: insights gained here may transfer

or translate to similar problems (e.g. molecular dynamics).
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The 3-body problem

I Three-body problem is also a non-rigid system of masses
connected by gravitational force.

I “Control system” is the Hamiltonian:

H =
∑ |Pj|2

2mj
−
∑ mkml

|Xl − Xk|
(1)

producing Hamilton’s equations

X′j =
dXj

dt
=
∂H
∂Pj

, P′j =
dPj

dt
= −∂H

∂Xj
, (2)

governing the motion.

(Summation convention: (j, k, l) cyclic permutations of (1, 2, 3).
Each case is substituted, and then all three are added.)
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The 3-body problem

Write Hamilton’s equations more compactly as the vector field

z′ = J∇H(z) = F(z), where (3)

J =

(
0 I
−I 0

)
, and

z = (X1,X2,X3,P1,P2,P3)T ∈ Ω,

and Ω is the phase space (in this case C6).
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Symmetries

Key idea in dynamical systems: symmetry.
I What is symmetry? An excess of information. E.g. A

square can be described from a 1
8 -th wedge if you know its

symmetries.
I If S : Ω−→Ω such that S ◦ F(z) = F ◦ S(z), then we say S is a

symmetry of the vector field F.
I What types of symmetries can we have?

I Continuous: e.g., translations: S(z) = z + a,
a = (a1, a2, a3, 0, 0, 0) ∈ C6,
rigid rotations: S(z) = eiθz, θ ∈ R.

I Discrete: e.g. reflections, permutations. (More about these
soon.)
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Why we reduce

I Noether’s theorem relates continuous symmetries and
conserved quantities:

I Symmetry under spatial translation implies conservation of
linear momentum.

I Symmetry under rotation implies conservation of angular
momentum.

I Symmetry under time translation implies conservation of
energy.

I So we usually choose:
I Centre of mass O = 1

m

∑
mjXj = 0.

I Centre of momentum
∑

Pj = 0 (fixes centre of mass).
I Angular momentum fixed by initial choices of Xj, Pj.

I Two paths to not have to worry about these choices: 1) the
“shape sphere”; and 2) “elimination of the nodes”.

Reducing by symmetries can reveal “important” structure of
system.
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Shape sphere
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Features when m1 = m2 = m3:
I Equilateral points (Lagrange configurations): E±.
I Isosceles curves: A±j (acute), O±j (obtuse).
I Collinear curves: Cj,k.
I Isosceles collinear points (Euler configurations): Mj.
I Binary collision points: Bkl.
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In the physical problem:
I σj swaps indices k, l.
I c = σl ◦ σk cycles indices: (1, 2, 3)→ (2, 3, 1).
I ρ reflects whole configuration in space.
I τ reflects configuration in time: Pj → −Pj, each j.
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Discrete symmetries on the shape sphere

On the shape sphere:
I σj rotates about axis through Bkl-Mj by π.
I c rotates about axis through E+-E− by 2π

3 .
I ρ reflects about equator.
I τ reverses direction of path.
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Reversing symmetries

I I lied: τ is not a symmetry of the vector field!
I All others,

GS = {I, σ1, σ2, σ3, c, c2, ρ, ρσ1, ρσ2, ρσ3, ρc, ρc2} ∼= S3 × Z2
(order 12) form a symmetry group.

I Recall S ◦ F(z) = F ◦ S(z) ⇐⇒ S ∈ GS is a symmetry of F.
I Observe that τ ◦ F(z) = −F ◦ τ(z) means τ is an

antisymmetry of F.
I We call τ a reversing symmetry.
I Composition R = τ ◦ S is also a reversing symmetry.
I Turns out τ commutes with every symmetry.

We now have a reversing symmetry group GR ∼= S3 × Z2
2 (order

24). Note that Z2
2 = V4 = {I, ρ, τ, τρ} is in the centre of GR.
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Simultaneous regularisation of all binary collisions (due to
Lemaître [1]):

I New coordinates αj such that aj = α2
k + α2

l .
I αj = 0 gives collinearity with mj in eclipse.
I αk = αl = 0 gives collision between mk and ml.
I Define square root semiperimeter α =

√
α2

1 + α2
2 + α2

3.
I Then have signed area S = α1α2α3α.
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Regularisation

Sub new variables into old Hamiltonian. Now one final step.
I We need to slow down time near collisions.
I Define new time variable τ such that dt

dτ = a1a2a3, then
I define new Hamiltonian K = (H − h)a1a2a3 ≡ 0, where h is

physical energy.
I New equations of motion by

ż =
dz
dτ

= J∇K = F(z).

I Shape changes by α̇j, π̇j, while φ̇ = φ̇(z) governs rotations.
Now set pφ = 0 everywhere.

I Shape dynamics govern rotation dynamics!
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ż =
dz
dτ

= J∇K = F(z).

