Geometric phase and periodic orbits of the equal-mass, planar three-body problem with vanishing angular momentum

Danya Rose, joint work with Holger Dullin

School of Mathematics \& Statistics University of Sydney

Mathematics Postgraduate Seminar Series

Introduction

- Basic ideas:

Geometric phase 3-body problem

Introduction

- Basic ideas:
- Geometric phase

Introduction

- Basic ideas:
- Geometric phase
- 3-body problem

Introduction

- Basic ideas:
- Geometric phase
- 3-body problem
- Symmetry

Introduction

- Basic ideas:
- Geometric phase
- 3-body problem
- Symmetry
- Symmetry reduction

Introduction

- Basic ideas:
- Geometric phase
- 3-body problem
- Symmetry
- Symmetry reduction
- Regularisation

Introduction

- Basic ideas:
- Geometric phase
- 3-body problem
- Symmetry
- Symmetry reduction
- Regularisation
- Periodic orbits
- A theorem about geometric phase with illustrations.

Introduction

- Basic ideas:
- Geometric phase
- 3-body problem
- Symmetry
- Symmetry reduction
- Regularisation
- Periodic orbits
- A theorem about geometric phase
- More detailed results and observations.

Introduction

- Basic ideas:
- Geometric phase
- 3-body problem
- Symmetry
- Symmetry reduction
- Regularisation
- Periodic orbits
- A theorem about geometric phase with illustrations.
- More detailed results and observations.

Introduction

- Basic ideas:
- Geometric phase
- 3-body problem
- Symmetry
- Symmetry reduction
- Regularisation
- Periodic orbits
- A theorem about geometric phase with illustrations.
- More detailed results and observations.

Geometric phase in cats

Cat: a non-rigid system of connected weights with an inbuilt control system.

When dropped from an inverted position, able to land on its feet.

Geometric phase in cats

Cat: a non-rigid system of connected weights with an inbuilt control system.

- When dropped from an inverted position, able to land on its feet.

By expoting geomenici phase: olation independent of angular momentum.

Geometric phase in cats

Cat: a non-rigid system of connected weights with an inbuilt control system.

- When dropped from an inverted position, able to land on its feet.
- How?!

By exploiting geometric phase: rotation independent of
angular momentum.

Geometric phase in cats

Cat: a non-rigid system of connected weights with an inbuilt control system.

- When dropped from an inverted position, able to land on its feet.
- How?!
- By exploiting geometric phase: rotation independent of angular momentum.

Some photos from [2]:

Fic. x.-Side view of a falling cat. (The series runs from righ to left.)
Fio. z, -EnA view of a failing cat. (The serties rims froin night to lett.)

Some photos from [2]:

Fio. z.-Side view of a falling cat. (The series runs from right to keft.)
Fio. a, -Ent view of a failing cat. (The scries ruas froun night to left.)
And something more fun (click)...

Save the cats! (Or: let's do something that hasn't been done already)

- An antique problem: that of three bodies under mutual gravitation.

Save the cats! (Or: let's do something that hasn't been done already)

- An antique problem: that of three bodies under mutual gravitation.
- The 3-body problem is intractable.

Save the cats! (Or: let's do something that hasn't been done already)

- An antique problem: that of three bodies under mutual gravitation.
- The 3-body problem is intractable. Many questions remain open,

Save the cats! (Or: let's do something that hasn't been done already)

- An antique problem: that of three bodies under mutual gravitation.
- The 3-body problem is intractable. Many questions remain open, such as: do periodic orbits exist with geometric phase at zero angular momentum?

Save the cats! (Or: let's do something that hasn't been done already)

- An antique problem: that of three bodies under mutual gravitation.
- The 3-body problem is intractable. Many questions remain open, such as: do periodic orbits exist with geometric phase at zero angular momentum? If so, when or why it occurs?

Save the cats! (Or: let's do something that hasn't been done already)

- An antique problem: that of three bodies under mutual gravitation.
- The 3-body problem is intractable. Many questions remain open, such as: do periodic orbits exist with geometric phase at zero angular momentum? If so, when or why it occurs? (Or doesn't...)

Save the cats! (Or: let's do something that hasn't been done already)

- An antique problem: that of three bodies under mutual gravitation.
- The 3-body problem is intractable. Many questions remain open, such as: do periodic orbits exist with geometric phase at zero angular momentum? If so, when or why it occurs? (Or doesn't...)
- Why should we care?
unpredictable ways?

Save the cats! (Or: let's do something that hasn't been done already)

- An antique problem: that of three bodies under mutual gravitation.
- The 3-body problem is intractable. Many questions remain open, such as: do periodic orbits exist with geometric phase at zero angular momentum? If so, when or why it occurs? (Or doesn't...)
- Why should we care? Aside from the fact that maths for its own sake is and has always been beautiful and valuable in unpredictable ways?

Save the cats! (Or: let's do something that hasn't been done already)

- An antique problem: that of three bodies under mutual gravitation.
- The 3-body problem is intractable. Many questions remain open, such as: do periodic orbits exist with geometric phase at zero angular momentum? If so, when or why it occurs? (Or doesn't...)
- Why should we care? Aside from the fact that maths for its own sake is and has always been beautiful and valuable in unpredictable ways?
- Direct applications:

Save the cats! (Or: let's do something that hasn't been done already)

- An antique problem: that of three bodies under mutual gravitation.
- The 3-body problem is intractable. Many questions remain open, such as: do periodic orbits exist with geometric phase at zero angular momentum? If so, when or why it occurs? (Or doesn't...)
- Why should we care? Aside from the fact that maths for its own sake is and has always been beautiful and valuable in unpredictable ways?
- Direct applications: understanding astronomical systems.
\qquad

Save the cats! (Or: let's do something that hasn't been done already)

- An antique problem: that of three bodies under mutual gravitation.
- The 3-body problem is intractable. Many questions remain open, such as: do periodic orbits exist with geometric phase at zero angular momentum? If so, when or why it occurs? (Or doesn't...)
- Why should we care? Aside from the fact that maths for its own sake is and has always been beautiful and valuable in unpredictable ways?
- Direct applications: understanding astronomical systems.
- Transferable solutions:

Save the cats! (Or: let's do something that hasn't been done already)

- An antique problem: that of three bodies under mutual gravitation.
- The 3-body problem is intractable. Many questions remain open, such as: do periodic orbits exist with geometric phase at zero angular momentum? If so, when or why it occurs? (Or doesn't...)
- Why should we care? Aside from the fact that maths for its own sake is and has always been beautiful and valuable in unpredictable ways?
- Direct applications: understanding astronomical systems.
- Transferable solutions: insights gained here may transfer or translate to similar problems (e.g. molecular dynamics).

The 3-body problem

- Three point masses in the plane, $m_{j} \in \mathbb{R}^{+}, j=1,2,3$.

The 3-body problem

- Three point masses in the plane, $m_{j} \in \mathbb{R}^{+}, j=1,2,3$.
- Each position denoted by $X_{j} \in \mathbb{C}$.

The 3-body problem

- Three point masses in the plane, $m_{j} \in \mathbb{R}^{+}, j=1,2,3$.
- Each position denoted by $X_{j} \in \mathbb{C}$.
- Each momentum denoted by $P_{j} \in \mathbb{C}$.

The 3-body problem

- Three point masses in the plane, $m_{j} \in \mathbb{R}^{+}, j=1,2,3$.
- Each position denoted by $X_{j} \in \mathbb{C}$.
- Each momentum denoted by $P_{j} \in \mathbb{C}$.
- Centre of mass $O=\frac{1}{m} \sum m_{j} X_{j}$ (with $m=\sum m_{j}$),

The 3-body problem

- Three point masses in the plane, $m_{j} \in \mathbb{R}^{+}, j=1,2,3$.
- Each position denoted by $X_{j} \in \mathbb{C}$.
- Each momentum denoted by $P_{j} \in \mathbb{C}$.
- Centre of mass $O=\frac{1}{m} \sum m_{j} X_{j}$ (with $m=\sum m_{j}$), angular momentum $p_{\phi}=\operatorname{Im} \sum \bar{X}_{j} P_{j}$.

The 3-body problem

- Three-body problem is also a non-rigid system of masses connected by gravitational force.
producing Hamilton's equations
governing the motion.

The 3-body problem

- Three-body problem is also a non-rigid system of masses connected by gravitational force.
- "Control system" is the Hamiltonian:

$$
\begin{equation*}
H=\sum \frac{\left|P_{j}\right|^{2}}{2 m_{j}}-\sum \frac{m_{k} m_{l}}{\left|X_{l}-X_{k}\right|} \tag{1}
\end{equation*}
$$

governing the motion.

The 3-body problem

- Three-body problem is also a non-rigid system of masses connected by gravitational force.
- "Control system" is the Hamiltonian:

$$
\begin{equation*}
H=\sum \frac{\left|P_{j}\right|^{2}}{2 m_{j}}-\sum \frac{m_{k} m_{l}}{\left|X_{l}-X_{k}\right|} \tag{1}
\end{equation*}
$$

producing Hamilton's equations

$$
\begin{equation*}
X_{j}^{\prime}=\frac{d X_{j}}{d t}=\frac{\partial H}{\partial P_{j}}, P_{j}^{\prime}=\frac{d P_{j}}{d t}=-\frac{\partial H}{\partial X_{j}}, \tag{2}
\end{equation*}
$$

governing the motion.

The 3-body problem

- Three-body problem is also a non-rigid system of masses connected by gravitational force.
- "Control system" is the Hamiltonian:

$$
\begin{equation*}
H=\sum \frac{\left|P_{j}\right|^{2}}{2 m_{j}}-\sum \frac{m_{k} m_{l}}{\left|X_{l}-X_{k}\right|} \tag{1}
\end{equation*}
$$

producing Hamilton's equations

$$
\begin{equation*}
X_{j}^{\prime}=\frac{d X_{j}}{d t}=\frac{\partial H}{\partial P_{j}}, P_{j}^{\prime}=\frac{d P_{j}}{d t}=-\frac{\partial H}{\partial X_{j}}, \tag{2}
\end{equation*}
$$

governing the motion.
(Summation convention: (j, k, l) cyclic permutations of $(1,2,3)$. Each case is substituted, and then all three are added.)

The 3-body problem

Write Hamilton's equations more compactly as the vector field

$$
z^{\prime}=J \nabla H(z)=F(z)
$$

The 3-body problem

Write Hamilton's equations more compactly as the vector field

$$
\begin{equation*}
z^{\prime}=J \nabla H(z)=F(z) \text {, where } \tag{3}
\end{equation*}
$$

The 3-body problem

Write Hamilton's equations more compactly as the vector field

$$
\begin{equation*}
z^{\prime}=J \nabla H(z)=F(z) \text {, where } \tag{3}
\end{equation*}
$$

$$
J=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right), \text { and }
$$

and Ω is the phase space (in this case \mathbb{C}^{6})

The 3-body problem

Write Hamilton's equations more compactly as the vector field

$$
\begin{gather*}
z^{\prime}=J \nabla H(z)=F(z), \text { where } \tag{3}\\
J=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right), \text { and } \\
z=\left(X_{1}, X_{2}, X_{3}, P_{1}, P_{2}, P_{3}\right)^{T} \in \Omega,
\end{gather*}
$$

and Ω is the phase space (in this case \mathbb{C}^{6}).

The 3-body problem

Write Hamilton's equations more compactly as the vector field

$$
\begin{gathered}
z^{\prime}=J \nabla H(z)=F(z), \text { where } \\
J=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right), \text { and } \\
z=\left(X_{1}, X_{2}, X_{3}, P_{1}, P_{2}, P_{3}\right)^{T} \in \Omega,
\end{gathered}
$$

and Ω is the phase space (in this case \mathbb{C}^{6}).

Symmetries

Key idea in dynamical systems: symmetry.

Symmetries

Key idea in dynamical systems: symmetry.

- What is symmetry?

Symmetries

Key idea in dynamical systems: symmetry.

- What is symmetry? An excess of information.

Symmetries

Key idea in dynamical systems: symmetry.

- What is symmetry? An excess of information. E.g. A square can be described from a $\frac{1}{8}$-th wedge if you know its symmetries.

Symmetries

Key idea in dynamical systems: symmetry.

- What is symmetry? An excess of information. E.g. A square can be described from a $\frac{1}{8}$-th wedge if you know its symmetries.
- If $S: \Omega \longrightarrow \Omega$ such that $S \circ F(z)=F \circ S(z)$, then we say S is a symmetry of the vector field F.

Symmetries

Key idea in dynamical systems: symmetry.

- What is symmetry? An excess of information. E.g. A square can be described from a $\frac{1}{8}$-th wedge if you know its symmetries.
- If $S: \Omega \longrightarrow \Omega$ such that $S \circ F(z)=F \circ S(z)$, then we say S is a symmetry of the vector field F.
- What types of symmetries can we have?

Symmetries

Key idea in dynamical systems: symmetry.

- What is symmetry? An excess of information. E.g. A square can be described from a $\frac{1}{8}$-th wedge if you know its symmetries.
- If $S: \Omega \longrightarrow \Omega$ such that $S \circ F(z)=F \circ S(z)$, then we say S is a symmetry of the vector field F.
- What types of symmetries can we have?
- Continuous: e.g., translations: $S(z)=z+a$, $a=\left(a_{1}, a_{2}, a_{3}, 0,0,0\right) \in \mathbb{C}^{6}$,

Symmetries

Key idea in dynamical systems: symmetry.

- What is symmetry? An excess of information. E.g. A square can be described from a $\frac{1}{8}$-th wedge if you know its symmetries.
- If $S: \Omega \longrightarrow \Omega$ such that $S \circ F(z)=F \circ S(z)$, then we say S is a symmetry of the vector field F.
- What types of symmetries can we have?
- Continuous: e.g., translations: $S(z)=z+a$, $a=\left(a_{1}, a_{2}, a_{3}, 0,0,0\right) \in \mathbb{C}^{6}$, rigid rotations: $S(z)=e^{i \theta} z, \theta \in \mathbb{R}$.

Symmetries

Key idea in dynamical systems: symmetry.

- What is symmetry? An excess of information. E.g. A square can be described from a $\frac{1}{8}$-th wedge if you know its symmetries.
- If $S: \Omega \longrightarrow \Omega$ such that $S \circ F(z)=F \circ S(z)$, then we say S is a symmetry of the vector field F.
- What types of symmetries can we have?
- Continuous: e.g., translations: $S(z)=z+a$, $a=\left(a_{1}, a_{2}, a_{3}, 0,0,0\right) \in \mathbb{C}^{6}$, rigid rotations: $S(z)=e^{i \theta} z, \theta \in \mathbb{R}$.
- Discrete: e.g. reflections, permutations.

Symmetries

Key idea in dynamical systems: symmetry.

- What is symmetry? An excess of information. E.g. A square can be described from a $\frac{1}{8}$-th wedge if you know its symmetries.
- If $S: \Omega \longrightarrow \Omega$ such that $S \circ F(z)=F \circ S(z)$, then we say S is a symmetry of the vector field F.
- What types of symmetries can we have?
- Continuous: e.g., translations: $S(z)=z+a$, $a=\left(a_{1}, a_{2}, a_{3}, 0,0,0\right) \in \mathbb{C}^{6}$, rigid rotations: $S(z)=e^{i \theta} z, \theta \in \mathbb{R}$.
- Discrete: e.g. reflections, permutations. (More about these soon.)

Why we reduce

- Noether's theorem relates continuous symmetries and conserved quantities:

Why we reduce

- Noether's theorem relates continuous symmetries and conserved quantities:
- Symmetry under spatial translation implies conservation of linear momentum.

