Conjugacy Classes in Finite Conformal Symplectic Groups

D. E. Taylor

Version of 6 May, 2021 T_EXed: 21 August, 2021

This treatment of the conformal symplectic groups is modelled on the report 'Conjugacy Classes in Finite Symplectic Groups'. It is a revision of the C code of Sergei Haller (in classes_classical.c) and the package code of Scott Murray (in symplectic.m).

The conjugacy classes are obtained by first computing a complete collection of invariants and then determining a representative matrix for each invariant.

A partial analysis of similar algorithms for unitary groups can be found in [2]. There are some remarks about the conformal symplectic groups in the unpublished draft [5]. A more extended account is in Chapter 5 of Britnell's thesis [1] and a description of the invariants, based on the work of Wall [8], Springer and Steinberg [7] and Milnor [4] can be found in the Shinoda's paper [6].

1 Conformal symplectic groups

The 'standard' alternating form $J = J_n$ is the $2n \times 2n$ matrix $\begin{pmatrix} 0 & \Lambda_n \\ -\Lambda_n & 0 \end{pmatrix}$, where Λ_n is the $n \times n$ matrix

	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	0	•••	0	1
	0	0		1	0
$\Lambda_n =$			·		.
	0	1		0	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$
	1	0	•••	0	0/

The conformal symplectic group CSp(2n, q) considered here is the set of $2n \times 2n$ matrices A over the field k = GF(q) such that for each A there is a non-zero element $\phi = \phi(A)$ in k such that $AJA^{tr} = \phi(A)J$, where A^{tr} is the transpose of A. We say that A preserves the alternating form $\beta(u, v) = uJv^{tr}$ with multiplier ϕ .

It is immediate that ϕ : $\operatorname{CSp}(2n,q) \to k^{\times}$ is a homomorphism. If Q is the subgroup $\left\{ \begin{pmatrix} aI & 0 \\ 0 & I \end{pmatrix} \middle| a \in k^{\times} \right\}$, then $Q \cap \operatorname{Sp}(2n,q) = 1$ and $\operatorname{CSp}(2n,q) = \operatorname{Sp}(2n,q)Q$. It follows that ϕ is surjective and its kernel is $\operatorname{Sp}(2n,q)$. That is, $g_1, g_2 \in \operatorname{CSp}(2n,q)$ are in the same coset of $\operatorname{Sp}(2n,q)$ if and only if $\phi(g_1) = \phi(g_2)$. The centre Z of $\operatorname{CSp}(2n,q)$ is the group of q - 1 non-zero scalar matrices and $|\operatorname{CSp}(2n,q) : Z \circ \operatorname{Sp}(2n,q)|$ is 2 if q is odd and 1 if q is a power of 2. Let $\operatorname{CSp}_{\phi}(2n,q)$ denote the coset of elements of $\operatorname{CSp}(2n,q)$ with multiplier ϕ .

The description of the conjugacy classes of CSp(2n, q) closely parallels the descriptions of the conjugacy classes of GL(2n, q) and Sp(2n, q).

The group GL(2n,q) acts on $V = k^{2n}$ and for $g \in GL(2n,q)$, the space V becomes a k[t]-module V_g by defining vf(t) = vf(g) for all $v \in V$ and all $f \in k[t]$.

As shown in Macdonald [3, Chap. IV], if \mathcal{P} is the set of all partitions and Φ is the set of all monic irreducible polynomials (other than *t*), then for $g \in GL(2n, q)$ there is a function $\mu : \Phi \to \mathcal{P}$ such that

$$V_g = \bigoplus_{f \in \Phi, i} k[t]/(f)^{\mu_i(f)}$$
(1.1)

and $\mu(f) = (\mu_1(f), \mu_2(f), \dots,)$ is a partition such that

$$\sum_{f \in \Phi} \deg(f) |\mu(f)| = 2n.$$

If $g \in CSp(2n, q)$ there are restrictions on the polynomials and partitions that can occur in this decomposition. The elements $g, h \in CSp(2n, q)$ are conjugate in CSp(2n, q) if and only if there is an isomorphism of k[t]-modules $T : V_g \to V_h$ such that $T \in CSp(2n, q)$.

The functions listed in the following **import** statement were defined in SpConjugacy.tex and written to the file common.m. The code is included in this file (coloured red) but not written to the MAGMA file CSpConjugacy.m.

Definition 1.1. The *adjoint* of $\alpha \in \text{End}_k(V)$ with respect to the alternating form $\beta(u, v) = uJv^{\text{tr}}$ is the linear transformation α^* such that

$$\beta(u\alpha, v) = \beta(u, v\alpha^*)$$
 for all $u, v \in V$.

If *A* is the matrix of α , then $A^* = JA^{\text{tr}}J^{-1}$ and the bilinear form $\gamma(u, v) = \beta(uA, v)$ is alternating if and only if $A = A^*$. Moreover if $g \in \text{GL}(V)$ preserves β , then *g* preserves γ with the same multiplier ϕ if and only if gA = Ag.

A conjugacy calculation

Let g_1 and g_2 be elements of $CSp_{\phi}(V)$ and suppose that g_1 and g_2 are conjugate in GL(V). Then there are linear transformations ρ_1 , ρ_2 and $\kappa \in GL(V)$ such that

$$\rho_1 g_1 \rho_1^{-1} = \kappa = \rho_2 g_2 \rho_2^{-1}.$$

For i = 1, 2 define $\gamma_i(u, v) = \beta(u\rho_i, v\rho_i)$ and observe, as in Williamson [9], that

$$\gamma_i(u\kappa, v\kappa) = \phi \gamma_i(u, v).$$

Lemma 1.2. Using the notation just established, $g_1 = \alpha^{-1}g_2\alpha$ for some $\alpha \in \text{Sp}(V)$ if and only if there exists $\theta \in \text{GL}(V)$ such that $\theta \kappa = \kappa \theta$ and $\gamma_2(u, v) = \gamma_1(u\theta, v\theta)$.

Proof. Suppose that $\theta \kappa = \kappa \theta$ and $\gamma_2(u, v) = \gamma_1(u\theta, v\theta)$. Let $\alpha = \rho_2^{-1}\theta \rho_1$. Then

$$\alpha^{-1}g_{2}\alpha = \rho_{1}^{-1}\theta\rho_{2}g_{2}\rho_{2}^{-1}\theta\rho_{1} = \rho_{1}^{-1}\theta\kappa\theta\rho_{1} = \rho_{1}^{-1}\kappa\rho_{1} = g_{1}$$

and

$$\begin{aligned} \beta(u\alpha, v\alpha) &= \beta(u\rho_2^{-1}\theta\rho_1, v\rho_2^{-1}\theta\rho_1) = \gamma_1(u\rho_2^{-1}\theta, v\rho_2^{-1}\theta) \\ &= \gamma_2(u\rho_2^{-1}, v\rho_2^{-1}) = \beta(u, v). \end{aligned}$$

Conversely, suppose that $g_1 = \alpha^{-1}g_2\alpha$ for some $\alpha \in \text{Sp}(V)$ and let $\theta = \rho_2\alpha\rho_1^{-1}$. Then $\theta \kappa = \kappa \theta$ and $\gamma_2(u, v) = \gamma_1(u\theta, v\theta)$.

The following corollary is used implicitly in several places in Chapter 5 of [1].

Corollary 1.3. Suppose that $g \in CSp_{\phi}(V)$ and that for all non-degenerate alternating forms γ preserved by g with multiplier ϕ there exists $\theta \in GL(V)$ which commutes with g and satisfies $\gamma(u, v) = \beta(u\theta, v\theta)$. Then for all $h \in CSp_{\phi}(V)$, if h is conjugate to g in GL(V), there exists an element of Sp(V) which conjugates h to g.

Polynomials

Definition 1.4.

(i) Given $\phi \in k^{\times}$ and a polynomial f(t) of degree d such that $f(0) \neq 0$, the ϕ -dual of f(t) is

$$f^{[\phi]}(t) = f(0)^{-1} t^d f(\phi t^{-1}).$$

The polynomial f(t) is ϕ -symmetric if $f^{[\phi]}(t) = f(t)$. Thus f(t) is ϕ -symmetric if and only if $t^d f(\phi t^{-1}) = f(0)f(t)$. For example $t^2 - \phi$ and $t^2 + \phi$ are ϕ -symmetric and if $\phi = \lambda^2$, then $t - \lambda$ and $t + \lambda$ are ϕ -symmetric.

(ii) A polynomial f(t) is ϕ -irreducible if it is ϕ -symmetric and has no proper ϕ -symmetric factors.

If f(t) is a monic polynomial such that $f(0) \neq 0$, then $f^{[\phi][\phi]}(t) = f(t)$. Furthermore, the monic polynomial $f(t) = a_0 + a_1t + \dots + a_{d-1}t^{d-1} + t^d$ is ϕ -symmetric if and only if

$$a_0^2 = \phi^d$$
 and $\phi^{d-i}a_{d-i} = a_0a_i$ for $0 < i < d$. (1.2)

Thus an element *a* in an extension field of *k* is a root of f(t) if and only if ϕa^{-1} is also a root. *Remark* 1.5.

- (i) An irreducible polynomial may have the same ϕ -dual for more than one value of ϕ . For example, if $k = \mathbb{F}_5$ and $f(t) = t^4 + 2$, then f(t) is irreducible and $f^{[2]}(t) = f^{[4]}(t) = t^4 + 3$.
- (ii) It is possible for a polynomial to be ϕ -symmetric for several values of ϕ . For example, if ζ is a primitive element of $k = \mathbb{F}_{25}$ and $f(t) = t^6 + \zeta t^3 + 3$, then $f(t) = f^{[2]}(t) = f^{[1+\zeta]}(t) = f^{[2-\zeta]}(t) = (t^3 + 1 + 2\zeta)(t^3 1 \zeta)$.

 $dseq := [eseq[i]*\phi^{(i-1)}: i in [1..#eseq]];$ return $dseq[1]^{-1} * PARENT(f) ! REVERSE(dseq);$ end intrinsic;

Lemma 1.6. If $\beta(ug, vg) = \phi\beta(u, v)$ for all $u, v \in V$, then for all $f(t) \in k[t]$ we have $f(g)^* = f(\phi g^{-1})$; that is,

$$\beta(uf(g), v) = \beta(u, vf(\phi g^{-1})).$$
(1.3)

Corollary 1.7. If m(t) is the minimal polynomial of g, then m(t) is ϕ -symmetric.

Proof. It follows from the lemma that $vm(\phi g^{-1}) = 0$ for all $v \in V$ and so $g^em(\phi g^{-1}) = 0$, where *e* is the degree of m(t). Thus m(t) divides $t^em(\phi t^{-1})$ and hence m(t) is ϕ -symmetric. \Box

Lemma 1.8. Let f(t) be a monic ϕ -irreducible polynomial.

- (i) If f(t) is reducible, there exists an irreducible polynomial h(t) such that $f(t) = h(t)h^{[\phi]}(t)$ and $h(t) \neq h^{[\phi]}(t)$.
- (ii) If the degree of f(t) is 2d, then $f(0) = \phi^d$ or ϕ is not a square and $f(t) = t^2 \phi$.
- (iii) If f(t) is irreducible and of odd degree, then $\phi = \lambda^2$ for some $\lambda \in k$ and f(t) is either $t \lambda$ or $t + \lambda$.
- (iv) If $f(t) \neq t^2 \phi$ is irreducible of degree 2d, there is an irreducible polynomial h(t) of degree d such that $f(t) = t^d h(t + \phi t^{-1})$.

Proof. (i) Suppose that h(t) is an irreducible factor of f(t). Then $h^{[\phi]}(t)$ divides $f^{[\phi]}(t) = f(t)$ and since f(t) is ϕ -irreducible $f(t) = h(t)h^{[\phi]}(t)$ or f(t) = h(t).

(ii) Suppose that the degree of f(t) is 2d. Then $a_0^2 = \phi^{2d}$ and hence $a_0 = \pm \phi^d$. Thus we may suppose that the characteristic of the field is not 2. If $a_0 = -\phi^d$ then (1.2) becomes $a_i = -\phi^{d-i}a_{2d-i}$ and hence $a_d = 0$. Then for $0 \le i \le d$ we have $a_{d-2i}t^{2d-i} + a_it^i = a_{d-2i}t^i(t^{2(d-i)} - \phi^{d-i})$ and consequently the ϕ -symmetric polynomial $t^2 - \phi$ divides f(t) whence $f(t) = t^2 - \phi$. Since f(t) is ϕ -irreducible ϕ cannot be a square in this case.