I Shape changes by α̇j, π̇j, while φ̇ = φ̇(z) governs rotations.
Now set pφ = 0 everywhere.

I Shape dynamics govern rotation dynamics!



Regularisation

Sub new variables into old Hamiltonian. Now one final step.
I We need to slow down time near collisions.
I Define new time variable τ such that dt

dτ = a1a2a3, then
I define new Hamiltonian K = (H − h)a1a2a3 ≡ 0, where h is

physical energy.
I New equations of motion by
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I Collisions are now allowed. Act like elastic rebound.
I Regularised shape space/sphere is “bigger”:

I Can also write w1, w2, w3 in terms of α1, α2, α3 and
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Discrete symmetries again

Symmetries can be put in terms of regularised coordinates.
Choose:

I σ1(α1, α2, α3, π1, π2, π3) = −(α1, α3, α2, π1, π3, π2), etc.,
I c(α1, α2, α3, π1, π2, π3) = (α2, α3, α1, π2, π3, π1),
I ρ(α1, α2, α3, π1, π2, π3) = −(α1, α2, α3, π1, π2, π3),
I τ(α1, α2, α3, π1, π2, π3) = (α1, α2, α3,−π1,−π2,−π3), and

also new symmetries
I s1(α1, α2, α3, π1, π2, π3) = (α1,−α2,−α3, π1,−π2,−π3), etc..
I Subgroup {I, s1, s2, s3} ∼= V4. Elements interact with S3 by

semidirect product S3 o V4 = S4 (order 24). Elements
written uniquely as composition S ◦ sj, S ∈ S3.

New (reversing) symmetry group GR ∼= S4 × Z2
2 (order 96), with

same centre as before.
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Discrete symmetries again

I Important idea: fixed sets of symmetries.
I Involutions (S such that S = S−1 ⇐⇒ S2 = I) may have

interesting fixed sets.
I Non-reversing fixed sets give invariant subspaces

(isosceles and collinear).
I Shape space is divided into regions by fixed sets of

non-reversing involutions (that act as reflections only).
I Smallest region enclosed is the fundamental domain (FD).

We pick just one.
I Solutions can be “reflected” back into FD at boundaries

(“billiards”).
I Some solutions can reflect back the way they came...
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Reversing fixed sets
I Fixed sets of reversing symmetries are not invariant.
I Solution with points in fixed sets of reversing involutions

run in reverse possibly with some other symmetry applied
after that instant in time.

Theorem
A solution connecting two points in the fixed sets of reversing
involutions R1, R2 is periodic.

I These generate the solution’s symmetries (after restricting
to an invariant subspace, collinear or isosceles, if
necessary).

Proof.
Suppose at τ = 0 we have z(0) ∈ Fix R1 and at τ = τ0 we have
z(τ0) ∈ Fix R2. Now at τ = 2τ0 we observe that
z(2τ0) ∈ Fix R1R2R1 = Fix R1S, where S is non-reversing of order
k (i.e. Sk = I). If R1 = R2 then S = I and orbit is periodic with
period 2τ0. Else periodic with period 2kτ0.
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z(τ0) ∈ Fix R2. Now at τ = 2τ0 we observe that
z(2τ0) ∈ Fix R1R2R1 = Fix R1S, where S is non-reversing of order
k (i.e. Sk = I). If R1 = R2 then S = I and orbit is periodic with
period 2τ0. Else periodic with period 2kτ0.
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Example reversing orbit

I An orbit generated by R1 = R2 = τσ3s3 (which looks like...)
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Non-reversing symmetries
Some have non-reversing symmetries, group generated by S:
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Orbits in invariant subspaces

Some orbits live in the fixed sets of
non-reversing symmetries:

I ρsj are collinear with mj in eclipse,
I ρσj or ρσjsj are isosceles with mj

on axis of symmetry,
I c, c2, csj or c2sj are equilateral,
I σj or σjsj are isosceles collinear

with mj in eclipse.
Collinear and isosceles are
interesting, but equilateral and
isosceles collinear are “too small”
(only blow up from and collapse to
triple collision).
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Some orbits in non-reversing fixed sets

−3

−2

−1

0

1

2

3Xj

t



Some orbits in non-reversing fixed sets

−3

−2

−1

0

1

2

3Xj

t

−2.5

0

2.5
Xj

t



Some orbits in non-reversing fixed sets

−3

−2

−1

0

1

2

3Xj

t

−2.5

0

2.5
Xj

t

−2.5

0

2.5
Xj

t



Some orbits in non-reversing fixed sets

−3

−2

−1

0

1

2

3Xj

t

−2.5

0

2.5
Xj

t

−2.5

0

2.5
Xj

t



Some orbits in non-reversing fixed sets

−3

−2

−1

0

1

2

3Xj

t

−2.5

0

2.5
Xj

t

−2.5

0

2.5
Xj

t



Some orbits in non-reversing fixed sets

−3

−2

−1

0

1

2

3Xj

t

−2.5

0

2.5
Xj

t

−2.5

0

2.5
Xj

t



Reversing fixed sets

The fixed sets of reversing
symmetries: (the interesting ones)