Why we reduce

- Noether's theorem relates continuous symmetries and conserved quantities:
- Symmetry under spatial translation implies conservation of linear momentum.
- Symmetry under rotation implies conservation of angular momentum.

Why we reduce

- Noether's theorem relates continuous symmetries and conserved quantities:
- Symmetry under spatial translation implies conservation of linear momentum.
- Symmetry under rotation implies conservation of angular momentum.
- Symmetry under time translation implies conservation of energy.

Why we reduce

- Noether's theorem relates continuous symmetries and conserved quantities:
- Symmetry under spatial translation implies conservation of linear momentum.
- Symmetry under rotation implies conservation of angular momentum.
- Symmetry under time translation implies conservation of energy.
- So we usually choose:

Why we reduce

- Noether's theorem relates continuous symmetries and conserved quantities:
- Symmetry under spatial translation implies conservation of linear momentum.
- Symmetry under rotation implies conservation of angular momentum.
- Symmetry under time translation implies conservation of energy.
- So we usually choose:
- Centre of mass $O=\frac{1}{m} \sum m_{j} X_{j}=0$.

Why we reduce

- Noether's theorem relates continuous symmetries and conserved quantities:
- Symmetry under spatial translation implies conservation of linear momentum.
- Symmetry under rotation implies conservation of angular momentum.
- Symmetry under time translation implies conservation of energy.
- So we usually choose:
- Centre of mass $O=\frac{1}{m} \sum m_{j} X_{j}=0$.
- Centre of momentum $\sum P_{j}=0$ (fixes centre of mass).

Why we reduce

- Noether's theorem relates continuous symmetries and conserved quantities:
- Symmetry under spatial translation implies conservation of linear momentum.
- Symmetry under rotation implies conservation of angular momentum.
- Symmetry under time translation implies conservation of energy.
- So we usually choose:
- Centre of mass $O=\frac{1}{m} \sum m_{j} X_{j}=0$.
- Centre of momentum $\sum P_{j}=0$ (fixes centre of mass).
- Angular momentum fixed by initial choices of X_{j}, P_{j}.
"shape sphere"

Why we reduce

- Noether's theorem relates continuous symmetries and conserved quantities:
- Symmetry under spatial translation implies conservation of linear momentum.
- Symmetry under rotation implies conservation of angular momentum.
- Symmetry under time translation implies conservation of energy.
- So we usually choose:
- Centre of mass $O=\frac{1}{m} \sum m_{j} X_{j}=0$.
- Centre of momentum $\sum P_{j}=0$ (fixes centre of mass).
- Angular momentum fixed by initial choices of X_{j}, P_{j}.
- Two paths to not have to worry about these choices:

Why we reduce

- Noether's theorem relates continuous symmetries and conserved quantities:
- Symmetry under spatial translation implies conservation of linear momentum.
- Symmetry under rotation implies conservation of angular momentum.
- Symmetry under time translation implies conservation of energy.
- So we usually choose:
- Centre of mass $O=\frac{1}{m} \sum m_{j} X_{j}=0$.
- Centre of momentum $\sum P_{j}=0$ (fixes centre of mass).
- Angular momentum fixed by initial choices of X_{j}, P_{j}.
- Two paths to not have to worry about these choices: 1) the "shape sphere";

Reducing by symmetries can reveal "important" structure of system.

Why we reduce

- Noether's theorem relates continuous symmetries and conserved quantities:
- Symmetry under spatial translation implies conservation of linear momentum.
- Symmetry under rotation implies conservation of angular momentum.
- Symmetry under time translation implies conservation of energy.
- So we usually choose:
- Centre of mass $O=\frac{1}{m} \sum m_{j} X_{j}=0$.
- Centre of momentum $\sum P_{j}=0$ (fixes centre of mass).
- Angular momentum fixed by initial choices of X_{j}, P_{j}.
- Two paths to not have to worry about these choices: 1) the "shape sphere"; and 2) "elimination of the nodes".

Reducing by symmetries can reveal "important" structure of system.

Why we reduce

- Noether's theorem relates continuous symmetries and conserved quantities:
- Symmetry under spatial translation implies conservation of linear momentum.
- Symmetry under rotation implies conservation of angular momentum.
- Symmetry under time translation implies conservation of energy.
- So we usually choose:
- Centre of mass $O=\frac{1}{m} \sum m_{j} X_{j}=0$.
- Centre of momentum $\sum P_{j}=0$ (fixes centre of mass).
- Angular momentum fixed by initial choices of X_{j}, P_{j}.
- Two paths to not have to worry about these choices: 1) the "shape sphere"; and 2) "elimination of the nodes".

Reducing by symmetries can reveal "important" structure of system.

Two reductions

Original triangle.
Original triangle.

Two reductions

$\xi_{1}=X_{1}-X_{3}$.
Original triangle.

Two reductions

$$
\xi_{2}=X_{2}-\frac{m_{1} X_{1}+m_{3} X_{3}}{m_{1}+m_{3}} .
$$

Original triangle.

Two reductions

ζ_{2}

Original triangle.

$$
\begin{aligned}
\frac{1}{\tilde{\mu}_{1}} & =\frac{1}{m_{1}}+\frac{1}{m_{3}} \\
\frac{1}{\tilde{\mu}_{2}} & =\frac{1}{m_{2}}+\frac{1}{m_{1}+m_{3}} \\
\zeta_{1} & =\sqrt{\tilde{\mu}_{1}} \xi_{1}, \zeta_{2}=\sqrt{\tilde{\mu}_{2}} \xi_{2}
\end{aligned}
$$

Two reductions

Original triangle.

$$
\begin{aligned}
w_{1} & =\left|\zeta_{1}\right|^{2}-\left|\zeta_{2}\right|^{2} \\
w_{2}+i w_{3} & =2 \bar{\zeta}_{1} \zeta_{2} \\
w_{4} & =\left|\zeta_{1}\right|^{2}+\left|\zeta_{2}\right|^{2} \\
& =\sqrt{w_{1}^{2}+w_{2}^{2}+w_{3}^{2}}
\end{aligned}
$$

Two reductions

$w_{1}^{2}+w_{2}^{2}+w_{3}^{2}=1$.

Original triangle.

Two reductions

$$
\begin{aligned}
a_{j} e^{i \phi_{j}} & =X_{l}-X_{k} \\
\phi & =\frac{1}{3}\left(\phi_{1}+\phi_{2}+\phi_{3}\right) .
\end{aligned}
$$

Shape sphere

Features when $m_{1}=m_{2}=m_{3}$:

- Equilateral points (Lagrange configurations): $E^{ \pm}$ - Isosceles curves: $A_{j}^{ \pm}$(acute), $O_{j}^{ \pm}$(obtuse).

Shape sphere

Features when $m_{1}=m_{2}=m_{3}$:

- Equilateral points (Lagrange configurations): $E^{ \pm}$.

Shape sphere

Features when $m_{1}=m_{2}=m_{3}$:

- Equilateral points (Lagrange configurations): $E^{ \pm}$.
- Isosceles curves: $A_{j}^{ \pm}$(acute), $O_{j}^{ \pm}$(obtuse).

Shape sphere

Features when $m_{1}=m_{2}=m_{3}$:

- Equilateral points (Lagrange configurations): $E^{ \pm}$.
- Isosceles curves: $A_{j}^{ \pm}$(acute), $O_{j}^{ \pm}$(obtuse).
- Collinear curves: $C_{j, k}$.

Shape sphere

M

Features when $m_{1}=m_{2}=m_{3}$:

- Equilateral points (Lagrange configurations): $E^{ \pm}$.
- Isosceles curves: $A_{j}^{ \pm}$(acute), $O_{j}^{ \pm}$(obtuse).
- Collinear curves: $C_{j, k}$.
- Isosceles collinear points (Euler configurations): M_{j}.

Shape sphere

M

Features when $m_{1}=m_{2}=m_{3}$:

- Equilateral points (Lagrange configurations): $E^{ \pm}$.
- Isosceles curves: $A_{j}^{ \pm}$(acute), $O_{j}^{ \pm}$(obtuse).
- Collinear curves: $C_{j, k}$.
- Isosceles collinear points (Euler configurations): M_{j}.
- Binary collision points: $B_{k l}$.

Discrete symmetries (equal masses)

In the physical problem:

Discrete symmetries (equal masses)

In the physical problem:

- σ_{j} swaps indices k, l.

Discrete symmetries (equal masses)

In the physical problem:

- σ_{j} swaps indices k, l.
- $c=\sigma_{l} \circ \sigma_{k}$ cycles indices: $(1,2,3) \rightarrow(2,3,1)$.

Discrete symmetries (equal masses)

In the physical problem:

- σ_{j} swaps indices k, l.
- $c=\sigma_{l} \circ \sigma_{k}$ cycles indices: $(1,2,3) \rightarrow(2,3,1)$.
- ρ reflects whole configuration in space.

Discrete symmetries (equal masses)

In the physical problem:

- σ_{j} swaps indices k, l.
- $c=\sigma_{l} \circ \sigma_{k}$ cycles indices: $(1,2,3) \rightarrow(2,3,1)$.
- ρ reflects whole configuration in space.
- τ reflects configuration in time: $P_{j} \rightarrow-P_{j}$, each j.

Discrete symmetries on the shape sphere

On the shape sphere:

- σ_{j} rotates about axis through $B_{k l}-M_{j}$ by π - c rotates about axis through $E^{+}-E^{-}$by $\frac{2 \pi}{3}$

Discrete symmetries on the shape sphere

On the shape sphere:

- σ_{j} rotates about axis through $B_{k l}-M_{j}$ by π.
\square

Discrete symmetries on the shape sphere

On the shape sphere:

- σ_{j} rotates about axis through $B_{k l}-M_{j}$ by π.
- c rotates about axis through $E^{+}-E^{-}$by $\frac{2 \pi}{3}$.
\square

Discrete symmetries on the shape sphere

On the shape sphere:

- σ_{j} rotates about axis through $B_{k l}-M_{j}$ by π.
- c rotates about axis through $E^{+}-E^{-}$by $\frac{2 \pi}{3}$.
- ρ reflects about equator.

Discrete symmetries on the shape sphere

On the shape sphere:

- σ_{j} rotates about axis through $B_{k l}-M_{j}$ by π.
- c rotates about axis through $E^{+}-E^{-}$by $\frac{2 \pi}{3}$.
- ρ reflects about equator.
- τ reverses direction of path.

Reversing symmetries

- I lied:
(order 12) form a symmetry group.

Reversing symmetries

- I lied: τ is not a symmetry of the vector field!

Reversing symmetries

- I lied: τ is not a symmetry of the vector field!
- All others, $\mathfrak{G}_{S}=\left\{I, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}, \rho, \rho \sigma_{1}, \rho \sigma_{2}, \rho \sigma_{3}, \rho c, \rho c^{2}\right\} \cong S_{3} \times Z_{2}$ (order 12) form a symmetry group.

Reversing symmetries

- I lied: τ is not a symmetry of the vector field!
- All others,
$\mathfrak{G}_{S}=\left\{I, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}, \rho, \rho \sigma_{1}, \rho \sigma_{2}, \rho \sigma_{3}, \rho c, \rho c^{2}\right\} \cong S_{3} \times Z_{2}$ (order 12) form a symmetry group.
- Recall $S \circ F(z)=F \circ S(z) \Longleftrightarrow S \in \mathfrak{G}_{S}$ is a symmetry of F.
antisymmetry of F.

Reversing symmetries

- I lied: τ is not a symmetry of the vector field!
- All others, $\mathfrak{G}_{S}=\left\{I, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}, \rho, \rho \sigma_{1}, \rho \sigma_{2}, \rho \sigma_{3}, \rho c, \rho c^{2}\right\} \cong S_{3} \times Z_{2}$ (order 12) form a symmetry group.
- Recall $S \circ F(z)=F \circ S(z) \Longleftrightarrow S \in \mathfrak{G}_{S}$ is a symmetry of F.
- Observe that $\tau \circ F(z)=-F \circ \tau(z)$ means τ is an antisymmetry of F.
- Composition $R=\tau \circ S$ is also a reversing symmetry.

Reversing symmetries

- I lied: τ is not a symmetry of the vector field!
- All others, $\mathfrak{G}_{S}=\left\{I, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}, \rho, \rho \sigma_{1}, \rho \sigma_{2}, \rho \sigma_{3}, \rho c, \rho c^{2}\right\} \cong S_{3} \times Z_{2}$ (order 12) form a symmetry group.
- Recall $S \circ F(z)=F \circ S(z) \Longleftrightarrow S \in \mathfrak{G}_{S}$ is a symmetry of F.
- Observe that $\tau \circ F(z)=-F \circ \tau(z)$ means τ is an antisymmetry of F.
- We call τ a reversing symmetry.

Reversing symmetries

- I lied: τ is not a symmetry of the vector field!
- All others, $\mathfrak{G}_{S}=\left\{I, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}, \rho, \rho \sigma_{1}, \rho \sigma_{2}, \rho \sigma_{3}, \rho c, \rho c^{2}\right\} \cong S_{3} \times Z_{2}$ (order 12) form a symmetry group.
- Recall $S \circ F(z)=F \circ S(z) \Longleftrightarrow S \in \mathfrak{G}_{S}$ is a symmetry of F.
- Observe that $\tau \circ F(z)=-F \circ \tau(z)$ means τ is an antisymmetry of F.
- We call τ a reversing symmetry.
- Composition $R=\tau \circ S$ is also a reversing symmetry.

Reversing symmetries

- I lied: τ is not a symmetry of the vector field!
- All others, $\mathfrak{G}_{S}=\left\{I, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}, \rho, \rho \sigma_{1}, \rho \sigma_{2}, \rho \sigma_{3}, \rho c, \rho c^{2}\right\} \cong S_{3} \times Z_{2}$ (order 12) form a symmetry group.
- Recall $S \circ F(z)=F \circ S(z) \Longleftrightarrow S \in \mathfrak{G}_{S}$ is a symmetry of F.
- Observe that $\tau \circ F(z)=-F \circ \tau(z)$ means τ is an antisymmetry of F.
- We call τ a reversing symmetry.
- Composition $R=\tau \circ S$ is also a reversing symmetry.
- Turns out τ commutes with every symmetry.

Reversing symmetries

- I lied: τ is not a symmetry of the vector field!
- All others, $\mathfrak{G}_{S}=\left\{I, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}, \rho, \rho \sigma_{1}, \rho \sigma_{2}, \rho \sigma_{3}, \rho c, \rho c^{2}\right\} \cong S_{3} \times Z_{2}$ (order 12) form a symmetry group.
- Recall $S \circ F(z)=F \circ S(z) \Longleftrightarrow S \in \mathfrak{G}_{S}$ is a symmetry of F.
- Observe that $\tau \circ F(z)=-F \circ \tau(z)$ means τ is an antisymmetry of F.
- We call τ a reversing symmetry.
- Composition $R=\tau \circ S$ is also a reversing symmetry.
- Turns out τ commutes with every symmetry.

We now have a reversing symmetry group $\mathfrak{G}_{R} \cong S_{3} \times Z_{2}^{2}$ (order 24).

Reversing symmetries

- I lied: τ is not a symmetry of the vector field!
- All others,

$$
\mathfrak{G}_{S}=\left\{I, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}, \rho, \rho \sigma_{1}, \rho \sigma_{2}, \rho \sigma_{3}, \rho c, \rho c^{2}\right\} \cong S_{3} \times Z_{2}
$$ (order 12) form a symmetry group.