(iii) Suppose that f(t) is irreducible and that its degree e is odd. We have $a_0^2 = \phi^e$ and hence $\phi = \lambda^2$ for some $\lambda \in k$. Thus $a_0 = \pm \lambda^e$ and (1.2) becomes $\lambda^{e-2i}a_{e-i} = \pm a_i$. It follows that either $f(\lambda) = 0$ or $f(-\lambda) = 0$. Thus f(t) is either $t - \lambda$ or $t + \lambda$, proving (iii).

(iv) Suppose that $f(t) \neq t^2 - \phi$ is irreducible of degree 2d. Then from (ii) we have $a_0 = \phi^d$ and it follows by induction (successively subtracting multiples of $(t + \phi t^{-1})^i$ from $t^{-d} f(t)$) that there exists a polynomial h(t) such that $f(t) = t^d h(t + \phi t^{-1})$.

intrinsic PHIRREDUCIBLEPOLYNOMIALS(F :: FLDFIN, d :: RNGINTELT) \rightarrow SEQENUM[TUP] {All pairs <phi,pols> where pols is the sequence of all monic polynomials of degree d with no proper phi-symmetric factor}

P := POLYNOMIALRING(F); t := P.1;

```
monicIrreducibles := func< n |
```

 $(n \ eq \ 1)$ select $[t - a : a \ in \ F | a \ ne \ 0]$ else Setseq(ALLIRREDUCIBLEPOLYNOMIALS(F, n)) >;

Given a polynomial h(t) of degree d, define $\hat{h}(t) = t^d h(t + \phi t^{-1})$.

```
\begin{aligned} hatPoly &:= \texttt{function}(g, \phi) \\ R &:= \mathsf{RATIONALFUNCTIONFIELD}(F); x := R.1; \\ \texttt{return } P &! (x^{\mathsf{DEGREE}(g)} * \mathsf{EVALUATE}(R ! g, x + \phi/x)); \\ \texttt{end function}; \\ multGrp &:= [\phi : \phi \text{ in } F | \phi \text{ ne } 0]; \\ m &:= \#multGrp; \\ polseq &:= []; \\ \texttt{if } d \text{ eq } 1 \texttt{ then} \\ \texttt{for } i &:= 1 \texttt{ to } m \texttt{ do} \\ \phi &:= multGrp[i]; \\ flag, \lambda &:= \mathsf{ISSQUARE}(\phi); \end{aligned}
```

It is essential (for conjugacy testing) that the polynomials of degree 1 occur in the order used by PRIMARYINVARIANTFACTORS and friends.

```
polseq[i] := flag \text{ select } \langle \phi, \text{SORT}([t + \lambda, t - \lambda]) \rangle \text{ else } \langle \phi, [] \rangle;
      end for:
   elif ISEVEN(d) then
      allhalf := moniclrreducibles(d div 2);
      for i := 1 to m do
         \phi := multGrp[i];
         pols := \{ @ @ \};
         if d eq 2 then
            if not ISSQUARE(\phi) then INCLUDE(\sim pols, t^2 - \phi); end if;
            if not ISSQUARE(-\phi) then INCLUDE(\sim pols, t^2 + \phi); end if;
         end if:
         pols join:= {@ f : g in allhalf | ISIRREDUCIBLE(f) where f is hatPoly(g, \phi) @}
               join {@ g * gphi : g in allhalf | g ne gphi where gphi is PHIDUAL(g, \phi) @};
         polseq[i] := \langle \phi, INDEXEDSETTOSEQUENCE(pols) \rangle;
      end for;
   end if;
   return polseq;
end intrinsic;
```

Partitions

Given a partition in the form $[\lambda_1, \lambda_2, ..., \lambda_n]$, convert it to a sequence of multiplicities $[\langle 1, m_1 \rangle, \langle 2, m_2 \rangle, ..., \langle n, m_n \rangle]$, omitting the terms with $m_i = 0$.

```
convert := func < \lambda \mid \text{SORT}([ < i, \text{MULTIPLICITY}(\lambda, i) > : i \text{ in } \text{SET}(\lambda) ]) > ;
```

allPartitions := func < d | [[convert(π) : π in PARTITIONS(n)] : n in [1..d]] >;

Definition 1.9. A *signed partition* is a sequence $[\langle 1, m_1 \rangle, \langle \pm 2, m_2 \rangle, \dots, \langle n, m_n \rangle]$ such that m_i is even for all odd *i* and with a sign associated to each pair $\langle i, m_i \rangle$ for all even *i*.

The justification for the assignment of signs is given at the end of section 3.

addSignsSp := function(plist)

```
slist := [];
   for \pi in plist do
      if forall{ \mu : \mu in \pi | ISEVEN(\mu[1]) or ISEVEN(\mu[2])} then
          ndx := \{ i : i \text{ in } [1..\#\pi] \mid ISEVEN(\pi[i][1]) \};
          for S in SUBSETS(ndx) do
             \lambda := \pi:
             for i in S do
                \mu := \pi[i];
                \lambda[i] := \langle -\mu[1], \mu[2] \rangle;
             end for:
             APPEND(\sim slist, \lambda);
          end for:
      end if:
   end for;
   return slist :
end function:
```

Thus a signed partition π is a list of pairs $\lambda = \langle e, m \rangle$. If *e* is odd, λ is of *symplectic* type; if *e* is even, λ is of *orthogonal* type. The absolute value of *e* will be the exponent of an associated irreducible polynomial.

```
signedPartitionsSp := func< d | [ addSignsSp(plist) : plist in allPartitions(d) ] >;
```

Each conjugacy class of CSp(2n, q) will be represented by a pair $\langle \phi, \Xi \rangle$, where $\phi \in k^{\times}$ and Ξ is an indexed set of pairs $\langle f, \mu \rangle$, where f is a ϕ -irreducible polynomial and μ is either a partition or, in the case that f divides $t^2 - \phi$, a signed partition. That is, a conjugacy class invariant has the form $\langle \phi, \{@\langle f_1, \mu_1 \rangle, \langle f_2, \mu_2 \rangle, \cdots, @\} \rangle$.

2 A skew-hermitian form

Throughout this section *g* is an element of CSp(2n, q) whose minimal polynomial m(t) is irreducible of degree *d*. We set $\phi = \phi(g)$ and we follow the exposition in Milnor [4, §1], modified for conformal symplectic groups.

In this case *V* is a vector space over the field E = k[t]/(m(t)) and $E = k[\tau]$, where $\tau = t + (m(t))$. The linear transformation *g* becomes right multiplication by τ ; that is, $g: v \mapsto v\tau$.

By Corollary 1.7 m(t) is ϕ -symmetric and so $m(\phi\tau^{-1}) = 0$. It follows that there is an automorphism $e \mapsto \bar{e}$ of E such that $\bar{\tau} = \phi\tau^{-1}$. The automorphism is the identity if and only if $\tau^2 = \phi$. If m(t) does not divide $t^2 - \phi$ then by Lemma 1.8 the degree of m(t) is even and the automorphism $e \mapsto \bar{e}$ has order 2. In general (1.3) becomes

$$\beta(ue, v) = \beta(u, v\bar{e}).$$

For fixed $u, v \in V$ the map $L : E \to k : e \mapsto \beta(ue, v)$ is *k*-linear and so there is a unique element $u \circ v \in E$ such that

$$\operatorname{trace}_{E/k}(e(u \circ v)) = L(e) \text{ for all } e \in E.$$

Theorem 2.1. $u \circ v$ is the unique skew-hermitian inner product on V such that

$$\beta(u, v) = \operatorname{trace}_{E/k}(u \circ v)$$

Moreover $u \circ v$ *is non-degenerate.*

Proof. By definition

$$\operatorname{trace}_{E/k}(e(u \circ v)) = \beta(ue, v) \tag{2.1}$$

Thus for all $u_1, u_2, v \in V$ we have

$$\operatorname{trace}_{E/k}(e((u_1 + u_2) \circ v)) = \beta((u_1 + u_2)e, v)$$

= $\beta(u_1e, v) + \beta(u_2e, v)$
= $\operatorname{trace}_{E/k}(e(u_1 \circ v)) + \operatorname{trace}_{E/k}(e(u_2 \circ v))$
= $\operatorname{trace}_{E/k}(e(u_1 \circ v + u_2 \circ v))$

whence

$$(u_1+u_2)\circ v=u_1\circ v+u_2\circ v.$$

Furthermore,

$$\operatorname{trace}_{E/k}(e_1e_2(u \circ v)) = \beta(ue_1e_2, v) = \operatorname{trace}_{E/k}(e_1(ue_2 \circ v))$$

and therefore

$$ue_2 \circ v = (u \circ v)e_2.$$

In addition

$$trace_{E/k}(e(\overline{u \circ v})) = trace_{E/k}(\overline{e}(u \circ v))$$
$$= \beta(u\overline{e}, v) = \beta(u, ve) = -\beta(ve, u)$$
$$= -trace_{E/k}(e(v \circ u))$$

and therefore $\overline{u \circ v} = -v \circ u$, which completes the proof that $u \circ v$ is skew-hermitian.

Taking e = 1 in (2.1) we have $\beta(u, v) = \text{trace}_{E/k}(u \circ v)$ and therefore $u \circ v$ is non-degenerate.

If $u \cdot v$ is another skew-hermitian inner product on V such that $\beta(u, v) = \text{trace}_{E/k}(u \cdot v)$, then $\text{trace}_{E/k}(e(u \cdot v)) = \text{trace}_{E/k}(ue \cdot v) = \beta(ue, v) = \text{trace}_{E/k}(e(u \circ v))$ whence $u \cdot v = u \circ v$.

Remark 2.2. Suppose that $m(t) \in k[t]$ is an irreducible ϕ -symmetric polynomial and let H be a vector space over the field E = k[t]/(m(t)).

If m(t) does not divide $t^2 - \phi$ let $u \circ v$ be a non-degenerate skew-symmetric hermitian form on H whereas, if m(t) divides $t^2 - \phi$, let $u \circ v$ be a non-degenerate alternating form on H.

Then $\beta(u, v) = \text{trace}_{E/k}(u \circ v)$ is a non-degenerate symplectic form on the space *V* obtained by restriction of scalars.

If $\tau = t + (m(t))$, then $m(\phi\tau^{-1}) = 0$ and $\tau \mapsto \phi\tau^{-1}$ extends to an automorphism of *E*. Then multiplication by τ satisfies $\beta(u\tau, v\tau) = \phi\beta(u, v)$ and hence belongs to the conformal symplectic group.

3 Orthogonal decompositions

We return to a general element $g \in CSp(2n, q)$ and set $\phi = \phi(g)$.

3.1 Primary components

Definition 3.1. For each irreducible polynomial f(t), the *f*-primary component of V_g is

$$V_{(f)} = \bigoplus_{i} k[t]/(f)^{\mu_i(f)} = \{ v \mid vf(g)^i = 0 \text{ for sufficiently large } i \}.$$

Lemma 3.2. $V_{(f)}$ is orthogonal to $V_{(h)}$ unless $h(t) = f^{[\phi]}(t)$.

Proof. (cf. Milnor [4]) If $u \in V_{(f)}$ and $v \in V$, then for sufficiently large *i*

$$\beta(u, vf(\phi g^{-1})^i) = \beta(uf(g)^i, v) = 0$$

and hence $V_{(f)}$ is orthogonal to $Vf^{[\phi]}(g)^i$.

If $f^{[\phi]}(t) \neq h(t)$, then by irreducibility there are polynomials r(t) and s(t) such that $1 = r(t)h(t)^i + s(t)f^{[\phi]}(t)$. It follows that for large *i* and for $v \in V_{(h)}$ we have $v = vs(g)f^{[\phi]}(g)$ and therefore the map

$$V_{(h)} \rightarrow V_{(h)} : v \mapsto v f(\phi g^{-1})$$

is a bijection. Hence $V_{(f)}$ is orthogonal to $V_{(h)}$.

Corollary 3.3. $V = \coprod_f \widetilde{V}_{(f)}$, where f ranges over all ϕ -irreducible polynomials and where

$$\widetilde{V}_{(f)} = \begin{cases} V_{(f)} & f = f^{[\phi]} \text{ is irreducible;} \\ V_{(h)} \oplus V_{(h^{[\phi]})} & f = hh^{[\phi]} \text{ and } h \neq h^{[\phi]}. \end{cases}$$

Lemma 3.4. If f(t) is not ϕ -symmetric, then $V_{(f)}$ and $V_{(f^{[\phi]})}$ are totally isotropic and $V_{(f)} \oplus V_{(f^{[\phi]})}$ is non-degenerate.

Proof. Let $U = V_{(f)}$ and write $V = U \oplus W$, where W is the sum of the *h*-primary components with $h \neq f$. Then $U^* = W^{\perp}$ is a k[t]-submodule and dim $U^* = \dim U$.