I τρsj are collinear reversing with
mj momentarily in eclipse,

I τsj are collision between mk, ml

with mj momentarily at rest,
I τρσj or τρσjsj are isosceles

reversing with mj momentarily on
the axis of symmetry,

I τ is pure time reversing,
I τσj or τσjsj are isosceles

collinear reversing with mj

momentarily in eclipse.
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Our use for symmetries

I Symmetries are beautiful, but why care so much?
I Because it turns out that the right symmetries force

geometric phase to cancel over an orbit.
I Need one more thing: isotropy subgroup, Σz. The

subgroup of the reversing symmetry group of F that map
an orbit z(τ) back to itself (possibly with a time shift).

I Non-reversing symmetry S of order k acts on orbit such that
S(z(τ)) = z(τ + T

k ).
I Reversing involution R acts on orbit such that

R(z(τ)) = z(τ0 − τ), where z(τ0) ∈ Fix(R).
I Non-reversing involution S∗ with shift 0 imply orbit is in fixed

set of S∗.
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Isotropy subgroup structures

Working hypothesis: isotropy subgroups generated by:
I reversing involutions R1, R2 such that (R2R1)k = I: dihedral

Dk, order 2k.
I non-reversing S of order k with shift T

k : cyclic Zk, order k.
I reversing involutions R1, R2 such that (R2R1)k = I,

non-reversing involution S∗ with shift 0: Dk × Z2, order 4k.
I non-reversing S of order k with shift T

k , non-reversing
involution S∗ with shift 0: Zk × Z2, order 2k.
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Montgomery’s formula for geometric phase
I Montgomery [3] shows calculation of geometric phase.
I “Area enclosed by a loop on the shape sphere.”

dG = −1
2

w3dθ, where θ = arg(w1 + iw2)

=
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)dτ

=: U(z)dτ,

where
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with
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2 − mlmj(2α2

k + ak)akα
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I “Area enclosed by a loop on the shape sphere.”
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Symmetries and geometric phase

I We calculate geometric phase over an orbit of period T by

G(T) =

∫ T

0
U(z(τ))dτ. (4)

I Symmetries divide an orbit’s period evenly.
I U(z) has symmetries and antisymmetries.
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Symmetries and antisymmetries of U

I Consider S ∈ S4 any composition of elements from
{I, s1, s2, s3, σ1, σ2, σ3, c, c2}.

I Observe that U ◦ S(z) = U(z).
I But U ◦ (ρ ◦ S)(z) = −U(z) and U ◦ (τ ◦ S)(z) = −U(z).
I Which also means that U ◦ (τ ◦ ρ ◦ S)(z) = U(z).
I Symmetries with ρ or τ alone are antisymmetries of U.
I Note: all antisymmetries of U have even order.
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Geometric interpretation
Recall dG = − 1

2 w3dθ, θ = arg(w1 + iw3), S ∈ Z4.

I On shape sphere, s1, s2, s3
do nothing, so dG invariant.

I c, c2 rotate by 2π
3 , fixing

equilateral points, so w3,
dθ invariant.

I σ1, σ2, σ3 rotate paths by π
about axes through B23-M1,
B31-M2, B12-M3, so
w3 → −w3, dθ → −dθ,
leaving dG invariant.

I Any S composed with ρ
sends w3 → −w3, but dθ
invariant, so dG→ −dG.

I Any S composed with τ
leaves w3 invariant, but
sends dθ → −dθ, so
dG→ −dG.

I Any S composed with τρ
thus leaves dG invariant.
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Antisymmetries of U in periodic orbits
Consider periodic solution z(τ) = z(τ + T). Cases when
isotropy subgroup Σz generated by antisymmetry of U, per
working hypothesis:

I Fixed sets of non-reversing involutions:
I isosceles subspace (z(τ) ∈ Fix(ρσj) or z(τ) ∈ Fix(ρσjsj)); or
I collinear subspace (z(τ) ∈ Fix(ρsj)).

I Non-reversing isosceles reflections on shape sphere
(z(τ + T

2 ) = (ρσj)(z(τ)) or z(τ + T
2 ) = (ρσjsj)(z(τ))).

I Non-reversing reflections about equator of shape sphere
(ρsj or ρ).