- Recall $S \circ F(z)=F \circ S(z) \Longleftrightarrow S \in \mathfrak{G}_{S}$ is a symmetry of F.
- Observe that $\tau \circ F(z)=-F \circ \tau(z)$ means τ is an antisymmetry of F.
- We call τ a reversing symmetry.
- Composition $R=\tau \circ S$ is also a reversing symmetry.
- Turns out τ commutes with every symmetry.

We now have a reversing symmetry group $\mathfrak{G}_{R} \cong S_{3} \times Z_{2}^{2}$ (order 24). Note that $Z_{2}^{2}=V_{4}=\{I, \rho, \tau, \tau \rho\}$ is in the centre of \mathfrak{G}_{R}.

Regularisation

- What is regularisation?
- A method of "smoothing out" singularities. 3-body problem is singular at binary collisions and triple collision.

Regularisation

- What is regularisation?
- A method of "smoothing out" singularities.
- 3-body problem is singular at binary collisions and triple collision.
- We can regularise all binary collisions simultaneously. Do so by making more space and more time.

Regularisation

- What is regularisation?
- A method of "smoothing out" singularities.
- 3-body problem is singular at binary collisions and triple collision.
- We can regularise all binary collisions simultaneously. - Do so by making more space

Regularisation

- What is regularisation?
- A method of "smoothing out" singularities.
- 3-body problem is singular at binary collisions and triple collision.
- We can regularise all binary collisions simultaneously.
- Do so by making more space and more time.

Regularisation

- What is regularisation?
- A method of "smoothing out" singularities.
- 3-body problem is singular at binary collisions and triple collision.
- We can regularise all binary collisions simultaneously.
- Do so by making more space

Regularisation

- What is regularisation?
- A method of "smoothing out" singularities.
- 3-body problem is singular at binary collisions and triple collision.
- We can regularise all binary collisions simultaneously.
- Do so by making more space and more time.

Regularisation

Simultaneous regularisation of all binary collisions (due to Lemaître [1]):

- New coordinates α_{j} such that $a_{j}=\alpha_{k}^{2}+\alpha_{l}^{2}$
- $\alpha_{j}=0$ gives collinearity with m_{j} in eclipse.

Regularisation

Simultaneous regularisation of all binary collisions (due to Lemaître [1]):

- New coordinates α_{j} such that $a_{j}=\alpha_{k}^{2}+\alpha_{l}^{2}$.

Regularisation

Simultaneous regularisation of all binary collisions (due to Lemaître [1]):

- New coordinates α_{j} such that $a_{j}=\alpha_{k}^{2}+\alpha_{l}^{2}$.
- $\alpha_{j}=0$ gives collinearity with m_{j} in eclipse.

Regularisation

Simultaneous regularisation of all binary collisions (due to Lemaître [1]):

- New coordinates α_{j} such that $a_{j}=\alpha_{k}^{2}+\alpha_{l}^{2}$.
- $\alpha_{j}=0$ gives collinearity with m_{j} in eclipse.
- $\alpha_{k}=\alpha_{l}=0$ gives collision between m_{k} and m_{l}.

Regularisation

Simultaneous regularisation of all binary collisions (due to Lemaître [1]):

- New coordinates α_{j} such that $a_{j}=\alpha_{k}^{2}+\alpha_{l}^{2}$.
- $\alpha_{j}=0$ gives collinearity with m_{j} in eclipse.
- $\alpha_{k}=\alpha_{l}=0$ gives collision between m_{k} and m_{l}.
- Define square root semiperimeter $\alpha=\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}}$.

Regularisation

Simultaneous regularisation of all binary collisions (due to Lemaître [1]):

- New coordinates α_{j} such that $a_{j}=\alpha_{k}^{2}+\alpha_{l}^{2}$.
- $\alpha_{j}=0$ gives collinearity with m_{j} in eclipse.
- $\alpha_{k}=\alpha_{l}=0$ gives collision between m_{k} and m_{l}.
- Define square root semiperimeter $\alpha=\sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}}$.
- Then have signed area $S=\alpha_{1} \alpha_{2} \alpha_{3} \alpha$.

Regularisation

Sub new variables into old Hamiltonian.

Regularisation

Sub new variables into old Hamiltonian. Now one final step.

- We need to slow down time near collisions.

Define new time variable τ such that $\frac{d t}{d \tau}=a_{1} a_{2} a_{3}$, then

Regularisation

Sub new variables into old Hamiltonian. Now one final step.

- We need to slow down time near collisions.

Regularisation

Sub new variables into old Hamiltonian. Now one final step.

- We need to slow down time near collisions.
- Define new time variable τ such that $\frac{d t}{d \tau}=a_{1} a_{2} a_{3}$, then

Regularisation

Sub new variables into old Hamiltonian. Now one final step.

- We need to slow down time near collisions.
- Define new time variable τ such that $\frac{d t}{d \tau}=a_{1} a_{2} a_{3}$, then
- define new Hamiltonian $K=(H-h) a_{1} a_{2} a_{3} \equiv 0$,

Regularisation

Sub new variables into old Hamiltonian. Now one final step.

- We need to slow down time near collisions.
- Define new time variable τ such that $\frac{d t}{d \tau}=a_{1} a_{2} a_{3}$, then
- define new Hamiltonian $K=(H-h) a_{1} a_{2} a_{3} \equiv 0$, where h is physical energy.

Regularisation

Sub new variables into old Hamiltonian. Now one final step.

- We need to slow down time near collisions.
- Define new time variable τ such that $\frac{d t}{d \tau}=a_{1} a_{2} a_{3}$, then
- define new Hamiltonian $K=(H-h) a_{1} a_{2} a_{3} \equiv 0$, where h is physical energy.
- New equations of motion by

$$
\dot{z}=\frac{d z}{d \tau}=J \nabla K=F(z)
$$

Shape changes by $\dot{\alpha}_{j}, \dot{\pi}_{j}$, while $\dot{\phi}=\dot{\phi}(z)$ governs rotations. Now set $p_{\phi}=0$ everywhere.

Regularisation

Sub new variables into old Hamiltonian. Now one final step.

- We need to slow down time near collisions.
- Define new time variable τ such that $\frac{d t}{d \tau}=a_{1} a_{2} a_{3}$, then
- define new Hamiltonian $K=(H-h) a_{1} a_{2} a_{3} \equiv 0$, where h is physical energy.
- New equations of motion by

$$
\dot{z}=\frac{d z}{d \tau}=J \nabla K=F(z)
$$

- Shape changes by $\dot{\alpha}_{j}, \dot{\pi}_{j}$, while $\dot{\phi}=\dot{\phi}(z)$ governs rotations.
- Shape dynamics govern rotation dynamics!

Regularisation

Sub new variables into old Hamiltonian. Now one final step.

- We need to slow down time near collisions.
- Define new time variable τ such that $\frac{d t}{d \tau}=a_{1} a_{2} a_{3}$, then
- define new Hamiltonian $K=(H-h) a_{1} a_{2} a_{3} \equiv 0$, where h is physical energy.
- New equations of motion by

$$
\dot{z}=\frac{d z}{d \tau}=J \nabla K=F(z)
$$

- Shape changes by $\dot{\alpha}_{j}, \dot{\pi}_{j}$, while $\dot{\phi}=\dot{\phi}(z)$ governs rotations. Now set $p_{\phi}=0$ everywhere.

Regularisation

Sub new variables into old Hamiltonian. Now one final step.

- We need to slow down time near collisions.
- Define new time variable τ such that $\frac{d t}{d \tau}=a_{1} a_{2} a_{3}$, then
- define new Hamiltonian $K=(H-h) a_{1} a_{2} a_{3} \equiv 0$, where h is physical energy.
- New equations of motion by

$$
\dot{z}=\frac{d z}{d \tau}=J \nabla K=F(z)
$$

- Shape changes by $\dot{\alpha}_{j}, \dot{\pi}_{j}$, while $\dot{\phi}=\dot{\phi}(z)$ governs rotations. Now set $p_{\phi}=0$ everywhere.
- Shape dynamics govern rotation dynamics!

The regularised system

- Collisions are now allowed.

The regularised system

- Collisions are now allowed. Act like elastic rebound.

The regularised system

- Collisions are now allowed. Act like elastic rebound.
- Regularised shape space/sphere is "bigger":

The regularised system

- Collisions are now allowed. Act like elastic rebound.
- Regularised shape space/sphere is "bigger":

- Can also write w_{1}, w_{2}, w_{3} in terms of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and masses.

Discrete symmetries again

Symmetries can be put in terms of regularised coordinates. Choose:

Discrete symmetries again

Symmetries can be put in terms of regularised coordinates. Choose:

- $\sigma_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{3}, \alpha_{2}, \pi_{1}, \pi_{3}, \pi_{2}\right)$, etc.,

Discrete symmetries again

Symmetries can be put in terms of regularised coordinates. Choose:

- $\sigma_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{3}, \alpha_{2}, \pi_{1}, \pi_{3}, \pi_{2}\right)$, etc.,
-c $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{2}, \alpha_{3}, \alpha_{1}, \pi_{2}, \pi_{3}, \pi_{1}\right)$,

Discrete symmetries again

Symmetries can be put in terms of regularised coordinates. Choose:

- $\sigma_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{3}, \alpha_{2}, \pi_{1}, \pi_{3}, \pi_{2}\right)$, etc.,
-c $c\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{2}, \alpha_{3}, \alpha_{1}, \pi_{2}, \pi_{3}, \pi_{1}\right)$,
- $\rho\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)$,

Discrete symmetries again

Symmetries can be put in terms of regularised coordinates. Choose:

- $\sigma_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{3}, \alpha_{2}, \pi_{1}, \pi_{3}, \pi_{2}\right)$, etc.,
- $c\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{2}, \alpha_{3}, \alpha_{1}, \pi_{2}, \pi_{3}, \pi_{1}\right)$,
- $\rho\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)$,
- $\tau\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3},-\pi_{1},-\pi_{2},-\pi_{3}\right)$,

Discrete symmetries again

Symmetries can be put in terms of regularised coordinates. Choose:

- $\sigma_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{3}, \alpha_{2}, \pi_{1}, \pi_{3}, \pi_{2}\right)$, etc.,
- $c\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{2}, \alpha_{3}, \alpha_{1}, \pi_{2}, \pi_{3}, \pi_{1}\right)$,
- $\rho\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)$,
- $\tau\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3},-\pi_{1},-\pi_{2},-\pi_{3}\right)$, and also new symmetries

Discrete symmetries again

Symmetries can be put in terms of regularised coordinates. Choose:

- $\sigma_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{3}, \alpha_{2}, \pi_{1}, \pi_{3}, \pi_{2}\right)$, etc.,
$-c\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{2}, \alpha_{3}, \alpha_{1}, \pi_{2}, \pi_{3}, \pi_{1}\right)$,
- $\rho\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)$,
- $\tau\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3},-\pi_{1},-\pi_{2},-\pi_{3}\right)$, and also new symmetries
- $s_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{1},-\alpha_{2},-\alpha_{3}, \pi_{1},-\pi_{2},-\pi_{3}\right)$, etc..

Discrete symmetries again

Symmetries can be put in terms of regularised coordinates. Choose:

- $\sigma_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{3}, \alpha_{2}, \pi_{1}, \pi_{3}, \pi_{2}\right)$, etc.,
- $c\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{2}, \alpha_{3}, \alpha_{1}, \pi_{2}, \pi_{3}, \pi_{1}\right)$,
- $\rho\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)$,
- $\tau\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3},-\pi_{1},-\pi_{2},-\pi_{3}\right)$, and also new symmetries
- $s_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{1},-\alpha_{2},-\alpha_{3}, \pi_{1},-\pi_{2},-\pi_{3}\right)$, etc..
- Subgroup $\left\{I, s_{1}, s_{2}, s_{3}\right\} \cong V_{4}$.

Discrete symmetries again

Symmetries can be put in terms of regularised coordinates. Choose:

- $\sigma_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{3}, \alpha_{2}, \pi_{1}, \pi_{3}, \pi_{2}\right)$, etc.,
- $c\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{2}, \alpha_{3}, \alpha_{1}, \pi_{2}, \pi_{3}, \pi_{1}\right)$,
- $\rho\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)$,
- $\tau\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3},-\pi_{1},-\pi_{2},-\pi_{3}\right)$, and also new symmetries
- $s_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{1},-\alpha_{2},-\alpha_{3}, \pi_{1},-\pi_{2},-\pi_{3}\right)$, etc..
- Subgroup $\left\{I, s_{1}, s_{2}, s_{3}\right\} \cong V_{4}$. Elements interact with S_{3} by semidirect product $S_{3} \rtimes V_{4}=S_{4}$ (order 24).

Discrete symmetries again

Symmetries can be put in terms of regularised coordinates. Choose:

- $\sigma_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{3}, \alpha_{2}, \pi_{1}, \pi_{3}, \pi_{2}\right)$, etc.,
- $c\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{2}, \alpha_{3}, \alpha_{1}, \pi_{2}, \pi_{3}, \pi_{1}\right)$,
- $\rho\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)$,
- $\tau\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3},-\pi_{1},-\pi_{2},-\pi_{3}\right)$, and also new symmetries
- $s_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{1},-\alpha_{2},-\alpha_{3}, \pi_{1},-\pi_{2},-\pi_{3}\right)$, etc..
- Subgroup $\left\{I, s_{1}, s_{2}, s_{3}\right\} \cong V_{4}$. Elements interact with S_{3} by semidirect product $S_{3} \rtimes V_{4}=S_{4}$ (order 24). Elements written uniquely as composition $S \circ s_{j}, S \in S_{3}$.
same centre as before.

Discrete symmetries again

Symmetries can be put in terms of regularised coordinates. Choose:

- $\sigma_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{3}, \alpha_{2}, \pi_{1}, \pi_{3}, \pi_{2}\right)$, etc.,
- $c\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{2}, \alpha_{3}, \alpha_{1}, \pi_{2}, \pi_{3}, \pi_{1}\right)$,
- $\rho\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=-\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)$,
- $\tau\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3},-\pi_{1},-\pi_{2},-\pi_{3}\right)$, and also new symmetries
- $s_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)=\left(\alpha_{1},-\alpha_{2},-\alpha_{3}, \pi_{1},-\pi_{2},-\pi_{3}\right)$, etc..
- Subgroup $\left\{I, s_{1}, s_{2}, s_{3}\right\} \cong V_{4}$. Elements interact with S_{3} by semidirect product $S_{3} \rtimes V_{4}=S_{4}$ (order 24). Elements written uniquely as composition $S \circ s_{j}, S \in S_{3}$.
New (reversing) symmetry group $\mathfrak{G}_{R} \cong S_{4} \times Z_{2}^{2}$ (order 96), with same centre as before.

Discrete symmetries again

- Important idea: fixed sets of symmetries.

Discrete symmetries again

- Important idea: fixed sets of symmetries.
- Involutions (S such that $S=S^{-1} \Longleftrightarrow S^{2}=I$) may have interesting fixed sets.

Discrete symmetries again

- Important idea: fixed sets of symmetries.
- Involutions (S such that $S=S^{-1} \Longleftrightarrow S^{2}=I$) may have interesting fixed sets.
- Non-reversing fixed sets give invariant subspaces

Shape space is divided into regions by fixed sets of
non-reversing involutions (that act as reflections only).

Discrete symmetries again

- Important idea: fixed sets of symmetries.
- Involutions (S such that $S=S^{-1} \Longleftrightarrow S^{2}=I$) may have interesting fixed sets.
- Non-reversing fixed sets give invariant subspaces (isosceles and collinear).