For all $u \in U$, $v \in U^*$ and $i \ge 1$ we have

$$\beta(uf(g)^i, v) = 0$$
 if and only if $\beta(u, vf^{[\phi]}(g)^i) = 0$

and therefore $f(g)^i$ vanishes on U if and only if $f^{[\phi]}(g)^i$ vanishes on U^* . (This is a consequence of the equalities $W = W^{\perp \perp}$, $U^{\perp} \cap W^{\perp} = 0$ and $U \cap W = 0$.) It follows that $U^* = V_{(f^{[\phi]})}$. But $V_{(f^{[\phi]})} \subseteq W$ and hence U^* is totally isotropic. Reversing the rôles of U and U^* we see that U is also isotropic. It is now clear that $U \oplus U^*$ is non-degenerate. \Box

The PRIMARYRATIONALFORM(X) intrinsic returns the rational form C of X, a transformation matrix T and the primary invariant factors *p*FACT. The entries in *p*FACT are pairs $\langle f, e \rangle$, where f is an irreducible polynomial and e is an integer. If the polynomials are f_1, f_2, \ldots, f_r and if the entries with polynomial f_i are $\langle f_i, e_{i1} \rangle$, $\langle f_i, e_{i2} \rangle$, \ldots , $\langle f_i, e_{is} \rangle$, then we rely on the return value *p*FACT to group all pairs with the same irreducible polynomials and to order them so that $e_{i1} \leq e_{i2} \leq \cdots \leq e_{ir}$.

Assuming this is the case, the function primaryPhiParts returns

- the sequence *pols* of ϕ -irreducible polynomials,
- the corresponding sequence *parts* of partitions, and
- a sequence rows of row indices giving the location of each primary component.

Then the subspace $V_{(f)}$ can be found using the matrix T. Suppose, for example, that the corresponding portion of the rational form occupies rows a + 1, a + 2, ..., a + m of C. Since TX = CT the rows T[a + 1], T[a + 2], ..., T[a + m] of T are a basis for $V_{(f)}$.

```
primaryPhiParts := function(\phi, pFACT)
```

```
P := PARENT(pFACT[1][1]);
pols := [P|];
parts := [];
duals := [P|];
rows := [];
i := 1;
rownum := 0;
for i := 1 to #pFACT do
  f := pFACT[i][1]; ndx := pFACT[i][2];
  if f eq PHIDUAL(f, \phi) then
     if j eq 1 or pols[j-1] ne f then
        pols[j] := f;
        parts[j] := [];
        rows[j] := [];
        j + := 1;
     end if;
     r := j - 1;
     APPEND(\sim parts[r], ndx);
  elif f notin duals then
                            ∥ skip if in duals
     h := \text{PHIDUAL}(f, \phi);
     if ISEMPTY(duals) or h ne duals[#duals] then
        APPEND(\sim duals, h);
        pols[j] := h * f;
        parts[j] := [];
        rows[j] := [];
        j + := 1;
     end if:
     r := j - 1;
     APPEND(\sim parts[r], ndx);
  else
     h := \text{PHIDUAL}(f, \phi);
     r := INDEX(pols, f * h);
  end if;
  m := \text{DEGREE}(f) * ndx;
  rows[r] cat:= [rownum + i : i in [1..m]];
  rownum +:= m;
end for;
return pols, parts, rows;
```

end function;

As in Milnor [4] we divide the primary components $\widetilde{V}_{(f)}$, where f(t) is ϕ -irreducible, into three types.

Type 1. $f(t) = f^{[\phi]}(t)$ is irreducible, $f(t) \neq t^2 - \phi$, and the degree of f(t) is even.

Type 2. $f(t) = f^{[\phi]}(t)$ is irreducible and f(t) divides $t^2 - \phi$.

Type 3. $f(t) = h(t)h^{[\phi]}(t)$ and $h(t) \neq h^{[\phi]}(t)$.

Type 3 companion matrices

For $\widetilde{V}_{(f)}$ of type 3, if we choose a basis v_1, v_2, \ldots, v_r for $V_{(h)}$ and the basis w_1, w_2, \ldots, w_r for $V_{(h^{[\phi]})}$ such that $\beta(v_i, w_{r-j+1}) = \delta_{ij}$, the matrices of β and g restricted to $\widetilde{V}_{(f)}$ are

$$\begin{pmatrix} 0 & \Lambda \\ -\Lambda & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} A & 0 \\ 0 & \phi \Lambda A^{-\text{tr}} \Lambda \end{pmatrix}.$$
(3.1)

The minimal polynomial of *A* is $h(t)^s$ for some *s* and the minimal polynomial of $\phi \Lambda A^{-\text{tr}} \Lambda$ is $h^{[\phi]}(t)^s$.

Theorem 3.5. Suppose that g and g' are elements of CSp(2n,q) such that $V = k^{2n}$ is a primary component of type 3 for g and g' with the same multiplier ϕ , the same minimal polynomial and the same partition. Then g and g' are conjugate via an element of Sp(2n,q). Therefore $CSp(V) = Sp(V)C_{CSp(V)}(g)$.

Proof. As shown above it is enough to prove that if γ is a non-degenerate alternating form such that $\gamma(ug, vg) = \phi \gamma(u, v)$ for all $u, v \in V$, there is a matrix K, which commutes with g, such that $\gamma(u, v) = \beta(uK, vK)$ for all $u, v \in V$.

Let *L* be the matrix such that $\gamma(u, v) = \beta(uL, v)$. Then $LJ = JL^{\text{tr}}$ and Lg = gL and so *L* fixes the primary components $V_{(h)}$ and $V_{(h^{[\phi]})}$ of *g*. Hence there is a matrix *M* such that

$$L = \begin{pmatrix} M & 0 \\ 0 & \Lambda M^{\mathrm{tr}} \Lambda \end{pmatrix}.$$

Therefore $\gamma(u, v) = \beta(uK, vK)$ and gK = Kg, where

$$K = \begin{pmatrix} M & 0 \\ 0 & I \end{pmatrix}.$$

As a consequence of this theorem the conjugacy class of $g|_{\widetilde{V}_{(f)}}$ is completely determined by the triple $\langle \phi, f, \mu(h) \rangle$, where $f(t) = h(t)h^{[\phi]}(t)$ and every such triple represents a conjugacy class in $\text{CSp}(\widetilde{V}_{(f)})$.

Definition 3.6. Define *A* to be a ϕ -symplectic companion matrix of a polynomial f(t) if $f(t) = \det(tI - A)$ and $AJA^{\text{tr}} = \phi J$.

Given $\phi \in k$ and the companion matrix A of a polynomial h(t) the matrix $\begin{pmatrix} A & 0 \\ 0 & \phi \Lambda A^{-\text{tr}} \Lambda \end{pmatrix}$ is a ϕ -symplectic companion matrix of $h(t)h^{[\phi]}(t)$.

```
type3Companion := function(\phi, h)

d := DEGREE(h);

A := COMPANIONMATRIX(h);

\Lambda := ZEROMATRIX(BASERING(h), d, d);

for i := 1 to d do \Lambda[i, d-i+1] := 1; end for;

return DIAGONALJOIN(A, \phi * \Lambda * TRANSPOSE(A^{-1})*\Lambda);

end function;
```

If h(t) is ϕ -symmetric, this code returns a matrix with characteristic polynomial $h(t)^2$ and minimal polynomial h(t). In this case its conjugacy invariant is $\langle \phi, \{ \langle h, [\langle d, 2 \rangle] \rangle \} \rangle$.

An example

Let $k = \mathbb{F}_3$ and consider the matrices

$$h_1 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \quad h_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ and } h_3 = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix},$$

All three matrices belong to Sp(2, 3) and $(t - 1)^2$ is the only primary invariant factor of both h_1 and h_2 . The matrices h_1 and h_2 are conjugate in CSp(2, 3) but not in Sp(2, 3). Furthermore, if g_1 is the orthogonal sum of h_1 and h_3 and if g_2 is the orthogonal sum of h_2 and h_3 , then g_1 is *not* conjugate to g_2 in CSp(4, 3). Since $V_{g_1} = V_{g_2} = V_{((t-1)^2)} \perp V_{((t+1)^2)}$, this example shows that conjugacy in CSp(2n, q) cannot be decided by considering the primary components in isolation.

Orthogonal splitting of a primary component

Suppose that $V_{(f)}$ is a primary component of type 1 or 2. In this case $V_{(f)}$ is an orthogonal summand of V_g .

Theorem 3.7. The space $V_{(f)}$ splits as an orthogonal sum $V_{(f)} = V^1 \perp V^2 \perp \cdots \perp V^r$, where each V^i is annihilated by $f(g)^i$ and is free as a module over $k[t]/(f(t)^i)$.

Proof. (Milnor [4]) From the Jordan decomposition we have $V_{(f)} = W_1 \oplus W_2 \oplus \cdots \oplus W_r$ with W_i free as a $k[t]/(f^i)$ -module but where the decomposition may not be orthogonal. Suppose that $W_r \cap W_r^{\perp} \neq 0$. Since $W_r \cap W_r^{\perp}$ is g-invariant we may choose $u \in W_r \cap W_r^{\perp}$ such that $u \neq 0$ and uf(g) = 0. But then $u = vf(g)^{r-1}$ for some $v \in W_r$. For i < r and $w \in W_i$ we have

$$\beta(u, w) = \beta(vf(g)^{r-1}, w) = \beta(v, wf(\phi g^{-1})^{r-1}) = 0$$

because $f(t) = f^{[\phi]}(t)$ and i < r. Thus $u \in V^{\perp} = \{0\}$ contradicting the assumption that β is non-degenerate. Therefore $V_{(f)} = W_r^{\perp} \perp W_r$ and the theorem follows by induction on r. \Box

Definition 3.8. The k[t]-modules V^i are the *homocyclic* components of $V_{(f)}$.

3.2 Primary components of type 1

Lemma 3.9. Suppose that $V_{(f)}$ is a primary component of type 1 and define $s(t) = f(t)t^{-d}$, where the degree of f(t) is 2d. Then s(g) is self-adjoint; that is, for all $u, v \in V_{(f)}$ we have

$$\beta(us(g), v) = \beta(u, vs(g)).$$

Proof. For $u, v \in V_{(f)}$ it follows from equation (1.3), Lemma 1.8 (ii) and the assumption that f(t) is ϕ -symmetric that

$$\beta(us(g), v) = \beta(uf(g)g^{-d}, v) = \beta(u, v\phi^{-d}g^{d}f(\phi g^{-1}))$$
$$= \beta(u, vg^{-d}f(g)) = \beta(u, vs(g)).$$

Corollary 3.10. If V^{2i} is a homocyclic component of type 1, then $V^{2i}s(g)^i$ is a maximal totally isotropic subspace.

Proof. For all $u, v \in V^{2i}$ we have $\beta(us(g)^i, vs(g)^i) = \beta(u, vs(g)^{2i}) = 0$.

If *v* is a generator of a cyclic direct summand of V^{2i} and if 2d is the degree of f(t), the vectors $vs(g)^i$, $vs(g)^ig$, ..., $vs(g)^ig^{2di-1}$ are linearly independent. Thus dim $V^{2i}s(g)^i = \frac{1}{2} \dim V^{2i}$, as claimed.

Theorem 3.11 (Milnor [4]). If $V_{(f)} = V^1 \perp V^2 \perp \cdots \perp V^r$ is a primary component of type 1 where V^i is free as a $k[t]/(f(t)^i)$ -module and E = k[t]/(f(t)), then for all i the E-space $H^i = V^i/V^i f(g)$ carries a unique skew-hermitian form $(u) \circ (v)$ such that

$$\beta(us(g)^{i-1}, v) = \operatorname{trace}_{E/k}((u) \circ (v)).$$

Proof. If $V(i) = \{v \in V \mid vf(g)^i = 0\}$, then $V^i/V^i f(g) \cong V(i)/(V(i-1) + V(i+1)f(g))$ and so the *E*-space H^i depends only on *V* and *g*. Furthermore, since f(t) is the minimal polynomial of the induced action of *g*, the results of section 2 apply to H^i .

From the previous lemma and the comment following Definition 1.1, for $u, v \in V(i)$ the bilinear form $\beta(us(g)^{i-1}, v)$ is alternating and depends only on the images (*u*) and (*v*) of *u* and *v* modulo V(i - 1) + V(i + 1) f(g). Thus the result follows from Lemma 2.1.

3.3 The endomorphism ring of a homocyclic component

This section connects Milnor's approach with that of Britnell [1, Chapter 5] and Wall [8, §2].

