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Part I. Coxeter groups

Definition
A Coxeter matrix of rank n is a symmetric n× n matrix M = (mij) with
non-negative integer entries such that mii = 1 for all i ∈ [n] = {1, . . . , n}.

Definition
The Coxeter group associated with the Coxeter matrix M is the group
W(M) with generators R = {ri | i = 1, . . . , n} and relations

(rirj)
mij = 1 for all i, j ∈ [n].

The pair (W(M), R) is a Coxeter system.

It is a theorem that the order of rirj is mij when mij 6= 0 and that it is
infinite when mij = 0. In particular, the generators have order 2.



Coxeter groups in MAGMA

MAGMA can represent a Coxeter group in three ways:

1 as a finitely presented group: i.e., by generators and relations, as
on the previous slide;

2 as a permutation group;
3 as a matrix group

By the way, typing CoxeterGroup; at a MAGMA prompt produces a
large list of signatures. You can cut this down a bit by asking for just
those signatures which involve a given category.
> ListSignatures(CoxeterGroup,GrpPermCox);



MAGMA code: infinite Coxeter groups

If the group W(M1) of a Coxeter matrix M1 is infinite, the intrinsic
function CoxeterGroup(M1) returns a finitely presented group.

> M1 := Matrix(3,3,[1,3,3, 3,1,3, 3,3,1]);
> IsCoxeterMatrix(M1);
true
> W1 := CoxeterGroup(M1);
> IsFinite(W1);
false
> W1;
Coxeter group: Finitely presented group on 3 generators
Relations

$.1 * $.2 * $.1 = $.2 * $.1 * $.2
$.1 * $.3 * $.1 = $.3 * $.1 * $.3
$.2 * $.3 * $.2 = $.3 * $.2 * $.3
$.1^2 = Id($)
$.2^2 = Id($)
$.3^2 = Id($)



MAGMA code: finite Coxeter groups

The Coxeter matrix of a finite Coxeter group can be obtained by
giving its ‘Cartan name’. For example,
> M2 := CoxeterMatrix("A2H3");
> M2;
[1 3 2 2 2]
[3 1 2 2 2]
[2 2 1 5 2]
[2 2 5 1 3]
[2 2 2 3 1]

In this case W(M2) is finite and so CoxeterGroup(M2) returns a
permutation group. The finitely presented group is obtained by
explicitly referring to the category GrpFPCox:
> FPW2 := CoxeterGroup(GrpFPCox,M2);



MAGMA code: Coxeter groups as matrix groups
The representation of W(M2) as a matrix group is obtained by
specifying GrpMat as the category.
> MW2 := CoxeterGroup(GrpMat,M2);
> MW2:Minimal;
MatrixGroup(5, Number Field with defining polynomial x^2 - x - 1 over
the Rational Field) of order 2^4 * 3^2 * 5
> CartanName(MW2);
A2 H3

Every Coxeter group has a matrix representation but not necessarily a
permutation representation in MAGMA.
> MW1 := CoxeterGroup(GrpMat,M1);
> IsFinite(MW1);
false

> PW1 := CoxeterGroup(GrpPermCox,M1);
> > PW1 := CoxeterGroup(GrpPermCox,M1);

∧

Runtime error in ’CoxeterGroup’: Only finite groups have a permutation
representation



Coxeter diagrams

Definition
The Coxeter diagram of a Coxeter group W(M), where M is a Coxeter
matrix of rank n is the labelled graph on n vertices {vi | i ∈ [n]} such
that for i 6= j there is an edge labelled mij between vi and vj whenever
mij > 3. If mij = 0 the vertices vi and vj are joined by an edge labelled∞. If mij = 3, the label is usually omitted.

> CoxeterDiagram(MW2);

A2 1 - 2

H3 3 –- 4 - 5
5

Coxeter introduced these diagrams in 1931 and in 1946 E. B. Dynkin
used similar diagrams in his work on semisimple Lie algebras.