Discrete symmetries again

- Important idea: fixed sets of symmetries.
- Involutions (S such that $S=S^{-1} \Longleftrightarrow S^{2}=I$) may have interesting fixed sets.
- Non-reversing fixed sets give invariant subspaces (isosceles and collinear).
- Shape space is divided into regions by fixed sets of non-reversing involutions (that act as reflections only).
- Solutions can be "reflected" back into FD at boundaries

Discrete symmetries again

- Important idea: fixed sets of symmetries.
- Involutions (S such that $S=S^{-1} \Longleftrightarrow S^{2}=I$) may have interesting fixed sets.
- Non-reversing fixed sets give invariant subspaces (isosceles and collinear).
- Shape space is divided into regions by fixed sets of non-reversing involutions (that act as reflections only).
- Smallest region enclosed is the fundamental domain (FD). We pick just one.
- Some solutions can reflect back the way they came.

Discrete symmetries again

- Important idea: fixed sets of symmetries.
- Involutions (S such that $S=S^{-1} \Longleftrightarrow S^{2}=I$) may have interesting fixed sets.
- Non-reversing fixed sets give invariant subspaces (isosceles and collinear).
- Shape space is divided into regions by fixed sets of non-reversing involutions (that act as reflections only).
- Smallest region enclosed is the fundamental domain (FD). We pick just one.
- Solutions can be "reflected" back into FD at boundaries ("billiards").

Discrete symmetries again

- Important idea: fixed sets of symmetries.
- Involutions (S such that $S=S^{-1} \Longleftrightarrow S^{2}=I$) may have interesting fixed sets.
- Non-reversing fixed sets give invariant subspaces (isosceles and collinear).
- Shape space is divided into regions by fixed sets of non-reversing involutions (that act as reflections only).
- Smallest region enclosed is the fundamental domain (FD). We pick just one.
- Solutions can be "reflected" back into FD at boundaries ("billiards").
- Some solutions can reflect back the way they came...

Reversing fixed sets

- Fixed sets of reversing symmetries are not invariant.

Reversing fixed sets

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse

Reversing fixed sets

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse possibly with some other symmetry applied

Reversing fixed sets

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse possibly with some other symmetry applied after that instant in time.

A solution connecting two points in the fixed sets of reversing involutions R_{1}, R_{2} is periodic.

These generate the solution's symmetries (after restricting
to an invariant subspace, collinear or isosceles, if necessary)

Reversing fixed sets

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse possibly with some other symmetry applied after that instant in time.

Theorem
A solution connecting two points in the fixed sets of reversing involutions R_{1}, R_{2} is periodic.

These generate the solution's symmetries (after restricting
to an invariant subspace, collinear or isosceles, if

Reversing fixed sets

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse possibly with some other symmetry applied after that instant in time.

Theorem
A solution connecting two points in the fixed sets of reversing involutions R_{1}, R_{2} is periodic.

- These generate the solution's symmetries (after restricting to an invariant subspace, collinear or isosceles, if necessary).

Reversing fixed sets

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse possibly with some other symmetry applied after that instant in time.

Theorem
A solution connecting two points in the fixed sets of reversing involutions R_{1}, R_{2} is periodic.

- These generate the solution's symmetries (after restricting to an invariant subspace, collinear or isosceles, if necessary).

Proof.

Suppose at $\tau=0$ we have $z(0) \in \operatorname{Fix} R_{1}$ and at $\tau=\tau_{0}$ we have $z\left(\tau_{0}\right) \in \operatorname{Fix} R_{2}$.

Reversing fixed sets

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse possibly with some other symmetry applied after that instant in time.

Theorem
A solution connecting two points in the fixed sets of reversing involutions R_{1}, R_{2} is periodic.

- These generate the solution's symmetries (after restricting to an invariant subspace, collinear or isosceles, if necessary).

Proof.

Suppose at $\tau=0$ we have $z(0) \in \operatorname{Fix} R_{1}$ and at $\tau=\tau_{0}$ we have $z\left(\tau_{0}\right) \in \operatorname{Fix} R_{2}$. Now at $\tau=2 \tau_{0}$ we observe that $z\left(2 \tau_{0}\right) \in \operatorname{Fix} R_{1} R_{2} R_{1}=\operatorname{Fix} R_{1} S$,

Reversing fixed sets

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse possibly with some other symmetry applied after that instant in time.

Theorem

A solution connecting two points in the fixed sets of reversing involutions R_{1}, R_{2} is periodic.

- These generate the solution's symmetries (after restricting to an invariant subspace, collinear or isosceles, if necessary).

Proof.

Suppose at $\tau=0$ we have $z(0) \in \operatorname{Fix} R_{1}$ and at $\tau=\tau_{0}$ we have $z\left(\tau_{0}\right) \in \operatorname{Fix} R_{2}$. Now at $\tau=2 \tau_{0}$ we observe that
$z\left(2 \tau_{0}\right) \in \operatorname{Fix} R_{1} R_{2} R_{1}=\operatorname{Fix} R_{1} S$, where S is non-reversing of order k (i.e. $S^{k}=I$).

Reversing fixed sets

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse possibly with some other symmetry applied after that instant in time.

Theorem

A solution connecting two points in the fixed sets of reversing involutions R_{1}, R_{2} is periodic.

- These generate the solution's symmetries (after restricting to an invariant subspace, collinear or isosceles, if necessary).

Proof.

Suppose at $\tau=0$ we have $z(0) \in \operatorname{Fix} R_{1}$ and at $\tau=\tau_{0}$ we have $z\left(\tau_{0}\right) \in \operatorname{Fix} R_{2}$. Now at $\tau=2 \tau_{0}$ we observe that
$z\left(2 \tau_{0}\right) \in \operatorname{Fix} R_{1} R_{2} R_{1}=\operatorname{Fix} R_{1} S$, where S is non-reversing of order k (i.e. $S^{k}=I$). If $R_{1}=R_{2}$ then $S=I$ and orbit is periodic with period $2 \tau_{0}$.

Reversing fixed sets

- Fixed sets of reversing symmetries are not invariant.
- Solution with points in fixed sets of reversing involutions run in reverse possibly with some other symmetry applied after that instant in time.

Theorem

A solution connecting two points in the fixed sets of reversing involutions R_{1}, R_{2} is periodic.

- These generate the solution's symmetries (after restricting to an invariant subspace, collinear or isosceles, if necessary).

Proof.

Suppose at $\tau=0$ we have $z(0) \in \operatorname{Fix} R_{1}$ and at $\tau=\tau_{0}$ we have $z\left(\tau_{0}\right) \in \operatorname{Fix} R_{2}$. Now at $\tau=2 \tau_{0}$ we observe that
$z\left(2 \tau_{0}\right) \in \operatorname{Fix} R_{1} R_{2} R_{1}=\operatorname{Fix} R_{1} S$, where S is non-reversing of order k (i.e. $S^{k}=I$). If $R_{1}=R_{2}$ then $S=I$ and orbit is periodic with period $2 \tau_{0}$. Else periodic with period $2 k \tau_{0}$.

Example reversing orbit

- An orbit generated by $R_{1}=R_{2}=\tau \sigma_{3} s_{3}$

Example reversing orbit

- An orbit generated by $R_{1}=R_{2}=\tau \sigma_{3} s_{3}$ (which looks like...)

More examples

More examples

More examples

$R_{1}=\tau \rho \sigma_{3} s_{3}, R_{2}=\tau \sigma_{2} s_{2}$

$R_{1}=\tau \rho \sigma_{2} s_{2}, R_{2}=\tau \sigma_{2} s_{2}$

$R_{1}=\tau \rho s_{3}, R_{2}=\tau \sigma_{3}$

Non-reversing symmetries

Some have non-reversing symmetries, group generated by S :

Non-reversing symmetries

Some have non-reversing symmetries, group generated by S :

Non-reversing symmetries

Some have non-reversing symmetries, group generated by S :

Orbits in invariant subspaces

Some orbits live in the fixed sets of non-reversing symmetries:

Orbits in invariant subspaces

Some orbits live in the fixed sets of non-reversing symmetries:

Orbits in invariant subspaces

Some orbits live in the fixed sets of non-reversing symmetries:

- $\rho \sigma_{j}$ or $\rho \sigma_{j} s_{j}$ are isosceles with m_{j} on axis of symmetry,

Orbits in invariant subspaces

Some orbits live in the fixed sets of non-reversing symmetries:

- $\rho \sigma_{j}$ or $\rho \sigma_{j} s_{j}$ are isosceles with m_{j} on axis of symmetry,
- $c, c^{2}, c s_{j}$ or $c^{2} s_{j}$ are equilateral,

Orbits in invariant subspaces

Some orbits live in the fixed sets of non-reversing symmetries:

- ρs_{j} are collinear with m_{j} in eclipse,

- $\rho \sigma_{j}$ or $\rho \sigma_{j} s_{j}$ are isosceles with m_{j} on axis of symmetry,
- $c, c^{2}, c s_{j}$ or $c^{2} s_{j}$ are equilateral,
- σ_{j} or $\sigma_{j} s_{j}$ are isosceles collinear with m_{j} in eclipse.
interesting, but equiliateral and isosceles collinear are 'too small"
(only blow up from and collapse to

Orbits in invariant subspaces

Some orbits live in the fixed sets of non-reversing symmetries:

- ρs_{j} are collinear with m_{j} in eclipse,
- $\rho \sigma_{j}$ or $\rho \sigma_{j} s_{j}$ are isosceles with m_{j} on axis of symmetry,
- $c, c^{2}, c s_{j}$ or $c^{2} s_{j}$ are equilateral,
- σ_{j} or $\sigma_{j} s_{j}$ are isosceles collinear with m_{j} in eclipse.
Collinear and isosceles are interesting, but equilateral and isosceles collinear are "too small"

Orbits in invariant subspaces

Some orbits live in the fixed sets of non-reversing symmetries:

- ρs_{j} are collinear with m_{j} in eclipse,

- $\rho \sigma_{j}$ or $\rho \sigma_{j} s_{j}$ are isosceles with m_{j} on axis of symmetry,
- $c, c^{2}, c s_{j}$ or $c^{2} s_{j}$ are equilateral,
- σ_{j} or $\sigma_{j} s_{j}$ are isosceles collinear with m_{j} in eclipse.
Collinear and isosceles are interesting, but equilateral and isosceles collinear are "too small" (only blow up from and collapse to triple collision).

Some orbits in non-reversing fixed sets

Some orbits in non-reversing fixed sets

Some orbits in non-reversing fixed sets

Some orbits in non-reversing fixed sets

Some orbits in non-reversing fixed sets

Some orbits in non-reversing fixed sets

Reversing fixed sets

The fixed sets of reversing
symmetries:

Reversing fixed sets

The fixed sets of reversing symmetries: (the interesting ones)
> t psj are collinear reversing with
> m_{j} momentarily in eclipse,
> τ s: are collision hetween m, mit
> with m_{j} momentarily at rest,

Reversing fixed sets

The fixed sets of reversing symmetries: (the interesting ones)

- $\tau \rho s_{j}$ are collinear reversing with m_{j} momentarily in eclipse,

Reversing fixed sets

The fixed sets of reversing symmetries: (the interesting ones)

- $\tau \rho s_{j}$ are collinear reversing with m_{j} momentarily in eclipse,

- τs_{j} are collision between m_{k}, m_{l} with m_{j} momentarily at rest,
- $\tau \rho \sigma_{j}$ or $\tau \rho \sigma_{j} s_{j}$ are isosceles reversing with m_{j} momentarily on the axis of symmetry,
- τ is pure time reversing,

Reversing fixed sets

The fixed sets of reversing symmetries: (the interesting ones)

- $\tau \rho s_{j}$ are collinear reversing with m_{j} momentarily in eclipse,

- τs_{j} are collision between m_{k}, m_{l} with m_{j} momentarily at rest,
- $\tau \rho \sigma_{j}$ or $\tau \rho \sigma_{j} s_{j}$ are isosceles reversing with m_{j} momentarily on the axis of symmetry,

Reversing fixed sets

The fixed sets of reversing symmetries: (the interesting ones)

- $\tau \rho s_{j}$ are collinear reversing with m_{j} momentarily in eclipse,

- τs_{j} are collision between m_{k}, m_{l} with m_{j} momentarily at rest,
- $\tau \rho \sigma_{j}$ or $\tau \rho \sigma_{j} s_{j}$ are isosceles reversing with m_{j} momentarily on the axis of symmetry,
- τ is pure time reversing,

Reversing fixed sets

The fixed sets of reversing symmetries: (the interesting ones)

- $\tau \rho s_{j}$ are collinear reversing with m_{j} momentarily in eclipse,
- τs_{j} are collision between m_{k}, m_{l} with m_{j} momentarily at rest,
- $\tau \rho \sigma_{j}$ or $\tau \rho \sigma_{j} s_{j}$ are isosceles reversing with m_{j} momentarily on the axis of symmetry,
- τ is pure time reversing,
- $\tau \sigma_{j}$ or $\tau \sigma_{j} s_{j}$ are isosceles collinear reversing with m_{j} momentarily in eclipse.

Our use for symmetries

- Symmetries are beautiful, but why care so much?

Because it turns out that the right symmetries force geometric phase to cancel over an orbit. Need one more thina: isotronv subaroun. Σ

Our use for symmetries

- Symmetries are beautiful, but why care so much?
- Because it turns out that the right symmetries force geometric phase to cancel over an orbit.

Our use for symmetries

- Symmetries are beautiful, but why care so much?
- Because it turns out that the right symmetries force geometric phase to cancel over an orbit.
- Need one more thing: isotropy subgroup, Σ_{z}.
subgroup of the reversing symmetry group of F that
an orbit $z(\tau)$ back to itself (possibly with a time shift)

Our use for symmetries

- Symmetries are beautiful, but why care so much?
- Because it turns out that the right symmetries force geometric phase to cancel over an orbit.
- Need one more thing: isotropy subgroup, Σ_{z}. The subgroup of the reversing symmetry group of F that map an orbit $z(\tau)$ back to itself

Our use for symmetries

- Symmetries are beautiful, but why care so much?
- Because it turns out that the right symmetries force geometric phase to cancel over an orbit.
- Need one more thing: isotropy subgroup, Σ_{z}. The subgroup of the reversing symmetry group of F that map an orbit $z(\tau)$ back to itself (possibly with a time shift).

Our use for symmetries

- Symmetries are beautiful, but why care so much?
- Because it turns out that the right symmetries force geometric phase to cancel over an orbit.
- Need one more thing: isotropy subgroup, Σ_{z}. The subgroup of the reversing symmetry group of F that map an orbit $z(\tau)$ back to itself (possibly with a time shift).
- Non-reversing symmetry S of order k acts on orbit such that $S(z(\tau))=z\left(\tau+\frac{T}{k}\right)$.

Our use for symmetries

- Symmetries are beautiful, but why care so much?
- Because it turns out that the right symmetries force geometric phase to cancel over an orbit.
- Need one more thing: isotropy subgroup, Σ_{z}. The subgroup of the reversing symmetry group of F that map an orbit $z(\tau)$ back to itself (possibly with a time shift).
- Non-reversing symmetry S of order k acts on orbit such that $S(z(\tau))=z\left(\tau+\frac{T}{k}\right)$.
- Reversing involution R acts on orbit such that $R(z(\tau))=z\left(\tau_{0}-\tau\right)$, where $z\left(\tau_{0}\right) \in \operatorname{Fix}(R)$.

Our use for symmetries

- Symmetries are beautiful, but why care so much?
- Because it turns out that the right symmetries force geometric phase to cancel over an orbit.
- Need one more thing: isotropy subgroup, Σ_{z}. The subgroup of the reversing symmetry group of F that map an orbit $z(\tau)$ back to itself (possibly with a time shift).
- Non-reversing symmetry S of order k acts on orbit such that $S(z(\tau))=z\left(\tau+\frac{T}{k}\right)$.
- Reversing involution R acts on orbit such that

$$
R(z(\tau))=z\left(\tau_{0}-\tau\right), \text { where } z\left(\tau_{0}\right) \in \operatorname{Fix}(R) .
$$

- Non-reversing involution S^{*} with shift 0 imply orbit is in fixed set of S^{*}.