Suppose at first that *W* is a cyclic *g*-module and that the minimal polynomial of *g* is $f(t)^i$, where f(t) is irreducible and ϕ -symmetric. Thus $W \simeq k[t]/(f(t)^i)$.

The endomorphism ring $C = \operatorname{End}_{k[t]}(W)$ of W is the centralizer of g in the algebra of all linear transformations of W. Suppose that v generates W. If the degree of f(t) is d, the vectors v, vg, vg^2 , ..., vg^{di-1} form a basis for W. Thus for $A \in C$ we have vA = vr(g) for some polynomial r(t) of degree less than di and then $vg^j A = vg^j r(g)$. Therefore A = r(g) and consequently $C \simeq k[t]/(f(t)^i)$ as k-algebras. The radical of C is the ideal generated by f(g).

If A = r(g), then $A^* = r^{[\phi]}(g)$ and the adjoint map $A \mapsto A^*$ is an automorphism of C. The induced map of E = k[t]/(f(t)) is the field automorphism $e \mapsto \overline{e}$ considered in section 2. It is the identity if and only if f(t) divides $t^2 - \phi$.

Let $V = V_1 \perp \cdots \perp V_m$ where $V_i = W$ for $1 \leq i \leq m$ and extend the action of g to V in the obvious way. If C_m is the endomorphism ring of V, the action of $A \in C_m$ on V is given by the $m \times m$ matrix (α_{ij}) , where α_{ij} is an endomorphism of W regarded as a map from V_i to V_j . Thus C_m is the matrix algebra Mat(m, C).

The spaces V_i are orthogonal and therefore, for all $v_i \in V_i$ and all $v_i \in V_j$ we have

$$\beta(v_i, v_j A^*) = \beta(v_i A, v_j) = \beta(v_i \alpha_{ij}, v_j) = \beta(v_i, \alpha_{ij}^*)$$

and so the matrix representing A^* is the transpose of (α_{ij}^*) . In this case the adjoint map $A \mapsto A^*$ is an antiautomorphism.

The endomorphism ring $\widehat{\mathcal{C}}_m$ of $\widehat{V} = V/Vf(g)$ is Mat(n, E) and if $B = \widehat{A}$ represents the action of $A \in \mathcal{C}_m$ on \widehat{V} , then the action of A^* on \widehat{V} is represented by \overline{B}^{tr} .

Theorem 3.12 (Britnell [1, Theorem 5.6], Wall [8, Theorem 2.2.1]).

- (i) Suppose that $\alpha \in \widehat{\mathcal{C}}_m$ and $\alpha^* = \varepsilon \alpha$, where $\varepsilon = \pm 1$. Then there exists $A \in \mathcal{C}_m$ such that $\widehat{A} = \alpha$ and $A^* = \varepsilon A$. If α is non-singular, so is A.
- (ii) Suppose that $S, T \in C_m$ are invertible, $S^* = \varepsilon S$, $T^* = \varepsilon T$ and $\alpha \widehat{S} \alpha^* = \widehat{T}$ for some $\alpha \in \widehat{C}_m$. Then there exists $A \in C_m$ such that $\widehat{A} = \alpha$ and $ASA^* = T$.

Proof. (i) Choose $A_0 \in C_m$ such that $\alpha = \hat{A}_0$ and put $A = \frac{1}{2}(A_0 + \varepsilon A_0^*)$. Then $\hat{A} = \alpha$ and $A^* = \varepsilon A$. If α is invertible, there exists $B \in C_m$ such that AB = I - N, for some $N \in \operatorname{rad} C_m$. But then N is nilpotent, hence I - N is invertible. Therefore A is invertible.

(ii) Choose A_1 such that $\widehat{A}_0 = \alpha$. Then A_1 is non-singular and $N_1 = T - A_1 S A_1^* \in \operatorname{rad} C_m$. Now suppose that we have $A_i \in C_m$ such that $\widehat{A}_i = \alpha$ and $N_i = T - A_i S A_i^* \in (\operatorname{rad} C_m)^i$. Put $A_{i+1} = A_i + \frac{1}{2} S^{-1} A_i^{*-1} N_i$. Then $\widehat{A}_{i+1} = \alpha$. Furthermore, $N_i^* = \varepsilon N_i$ and therefore

$$T - A_{i+1}SA_{i+1}^{*} = T - (A_{i} + \frac{1}{2}N_{i}A_{i}^{*-1}S^{-1})S(A_{i}^{*} + \frac{1}{2}S^{-1}A_{i}^{-1}N_{i})$$

= $T - A_{i}SA_{i}^{*} - \frac{1}{2}N_{i} - \frac{1}{2}N_{i} - \frac{1}{4}N_{i}A_{i}^{*-1}S^{-1}A_{i}^{-1}N_{i}$
= $-\frac{1}{4}N_{i}A_{i}^{*-1}S^{-1}A_{i}^{-1}N_{i} \in (\operatorname{rad} \mathcal{C}_{m})^{i+1}.$

For sufficiently large *i* we have $(\operatorname{rad} C_m)^i = \{0\}$ and thus there exists $A \in C_m$ such that $\widehat{A} = \alpha$ and $ASA^* = T$.

Theorem 3.13. Suppose that W is a cyclic g-module such that the minimal polynomial of g is $f(t)^i$, where f(t) is irreducible, ϕ -symmetric and does not divide $t^2 - \phi$. If β and γ are non-degenerate alternating forms on W preserved by g with the same multiplier ϕ , then there exists $A \in C$ such that $\gamma(u, v) = \beta(uA, vA)$ for all $u, v \in W$.

Proof. If *J* is the matrix of β , then the matrix of γ has the form *BJ* and since *g* preserves both β and γ (with the same multiplier ϕ) we have $B \in C$. Furthermore $B = B^*$, where B^* is the adjoint with respect to β . Thus the image *b* of *B* in E = k[t]/f(t) is fixed by the field automorphism. For a finite field the norm homomorphism is onto and therefore $b = \alpha \alpha^*$ for some $\alpha \in E$. It follows from the previous theorem that $B = AA^*$ for some $A \in C$. Thus $\gamma(u, v) = \beta(uA, vA)$ for all $u, v \in W$.

Corollary 3.14. Suppose that g and g' are elements of CSp(2n,q) such that $V = k^{2n}$ is a primary component of type 1 for g and g' with the same multiplier ϕ , the same minimal polynomial and the same partition. Then g and g' are conjugate via an element of Sp(2n,q) and therefore $CSp(V) = Sp(V)C_{CSp(V)}(g)$.

This is another version of Theorem 3.3 of Milnor [4]; namely that the sequence of skewhermitian spaces H^1 , H^2 , ... of Theorem 3.11 determines the conjugacy class of $g | V_{(f)}$. Milnor determines a standard form for the restriction of g to H^m by first choosing an orthonormal basis (v_1) , (v_2) , ..., (v_r) for H^m and observing that the vectors $v_{\ell}g^i s(g)^j$ for $0 \le i < 2d$ and $0 \le j < m$ form a basis for the cyclic submodule generated by v_{ℓ} . Furthermore he chooses the representatives v_{ℓ} such that $\beta(v_{\ell}g^i s(g)^j, v_{\ell}g^{i'}s(g)^{j'}) = 0$ whenever |i - i'| < d and $j + j' \neq m$. The remaining values of $\beta(v_{\ell}g^i s(g)^j, v_{\ell}g^{i'}s(g)^{j'})$ are then uniquely determined. In particular, the restriction of β to each cyclic summand is non-degenerate and H^m is the orthogonal sum of these cyclic submodules.

Type 1 companion matrices

Another normal form for the restriction of g to a cyclic submodule is the following ϕ -symplectic companion matrix.

Suppose that $h(t) = f(t)^i$ where f(t) is an irreducible ϕ -symmetric polynomial. In addition, if f(t) divides $t^2 - \phi$ suppose that *i* is even. Therefore, if the degree of h(t) is 2*d*, then $h(0) = \phi^d$ and h(t) has the form

$$h(t) = \phi^{d} + a_{1}t + a_{2}t^{2} + \dots + a_{d-1}t^{d-1} + t^{d}(a_{d} + \phi^{-1}a_{d-1}t + \phi^{-2}a_{d-2}t^{2} + \dots + \phi^{1-d}a_{1}t^{d-1} + t^{d})$$

and its ϕ -symplectic companion matrix is

$$C_{\phi,h} = \begin{pmatrix} 0 & 1 & & & \\ & 0 & \ddots & & \\ & & \ddots & 1 & & \\ & & 0 & & -\phi^{-d} \\ \hline \phi^{d+1} & \phi a_1 & \cdots & \phi a_{d-1} & 0 & \cdots & 0 & -\phi^{1-d} a_d \\ & & & & & \phi & \ddots & \vdots \\ & & & & & \phi & \ddots & \vdots \\ & & & & & \phi & -\phi^{1-d} a_1 \end{pmatrix}$$

That is, $C_{\phi,h} \in \operatorname{CSp}(2d,q)$, $h(t) = \det(tI - C_{\phi,h})$ and $C_{\phi,h}JC_{\phi,h}^{\operatorname{tr}} = \phi J$.

Note that when d = 1 we have $C_{\phi,h} = \begin{pmatrix} 0 & -\phi^{-1} \\ \phi^2 & -a_1 \end{pmatrix}$.

type1Companion := **function**(ϕ , *f*, *i*)

error if *f* ne PHIDUAL(f, ϕ), "polynomial must be phi-symmetric"; error if not ISIRREDUCIBLE(f), "polynomial must be irreducible"; t := PARENT(f).1; error if ISDIVISIBLEBY($t^2 - \phi, f$) and ISODD(i), "power must be even"; $h := f^i$; e := DEGREE(h); $d := e \ div 2$; a := COEFFICIENTS(h)[2..d+1]; C := ZEROMATRIX(BASERING(h), e, e); $\psi := \phi^{(1-d)}$; for $i \ in [1..d-1] \ do$ C[i,i+1] := 1; $C[d+1,i+1] := \phi * a[i]$;

```
C[d+i+1, d+i] := \phi;

C[e-i+1, e] := -\psi * a[i];

end for;

C[d, e] := -\phi^{-d};

C[d+1, 1] := \phi^{(d+1)};

C[d+1, e] := -\psi * a[d];

return C;

end function;
```

3.4 Primary components of type 2

Suppose that *V* is a homocyclic component of type 2. That is, *V* is the sum of *m* copies of a cyclic *g*-module *W*, where *g* has multiplier ϕ . Then the minimal polynomial of *g* is $f(t)^i$ and either $\phi = \lambda^2$ and f(t) is $t - \lambda$ or $t + \lambda$ or else ϕ is not a square and $f(t) = t^2 - \phi$.

Lemma 3.15. If $\Delta = g - \phi g^{-1}$, then $\beta(u\Delta, v) = -\beta(u, v\Delta)$.

Let E = k[t]/(f(t)). If ϕ is not a square, *E* is a quadratic extension of *k*, otherwise E = k.

Theorem 3.16. In the vector space $\widehat{V} = V/Vf(g)$ over the field E let (v) denote the image of $v \in V$ in \widehat{V} . Then \widehat{V} has a non-degenerate well-defined inner product $(u) \circ (v)$ such that

$$\beta(u\Delta^{i-1}, v) = \operatorname{trace}_{E/k}((u) \circ (v)).$$
(3.2)

If i is odd, the inner product is alternating and therefore m is even. If i is even, the inner product is symmetric.

Type 2, symplectic type

If *i* is odd, a matrix representing the action of *g* on *V* can be obtained by repeated application of *type3Companion*. Alternatively we may use the following code.

The 'standard' Jordan block of size *n* for the scalar *a* is the $n \times n$ matrix with *a* along the diagonal, 1s on the upper diagonal and 0 elsewhere. Its primary invariant is $(t - a)^n$.

```
stdJordanBlock := function(n, a)

D := SCALARMATRIX(n, a);

for i := 1 to n-1 do D[i, i+1] := 1; end for;

return D;

end function;
```

Here is code to produce a ϕ -symplectic companion matrix for $\langle \phi, \{@\langle f, [\langle i, 2 \rangle] @\}\rangle$ where *i* is odd, *m* is even and *f*(*t*) is irreducible of type 2. The difference between this code and *type3Companion* is the use of *stdJordanBlock* when the degree of *f*(*t*) is 1.

```
type3CompanionS := function(\phi, f, i)

a_0 := COEFFICIENT(f, 0);

C := (DEGREE(f) eq 1) select stdJordanBlock(i, -a_0) else COMPANIONMATRIX(f^i);

d := NROWS(C);

\Lambda := ZEROMATRIX(BASERING(f), d, d);

for i := 1 to d do \Lambda[i, d-i+1] := 1; end for;
```

```
return DIAGONALJOIN(C, \phi * \Lambda * \text{TRANSPOSE}(C^{-1}) * \Lambda);
end function;
```

If *g* is the matrix returned by this function and if *W* is the space on which it acts, then as in the case of primary components of type 3, we have $CSp(V) = Sp(V)C_{CSp(V)}(g)$.