I At least one reversing symmetry on “bottom” corners of
fundamental domain:

I isosceles collinear point M (z(τ0) ∈ Fix(τσj) or
z(τ0) ∈ Fix(τσjsj)); or

I binary collision point B (z(τ0) ∈ Fix(τsj)).
There may be orbits with isotropy subgroups with
antisymmetries of U not fitting these patterns. We do not
consider them further (e.g. triple collision Euler and Lagrange
orbits - points on shape sphere).
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Cancellation of geometric phase

Theorem
If a T-periodic solution z(τ) of the regularised equations of
motion has isotropy subgroup Σz as per working hypothesis,
and Σz contains any antisymmetry of U,then the geometric
phase ∆G = G(T) =

∫ T
0 dG = 0.
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Outline of proof
1. Orbit in invariant subspace: U(z(τ)) ≡ 0, as either w3 ≡ 0

(collinear) or dθ = 0 (isosceles). Any other symmetries
don’t matter.

2. Orbit with cyclic non-reversing isotropy subgroup:
generator S, Sk = I, k ≥ 2 even. Have S(z(τ)) = z(τ + T

k ).
Consider 0 ≤ τ ≤ 2T

k .

G( 2T
k ) =

∫ T
k

0
U(z(τ))dτ +

∫ 2T
k

T
k

U(z(τ))dτ = · · · = 0.

Recall k ≥ 2 antisymmetry of U is even. Thus result follows
for non-reversing case.
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Outline of proof
3. Orbit with reversing isotropy subgroup: generators

involutions R1, R2 such that (R2R1)k = I. W.l.o.g. at least R1
antisymmetry of U and R1(z(τ)) = z( T

2k − τ).
Consider 0 ≤ τ ≤ T

k .

G( T
k ) =

∫ T
2k

0
U(z(τ))dτ +

∫ T
k

T
2k

U(z(τ))dτ = . . . = 0.

Now whether (R2R1) is reversing or not, result follows for
reversing case.
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A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U
are the only ones whose geometric phase is forced to vanish.
I.e. any other case, can only vanish by “accident”. Requires
more knowledge of possible isotropy subgroups of orbits.

1. Not in invariant subspace, non-reversing, Sk = I: every T
k

contributes the same amount to G(T).
2. Not in invariant subspace, both R1, R2 symmetries of U:

then every T
2k contributes the same amount to G(T).

Theorem 2 gives us lots of subgroups forcing no geometric
phase, but many, many left over.
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Remarks/observations

I If isotropy subgroup contains any symmetry of form ρS or
τS (S ∈ S4 as before), geometric phase vanishes.

I Reversing collisionless orbits with no geometric phase
pass through M point on shape sphere with rotational
symmetry.

I Non-reversing collisionless orbits with geometric phase
just appear with the rotation, not passing through the M.

I Reversing collisionless orbits with geometric phase appear
with reversing points only on edges of fundmental domain.

I Non-reversing collisionless orbits with no geometric phase
appear with reflection on shape sphere, but no reversing
points.

I Reversing collision orbits return along the same path from
collision (if reversing symmetry is on collision).

I Now to catch some periodic orbits!
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Poincaré section
I Introduce the Poincaré map: turns a

continuous dynamical system into a
discrete one.

I If continuous system D has phase space
Ω, Poincaré map is

P : S−→S,

where S ⊂ Ω is the Poincaré surface of
section.

I Surface of section defined by appropriately
chosen S(x1, . . . , xn) = 0, with
(x1, . . . , xn) ∈ Ω.

I Poincaré map can be used to find periodic
orbits in D.

I Trajectory between section points
computed with method from [4].
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Using the Poincaré map

I Periodic orbit defined by z(t) = z(t + T), for some T > 0.
I Periodic orbit crossing Poincaré section is a fixed point of

n ≥ 1 iterations of Poincaré map.
I I.e. Pn(z) = z for some n. Say orbit is n-periodic in the map.
I Try to find the least n for each periodic orbit. A 1-periodic

orbit is also 2-periodic, etc..
I Define function F(z) = Pn(z)− z. Want to find z s.t. F(z) = 0.
I Newton’s method: iterative process to find roots of a

function. Works in higher dimensions too.
I Jacobian of F is DF(z), n× n matrix. Iterate on zi:

zi+1 = zi + ∆zi, (DF(zi))∆zi = F(zi).

Works as long as det(DF(zi)) 6= 0. (Unfortunately in
practice must approximate numerically.)
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Searching for orbits
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of π1 is fixed by choices of α2, α3, π2, π3.
I Choose 4D grid with 0 ≤ α2 ≤ 3, α2 ≤ α3 ≤ 3 and α3 6= 0,
π2, π3 allowed large range.

I Grid points approx 0.05 apart for each dimension. Order of
ten million initial conditions.

I Reduce size of search space by integrating up to next
section points after τ = 250, looking for near-periodic
points of any length in Poincaré map.

I Use Newton on these candidates. Only a few hundred
thousand to couple of million.

I Final step: find unique orbits from the collection that
Newton found.
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