Isotropy subgroup structures

Working hypothesis: isotropy subgroups generated by:

- reversing involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$: dihedral D_{k}, order $2 k$.

Isotropy subgroup structures

Working hypothesis: isotropy subgroups generated by:

- reversing involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$: dihedral D_{k}, order $2 k$.
- non-reversing S of order k with shift $\frac{T}{k}$: cyclic Z_{k}, order k.

Isotropy subgroup structures

Working hypothesis: isotropy subgroups generated by:

- reversing involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$: dihedral D_{k}, order $2 k$.
- non-reversing S of order k with shift $\frac{T}{k}$: cyclic Z_{k}, order k.
- reversing involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$, non-reversing involution S^{*} with shift $0: D_{k} \times Z_{2}$, order $4 k$.

Isotropy subgroup structures

Working hypothesis: isotropy subgroups generated by:

- reversing involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$: dihedral D_{k}, order $2 k$.
- non-reversing S of order k with shift $\frac{T}{k}$: cyclic Z_{k}, order k.
- reversing involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$, non-reversing involution S^{*} with shift $0: D_{k} \times Z_{2}$, order $4 k$.
- non-reversing S of order k with shift $\frac{T}{k}$, non-reversing involution S^{*} with shift $0: Z_{k} \times Z_{2}$, order $2 k$.

Isotropy subgroup structures

Working hypothesis: isotropy subgroups generated by:

- reversing involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$: dihedral D_{k}, order $2 k$.
- non-reversing S of order k with shift $\frac{T}{k}$: cyclic Z_{k}, order k.
- reversing involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$, non-reversing involution S^{*} with shift $0: D_{k} \times Z_{2}$, order $4 k$.
- non-reversing S of order k with shift $\frac{T}{k}$, non-reversing involution S^{*} with shift $0: Z_{k} \times Z_{2}$, order $2 k$.

Montgomery's formula for geometric phase

- Montgomery [3] shows calculation of geometric phase.

Montgomery's formula for geometric phase

- Montgomery [3] shows calculation of geometric phase.
- "Area enclosed by a loop on the shape sphere."

Montgomery's formula for geometric phase

- Montgomery [3] shows calculation of geometric phase.
- "Area enclosed by a loop on the shape sphere."

$$
d G=-\frac{1}{2} w_{3} d \theta
$$

Montgomery's formula for geometric phase

- Montgomery [3] shows calculation of geometric phase.
- "Area enclosed by a loop on the shape sphere."

$$
d G=-\frac{1}{2} w_{3} d \theta, \text { where } \theta=\arg \left(w_{1}+i w_{2}\right)
$$

Montgomery's formula for geometric phase

- Montgomery [3] shows calculation of geometric phase.
- "Area enclosed by a loop on the shape sphere."

$$
\begin{aligned}
d G & =-\frac{1}{2} w_{3} d \theta, \text { where } \theta=\arg \left(w_{1}+i w_{2}\right) \\
& =\frac{2 m^{3} S \sum F_{j}(z)}{\left(\sum m_{k} m_{l} a_{j}^{2}\right)\left(\left(\sum m_{k} m_{l} a_{j}^{2}\right)^{2}-16 m_{1} m_{2} m_{3} m S^{2}\right)} d \tau
\end{aligned}
$$

where

Montgomery's formula for geometric phase

- Montgomery [3] shows calculation of geometric phase.
- "Area enclosed by a loop on the shape sphere."

$$
\begin{aligned}
d G & =-\frac{1}{2} w_{3} d \theta, \text { where } \theta=\arg \left(w_{1}+i w_{2}\right) \\
& =\frac{2 m^{3} S \sum F_{j}(z)}{\left(\sum m_{k} m_{l} a_{j}^{2}\right)\left(\left(\sum m_{k} m_{l} a_{j}^{2}\right)^{2}-16 m_{1} m_{2} m_{3} m S^{2}\right)} d \tau \\
& =: U(z) d \tau
\end{aligned}
$$

where

Montgomery's formula for geometric phase

- Montgomery [3] shows calculation of geometric phase.
- "Area enclosed by a loop on the shape sphere."

$$
\begin{aligned}
d G & =-\frac{1}{2} w_{3} d \theta, \text { where } \theta=\arg \left(w_{1}+i w_{2}\right) \\
& =\frac{2 m^{3} S \sum F_{j}(z)}{\left(\sum m_{k} m_{l} a_{j}^{2}\right)\left(\left(\sum m_{k} m_{l} a_{j}^{2}\right)^{2}-16 m_{1} m_{2} m_{3} m S^{2}\right)} d \tau \\
& =: U(z) d \tau
\end{aligned}
$$

where

$$
F_{j}(z)=f_{j}(z) \alpha_{j} \pi_{j}
$$

Montgomery's formula for geometric phase

- Montgomery [3] shows calculation of geometric phase.
- "Area enclosed by a loop on the shape sphere."

$$
\begin{aligned}
d G & =-\frac{1}{2} w_{3} d \theta, \text { where } \theta=\arg \left(w_{1}+i w_{2}\right) \\
& =\frac{2 m^{3} S \sum F_{j}(z)}{\left(\sum m_{k} m_{l} a_{j}^{2}\right)\left(\left(\sum m_{k} m_{l} a_{j}^{2}\right)^{2}-16 m_{1} m_{2} m_{3} m S^{2}\right)} d \tau \\
& =: U(z) d \tau
\end{aligned}
$$

where

$$
F_{j}(z)=f_{j}(z) \alpha_{j} \pi_{j}
$$

with

$$
\begin{aligned}
f_{j}(z) & =m_{k} m_{l}\left(a_{k}-a_{l}\right) a_{j} \alpha^{2}-m_{l} m_{j}\left(2 \alpha_{k}^{2}+a_{k}\right) a_{k} \alpha_{l}^{2} \\
& +m_{j} m_{k}\left(2 \alpha_{l}^{2}+a_{l}\right) a_{l} \alpha_{k}^{2} .
\end{aligned}
$$

Symmetries and geometric phase

- We calculate geometric phase over an orbit of period T by

$$
\begin{equation*}
G(T)=\int_{0}^{T} U(z(\tau)) d \tau \tag{4}
\end{equation*}
$$

- Symmetries divide an orbit's period evenly.
- $U(z)$ has symmetries and antisymmetries.

Symmetries and geometric phase

- We calculate geometric phase over an orbit of period T by

$$
\begin{equation*}
G(T)=\int_{0}^{T} U(z(\tau)) d \tau \tag{4}
\end{equation*}
$$

- Symmetries divide an orbit's period evenly.

Symmetries and geometric phase

- We calculate geometric phase over an orbit of period T by

$$
\begin{equation*}
G(T)=\int_{0}^{T} U(z(\tau)) d \tau \tag{4}
\end{equation*}
$$

- Symmetries divide an orbit's period evenly.
- $U(z)$ has symmetries and antisymmetries.

Symmetries and antisymmetries of U

- Consider $S \in S_{4}$ any composition of elements from $\left\{I, s_{1}, s_{2}, s_{3}, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}\right\}$.

Symmetries and antisymmetries of U

- Consider $S \in S_{4}$ any composition of elements from $\left\{I, s_{1}, s_{2}, s_{3}, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}\right\}$.
- Observe that $U \circ S(z)=U(z)$.

Symmetries and antisymmetries of U

- Consider $S \in S_{4}$ any composition of elements from $\left\{I, s_{1}, s_{2}, s_{3}, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}\right\}$.
- Observe that $U \circ S(z)=U(z)$.
- But $U \circ(\rho \circ S)(z)=-U(z)$

Symmetries and antisymmetries of U

- Consider $S \in S_{4}$ any composition of elements from $\left\{I, s_{1}, s_{2}, s_{3}, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}\right\}$.
- Observe that $U \circ S(z)=U(z)$.
- But $U \circ(\rho \circ S)(z)=-U(z)$ and $U \circ(\tau \circ S)(z)=-U(z)$.

Symmetries and antisymmetries of U

- Consider $S \in S_{4}$ any composition of elements from $\left\{I, s_{1}, s_{2}, s_{3}, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}\right\}$.
- Observe that $U \circ S(z)=U(z)$.
- But $U \circ(\rho \circ S)(z)=-U(z)$ and $U \circ(\tau \circ S)(z)=-U(z)$.
- Which also means that $U \circ(\tau \circ \rho \circ S)(z)=U(z)$.
- Note: all antisymmetries of U have even order.

Symmetries and antisymmetries of U

- Consider $S \in S_{4}$ any composition of elements from $\left\{I, s_{1}, s_{2}, s_{3}, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}\right\}$.
- Observe that $U \circ S(z)=U(z)$.
- But $U \circ(\rho \circ S)(z)=-U(z)$ and $U \circ(\tau \circ S)(z)=-U(z)$.
- Which also means that $U \circ(\tau \circ \rho \circ S)(z)=U(z)$.
- Symmetries with ρ or τ alone are antisymmetries of U.

Symmetries and antisymmetries of U

- Consider $S \in S_{4}$ any composition of elements from $\left\{I, s_{1}, s_{2}, s_{3}, \sigma_{1}, \sigma_{2}, \sigma_{3}, c, c^{2}\right\}$.
- Observe that $U \circ S(z)=U(z)$.
- But $U \circ(\rho \circ S)(z)=-U(z)$ and $U \circ(\tau \circ S)(z)=-U(z)$.
- Which also means that $U \circ(\tau \circ \rho \circ S)(z)=U(z)$.
- Symmetries with ρ or τ alone are antisymmetries of U.
- Note: all antisymmetries of U have even order.

Geometric interpretation

 Recall $d G=-\frac{1}{2} w_{3} d \theta, \theta=\arg \left(w_{1}+i w_{3}\right), S \in Z_{4}$.On shape sphere,
do nothing, so $d G$ inver riant.

Geometric interpretation

Recall $d G=-\frac{1}{2} w_{3} d \theta, \theta=\arg \left(w_{1}+i w_{3}\right), S \in Z_{4}$.

- On shape sphere, s_{1}, s_{2}, s_{3} do nothing, so $d G$ invariant.

Geometric interpretation

Recall $d G=-\frac{1}{2} w_{3} d \theta, \theta=\arg \left(w_{1}+i w_{3}\right), S \in Z_{4}$.

- On shape sphere, s_{1}, s_{2}, s_{3} do nothing, so $d G$ invariant.
- c, c^{2} rotate by $\frac{2 \pi}{3}$, fixing equilateral points, so w_{3}, $d \theta$ invariant.

Geometric interpretation

Recall $d G=-\frac{1}{2} w_{3} d \theta, \theta=\arg \left(w_{1}+i w_{3}\right), S \in Z_{4}$.

- On shape sphere, s_{1}, s_{2}, s_{3} do nothing, so $d G$ invariant.
- c, c^{2} rotate by $\frac{2 \pi}{3}$, fixing equilateral points, so w_{3}, $d \theta$ invariant.
- $\sigma_{1}, \sigma_{2}, \sigma_{3}$ rotate paths by π about axes through $B_{23}-M_{1}$, $B_{31}-M_{2}, B_{12}-M_{3}$,

Geometric interpretation

Recall $d G=-\frac{1}{2} w_{3} d \theta, \theta=\arg \left(w_{1}+i w_{3}\right), S \in Z_{4}$.

- On shape sphere, s_{1}, s_{2}, s_{3} do nothing, so $d G$ invariant.
- c, c^{2} rotate by $\frac{2 \pi}{3}$, fixing equilateral points, so w_{3}, $d \theta$ invariant.
- $\sigma_{1}, \sigma_{2}, \sigma_{3}$ rotate paths by π about axes through $B_{23}-M_{1}$, $B_{31}-M_{2}, B_{12}-M_{3}$, so $w_{3} \rightarrow-w_{3}, d \theta \rightarrow-d \theta$, leaving $d G$ invariant.

Geometric interpretation

Recall $d G=-\frac{1}{2} w_{3} d \theta, \theta=\arg \left(w_{1}+i w_{3}\right), S \in Z_{4}$.

- On shape sphere, s_{1}, s_{2}, s_{3} do nothing, so $d G$ invariant.
- c, c^{2} rotate by $\frac{2 \pi}{3}$, fixing equilateral points, so w_{3}, $d \theta$ invariant.
- $\sigma_{1}, \sigma_{2}, \sigma_{3}$ rotate paths by π about axes through $B_{23}-M_{1}$, $B_{31}-M_{2}, B_{12}-M_{3}$, so $w_{3} \rightarrow-w_{3}, d \theta \rightarrow-d \theta$, leaving $d G$ invariant.
- Any S composed with ρ sends $w_{3} \rightarrow-w_{3}$, but $d \theta$ invariant, so $d G \rightarrow-d G$.

Geometric interpretation

Recall $d G=-\frac{1}{2} w_{3} d \theta, \theta=\arg \left(w_{1}+i w_{3}\right), S \in Z_{4}$.

- On shape sphere, s_{1}, s_{2}, s_{3} do nothing, so $d G$ invariant.
- c, c^{2} rotate by $\frac{2 \pi}{3}$, fixing equilateral points, so w_{3}, $d \theta$ invariant.
- $\sigma_{1}, \sigma_{2}, \sigma_{3}$ rotate paths by π about axes through $B_{23}-M_{1}$, $B_{31}-M_{2}, B_{12}-M_{3}$, so $w_{3} \rightarrow-w_{3}, d \theta \rightarrow-d \theta$, leaving $d G$ invariant.
- Any S composed with ρ sends $w_{3} \rightarrow-w_{3}$, but $d \theta$ invariant, so $d G \rightarrow-d G$.
- Any S composed with τ leaves w_{3} invariant, but sends $d \theta \rightarrow-d \theta$, so $d G \rightarrow-d G$.

Geometric interpretation

Recall $d G=-\frac{1}{2} w_{3} d \theta, \theta=\arg \left(w_{1}+i w_{3}\right), S \in Z_{4}$.

- On shape sphere, s_{1}, s_{2}, s_{3} do nothing, so $d G$ invariant.
- c, c^{2} rotate by $\frac{2 \pi}{3}$, fixing equilateral points, so w_{3}, $d \theta$ invariant.
- $\sigma_{1}, \sigma_{2}, \sigma_{3}$ rotate paths by π about axes through $B_{23}-M_{1}$, $B_{31}-M_{2}, B_{12}-M_{3}$, so $w_{3} \rightarrow-w_{3}, d \theta \rightarrow-d \theta$, leaving $d G$ invariant.
- Any S composed with ρ sends $w_{3} \rightarrow-w_{3}$, but $d \theta$ invariant, so $d G \rightarrow-d G$.
- Any S composed with τ leaves w_{3} invariant, but sends $d \theta \rightarrow-d \theta$, so $d G \rightarrow-d G$.
- Any S composed with $\tau \rho$ thus leaves $d G$ invariant.

Antisymmetries of U in periodic orbits

Consider periodic solution $z(\tau)=z(\tau+T)$. Cases when isotropy subgroup Σ_{z} generated by antisymmetry of U, per working hypothesis:

- Fixed sets of non-reversing involutions:

Antisymmetries of U in periodic orbits

Consider periodic solution $z(\tau)=z(\tau+T)$. Cases when isotropy subgroup Σ_{z} generated by antisymmetry of U, per working hypothesis:

- Fixed sets of non-reversing involutions:
- isosceles subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j}\right)\right.$ or $\left.z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j} s_{j}\right)\right)$; or

Antisymmetries of U in periodic orbits

Consider periodic solution $z(\tau)=z(\tau+T)$. Cases when isotropy subgroup Σ_{z} generated by antisymmetry of U, per working hypothesis:

- Fixed sets of non-reversing involutions:
- isosceles subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j}\right)\right.$ or $\left.z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j} s_{j}\right)\right)$; or
- collinear subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho s_{j}\right)\right)$.