Lemma 3.17. Suppose that g and g' are elements of $CSp_{\phi}(W)$ such that as both a g-module and a g'-module W is a direct sum of an even number of $k[t]/(f(t)^i)$ -modules where f(t) divides $t^2 - \phi$ and i is odd. Then g and g' are conjugate via an element of Sp(W).

Type 2, orthogonal type

Assume that the characteristic of *k* is odd. If the minimal polynomials of *g* is $f(t)^i$ where f(t) divides $t^2 - \phi$ and *i* is even, then $\widehat{V} = V/Vf(g)$ is a quadratic space over the field E = k[t]/(f(t)). We may take the quadratic form to be $Q((v)) = \frac{1}{2}(v) \circ (v)$ and write \widehat{V} as an orthogonal sum of 1-dimensional subspaces.

For completeness we record some well-known facts about finite fields.

Lemma 3.18. *Suppose that q is an odd prime power.*

- (i) If a and b are non-zero elements of GF(q), then for all $c \in GF(q)$ there exist $x, y \in GF(q)$ such that $c = ax^2 + by^2$.
- (ii) -1 is a square in GF(q) if and only if $q \equiv 1 \pmod{4}$.
- (iii) 2 is a square in GF(q) if and only if $q \equiv \pm 1 \pmod{8}$.
- (iv) If ϕ is not a square in GF(q) and if $\tau \in GF(q^2)$ satisfies $\tau^2 = \phi$, then τ is a square in GF(q²) *if and only if* $q \equiv 3 \pmod{4}$.

The following corollary is a consequence of part (i) of this lemma.

Corollary 3.19. In the notation of Theorem 3.16, \hat{V} has an orthogonal basis $(v_1), (v_2), \ldots, (v_m)$ such that $(v_j) \circ (v_j) = 1$ for $1 < j \le m$ and $(v_1) \circ (v_1) = a$, where a is either 1 or a non-square in E.

Thus if *i* is even there are at most two conjugacy classes of elements in $CSp(\hat{V})$ with the same minimal polynomial $f(t)^i$ and multiplicity *m*. In order to distinguish between these classes we attach a sign to the pair (i, m) as follows.

Definition 3.20.

- (i) If *m* is even and \hat{V} has maximal Witt index the *sign* of (i, m) is +1 whereas if the Witt index is not maximal the *sign* is -1.
- (ii) If *m* is odd, there are two isomorphism classes of quadratic spaces \hat{V} , which have the same group of isometries but are distinguished by the discriminant of the symmetric form $(u) \circ (v)$. If the discriminant is a square, the *sign* is +1 and -1 otherwise.

The discriminant of a hyperbolic plane is $-1 \pmod{k^2}$ and the discriminant of a 2dimensional quadratic space with no isotropic vectors is $-a \pmod{k^2}$, where *a* is a nonsquare in *k*.

Consequently, if *m* is even and \hat{V} has maximal Witt index, the discriminant is $(-1)^{m/2}$ (mod k^2) whereas if the Witt index is not maximal, the discriminant is $(-1)^{m/2}a \pmod{k^2}$.

The function *type1Companion* returns a ϕ -symplectic companion matrix for $f(t)^i$ that preserves β with multiplier ϕ . However when $f(t) = t - \lambda$ it is important to know the sign of the conjugacy invariant and the following code is easier to analyse. The return value is a $2c \times 2c$ matrix $g = \begin{pmatrix} \lambda B & aS \\ 0 & \lambda B^{-1} \end{pmatrix}$ with the single primary invariant $(t - \lambda)^{2c}$. The matrix B is the standard Jordan block all of whose non-zero entries are 1. All entries in S are 0 except for the last row which alternates between 1 and -1.

The parameter *flag* is a boolean. It is related to, but not necessarily equal to, the sign of the invariant.

 $\begin{aligned} & type3CompanionO := \mathsf{function}(\lambda, \ c, \ flag) \\ & F := \mathsf{PARENT}(\lambda); \\ & B := stdJordanBlock(c, F \mid 1); \\ & g := \lambda * \mathsf{DIAGONALJOIN}(B, B^{-1}); \\ & a := \mathsf{ISEVEN}(c) \ \texttt{select} - F \mid 2 \ \texttt{else} \ F \mid 2; \\ & \text{if } (\textit{not flag}) \ \texttt{then} \ a * := \mathsf{NONSQUARE}(F); \ \texttt{end if}; \\ & \text{for } i := 1 \ \texttt{to} \ c \ \texttt{do} \ g[c, c+i] := \mathsf{ISODD}(i) \ \texttt{select} \ a \ \texttt{else} \ -a; \ \texttt{end for}; \\ & \text{return } g; \\ & \texttt{end function}; \end{aligned}$

In this case $\Delta = g - \phi g^{-1} = \begin{pmatrix} \lambda R & aU \\ 0 & -\lambda R \end{pmatrix}$ and $R = B - B^{-1}$. The matrix R^{c-1} is zero

everywhere except for the last entry in the top row, which is 2^{c-1} . Since $\Delta^{2c-1} = \begin{pmatrix} 0 & (-1)^{c-1}\lambda^{2c-2}aR^{c-1}UR^{c-1} \\ 0 & 0 \end{pmatrix}$ every entry in Δ^{2c-1} is 0 except for the last entry in the top row, which is $(-1)^{c-1}\phi^{c-1}2^{2c-1}a$. We have $a = (-1)^{c-1}2b$ where *b* is 1 if the sign is positive and a non-square otherwise and therefore the only non-zero entry in Δ^{2c-1} is $2^{2c}\phi^{c-1}b$, which is a square if and only if *b* is a square.

Let g^+ (resp. g^-) be the matrix returned by *type3CompanionO* when *flag* is true (resp. false). Then $A^{-1}g^+A = g^-$, where $A = \begin{pmatrix} I & 0 \\ 0 & bI \end{pmatrix}$. If *J* is the standard alternating form, $AJA^{\text{tr}} = bJ$ and therefore $A \in \text{CSp}(2n, q)$.

Let $g_{[m]}^+$ denote the direct sum of *m* copies of g^+ and let $g_{[m]}^-$ denote the direct sum of m - 1 copies of g^+ and a single copy of g^- . Then the discriminant of $g_{[m]}^+$ is $(-1)^m \pmod{k^2}$ and the discriminant of $g_{[m]}^-$ is $(-1)^m b \pmod{k^2}$, where *b* is a non-square.

If $m \equiv 0 \pmod{4}$ or $q \equiv 1 \pmod{4}$, $g_{[m]}^+$ is an element of + type and $g_{[m]}^-$ is an element of – type, whereas if $m \equiv 2 \pmod{4}$ and $q \equiv 3 \pmod{4}$, $g_{[m]}^+$ is an element – type and $g_{[m]}^-$ is an element of + type.

If $f(t) = t^2 - \phi$ and ϕ is not a square we essentially repeat the code for *type3CompanionO* in the quadratic extension $E = k[t]/(t^2 - \phi)$ of k. However, in this case there is no element of CSp(2n, q) that conjugates g^+ to g^- .

```
type3CompanionOext := function(\phi, c, flag)
   F := \text{PARENT}(\phi);
   C := MATRIX(F, 2, 2, [0, 1, \phi, 0]);  // companion matrix for t^2 - \phi
   B := stdJordanBlock(c, F \mid 1);
   X_{11} := \text{KRONECKERPRODUCT}(B, C);
   X_{22} := \text{KRONECKERPRODUCT}(B^{-1}, C);
   if flag then
      M := \text{IDENTITYMATRIX}(F, 2);
   else
      t := \text{POLYNOMIALRING}(F).1;
      E < \tau > := ext < F | t^2 - \phi >;
     \alpha := \text{NONSQUARE}(E);
      M := MATRIX(F, 2, 2, [ELTSEQ(\alpha, F), ELTSEQ(\alpha * \tau, F)]);
   end if:
   S := ZEROMATRIX(F, c, c);
   for i := 1 to c do S[c, i] := ISODD(i) select 1 else -1; end for;
   X_{12} := \text{KRONECKERPRODUCT}(S, M);
   return BLOCKMATRIX(2, 2, [[X_{11}, X_{12}], [ZEROMATRIX(F, 2*c, 2*c), X_{22}]]);
end function;
```

The return value of this function is a $4c \times 4c$ matrix $g = \begin{pmatrix} X_{11} & X_{12} \\ 0 & X_{22} \end{pmatrix}$, where $X_{22} = \phi X_{11}^{-1}$ because $C = \phi C^{-1}$. The matrix g preserves the form with multiplier ϕ if and only if

because $C = \phi C^{-1}$. The matrix g preserves the form with multiplier ϕ if and only if $X_{11}\Lambda X_{22}^{\text{tr}} = \phi \Lambda$ and $X_{11}\Lambda X_{12}^{\text{tr}}$ is symmetric. A direct calculation shows that $X_{11}\Lambda X_{22}^{\text{tr}} = \phi \Lambda$ and that the only non-zero entry in $X_{11}\Lambda X_{12}^{\text{tr}}$ is the 2 × 2 block $\pm C\Lambda_2 M^{\text{tr}}$ at the left end of the last row. Thus in order to preserve the form, $C\Lambda_2 M^{\text{tr}}$ must be symmetric.

If τ is the image of t in E, then C is the matrix representing multiplication by τ with respect to the k-space basis 1, τ of E. If $\alpha = r + s\tau$ where $a, b \in k$ and if M represents multiplication by α , then $C\Lambda_2 M^{\text{tr}} = \begin{pmatrix} r & s\phi \\ s\phi & r\phi \end{pmatrix}$, which is symmetric, as required. Thus we may write $g = \begin{pmatrix} \tau B & \alpha S \\ 0 & \tau B^{-1} \end{pmatrix}$ and then $\Delta = g - \phi g^{-1} = \tau \begin{pmatrix} R & \alpha \tau^{-1}U \\ 0 & -R \end{pmatrix}$, where

Thus we may write $g = \begin{pmatrix} \tau B & \alpha S \\ 0 & \tau B^{-1} \end{pmatrix}$ and then $\Delta = g - \phi g^{-1} = \tau \begin{pmatrix} R & \alpha \tau^{-1}U \\ 0 & -R \end{pmatrix}$, where $R = B - B^{-1}$ and $U = S + B^{-1}SB$. A calculation similar to one above shows that $R^c = 0$ and every entry in Δ^{2c-1} is 0 except for the last entry in the top row, which is $(-1)^{c-1}\tau^{2c-2}2^{2c-1}\alpha$. Since -1 and 2 are both squares in $E = GF(q^2)$ this top row value is a square if and only if α is a square.

We have $f(g) = \tau^2 \begin{pmatrix} B^2 - I & \tau^{-1}\alpha(BS + SB^{-1}) \\ 0 & B^{-2} - I \end{pmatrix}$ and consequently, in the notation of Theorem 3.16, the space $\widehat{V} = V/Vf(g)$ has a basis $(v_1), (v_2)$, where v_1, v_2, \ldots is the standard basis for $V = k^{2c}$ and (v) denotes the image of v in \widehat{V} . We have dim_{*E*} $\widehat{V} = 1$ and from (3.2)

trace_{*E/k*}((*v*₁)
$$\circ$$
 (*v*₁)) = β (*v*₁ Δ^{2c-1} , *v*₁).

Writing $(v_1) \circ (v_1) = a_1 + a_2 \tau$ with $a_1, a_2 \in k$ and using the fact that trace $E/k(\tau) = 0$ we have

$$2a_1 = \beta(v_1 \Delta^{2c-1}, v_1)$$
 and $2a_2 \phi = \beta(v_1 \Delta^{2c-1}, v_1 g)$

and consequently

$$(v_1) \circ (v_1) = (-1)^c 2^{2c-2} \phi^{c-2} \alpha \tau.$$

This is a square in *E* if and only if $\alpha \tau$ is a square. Furthermore, τ is a square if and only if $q \equiv 3 \pmod{4}$.

Let g^+ (resp. g^-) be the matrix returned by *type3CompanionOext* when *flag* is true (resp. false), let $g^+_{[m]}$ denote the direct sum of *m* copies of g^+ and let $g^-_{[m]}$ denote the direct sum of m - 1 copies of g^+ and a single copy of g^- .

For $g_{[m]}^+$ the discriminant of the induced inner product on \widehat{V} is $\tau^m \pmod{k^2}$ and for $g_{[m]}^-$ it is $\alpha \tau^m \pmod{k^2}$. Therefore, if *m* is even, $g_{[m]}^+$ is an element of + type and $g_{[m]}^-$ is an element of - type. On the other hand, if *m* is odd, $g_{[m]}^+$ is an element of + type if and only if $q \equiv 3 \pmod{4}$.

Lemma 3.21 (Britnell [1, Lemma 5.8]). If A is a non-singular symmetric matrix over a finite field of odd characteristic, then $A = BB^{tr}$ for some matrix B if and only det A is a square.

Proof. The existence of an orthogonal basis for the symmetric form with matrix *A* is equivalent to the existence of a matrix *P* such that PAP^{tr} is diagonal. We may suppose that the diagonal entries are d_1, d_2, \ldots, d_n , where d_1, d_2, \ldots, d_m are non-squares and the remaining entries are squares. If det *A* is a square, then *m* is even.

If m > 0, choose r, s and t in the field such that $r^2 + s^2 = d_1$ and $t^2 = d_2/d_1$. Then

$$\begin{pmatrix} r & -s \\ st & rt \end{pmatrix} \begin{pmatrix} r & -s \\ st & rt \end{pmatrix}^{\mathrm{tr}} = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}.$$

Thus it is clear that there exists *B* such that $A = BB^{tr}$. The converse is obvious.

Let C be the centralizer of g in $\text{End}_k(W)$ and let C_m be the centralizer of g in $\text{End}_k(V)$. The adjoint map on C induces the identity automorphism of E and hence if \widehat{A} is the matrix of $A \in C_m$ acting on \widehat{V} , the matrix of its adjoint is \widehat{A}^{tr} .

For $A \in GL(V)$, the form $\beta(uA, v)$ is alternating if and only if $A = A^*$ and in addition it is preserved by g if and only if $A \in C_m$. Therefore, if g preserves and alternating form $\beta(uA, v)$, then \widehat{A} is symmetric. It follows from the lemma just proved that $\widehat{A} = \alpha \alpha^{\text{tr}}$ for some matrix α if and only if det \widehat{A} is a square in E. From Theorem 3.12 this is the case if and only if there exists $K \in C_m$ such that $A = KK^*$ if and only if $\beta(uA, v) = \beta(uK, vK)$.

The map $C \to E$ is onto and thus there is a matrix $Z \in C$ such that its image in *E* is a non-square. We may assume that the matrix of β restricted to *W* is the standard alternating form *J*.

4 Class representatives in conformal symplectic groups (q odd)

In order to preserve the standard alternating form when forming a direct sum of matrices we replace the 'diagonal join' of matrices with their 'central join'.

Symplectic direct sums

If $A \in CSp(2m, q)$, $B \in CSp(2n, q)$ and $\phi(A) = \phi(B)$ we may write A as the block matrix

$$A = \begin{pmatrix} P & Q \\ R & S \end{pmatrix}$$

and then the 'central sum'

$$A \circ B = \begin{pmatrix} P & 0 & Q \\ 0 & B & 0 \\ R & 0 & S \end{pmatrix}$$

belongs to CSp(2m + 2n, q) because

$$X^{-1}\begin{pmatrix} A & 0\\ 0 & B \end{pmatrix} X = A \circ B$$

where

$$X = \begin{pmatrix} I_m & 0 & 0\\ 0 & 0 & I_m\\ 0 & I_{2n} & 0 \end{pmatrix} \text{ so that } X^{-1} = X^{\text{tr}} \text{ and } X^{\text{tr}} \begin{pmatrix} J_m & 0\\ 0 & J_n \end{pmatrix} X = J_{m+n}$$

```
centralJoin := function(A, B)

d := NROWS(A);

if d eq 0 then return B; end if;

e := NROWS(B);

if e eq 0 then return A; end if;

assert ISEVEN(d);

m := d div 2;

X := ZEROMATRIX(BASERING(A), d+e, d+e);

INSERTBLOCK(\sim X, SUBMATRIX(A, 1, 1, m, m), 1, 1);

INSERTBLOCK(\sim X, SUBMATRIX(A, 1, m+1, m, m), 1, m+e+1);

INSERTBLOCK(\sim X, SUBMATRIX(A, m+1, m, m), m+e+1, 1);

INSERTBLOCK(\sim X, SUBMATRIX(A, m+1, m, m), m+e+1, m+e+1);

INSERTBLOCK(\sim X, SUBMATRIX(A, m+1, m+1, m, m), m+e+1, m+e+1);

INSERTBLOCK(\sim X, B, m+1, m+1);

return X;

end function;
```

Conjugacy class invariants

If *g* and *g*' are elements of $CSp_{\phi}(V)$, which are conjugate in GL(V), it follows from Theorem 3.5, Corollary 3.14, Lemma 3.17 and Corollary 3.19 that there is an element of Sp(V) which conjugates *g* to *g*' if and only if for each primary component of type 2 for *g* and *g*' with the same polynomial *f*, of degree 1, the signed partitions of *f* for *g* and *g*' are the same.

The conjugacy class of g in CSp(V) does not split in Sp(V) if and only if g is centralized by some $a \in CSp_{\phi}(V)$, where ϕ is a non-square. It follows from the previous results that the centralizer of g does not cover CSp(V)/Sp(V) if and only if g has a component of type 2 with an associated quadratic space \hat{V} , as in Theorem 3.16, corresponding to a term $\langle e, m \rangle$ where e is even, m is odd and the degree of the polynomial is 1.

Such a pair $\langle e, m \rangle$ will be said to be of *otype*. Furthermore, if $\langle \phi, \xi \rangle$ is an invariant in which ξ contains a pair $\langle f, \mu \rangle$ where the degree of f is 1 and the partition μ has a term of *otype*, then $\langle \phi, \xi \rangle$ is also said to be of *otype*. If the first occurrence of an *otype* term $\langle e, m \rangle$ in ξ has e > 0, it is of *positive otype*

An element of CSp(V) whose invariant contains a pair $\langle \phi, \xi \rangle$ of *otype* is conjugate to the element corresponding to the invariant obtained by reversing the signs of the *otype* pairs $\langle e, m \rangle$ in ξ . Therefore we retain only those pairs of *positive otype*.

```
intrinsic INTERNALCLASSINVARIANTSCSP(d :: RNGINTELT, q :: RNGINTELT) \rightarrow SEQENUM
{The conjugacy class invariants for the conformal symplectic
group CSp(d,q), q odd}
require IsODD(q) : "q must be odd";
F := GF(q);
t := POLYNOMIALRING(F).1;
polseq := [];
mgrp := [x[1] : x in PHIIRREDUCIBLEPOLYNOMIALS(F, 1)];
X := [PHIIRREDUCIBLEPOLYNOMIALS(F, i) : i in [1] cat [2..d by 2]];
for i := 1 to q-1 do polseq[i] := \&cat[x[i][2] : x in X]; end for;
parts := allPartitions(d);
sparts := signedPartitionsSp(d);
inv := [];
```

A function to check whether μ is of *otype* and if so whether the first occurrence of $\langle e, m \rangle$ in μ with *e* even and *m* odd has e > 0.

```
\begin{split} \textit{isOtype} &:= \texttt{function}(\mu) \\ \texttt{for } \lambda \textit{ in } \mu \textit{ do} \\ e, m &:= \texttt{EXPLODE}(\lambda); \\ \texttt{if } \texttt{ISEVEN}(e) \textit{ and } \texttt{ISODD}(m) \textit{ then return true, } (e \textit{ gt } 0); \texttt{end if}; \\ \texttt{end for}; \\ \texttt{return false, }_; \\ \texttt{end function}; \end{split}
```

```
for i := 1 to q - 1 do

φ := mgrp[i];

fseq := polseq[i];
```

The *n*th term of the sequence Ξ contains the indexed sets {@ ..., $\langle f_i, \mu_i \rangle$, ... @} such that $\sum_i \deg(f_i)|\mu_i| = n$ and tags[n] is a parallel sequence of boolean values indicating which pairs $\langle f_i, \mu_i \rangle$ are of positive *otype*.

```
\begin{split} \Xi &:= [[]: n \text{ in } [1..d]];\\ prevXi &:= \Xi;\\ prevTags &:= \Xi;\\ tags &:= \Xi;\\ \text{for } f \text{ in } fseq \text{ do}\\ fparts &:= ISDIVISIBLEBY(t^2 - \phi, f) \text{ select } sparts \text{ else } parts;\\ deg &:= DEGREE(f);\\ \text{for } n &:= 0 \text{ to } d-1 \text{ do}\\ dimleft &:= d-n;\\ \text{ if } deg \text{ le } dimleft \text{ then}\\ \text{ for } i &:= 1 \text{ to } dimleft \text{ div } deg \text{ do}\\ pol_parts &:= ((n \text{ ne } 0) \text{ select } prevXi[n] \text{ else } [ \{@ @ \}]);\\ taglist &:= ((n \text{ ne } 0) \text{ select } prevTags[n] \text{ else } [ \text{ false } ]); \end{split}
```

```
for j := 1 to #pol_parts do
                   pol_part := pol_parts[j];
                   tagged := taglist[j];
                   for \mu in fparts[i] do
                     accept := true;
                     newtag := false;
                     if deg eq 1 then
                        if tagged then
                           newtag := true;
                        else
                           otype, tag := isOtype(\mu);
                           if otype then
                              if tag then newtag := true; else accept := false; end if;
                           end if;
                        end if;
                     end if;
                     if accept then
                        APPEND(\sim \Xi [n + deg * i], INCLUDE(pol_part, < f, \mu >));
                        APPEND(\sim tags[n+deg*i], newtag);
                     end if:
                   end for;
                end for:
             end for;
           end if;
        end for;
        prevXi := \Xi;
        prevTags := tags;
     end for;
     inv cat:= [ <\phi, \xi > : \xi in \Xi[d]];
  end for;
  return inv;
end intrinsic;
```

Conjugacy class representatives

Return a matrix in the conformal symplectic group with a given conjugacy class invariant *inv*, where *inv* is a pair $\langle \phi, \Xi \rangle$, where ϕ is a non-zero field element and Ξ is an indexed set of pairs $\langle f, \pi \rangle$, and where *f* is a polynomial and π is a partition.

```
intrinsic InternalRepMatrixCSP(inv :: TUP) \rightarrow GRPMatElt
```

```
{A representative of the conjugacy class with invariant inv
in the conformal symplectic group}
\phi, \Xi := EXPLODE(inv);
F := PARENT(\phi);
q := \#F;
```

```
t := POLYNOMIALRING(F).1;
X := ZEROMATRIX(F, 0, 0);
for polpart in Ξ do
f, plist := EXPLODE(polpart);
```

First deal with the type 2 invariants.

```
if ISDIVISIBLEBY(t^2 - \phi, f) then
for term in plist do
e, m := \text{EXPLODE}(term);
```

If *e* is odd, the term is of symplectic type.

```
if IsODD(e) then
  assert IsEVEN(m);
  for i := 1 to m div 2 do
      X := centralJoin(X, type3CompanionS(φ, f, e));
  end for;
```

If *e* is even, the term is of orthogonal type.

else

```
flag := SIGN(e) gt 0;
            c := ABS(e) div 2;
            if DEGREE(f) eq 1 then
               \lambda := - \text{COEFFICIENT}(f, 0);
               X := ((q \mod 4 eq 1) or (m \mod 4 eq 0))
                  select centralJoin(X, type3CompanionO(\lambda, c, flag))
                    else centralJoin(X, type3CompanionO(\lambda, c, not flag));
               for i := 2 to m do
                  X := centralJoin(X, type3CompanionO(\lambda, c, true));
               end for:
            else
               X := (ISODD(m) and (q mod 4 eq 1))
                  select centralJoin(X, type3CompanionOext(\phi, c, not flag))
                    else centralJoin(X, type3CompanionOext(\phi, c, flag));
               for i := 2 to m do
                  X := centralJoin(X, type3CompanionOext(\phi, c, true));
               end for;
            end if;
         end if;
       end for:
Next we have the type 1 invariants.
    elif ISIRREDUCIBLE(f) then
```

```
for μ in plist do
    e, m := EXPLODE(μ);
    for i := 1 to m do X := centralJoin(X, type1Companion(φ, f, e)); end for;
    end for;
```

And finally, the type 3 invariants.

```
else

h := FACTORISATION(f)[1][1];

assert f eq h * FACTORISATION(f)[2][1];

for \mu in plist do

e, m := EXPLODE(\mu);

for i := 1 to m do X := centralJoin(X, type3Companion(\phi, h^e)); end for;

end for;

end for;

return CONFORMALSYMPLECTICGROUP(NROWS(X), F) ! X;

end intrinsic;
```