Antisymmetries of U in periodic orbits

Consider periodic solution $z(\tau)=z(\tau+T)$. Cases when isotropy subgroup Σ_{z} generated by antisymmetry of U, per working hypothesis:

- Fixed sets of non-reversing involutions:
- isosceles subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j}\right)\right.$ or $\left.z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j} s_{j}\right)\right)$; or
- collinear subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho s_{j}\right)\right)$.
- Non-reversing isosceles reflections on shape sphere $\left(z\left(\tau+\frac{T}{2}\right)=\left(\rho \sigma_{j}\right)(z(\tau))\right.$ or $\left.z\left(\tau+\frac{T}{2}\right)=\left(\rho \sigma_{j} s_{j}\right)(z(\tau))\right)$.

Antisymmetries of U in periodic orbits

Consider periodic solution $z(\tau)=z(\tau+T)$. Cases when isotropy subgroup Σ_{z} generated by antisymmetry of U, per working hypothesis:

- Fixed sets of non-reversing involutions:
- isosceles subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j}\right)\right.$ or $\left.z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j} s_{j}\right)\right)$; or
- collinear subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho s_{j}\right)\right)$.
- Non-reversing isosceles reflections on shape sphere $\left(z\left(\tau+\frac{T}{2}\right)=\left(\rho \sigma_{j}\right)(z(\tau))\right.$ or $\left.z\left(\tau+\frac{T}{2}\right)=\left(\rho \sigma_{j} s_{j}\right)(z(\tau))\right)$.
- Non-reversing reflections about equator of shape sphere (ρs_{j} or ρ).

Antisymmetries of U in periodic orbits

Consider periodic solution $z(\tau)=z(\tau+T)$. Cases when isotropy subgroup Σ_{z} generated by antisymmetry of U, per working hypothesis:

- Fixed sets of non-reversing involutions:
- isosceles subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j}\right)\right.$ or $\left.z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j} s_{j}\right)\right)$; or
- collinear subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho s_{j}\right)\right)$.
- Non-reversing isosceles reflections on shape sphere $\left(z\left(\tau+\frac{T}{2}\right)=\left(\rho \sigma_{j}\right)(z(\tau))\right.$ or $\left.z\left(\tau+\frac{T}{2}\right)=\left(\rho \sigma_{j} s_{j}\right)(z(\tau))\right)$.
- Non-reversing reflections about equator of shape sphere (ρs_{j} or ρ).
- At least one reversing symmetry on "bottom" corners of fundamental domain:

Antisymmetries of U in periodic orbits

Consider periodic solution $z(\tau)=z(\tau+T)$. Cases when isotropy subgroup Σ_{z} generated by antisymmetry of U, per working hypothesis:

- Fixed sets of non-reversing involutions:
- isosceles subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j}\right)\right.$ or $z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j} s_{j}\right)$); or
- collinear subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho s_{j}\right)\right)$.
- Non-reversing isosceles reflections on shape sphere $\left(z\left(\tau+\frac{T}{2}\right)=\left(\rho \sigma_{j}\right)(z(\tau))\right.$ or $\left.z\left(\tau+\frac{T}{2}\right)=\left(\rho \sigma_{j} s_{j}\right)(z(\tau))\right)$.
- Non-reversing reflections about equator of shape sphere (ρs_{j} or ρ).
- At least one reversing symmetry on "bottom" corners of fundamental domain:
- isosceles collinear point $M\left(z\left(\tau_{0}\right) \in \operatorname{Fix}\left(\tau \sigma_{j}\right)\right.$ or

$$
\left.z\left(\tau_{0}\right) \in \operatorname{Fix}\left(\tau \sigma_{j} s_{j}\right)\right) ; \text { or }
$$

Antisymmetries of U in periodic orbits

Consider periodic solution $z(\tau)=z(\tau+T)$. Cases when isotropy subgroup Σ_{z} generated by antisymmetry of U, per working hypothesis:

- Fixed sets of non-reversing involutions:
- isosceles subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j}\right)\right.$ or $z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j} s_{j}\right)$); or
- collinear subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho s_{j}\right)\right)$.
- Non-reversing isosceles reflections on shape sphere $\left(z\left(\tau+\frac{T}{2}\right)=\left(\rho \sigma_{j}\right)(z(\tau))\right.$ or $\left.z\left(\tau+\frac{T}{2}\right)=\left(\rho \sigma_{j} s_{j}\right)(z(\tau))\right)$.
- Non-reversing reflections about equator of shape sphere (ρs_{j} or ρ).
- At least one reversing symmetry on "bottom" corners of fundamental domain:
- isosceles collinear point $M\left(z\left(\tau_{0}\right) \in \operatorname{Fix}\left(\tau \sigma_{j}\right)\right.$ or $\left.z\left(\tau_{0}\right) \in \operatorname{Fix}\left(\tau \sigma_{j} s_{j}\right)\right)$; or
- binary collision point $B\left(z\left(\tau_{0}\right) \in \operatorname{Fix}\left(\tau s_{j}\right)\right)$.

Antisymmetries of U in periodic orbits

Consider periodic solution $z(\tau)=z(\tau+T)$. Cases when isotropy subgroup Σ_{z} generated by antisymmetry of U, per working hypothesis:

- Fixed sets of non-reversing involutions:
- isosceles subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j}\right)\right.$ or $z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j} s_{j}\right)$); or
- collinear subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho s_{j}\right)\right)$.
- Non-reversing isosceles reflections on shape sphere $\left(z\left(\tau+\frac{T}{2}\right)=\left(\rho \sigma_{j}\right)(z(\tau))\right.$ or $\left.z\left(\tau+\frac{T}{2}\right)=\left(\rho \sigma_{j} s_{j}\right)(z(\tau))\right)$.
- Non-reversing reflections about equator of shape sphere (ρs_{j} or ρ).
- At least one reversing symmetry on "bottom" corners of fundamental domain:
- isosceles collinear point $M\left(z\left(\tau_{0}\right) \in \operatorname{Fix}\left(\tau \sigma_{j}\right)\right.$ or $\left.z\left(\tau_{0}\right) \in \operatorname{Fix}\left(\tau \sigma_{j} s_{j}\right)\right)$; or
- binary collision point $B\left(z\left(\tau_{0}\right) \in \operatorname{Fix}\left(\tau s_{j}\right)\right)$.

There may be orbits with isotropy subgroups with antisymmetries of U not fitting these patterns.

Antisymmetries of U in periodic orbits

Consider periodic solution $z(\tau)=z(\tau+T)$. Cases when isotropy subgroup Σ_{z} generated by antisymmetry of U, per working hypothesis:

- Fixed sets of non-reversing involutions:
- isosceles subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j}\right)\right.$ or $z(\tau) \in \operatorname{Fix}\left(\rho \sigma_{j} s_{j}\right)$); or
- collinear subspace $\left(z(\tau) \in \operatorname{Fix}\left(\rho s_{j}\right)\right)$.
- Non-reversing isosceles reflections on shape sphere $\left(z\left(\tau+\frac{T}{2}\right)=\left(\rho \sigma_{j}\right)(z(\tau))\right.$ or $\left.z\left(\tau+\frac{T}{2}\right)=\left(\rho \sigma_{j} s_{j}\right)(z(\tau))\right)$.
- Non-reversing reflections about equator of shape sphere (ρs_{j} or ρ).
- At least one reversing symmetry on "bottom" corners of fundamental domain:
- isosceles collinear point $M\left(z\left(\tau_{0}\right) \in \operatorname{Fix}\left(\tau \sigma_{j}\right)\right.$ or $\left.z\left(\tau_{0}\right) \in \operatorname{Fix}\left(\tau \sigma_{j} s_{j}\right)\right)$; or
- binary collision point $B\left(z\left(\tau_{0}\right) \in \operatorname{Fix}\left(\tau s_{j}\right)\right)$.

There may be orbits with isotropy subgroups with antisymmetries of U not fitting these patterns. We do not consider them further (e.g. triple collision Euler and Lagrange orbits - points on shape sphere).

Cancellation of geometric phase

Theorem
If a T-periodic solution $z(\tau)$ of the regularised equations of motion has isotropy subgroup Σ_{z} as per working hypothesis,

Cancellation of geometric phase

Theorem
If a T-periodic solution $z(\tau)$ of the regularised equations of motion has isotropy subgroup Σ_{z} as per working hypothesis, and Σ_{z} contains any antisymmetry of U,

Cancellation of geometric phase

Theorem
If a T-periodic solution $z(\tau)$ of the regularised equations of motion has isotropy subgroup Σ_{z} as per working hypothesis, and Σ_{z} contains any antisymmetry of U,then the geometric phase $\Delta G=G(T)=\int_{0}^{T} d G=0$.

Outline of proof

1. Orbit in invariant subspace: $U(z(\tau)) \equiv 0$, as either $w_{3} \equiv 0$ (collinear) or $d \theta=0$ (isosceles).

Outline of proof

1. Orbit in invariant subspace: $U(z(\tau)) \equiv 0$, as either $w_{3} \equiv 0$ (collinear) or $d \theta=0$ (isosceles). Any other symmetries don't matter.

Outline of proof

1. Orbit in invariant subspace: $U(z(\tau)) \equiv 0$, as either $w_{3} \equiv 0$ (collinear) or $d \theta=0$ (isosceles). Any other symmetries don't matter.
2. Orbit with cyclic non-reversing isotropy subgroup:

Outline of proof

1. Orbit in invariant subspace: $U(z(\tau)) \equiv 0$, as either $w_{3} \equiv 0$ (collinear) or $d \theta=0$ (isosceles). Any other symmetries don't matter.
2. Orbit with cyclic non-reversing isotropy subgroup: generator S, $S^{k}=I, k \geq 2$ even.

Outline of proof

1. Orbit in invariant subspace: $U(z(\tau)) \equiv 0$, as either $w_{3} \equiv 0$ (collinear) or $d \theta=0$ (isosceles). Any other symmetries don't matter.
2. Orbit with cyclic non-reversing isotropy subgroup: generator $S, S^{k}=I, k \geq 2$ even. Have $S(z(\tau))=z\left(\tau+\frac{T}{k}\right)$.

Outline of proof

1. Orbit in invariant subspace: $U(z(\tau)) \equiv 0$, as either $w_{3} \equiv 0$ (collinear) or $d \theta=0$ (isosceles). Any other symmetries don't matter.
2. Orbit with cyclic non-reversing isotropy subgroup: generator $S, S^{k}=I, k \geq 2$ even. Have $S(z(\tau))=z\left(\tau+\frac{T}{k}\right)$. Consider $0 \leq \tau \leq \frac{2 T}{k}$.

Outline of proof

1. Orbit in invariant subspace: $U(z(\tau)) \equiv 0$, as either $w_{3} \equiv 0$ (collinear) or $d \theta=0$ (isosceles). Any other symmetries don't matter.
2. Orbit with cyclic non-reversing isotropy subgroup: generator $S, S^{k}=I, k \geq 2$ even. Have $S(z(\tau))=z\left(\tau+\frac{T}{k}\right)$. Consider $0 \leq \tau \leq \frac{2 T}{k}$.

$$
G\left(\frac{2 T}{k}\right)=\int_{0}^{\frac{T}{k}} U(z(\tau)) d \tau+
$$

Outline of proof

1. Orbit in invariant subspace: $U(z(\tau)) \equiv 0$, as either $w_{3} \equiv 0$ (collinear) or $d \theta=0$ (isosceles). Any other symmetries don't matter.
2. Orbit with cyclic non-reversing isotropy subgroup: generator $S, S^{k}=I, k \geq 2$ even. Have $S(z(\tau))=z\left(\tau+\frac{T}{k}\right)$. Consider $0 \leq \tau \leq \frac{2 T}{k}$.

$$
G\left(\frac{2 T}{k}\right)=\int_{0}^{\frac{T}{k}} U(z(\tau)) d \tau+\int_{\frac{T}{k}}^{\frac{2 T}{k}} U(z(\tau)) d \tau
$$

Outline of proof

1. Orbit in invariant subspace: $U(z(\tau)) \equiv 0$, as either $w_{3} \equiv 0$ (collinear) or $d \theta=0$ (isosceles). Any other symmetries don't matter.
2. Orbit with cyclic non-reversing isotropy subgroup: generator $S, S^{k}=I, k \geq 2$ even. Have $S(z(\tau))=z\left(\tau+\frac{T}{k}\right)$. Consider $0 \leq \tau \leq \frac{2 T}{k}$.

$$
G\left(\frac{2 T}{k}\right)=\int_{0}^{\frac{T}{k}} U(z(\tau)) d \tau+\int_{\frac{T}{k}}^{\frac{2 T}{k}} U(z(\tau)) d \tau=\cdots=0
$$

Outline of proof

1. Orbit in invariant subspace: $U(z(\tau)) \equiv 0$, as either $w_{3} \equiv 0$ (collinear) or $d \theta=0$ (isosceles). Any other symmetries don't matter.
2. Orbit with cyclic non-reversing isotropy subgroup: generator $S, S^{k}=I, k \geq 2$ even. Have $S(z(\tau))=z\left(\tau+\frac{T}{k}\right)$. Consider $0 \leq \tau \leq \frac{2 T}{k}$.

$$
G\left(\frac{2 T}{k}\right)=\int_{0}^{\frac{T}{k}} U(z(\tau)) d \tau+\int_{\frac{T}{k}}^{\frac{2 T}{k}} U(z(\tau)) d \tau=\cdots=0
$$

Recall $k \geq 2$ antisymmetry of U is even.

Outline of proof

1. Orbit in invariant subspace: $U(z(\tau)) \equiv 0$, as either $w_{3} \equiv 0$ (collinear) or $d \theta=0$ (isosceles). Any other symmetries don't matter.
2. Orbit with cyclic non-reversing isotropy subgroup: generator $S, S^{k}=I, k \geq 2$ even. Have $S(z(\tau))=z\left(\tau+\frac{T}{k}\right)$. Consider $0 \leq \tau \leq \frac{2 T}{k}$.

$$
G\left(\frac{2 T}{k}\right)=\int_{0}^{\frac{T}{k}} U(z(\tau)) d \tau+\int_{\frac{T}{k}}^{\frac{2 T}{k}} U(z(\tau)) d \tau=\cdots=0
$$

Recall $k \geq 2$ antisymmetry of U is even. Thus result follows for non-reversing case.

Outline of proof

3. Orbit with reversing isotropy subgroup:

Outline of proof

3. Orbit with reversing isotropy subgroup: generators involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$.

Outline of proof

3. Orbit with reversing isotropy subgroup: generators involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$. W.l.o.g. at least R_{1} antisymmetry of U and $R_{1}(z(\tau))=z\left(\frac{T}{2 k}-\tau\right)$.

Outline of proof

3. Orbit with reversing isotropy subgroup: generators involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$. W.l.o.g. at least R_{1} antisymmetry of U and $R_{1}(z(\tau))=z\left(\frac{T}{2 k}-\tau\right)$. Consider $0 \leq \tau \leq \frac{T}{k}$.