Centralizer orders

The centralizer orders of elements of the conformal symplectic group can be computed using a modification of Wall's functions $A(\varphi^{\mu})$ and $B(\varphi)$ from [8].

```
A fn := function(\phi, f, d, m)
   q := \#BASERING(f);
   deg := DEGREE(f);
  t := \text{PARENT}(f).1;
  if ISIRREDUCIBLE(f) then
     if ISDIVISIBLEBY(t^2 - \phi, f) then
        if ISODD(d) then val := ORDERSP(m, q^{deg});
        else
           if ISODD(m) then val := ORDERGO(m, q<sup>deg</sup>);
           elif (d It 0) then val := ORDERGOMINUS(m, q^{deg});
           else val := ORDERGOPLUS(m, q<sup>deg</sup>); end if;
        end if:
     else val := ORDERGU(m, q^{(deg div 2)}); end if;
  else val := ORDERGL(m, q^{(deg \ div \ 2)}); end if;
  return val;
end function;
\kappa := function(\phi, plist, f)
  t := \mathsf{PARENT}(f).1;
   val := 0;
  for \mu in plist do
     d, m := \text{EXPLODE}(\mu);
     val +:= (ABS(d)-1)*m^2;
     if ISDIVISIBLEBY(t^2 - \phi, f) and ISEVEN(d) then val +:= m; end if;
  end for;
  r := #plist;
  for i := 1 to r-1 do
     d := ABS(plist[i][1]);
     m := plist[i][2];
     for j := i+1 to r do val +:= 2*d*m*plist[j][2]; end for;
  end for;
```

```
val *:= DEGREE(f);
  assert ISEVEN(val);
  return val div 2;
end function;
otype := function(inv)
  \phi, \xi := \text{EXPLODE}(inv);
  F := PARENT(\phi);
  t := \text{POLYNOMIALRING}(F).1;
  q := \#F;
   tp := false;
  for pol_part in \xi do
     f, \mu := \text{EXPLODE}(pol_part);
     if ISDIVISIBLEBY(t^2 - \phi, f) and DEGREE(f) eq 1 then
        for \lambda in \mu do
           e, m := \text{EXPLODE}(\lambda);
           tp or:= IsEven(e) and IsODD(m);
        end for:
     end if:
  end for:
  return tp select (q-1) div 2 else q-1;
end function:
```

Here *pol_part* has the form $\langle f, [\cdots, \langle \mu, m_{\mu} \rangle, \cdots] \rangle$.

```
B_fn := function(\phi, pol_part)

f, partn := EXPLODE(pol_part);

q := \#BASERING(f);

return \ q^{\kappa(\phi, partn, f)} * \&*[A_fn(\phi, f, \mu[1], \mu[2]) : \mu \text{ in } partn];

end function;
```

The order of the centralizer of any element in the symplectic group whose conjugacy invariant is *inv*.

```
centraliserOrderCSp := function(inv)

φ, ξ := ExPLODE(inv);

return otype(inv) * &*[ B_fn(φ, pol_part) : pol_part in ξ ];

end function;
```

The conjugacy classes of CSp(d, q), q odd

Return the sequence of labels as well as the conjugacy classes.

```
\begin{aligned} & \textit{classesCSp} := \textit{function}(d, q) \\ & \textit{ord} := \textit{ORDERCSP}(d, q); \\ & \textit{L} := \textit{INTERNALCLASSINVARIANTSCSP}(d, q); \\ & \textit{cc} := [\textit{car} < \textit{INTEGERS}(), \textit{INTEGERS}(), \textit{CSP}(d, q) > | \\ & < \textit{ORDER}(M), \textit{ ord } \textit{div centraliserOrderCSp}(\mu), \textit{ M} > : \mu \textit{ in } L \mid \textit{true} \\ & \textit{where } \textit{M} \textit{ is } \textit{INTERNALREPMATRIXCSP}(\mu) ]; \\ & \textit{PARALLELSORT}(\sim \textit{cc}, \sim L); \end{aligned}
```

```
return cc, L;
end function;
```

5 The class invariant of a conformal symplectic matrix

Guided by Theorem 3.7 we shall define a function *homocyclicSplit* designed to be applied to a matrix *g* acting on a primary component $V_{(f)}$, where f(t) is irreducible and ϕ -symmetric. But first we need a function that returns the row indices for the homocyclic components of the rational canonical form of the matrix *g* restricted to $V_{(f)}$.

```
getSubIndices := function(pFACT)
  f := pFACT[1][1];
  error if exists{ p : p in pFACT | p[1] ne f },
     "the component is not homocyclic";
  d := \text{DEGREE}(f);
  ndx := 0;
  base := [];
  last := 0;
  rng := [];
  for j := 1 to #pFACT do
     if j gt 1 and pFACT[j][2] ne last then
       APPEND(\sim base, rng);
        rng := [];
     end if:
     last := pFACT[j][2];
     n := last * d:
     rng cat:= [ndx+i : i in [1..n]];
     ndx + := n;
  end for:
  APPEND(\sim base, rng);
  return base:
end function;
```

We shall need the restriction of a linear transformation (defined by a matrix M) to an invariant subspace; S is either the basis matrix for the subspace or a sequence of basis vectors. (There is no check that the subspace is invariant.)

```
restriction := func < M, S \mid \text{SOLUTION}(T, T * M) where T is \text{MATRIX}(S) >;
```

In the following function *W* represents a primary component of *g*. The return value is the sequence of mutually orthogonal homocyclic components of *W*.

```
\begin{array}{l} \textit{homocyclicSplit} := \textit{function}(g, W) \\ U := \textit{UNIVERSE}([W, \textit{sub} < W| > ]); \\ \_, \textit{T}, \textit{pFact} := \textit{PRIMARYRATIONALFORM}(g); \\ \textit{baseNdx} := \textit{getSubIndices}(\textit{pFact}); \\ W_0 := \textit{sub} < W \mid [T[i] : \textit{i in } \textit{baseNdx}[\textit{\#baseNdx}]] >; \\ D := [U| W_0 ]; \\ \textit{while } \textit{W} \textit{ne } W_0 \textit{do} \end{array}
```

```
 \begin{array}{l} & \textit{W0p} := \textit{ORTHOGONALCOMPLEMENT}(\textit{W},\textit{W}_{0});\\ & \textit{gp} := \textit{restriction}(\textit{g},\textit{BASISMATRIX}(\textit{W0p}));\\ & \_,\textit{T},\textit{pFACT} := \textit{PRIMARYRATIONALFORM}(\textit{gp});\\ & \textit{baseNdx} := \textit{getSubIndices}(\textit{pFACT});\\ & \textit{W}_{1} := \textit{sub} < \textit{W} \mid [\textit{T}[\textit{i}] * \textit{BASISMATRIX}(\textit{W0p}) : \textit{i} \textit{ in } \textit{baseNdx}[\#\textit{baseNdx}]] >;\\ & \textit{APPEND}(\sim \textit{D},\textit{W}_{1});\\ & \textit{W}_{0} := \textit{sub} < \textit{W} \mid \textit{W}_{0},\textit{W}_{1} >;\\ & \textit{end while};\\ & \textit{return } \textit{Reverse}(\textit{D});\\ & \textit{end function}; \end{array}
```

In the following function *D* is the subspace D_i obtained from *homocyclicSplit*, *g* is the matrix acting on the generic space of *D*, *f* is the polynomial t + 1 or t - 1 and λ is the pair $\langle d_i, m_i \rangle$.

The matrix *B* represents the symmetric form $(u) \cdot (v)$ on \overline{D}_i . There are two versions of the function that attaches a sign to a partition list term $\mu = \langle e, m \rangle$. The first one is used for polynomials of degree 1, the second is used for polynomials of degree 2.

```
\begin{aligned} &attachSign_1 := \mathbf{function}(D, g, f, e, m) \\ &F := \mathsf{BASERING}(g); \\ &\lambda := \mathsf{EVALUATE}(f, 0); \\ &A := g + \mathsf{SCALARMATRIX}(F, \mathsf{NROWS}(g), \lambda); \\ &D_0 := \textit{sub} < D \mid [v*A : v \textit{ in } \mathsf{BASIS}(D)] >; \\ &E := [v : v \textit{ in } \mathsf{EXTENDBASIS}(D_0, D) \mid v \textit{ notin } D_0]; \\ &\delta := (g - \lambda^2 * g^{-1})^{(e-1)}; \\ &B := \mathsf{MATRIX}(F, \#E, \#E, [\mathsf{DOTPRODUCT}(D \mid (u*\delta), v) : u, v \textit{ in } E ]); \\ &assert \mathsf{DETERMINANT}(B) \textit{ ne } 0; \\ &sq, \_ := \mathsf{ISSQUARE}(\mathsf{DETERMINANT}(B)); \end{aligned}
```

If $m \equiv 0 \pmod{4}$ or $q \equiv 1 \pmod{4}$, the quadratic space defined by *B* has maximal Witt index if and only if the determinant of *B* is a square. Conversely if $m \equiv 2 \pmod{4}$ and $q \equiv 3 \pmod{4}$, the Witt index is maximal if and only if the determinant of *B* is not a square.

```
if (#F mod 4 eq 3) and (m mod 4 eq 2) then sq := not sq; end if;
return sq select e else -e;
end function;
```

```
attachSign_{2} := function(D, g, f, e, m)
F := BASERING(g);
\phi := -EVALUATE(f, 0);
A := g * g - SCALARMATRIX(F, NROWS(g), \phi);
D_{0} := sub < D \mid [v * A : v \text{ in } BASIS(D)] >;
L := [v : v \text{ in } EXTENDBASIS(D_{0}, D) \mid v \text{ notin } D_{0}];
L_{2} := [L[i] : i \text{ in } [1..#L \text{ by } 2]];
\delta := (g - \phi * g^{-1})^{(e-1)};
E < \tau > := ext < F \mid f >;
```

At this point *E* is the field k[t]/(f(t)) where $f = t^2 - \phi$ and if $\tau = t + (f(t))$, then $\tau^q + \tau = 0$. Therefore, if $y = a + b\tau$, trace_{*L/k*}(*y*) = 2*a* and trace_{*L/k*}($y\tau$) = 2*b* ϕ for all $a, b \in k$. The induced inner product (*u*) \circ (*v*) on *D*/*D*₀ satisfies

trace_{*E/k*}((*u*)
$$\circ$$
 (*v*)) = $\beta(u\Delta^{e-1}, v)$

where $\Delta = g - \phi g^{-1}$. Therefore we have $(u) \circ (v) = a + b\tau$ where $a = \frac{1}{2}\beta(u\Delta^{e-1}, v)$ and $b = \frac{1}{2}\phi^{-1}\beta(u\Delta^{e-1}, vg)$ because $\beta(ug, v) = \beta(u, vg)$ for all $u, v \in D$. Since 2 is always a square in GF(q^2) we may ignore the factors of $\frac{1}{2}$.

```
dotprod := function(u, v)

w := D ! (u*\delta);

a := DotPRODUCT(w, v);

b := \phi^{-1}*DotPRODUCT(w, D ! (v*g));

return E ! [a, b];

end function;
```

 $B := MATRIX(E, #L_2, #L_2, [dotprod(u, v) : u, v \text{ in } L_2]);$ assert Determinant(B) ne 0; sq, _ := IsSquare(Determinant(B));

Since it is always the case that $q^2 \equiv 1 \pmod{4}$, the quadratic space defined by *B*, when *m* is even, has maximal Witt index if and only if the determinant of *B* is a square.

return sq select e else -e; end function;

If the class of *g* does not split in Sp(*V*), then *g* has a component of type 2 with an associated quadratic space \hat{V} corresponding to a term $\langle e, m \rangle$ where *e* is even, *m* is odd and the degree of the polynomial is 1. Our convention is to use only those class invariants for polynomials of degree 1 for which the first signed term of the form $\langle e, m \rangle$ with *e* even and *m* odd has e > 0.

```
intrinsic INTERNALCONJUGACYINVARIANTCSP(g :: GRPMATELT) \rightarrow TUP
```

```
{The conjugacy class invariant of the conformal symplectic
matrix g}
F := BASERING(g);
t := POLYNOMIALRING(F).1;
n := NROWS(g);
std := STANDARDALTERNATINGFORM(n, F);
stdg := g*std*TRANSPOSE(g);
\phi := stdg[1, n];
require stdg eq \phi*std:
    "matrix is not in the standard conformal symplectic group";
_, T, pFACT := PRIMARYRATIONALFORM(g);
V := SYMPLECTICSPACE(std);
pols, parts, bases := primaryPhiParts(\phi, pFACT);
inv := {@ @};
```

While *scanning* is true we look for the first instance of a term $\langle e, m \rangle$ with *e* even and *m* odd for a polynomial of degree 1. If *e* < 0 we switch *invert* to true.

```
scanning := true;
invert := false;
```

```
for i := 1 to #pols do

plist := convert(parts[i]);

f := pols[i];

if ISDIVISIBLEBY(t^2 - \phi, f) then

base := bases[i];
```

Extract the *f*-primary component *W* as a symplectic space with the *g*-action given by *gg*.

```
gg := restriction(g, [T[j] : j \text{ in } base]);

d := \#base;

B := MATRIX(F, d, d, [DOTPRODUCT(V ! T[r], V ! T[s]) : r, s \text{ in } base]);

W := SYMPLECTICSPACE(B);

D := homocyclicSplit(gg, W);
```

Run through the homocyclic components looking for quadratic spaces.

```
for j := 1 to #plist do
    e, m := EXPLODE(plist[j]);
    if ISEVEN(e) then
        if DEGREE(f) eq 1 then
            e := attachSign_1(D[j], gg, f, e, m);
```

If we encounter a class that does not split in Sp(V) we may need to replace the invariant by an equivalent one with signs inverted.