Outline of proof

3. Orbit with reversing isotropy subgroup: generators involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$. W.l.o.g. at least R_{1} antisymmetry of U and $R_{1}(z(\tau))=z\left(\frac{T}{2 k}-\tau\right)$. Consider $0 \leq \tau \leq \frac{T}{k}$.

$$
G\left(\frac{T}{k}\right)=\int_{0}^{\frac{T}{2 k}} U(z(\tau)) d \tau+
$$

Outline of proof

3. Orbit with reversing isotropy subgroup: generators involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$. W.I.o.g. at least R_{1} antisymmetry of U and $R_{1}(z(\tau))=z\left(\frac{T}{2 k}-\tau\right)$. Consider $0 \leq \tau \leq \frac{T}{k}$.

$$
G\left(\frac{T}{k}\right)=\int_{0}^{\frac{T}{2 k}} U(z(\tau)) d \tau+\int_{\frac{T}{2 k}}^{\frac{T}{k}} U(z(\tau)) d \tau=\ldots
$$

Now whether (R
reversing case.

Outline of proof

3. Orbit with reversing isotropy subgroup: generators involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$. W.l.o.g. at least R_{1} antisymmetry of U and $R_{1}(z(\tau))=z\left(\frac{T}{2 k}-\tau\right)$. Consider $0 \leq \tau \leq \frac{T}{k}$.

$$
G\left(\frac{T}{k}\right)=\int_{0}^{\frac{T}{2 k}} U(z(\tau)) d \tau+\int_{\frac{T}{2 k}}^{\frac{T}{k}} U(z(\tau)) d \tau=\ldots=0
$$

Outline of proof

3. Orbit with reversing isotropy subgroup: generators involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$. W.I.o.g. at least R_{1} antisymmetry of U and $R_{1}(z(\tau))=z\left(\frac{T}{2 k}-\tau\right)$. Consider $0 \leq \tau \leq \frac{T}{k}$.

$$
G\left(\frac{T}{k}\right)=\int_{0}^{\frac{T}{2 k}} U(z(\tau)) d \tau+\int_{\frac{T}{2 k}}^{\frac{T}{k}} U(z(\tau)) d \tau=\ldots=0
$$

Now whether $\left(R_{2} R_{1}\right)$ is reversing or not, result follows for reversing case.

Outline of proof

3. Orbit with reversing isotropy subgroup: generators involutions R_{1}, R_{2} such that $\left(R_{2} R_{1}\right)^{k}=I$. W.I.o.g. at least R_{1} antisymmetry of U and $R_{1}(z(\tau))=z\left(\frac{T}{2 k}-\tau\right)$. Consider $0 \leq \tau \leq \frac{T}{k}$.

$$
G\left(\frac{T}{k}\right)=\int_{0}^{\frac{T}{2 k}} U(z(\tau)) d \tau+\int_{\frac{T}{2 k}}^{\frac{T}{k}} U(z(\tau)) d \tau=\ldots=0
$$

Now whether $\left(R_{2} R_{1}\right)$ is reversing or not, result follows for reversing case.

A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U are the only ones whose geometric phase is forced to vanish.

A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U are the only ones whose geometric phase is forced to vanish. l.e. any other case, can only vanish by "accident".

A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U are the only ones whose geometric phase is forced to vanish. I.e. any other case, can only vanish by "accident". Requires more knowledge of possible isotropy subgroups of orbits.

A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U are the only ones whose geometric phase is forced to vanish. l.e. any other case, can only vanish by "accident". Requires more knowledge of possible isotropy subgroups of orbits.

1. Not in invariant subspace, non-reversing, $S^{k}=I$:

A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U are the only ones whose geometric phase is forced to vanish. I.e. any other case, can only vanish by "accident". Requires more knowledge of possible isotropy subgroups of orbits.

1. Not in invariant subspace, non-reversing, $S^{k}=I$: every $\frac{T}{k}$ contributes the same amount to $G(T)$.

A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U are the only ones whose geometric phase is forced to vanish. I.e. any other case, can only vanish by "accident". Requires more knowledge of possible isotropy subgroups of orbits.

1. Not in invariant subspace, non-reversing, $S^{k}=I$: every $\frac{T}{k}$ contributes the same amount to $G(T)$.
2. Not in invariant subspace, both R_{1}, R_{2} symmetries of U :

A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U are the only ones whose geometric phase is forced to vanish. I.e. any other case, can only vanish by "accident". Requires more knowledge of possible isotropy subgroups of orbits.

1. Not in invariant subspace, non-reversing, $S^{k}=I$: every $\frac{T}{k}$ contributes the same amount to $G(T)$.
2. Not in invariant subspace, both R_{1}, R_{2} symmetries of U : then every $\frac{T}{2 k}$ contributes the same amount to $G(T)$.

A conjecture

Orbits whose isotropy subgroups contain antisymmetries of U are the only ones whose geometric phase is forced to vanish. I.e. any other case, can only vanish by "accident". Requires more knowledge of possible isotropy subgroups of orbits.

1. Not in invariant subspace, non-reversing, $S^{k}=I$: every $\frac{T}{k}$ contributes the same amount to $G(T)$.
2. Not in invariant subspace, both R_{1}, R_{2} symmetries of U : then every $\frac{T}{2 k}$ contributes the same amount to $G(T)$.
Theorem 2 gives us lots of subgroups forcing no geometric phase, but many, many left over.

Remarks/observations

- If isotropy subgroup contains any symmetry of form ρS or τS ($S \in S_{4}$ as before), geometric phase vanishes.

Remarks/observations

- If isotropy subgroup contains any symmetry of form ρS or τS ($S \in S_{4}$ as before), geometric phase vanishes.
- Reversing collisionless orbits with no geometric phase pass through M point on shape sphere with rotational symmetry.

Remarks/observations

- If isotropy subgroup contains any symmetry of form ρS or τS ($S \in S_{4}$ as before), geometric phase vanishes.
- Reversing collisionless orbits with no geometric phase pass through M point on shape sphere with rotational symmetry.
- Non-reversing collisionless orbits with geometric phase just appear with the rotation, not passing through the M.

Remarks/observations

- If isotropy subgroup contains any symmetry of form ρS or τS ($S \in S_{4}$ as before), geometric phase vanishes.
- Reversing collisionless orbits with no geometric phase pass through M point on shape sphere with rotational symmetry.
- Non-reversing collisionless orbits with geometric phase just appear with the rotation, not passing through the M.
- Reversing collisionless orbits with geometric phase appear with reversing points only on edges of fundmental domain.
appear with reflection on shape sphere, but no reversing points.

Remarks/observations

- If isotropy subgroup contains any symmetry of form ρS or τS ($S \in S_{4}$ as before), geometric phase vanishes.
- Reversing collisionless orbits with no geometric phase pass through M point on shape sphere with rotational symmetry.
- Non-reversing collisionless orbits with geometric phase just appear with the rotation, not passing through the M.
- Reversing collisionless orbits with geometric phase appear with reversing points only on edges of fundmental domain.
- Non-reversing collisionless orbits with no geometric phase appear with reflection on shape sphere, but no reversing points.

Remarks/observations

- If isotropy subgroup contains any symmetry of form ρS or τS ($S \in S_{4}$ as before), geometric phase vanishes.
- Reversing collisionless orbits with no geometric phase pass through M point on shape sphere with rotational symmetry.
- Non-reversing collisionless orbits with geometric phase just appear with the rotation, not passing through the M.
- Reversing collisionless orbits with geometric phase appear with reversing points only on edges of fundmental domain.
- Non-reversing collisionless orbits with no geometric phase appear with reflection on shape sphere, but no reversing points.
- Reversing collision orbits return along the same path from collision (if reversing symmetry is on collision).

Remarks/observations

- If isotropy subgroup contains any symmetry of form ρS or τS ($S \in S_{4}$ as before), geometric phase vanishes.
- Reversing collisionless orbits with no geometric phase pass through M point on shape sphere with rotational symmetry.
- Non-reversing collisionless orbits with geometric phase just appear with the rotation, not passing through the M.
- Reversing collisionless orbits with geometric phase appear with reversing points only on edges of fundmental domain.
- Non-reversing collisionless orbits with no geometric phase appear with reflection on shape sphere, but no reversing points.
- Reversing collision orbits return along the same path from collision (if reversing symmetry is on collision).
- Now to catch some periodic orbits!

Poincaré section

- Introduce the Poincaré map:
continuous dynamical system into a
discrete one.
If continuous system D has phase space
Ω, Poincaré map is

Poincaré section

- Introduce the Poincaré map: turns a continuous dynamical system into a discrete one.

If continuous system D has phase space
Ω, Poincaré map is

Poincaré section

- Introduce the Poincaré map: turns a continuous dynamical system into a discrete one.
- If continuous system D has phase space Ω, Poincaré map is

$$
P: S \longrightarrow S
$$

Poincaré section

- Introduce the Poincaré map: turns a continuous dynamical system into a discrete one.
- If continuous system D has phase space Ω, Poincaré map is

$$
P: S \longrightarrow S
$$

where $S \subset \Omega$ is the Poincaré surface of section.

Poincaré map can be used to find periodic

Poincaré section

- Introduce the Poincaré map: turns a continuous dynamical system into a discrete one.
- If continuous system D has phase space Ω, Poincaré map is

$$
P: S \longrightarrow S
$$

where $S \subset \Omega$ is the Poincaré surface of section.

- Surface of section defined by appropriately chosen $S\left(x_{1}, \ldots, x_{n}\right)=0$, with $\left(x_{1}, \ldots, x_{n}\right) \in \Omega$.

- Poincaré map can be used to find periodic orbits in D.

Poincaré section

- Introduce the Poincaré map: turns a continuous dynamical system into a discrete one.
- If continuous system D has phase space Ω, Poincaré map is

$$
P: S \longrightarrow S
$$

where $S \subset \Omega$ is the Poincaré surface of section.

- Surface of section defined by appropriately chosen $S\left(x_{1}, \ldots, x_{n}\right)=0$, with $\left(x_{1}, \ldots, x_{n}\right) \in \Omega$.

- Poincaré map can be used to find periodic orbits in D.

Poincaré section

- Introduce the Poincaré map: turns a continuous dynamical system into a discrete one.
- If continuous system D has phase space Ω, Poincaré map is

$$
P: S \longrightarrow S
$$

where $S \subset \Omega$ is the Poincaré surface of section.

- Surface of section defined by appropriately chosen $S\left(x_{1}, \ldots, x_{n}\right)=0$, with $\left(x_{1}, \ldots, x_{n}\right) \in \Omega$.

- Poincaré map can be used to find periodic orbits in D.
- Trajectory between section points computed with method from [4].

Using the Poincaré map

- Periodic orbit defined by $z(t)=z(t+T)$, for some $T>0$.

Using the Poincaré map

- Periodic orbit defined by $z(t)=z(t+T)$, for some $T>0$.
- Periodic orbit crossing Poincaré section is a fixed point of $n \geq 1$ iterations of Poincaré map.

Using the Poincaré map

- Periodic orbit defined by $z(t)=z(t+T)$, for some $T>0$.
- Periodic orbit crossing Poincaré section is a fixed point of $n \geq 1$ iterations of Poincaré map.
- I.e. $P^{n}(z)=z$ for some n.

Using the Poincaré map

- Periodic orbit defined by $z(t)=z(t+T)$, for some $T>0$.
- Periodic orbit crossing Poincaré section is a fixed point of $n \geq 1$ iterations of Poincaré map.
- I.e. $P^{n}(z)=z$ for some n. Say orbit is n-periodic in the map.

Using the Poincaré map

- Periodic orbit defined by $z(t)=z(t+T)$, for some $T>0$.
- Periodic orbit crossing Poincaré section is a fixed point of $n \geq 1$ iterations of Poincaré map.
- I.e. $P^{n}(z)=z$ for some n. Say orbit is n-periodic in the map.
- Try to find the least n for each periodic orbit. A 1-periodic orbit is also 2-periodic, etc..

Using the Poincaré map

- Periodic orbit defined by $z(t)=z(t+T)$, for some $T>0$.
- Periodic orbit crossing Poincaré section is a fixed point of $n \geq 1$ iterations of Poincaré map.
- I.e. $P^{n}(z)=z$ for some n. Say orbit is n-periodic in the map.
- Try to find the least n for each periodic orbit. A 1-periodic orbit is also 2-periodic, etc..
- Define function $F(z)=P^{n}(z)-z$.

Using the Poincaré map

- Periodic orbit defined by $z(t)=z(t+T)$, for some $T>0$.
- Periodic orbit crossing Poincaré section is a fixed point of $n \geq 1$ iterations of Poincaré map.
- I.e. $P^{n}(z)=z$ for some n. Say orbit is n-periodic in the map.
- Try to find the least n for each periodic orbit. A 1-periodic orbit is also 2-periodic, etc..
- Define function $F(z)=P^{n}(z)-z$. Want to find z s.t. $F(z)=0$.

Using the Poincaré map

- Periodic orbit defined by $z(t)=z(t+T)$, for some $T>0$.
- Periodic orbit crossing Poincaré section is a fixed point of $n \geq 1$ iterations of Poincaré map.
- I.e. $P^{n}(z)=z$ for some n. Say orbit is n-periodic in the map.
- Try to find the least n for each periodic orbit. A 1-periodic orbit is also 2-periodic, etc..
- Define function $F(z)=P^{n}(z)-z$. Want to find z s.t. $F(z)=0$.
- Newton's method: iterative process to find roots of a function.

Using the Poincaré map

- Periodic orbit defined by $z(t)=z(t+T)$, for some $T>0$.
- Periodic orbit crossing Poincaré section is a fixed point of $n \geq 1$ iterations of Poincaré map.
- I.e. $P^{n}(z)=z$ for some n. Say orbit is n-periodic in the map.
- Try to find the least n for each periodic orbit. A 1-periodic orbit is also 2-periodic, etc..
- Define function $F(z)=P^{n}(z)-z$. Want to find z s.t. $F(z)=0$.
- Newton's method: iterative process to find roots of a function. Works in higher dimensions too.

Using the Poincaré map

- Periodic orbit defined by $z(t)=z(t+T)$, for some $T>0$.
- Periodic orbit crossing Poincaré section is a fixed point of $n \geq 1$ iterations of Poincaré map.
- I.e. $P^{n}(z)=z$ for some n. Say orbit is n-periodic in the map.
- Try to find the least n for each periodic orbit. A 1-periodic orbit is also 2-periodic, etc..
- Define function $F(z)=P^{n}(z)-z$. Want to find z s.t. $F(z)=0$.
- Newton's method: iterative process to find roots of a function. Works in higher dimensions too.
- Jacobian of F is $D F(z), n \times n$ matrix.

Using the Poincaré map

- Periodic orbit defined by $z(t)=z(t+T)$, for some $T>0$.
- Periodic orbit crossing Poincaré section is a fixed point of $n \geq 1$ iterations of Poincaré map.
- I.e. $P^{n}(z)=z$ for some n. Say orbit is n-periodic in the map.
- Try to find the least n for each periodic orbit. A 1-periodic orbit is also 2-periodic, etc..
- Define function $F(z)=P^{n}(z)-z$. Want to find z s.t. $F(z)=0$.
- Newton's method: iterative process to find roots of a function. Works in higher dimensions too.
- Jacobian of F is $D F(z), n \times n$ matrix. Iterate on z_{i} :

$$
z_{i+1}=z_{i}+\Delta z_{i},\left(D F\left(z_{i}\right)\right) \Delta z_{i}=F\left(z_{i}\right)
$$

Using the Poincaré map

- Periodic orbit defined by $z(t)=z(t+T)$, for some $T>0$.
- Periodic orbit crossing Poincaré section is a fixed point of $n \geq 1$ iterations of Poincaré map.
- I.e. $P^{n}(z)=z$ for some n. Say orbit is n-periodic in the map.
- Try to find the least n for each periodic orbit. A 1-periodic orbit is also 2-periodic, etc..
- Define function $F(z)=P^{n}(z)-z$. Want to find z s.t. $F(z)=0$.
- Newton's method: iterative process to find roots of a function. Works in higher dimensions too.
- Jacobian of F is $D F(z), n \times n$ matrix. Iterate on z_{i} :

$$
z_{i+1}=z_{i}+\Delta z_{i},\left(D F\left(z_{i}\right)\right) \Delta z_{i}=F\left(z_{i}\right)
$$

Works as long as $\operatorname{det}\left(D F\left(z_{i}\right)\right) \neq 0$.