6 Extended symplectic groups

A group *G* such that $\text{Sp}(n,q) \subseteq G \subseteq \text{CSp}(n,q)$ will be designated an *extended* symplectic group of index *m*, where m = |G : Sp(n,q)|.

```
require m gt 0: "the index should be positive";
  divides, r := ISDIVISIBLEBY(q - 1, m);
  require divides: "the index should divide q - 1";
  if m eq 1 then G := SP(n,q);
  elif m eq q - 1 then G := CSP(n,q);
  else
     F := GF(q);
    \xi := \text{PRIMITIVEELLEMENT}(F)^r;
     A := IDENTITYMATRIX(F, n);
    for i := 1 to n \operatorname{div} 2 do A[i, i] := \xi; end for;
     G := sub < CSP(n,q) | SP(n,q), A >;
     G`ORDER := ORDERSP(n, q) * m;
  end if:
  return G;
end intrinsic:
intrinsic INDEXOFSP(G :: \text{GRPMAT}) \rightarrow \text{RNGINTELT}
{The index of the symplectic group in G}
  F := \text{BASERING}(G);
  require ISA(TYPE(F), FLDFIN): "the base field should be finite";
  msg := "G should contain the symplectic
  group and be a subgroup of the conformal symplectic group";
  count := 0;
  repeat // at most 4 times
     flag := \operatorname{RecogNizeCLASSICAL}(G);
     count +:= 1;
  until flag or count gt 3;
  require flag and CLASSICALTYPE(G) eq "symplectic": msg;
  n := \text{DIMENSION}(G);
  std := STANDARDALTERNATINGFORM(n, F);
  ndx := [];
  for g in GENERATORS(G) do
     stdg := g * std * TRANSPOSE(g);
     \phi := stdg[1, n];
     require stdg eq \phi * std : msg ;
    APPEND(\sim ndx, ORDER(\phi));
  end for:
  return LCM(ndx);
end intrinsic;
```

Given an extended symplectic group G of index m over GF(q) there are two cases to consider when constructing conjugacy class representatives.

On the one hand, if (q - 1)/m is even and 2ms = q - 1, we have G = Sp(n,q)D, where $D = \{\zeta I \mid \zeta^s = 1\}$. In this case representatives of the conjugacy classes of *G* can be constructed from the conjugacy classes of Sp(n,q) by multiplying by scalar matrices. In particular, if $g \in \text{Sp}(n,q)$ and $z \in D$, then $C_G(zg) = C_{\text{Sp}(n,q)}(g)D$. Thus, if the index of ExtSp(n,q,m) in CSp(n,q) is even there are elements $g,h \in \text{ExtSp}(n,q,m)$ that are not conjugate in ExtSp(n,q,m) but are conjugate in CSp(n,q). On the other hand, if (q - 1)/m is odd, elements of *G* are conjugate in *G* if and only of they are conjugate in CSp(n, q).

To deal with the first case we need a function that transforms an invariant for $g \in \text{Sp}(n, q)$ to an invariant for ζg , where $\zeta \in \text{GF}(q)$.

Lemma 6.1. Given a polynomial f(t) of degree d and a non-zero element $\zeta \in k$, let $\tilde{f}(t) = \zeta^d f(\zeta^{-1}t)$. If f(t) is ϕ -symmetric, then $\tilde{f}(t)$ is $\zeta^2 \phi$ -symmetric.

Proof. Suppose that $f^{[\phi]}(t) = f(t)$. Then

$$\begin{split} \tilde{f}^{[\xi^2 \phi]} &= \tilde{f}(0)^{-1} t^d \, \tilde{f}(\xi^2 \phi t^{-1}) = f(0)^{-1} t^d \, f(\xi \phi t^{-1}) \\ &= \xi^d \, f^{[\phi]}(\xi^{-1} t) = \xi^d \, f(\xi^{-1} t) \\ &= \tilde{f}(t). \end{split}$$

In the notation of this lemma, the following function replaces every polynomial f(t) in *inv* by $\tilde{f}(t)$.

```
extendByScalar := function(inv, \zeta)
  F := \text{PARENT}(\zeta);
  P < t > := POLYNOMIALRING(F);
  if \zeta eq F \mid 1 then return \langle F \mid 1, inv \rangle; end if;
  newinv := {@ @};
  for polpart in inv do
     f, \mu := \text{EXPLODE}(polpart);
     ff := \zeta^{\text{DEGREE}(f)} * \text{EVALUATE}(f, \zeta^{-1} * t);
     INCLUDE(\sim newinv, < ff, \mu >);
  end for:
  return newinv;
end function;
intrinsic INTERNALCLASSINVARIANTSEXTSP(d :: RNGINTELT, q :: RNGINTELT,
    m :: RNGINTELT) \rightarrow SEQENUM
{The conjugacy class invariants for the extended symplectic
  group ExtendedSp(d,q,m) of index m, q odd}
  if m eq q - 1 then return INTERNALCLASSINVARIANTSCSP(d, q); end if;
  if m eq 1 then return INTERNALCLASSINVARIANTSSP(d, q); end if;
  require ISODD(q): "q must be odd";
  require m gt 0: "the index should be positive";
  divides, r := ISDIVISIBLEBY(q - 1, m);
  require divides: "the index should divide q - 1";
  F := GF(q);
  \xi := \text{PRIMITIVEELLEMENT}(F);
  if ISEVEN(r) then
     s := r div 2;
     X := INTERNALCLASSINVARIANTSSP(d, q);
     invList := [];
     for i := 1 to m do
```

```
 \begin{aligned} \zeta &:= \xi^{(s*i)}; \\ \text{for inv in X do} \\ & \text{APPEND}(\sim invList, < \zeta^2, extendByScalar(inv, \zeta)>); \\ & \text{end for}; \\ & \text{end for}; \\ & \text{else} \\ & mgrp := \{ \xi^{(r*i)} : i \text{ in } [1..m] \}; \\ & invList := [ v : v \text{ in } \text{INTERNALCLASSINVARIANTSCSP}(d, q) \mid v[1] \text{ in } mgrp ]; \\ & \text{end if}; \\ & \text{return } invList; \\ & \text{end intrinsic}; \end{aligned}
```

The conjugacy classes of ExtSp(d, q), q odd

```
The conjugacy classes of EXTENDEDSP(d, q, m).
classesExtSp := function(d, q, m)
  if m eq q - 1 then return classesCSp(d, q); end if;
  if m eq 1 then return classesSp(d,q); end if;
   divides, r := ISDIVISIBLEBY(q - 1, m);
  assert divides;
  \xi := \mathsf{PRIMITIVEELLEMENT}(\mathsf{GF}(q));
   cc := [car < INTEGERS(), INTEGERS(), EXTENDEDSP(d, q, m) > ];
  L := [];
  if ISEVEN(r) then
     \alpha := \xi^{(r \operatorname{div} 2)};
     X := INTERNALCLASSINVARIANTSSp(d, q);
     ord := ORDERSP(d, q);
     invList := [];
     for i := 1 to m do
        \zeta := \alpha^{i};
        for inv in X do
           \mu := extendByScalar(inv, \zeta);
           tag := <\zeta^2, \mu >;
           g := INTERNALREPMATRIXCSP(tag);
           APPEND(\sim cc, < ORDER(g), ord div centraliserOrderSp(inv), g >);
           APPEND(\sim L, tag);
        end for:
     end for;
  else
     ord := ORDERCSP(d, q);
     mgrp := \{ \xi^{(r*i)} : i \text{ in } [1..m] \};
     X := INTERNALCLASSINVARIANTSCSP(d, q);
     for inv in X do
        if inv[1] in mgrp then
           g := INTERNALREPMATRIXCSP(inv);
```

```
\begin{array}{l} & \text{APPEND}(\sim cc, < \text{ORDER}(g), \ ord \ \textit{div} \ centraliserOrderCSp(inv), \ g >); \\ & \text{APPEND}(\sim L, inv); \\ & \text{end if;} \\ & \text{end for;} \\ & \text{end if;} \\ & \text{PARALLELSORT}(\sim cc, \ \sim L); \\ & \text{return } cc, \ L; \\ & \text{end function:} \end{array}
```

The following intrinsic is called by INTERNALCLASSESCLASSICAL which itself is called by the C code matg/access.c/matg_ensure_classes.

intrinsic INTERNALCLASSESEXTENDEDSP($G :: \text{GRPMAT}) \rightarrow \text{BOOLELT}$

```
{Internal function: attempt to assign the conjugacy classes
of the extended symplectic group. Return true if successful}
/*
    It is assumed that this function is called only when it is known
    that G is a finite symplectic group.
 */
  F := BASERING(G);
  n := \text{DIMENSION}(G);
  M := STANDARDALTERNATINGFORM(n, F);
  if forall{ g : g in GENERATORS(G) | g * M * TRANSPOSE(g) eq M } then
    m := 1;
    std := true;
  else
    forms := SEMIINVARIANTBILINEARFORMS(G);
    if not exists(alt){ t : t in forms | not ISEMPTY(t[3]) } then
      vprint CLASSES: "no (semi-)invariant alternating form";
      return false:
    end if:
    J := alt[3][1];
    X := TRANSFORMFORM(J, "symplectic"); assert Type(X) ne BOOLELT;
    m := \text{LCM}([\text{ORDER}(g) : g \text{ in } alt[1]]);
    std := J eq M;
  end if:
  vprint CLASSES: "Standard copy:", std;
  L := [ ];
  q := \#F;
  if ISEVEN(q) then
    if m eq 1 then
      cc, L := CLASSICALCONJUGACYCLASSES("Sp", n, q);
      G`LABELS A := L;
    else
      vprint CLASSES: "extended symplectic group in characteristic 2";
      return false;
    end if;
```

```
else
    cc, L := classesExtSp(n, q, m);
    G`LABELS_S := {@ x : x \text{ in } L @};
 end if;
 if m eq 1 then
    G`CLASSICALTYPE := "Sp";
 elif m eq q-1 then
    G`CLASSICALTYPE := "CSp";
 else
    G`CLASSICALTYPE := "ExtSp";
 end if:
 if not std then
    cc := [ < t[1], t[2], X * t[3] * X^{-1} > : t \text{ in } cc ];
 end if;
 vprint CLASSES: "assigning symplectic classes";
 G`CLASSES := cc;
 return true:
end intrinsic;
```

References

- [1] J. R. Britnell. *Cycle index methods for matrix groups over finite fields*. DPhil Thesis, University of Oxford, 2003.
- [2] S. Haller and S. H. Murray. Computing conjugacy in finite classical groups 1: similarity in unitary groups. preprint, January 2009.
- [3] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, second edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications.
- [4] J. Milnor. On isometries of inner product spaces. Invent. Math., 8:83-97, 1969.
- [5] S. H. Murray. Computing conjugacy in finite classical groups 2: similarity in symplectic and orthogonal groups. preprint, July 2007.
- [6] K. Shinoda. The characters of Weil representations associated to finite fields. *J. Algebra*, 66(1):251–280, 1980.
- [7] T. A. Springer and R. Steinberg. Conjugacy classes. In Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), Lecture Notes in Mathematics, Vol. 131, pages 167–266. Springer, Berlin, 1970.
- [8] G. E. Wall. On the conjugacy classes in the unitary, symplectic and orthogonal groups. *J. Aust. Math. Soc.*, 3:1–62, 1963.
- [9] J. Williamson. On the normal forms of linear canonical transformations in dynamics. *Amer. J. Math.*, 59(3):599–617, 1937.