Using the Poincaré map

- Periodic orbit defined by $z(t)=z(t+T)$, for some $T>0$.
- Periodic orbit crossing Poincaré section is a fixed point of $n \geq 1$ iterations of Poincaré map.
- I.e. $P^{n}(z)=z$ for some n. Say orbit is n-periodic in the map.
- Try to find the least n for each periodic orbit. A 1-periodic orbit is also 2-periodic, etc..
- Define function $F(z)=P^{n}(z)-z$. Want to find z s.t. $F(z)=0$.
- Newton's method: iterative process to find roots of a function. Works in higher dimensions too.
- Jacobian of F is $D F(z), n \times n$ matrix. Iterate on z_{i} :

$$
z_{i+1}=z_{i}+\Delta z_{i},\left(D F\left(z_{i}\right)\right) \Delta z_{i}=F\left(z_{i}\right)
$$

Works as long as $\operatorname{det}\left(D F\left(z_{i}\right)\right) \neq 0$. (Unfortunately in practice must approximate numerically.)

Searching for orbits

- Now fix $m_{1}=m_{2}=m_{3}=1$.

Searching for orbits

- Now fix $m_{1}=m_{2}=m_{3}=1$.
- Choose Poincaré section to be $\alpha_{1}=0, \pi_{1}>0$.

Searching for orbits

- Now fix $m_{1}=m_{2}=m_{3}=1$.
- Choose Poincaré section to be $\alpha_{1}=0, \pi_{1}>0$. Then value of π_{1} is fixed by choices of $\alpha_{2}, \alpha_{3}, \pi_{2}, \pi_{3}$.

Searching for orbits

- Now fix $m_{1}=m_{2}=m_{3}=1$.
- Choose Poincaré section to be $\alpha_{1}=0, \pi_{1}>0$. Then value of π_{1} is fixed by choices of $\alpha_{2}, \alpha_{3}, \pi_{2}, \pi_{3}$.
- Choose 4D grid with $0 \leq \alpha_{2} \leq 3$,

Searching for orbits

- Now fix $m_{1}=m_{2}=m_{3}=1$.
- Choose Poincaré section to be $\alpha_{1}=0, \pi_{1}>0$. Then value of π_{1} is fixed by choices of $\alpha_{2}, \alpha_{3}, \pi_{2}, \pi_{3}$.
- Choose 4D grid with $0 \leq \alpha_{2} \leq 3, \alpha_{2} \leq \alpha_{3} \leq 3$ and $\alpha_{3} \neq 0$,
- Grid points approx 0.05 apart for each dimension.

Searching for orbits

- Now fix $m_{1}=m_{2}=m_{3}=1$.
- Choose Poincaré section to be $\alpha_{1}=0, \pi_{1}>0$. Then value of π_{1} is fixed by choices of $\alpha_{2}, \alpha_{3}, \pi_{2}, \pi_{3}$.
- Choose 4D grid with $0 \leq \alpha_{2} \leq 3, \alpha_{2} \leq \alpha_{3} \leq 3$ and $\alpha_{3} \neq 0$, π_{2}, π_{3} allowed large range.

Searching for orbits

- Now fix $m_{1}=m_{2}=m_{3}=1$.
- Choose Poincaré section to be $\alpha_{1}=0, \pi_{1}>0$. Then value of π_{1} is fixed by choices of $\alpha_{2}, \alpha_{3}, \pi_{2}, \pi_{3}$.
- Choose 4D grid with $0 \leq \alpha_{2} \leq 3, \alpha_{2} \leq \alpha_{3} \leq 3$ and $\alpha_{3} \neq 0$, π_{2}, π_{3} allowed large range.
- Grid points approx 0.05 apart for each dimension.
- Reduce size of search space by integrating up to next section points after $\tau=250$, looking for near-periodic points of any length in Poincaré map.

Searching for orbits

- Now fix $m_{1}=m_{2}=m_{3}=1$.
- Choose Poincaré section to be $\alpha_{1}=0, \pi_{1}>0$. Then value of π_{1} is fixed by choices of $\alpha_{2}, \alpha_{3}, \pi_{2}, \pi_{3}$.
- Choose 4D grid with $0 \leq \alpha_{2} \leq 3, \alpha_{2} \leq \alpha_{3} \leq 3$ and $\alpha_{3} \neq 0$, π_{2}, π_{3} allowed large range.
- Grid points approx 0.05 apart for each dimension. Order of ten million initial conditions.

Searching for orbits

- Now fix $m_{1}=m_{2}=m_{3}=1$.
- Choose Poincaré section to be $\alpha_{1}=0, \pi_{1}>0$. Then value of π_{1} is fixed by choices of $\alpha_{2}, \alpha_{3}, \pi_{2}, \pi_{3}$.
- Choose 4D grid with $0 \leq \alpha_{2} \leq 3, \alpha_{2} \leq \alpha_{3} \leq 3$ and $\alpha_{3} \neq 0$, π_{2}, π_{3} allowed large range.
- Grid points approx 0.05 apart for each dimension. Order of ten million initial conditions.
- Reduce size of search space by integrating up to next section points after $\tau=250$, looking for near-periodic points of any length in Poincaré map.

Searching for orbits

- Now fix $m_{1}=m_{2}=m_{3}=1$.
- Choose Poincaré section to be $\alpha_{1}=0, \pi_{1}>0$. Then value of π_{1} is fixed by choices of $\alpha_{2}, \alpha_{3}, \pi_{2}, \pi_{3}$.
- Choose 4D grid with $0 \leq \alpha_{2} \leq 3, \alpha_{2} \leq \alpha_{3} \leq 3$ and $\alpha_{3} \neq 0$, π_{2}, π_{3} allowed large range.
- Grid points approx 0.05 apart for each dimension. Order of ten million initial conditions.
- Reduce size of search space by integrating up to next section points after $\tau=250$, looking for near-periodic points of any length in Poincaré map.
- Use Newton on these candidates.
\qquad

Searching for orbits

- Now fix $m_{1}=m_{2}=m_{3}=1$.
- Choose Poincaré section to be $\alpha_{1}=0, \pi_{1}>0$. Then value of π_{1} is fixed by choices of $\alpha_{2}, \alpha_{3}, \pi_{2}, \pi_{3}$.
- Choose 4D grid with $0 \leq \alpha_{2} \leq 3, \alpha_{2} \leq \alpha_{3} \leq 3$ and $\alpha_{3} \neq 0$, π_{2}, π_{3} allowed large range.
- Grid points approx 0.05 apart for each dimension. Order of ten million initial conditions.
- Reduce size of search space by integrating up to next section points after $\tau=250$, looking for near-periodic points of any length in Poincaré map.
- Use Newton on these candidates. Only a few hundred thousand to couple of million.

Searching for orbits

- Now fix $m_{1}=m_{2}=m_{3}=1$.
- Choose Poincaré section to be $\alpha_{1}=0, \pi_{1}>0$. Then value of π_{1} is fixed by choices of $\alpha_{2}, \alpha_{3}, \pi_{2}, \pi_{3}$.
- Choose 4D grid with $0 \leq \alpha_{2} \leq 3, \alpha_{2} \leq \alpha_{3} \leq 3$ and $\alpha_{3} \neq 0$, π_{2}, π_{3} allowed large range.
- Grid points approx 0.05 apart for each dimension. Order of ten million initial conditions.
- Reduce size of search space by integrating up to next section points after $\tau=250$, looking for near-periodic points of any length in Poincaré map.
- Use Newton on these candidates. Only a few hundred thousand to couple of million.
- Final step: find unique orbits from the collection that Newton found.

Summary of results

363 unique orbits found.

Summary of results

363 unique orbits found.

Summary of results

$M A N Y$ with geometric phase - seems to be the norm.

Summary of results

MANY with geometric phase - seems to be the norm.

Summary of results

MANY with geometric phase - seems to be the norm.

Summary of results

MANY with geometric phase - seems to be the norm. But a substantial number without.

Summary of results

$M A N Y$ with geometric phase - seems to be the norm. But a substantial number without.

Summary of results

$M A N Y$ with geometric phase - seems to be the norm. But a substantial number without.

Summary of results

Many collinear orbits.

Summary of results

Many collinear orbits.

Summary of results

Many collinear orbits.

Summary of results

Many collinear orbits. A handful of isosceles orbits.

Summary of results

Many collinear orbits. A handful of isosceles orbits.

Summary of results

Most other orbits collisionless.

Summary of results

Most other orbits collisionless.

Summary of results

Most other orbits collisionless.

Summary of results

Most other orbits collisionless.

Summary of results

Most other orbits collisionless.

Summary of results

Most other orbits collisionless.

Summary of results

Yes, some periodic collision orbits!

Summary of results

Yes, some periodic collision orbits! No collision orbits with geometric phase.

Summary of results

Yes, some periodic collision orbits! No collision orbits with geometric phase.

Summary of results

Yes, some periodic collision orbits! No collision orbits with geometric phase.

Summary of results

Yes, some periodic collision orbits! No collision orbits with geometric phase.

Summary of results

Yes, some periodic collision orbits! No collision orbits with geometric phase.

Summary of results

Some stable orbits!

Summary of results

Some stable orbits! Some stable collision orbits!

Summary of results

Some stable orbits! Some stable collision orbits!

Summary of results

Some stable orbits! Some stable collision orbits!

Summary of results

Some stable orbits! Some stable collision orbits!

Summary of results

Some stable orbits! Some stable collision orbits!

Summary of results

Some simple choreographies.

Summary of results

Some simple choreographies.

Summary of results

Some simple choreographies.
One simple relative choreography.

Summary of results

Relative partial choreographies.
and C such that $R_{1} R_{2}$ is at least order 2 . One known case with
cyclic symmetries only.

Summary of results

Relative partial choreographies. Reversing symmetries on A and C such that $R_{1} R_{2}$ is at least order 2.

Summary of results

Relative partial choreographies. Reversing symmetries on A and C such that $R_{1} R_{2}$ is at least order 2 . One known case with cyclic symmetries only.

Summary of results

Relative partial choreographies. Reversing symmetries on A and C such that $R_{1} R_{2}$ is at least order 2 . One known case with cyclic symmetries only. And a fair few more.

Summary of results

Relative partial choreographies. Reversing symmetries on A and C such that $R_{1} R_{2}$ is at least order 2 . One known case with cyclic symmetries only. And a fair few more.

Summary of results

Relative partial choreographies. Reversing symmetries on A and C such that $R_{1} R_{2}$ is at least order 2 . One known case with cyclic symmetries only. And a fair few more.

New classification

- Possibly most important observation:
(Almost) all orbits seem to live near planes orthogonal to lines of symmetry in regularised shape space.

New classification

- Possibly most important observation:
- (Almost) all orbits seem to live near planes orthogonal to lines of symmetry in regularised shape space.

New classification

- Possibly most important observation:
- (Almost) all orbits seem to live near planes orthogonal to lines of symmetry in regularised shape space.

New classification

- Possibly most important observation:
- (Almost) all orbits seem to live near planes orthogonal to lines of symmetry in regularised shape space.

- Possible classification by "mode"

New classification

- Possibly most important observation:
- (Almost) all orbits seem to live near planes orthogonal to lines of symmetry in regularised shape space.

Possible classification by "mode". Each mode has
characteristic anoearance

New classification

- Possibly most important observation:
- (Almost) all orbits seem to live near planes orthogonal to lines of symmetry in regularised shape space.

- Possible classification by "mode".
characteristic appearance and permits different
symmetries.

New classification

- Possibly most important observation:
- (Almost) all orbits seem to live near planes orthogonal to lines of symmetry in regularised shape space.

- Possible classification by "mode". Each mode has characteristic appearance

New classification

- Possibly most important observation:
- (Almost) all orbits seem to live near planes orthogonal to lines of symmetry in regularised shape space.

- Possible classification by "mode". Each mode has characteristic appearance and permits different symmetries.

M-mode

- Least symmetric.
- Symmetry of rectangle. - Moderately common.

M-mode

- Least symmetric.
- Symmetry of rectangle.
- Moderately common.
- Like isosceles orbits.

M-mode

- Least symmetric.
- Symmetry of rectangle.
- Moderately common.
> Like isosceles orbits.

M-mode

- Least symmetric.
- Symmetry of rectangle.
- Moderately common.
- Like isosceles orbits.

M-mode

- Least symmetric.
- Symmetry of rectangle.
- Moderately common.
- Like isosceles orbits.

M-mode

- Least symmetric.
- Symmetry of rectangle.
- Moderately common.
- Like isosceles orbits.

B-mode

- Moderately symmetric.
- Symmetry of square.
- Most common.

B-mode

- Moderately symmetric.
- Symmetry of square.
- Most common.
- Like collinear orbits.

B-mode

- Moderately symmetric.
- Symmetry of square.
- Most common.

B-mode

- Moderately symmetric.
- Symmetry of square.
- Most common.
- Like collinear orbits.

B-mode

- Moderately symmetric.
- Symmetry of square.
- Most common.
- Like collinear orbits.

B-mode

- Moderately symmetric.
- Symmetry of square.
- Most common.
- Like collinear orbits.

E-mode

- Most symmetric.
> Symmetry of hexagon.
- Very uncommon.

E-mode

- Most symmetric.
- Symmetry of hexagon.

choreographies.

E-mode

- Most symmetric.
- Symmetry of hexagon.
- Very uncommon.
- Like simple
choreographies.

E-mode

- Most symmetric.
- Symmetry of hexagon.
- Very uncommon.
- Like simple choreographies.

E-mode

- Most symmetric.
- Symmetry of hexagon.
- Very uncommon.
- Like simple choreographies.

E－mode

－Most symmetric．
－Symmetry of hexagon．
－Very uncommon．
－Like simple choreographies．

Conclusion

- Found conditions on isotropy subgroups to specify that geometric phase cancels.
- Found many new periodic orbits.
- Found possible classification scheme for all periodic orbits with vanishing geometric phase.

Conclusion

- Found conditions on isotropy subgroups to specify that geometric phase cancels.
- Found many new periodic orbits.
- Found possible classification scheme for all periodic orbits with vanishing geometric phase.

Conclusion

- Found conditions on isotropy subgroups to specify that geometric phase cancels.
- Found many new periodic orbits.
- Found possible classification scheme for all periodic orbits with vanishing geometric phase.

References

睩 C.G. Lemaître.
The three body problem.
Technical report, NASA CR-110, http://ntrs.nasa.gov/, 1964.
EJ EJ Marey.
Photographs of a tumbling cat.
Nature (Lond.), 51:80-81, 1894.
Richard Montgomery.
The geometric phase of the three-body problem.
Nonlinearity, 9:1341-1360, 1996.
周 Danya Rose and Holger R. Dullin.
A symplectic integrator for the symmetry reduced and regularised planar 3-body problem with vanishing angular momentum.
Celestial Mechanics and Dynamical Astronomy, 117(2):169-185, 2013.
fin.