Roots and reflections
The usual notion of reflection is an orthogonal transformation which
fixes every vector of some hyperplane and sends the vectors
perpendicular to the hyperplane to their negatives.

That is, if E is a finite dimensional Euclidean space with inner
product (−,−), then a reflection in E is a linear transformation r
which can be defined by the formula

r(v) = v −
2(v, a)
(a, a)

a

for some vector a, called a root of r. The reflecting hyperplane is a⊥.

vr(v)

a−a

a⊥



Coxeter groups and reflections

Given a Coxeter group W = W(M) defined by a Coxeter matrix of
rank n, let V be the real vector space of dimension n with basis
{ei | i ∈ [n]} and define an inner product (−,−) on V by

(ei, ej) =

{
−1 mij = 0,

− cos(π/mij) mij 6= 0.

For i ∈ [n], let σi be the reflection

σi(v) = v − 2(v, ei)ei.

The map ri 7→ σi extends to an isomorphism σ from W to the
subgroup of GL(V) generated by the reflections σi. The space V is the
reflection representation of W.

A Coxeter group is finite if and only if the inner product defined
above is positive definite; i.e., it is a Euclidean reflection group.



The root system
Identify W with its image σ(W). Then the vectors ei are roots of the
reflections ri: they are called the simple roots of W.

If r ∈W is a reflection and if ar is a root of r such that (ar, ar) = 1, we
may choose ar so that it is a non-negative linear combination of simple
roots. The set Φ+ of the ar is the set of positive roots of W. The root
system is Φ = Φ+ ∪ (−Φ+).

> W := CoxeterGroup("E7");
> Phi := RootSystem(W);
> NumPosRoots(Phi);
63

The permutation representation of W used by MAGMA is on the set of
roots.

> W;
Coxeter group: Permutation group W acting on a set of cardinality 126
Order = 2903040 = 2^10 * 3^4 * 5 * 7



A graph on 27 vertices

> E7 := CoxeterGroup("E7");
> R := RootSystem(E7);
> J := CoxeterForm(R);
> V := VectorSpace(Rationals(),7,J);
> P := PositiveRoots(R);
> ChangeUniverse(~P,V);
> X := { v : v in P | v[7] eq 1};
> #X;
27
> A := Matrix(27,27,[2*InnerProduct(u,v) : u,v in X])
> - 2*IdentityMatrix(Integers(),27);
> gr := Graph< 27 | A >;
> G := AutomorphismGroup(gr);
> #G;
51840
> flag, _ := IsIsomorphic(G,CoxeterGroup("E6"));
> flag;
true



Weyl groups, Lie algebras, reductive algebraic groups

Definition
A Weyl group is a Coxeter group W whose reflection representation
has a W-invariant Z-lattice. Therefore its elements can be represented
by matrices with integer entries.

If W is a Weyl group it is customary to scale the roots so that every
root is an integer linear combination of simple roots.

Weyl groups are associated with semisimple Lie algebras and with
reductive algebraic groups.

In order to describe the correspondence between Weyl groups and
groups of Lie type we need the concept of a root datum.

The correspondence is between reductive algebraic groups and pairs
(R, F), where R is a root datum with Weyl group W, and F is a field.



Root data

A root datum is a 4-tuple (X,Φ, Y,Φ∗) such that:

X and Y are free Z-modules of finite rank in duality via a pairing
(x, y) 7→ 〈x, y〉;
Φ is a finite subset of X and Φ∗ is a finite subset of Y;

there is a bijection Φ→ Φ∗ : α 7→ α∗ such that 〈α,α∗ 〉 = 2;

for α ∈ Φ the map rα(x) = x − 〈x,α∗ 〉α is a reflection which
preserves Φ;

for α ∈ Φ the map r∗α(y) = y − 〈α, y)α∗ is a reflection which
preserves Φ∗.

Given a root datum Σ, for every field F there is a unique connected
reductive group G(F) with a maximal torus T such that Σ is the root
datum of G(F) with respect to T. (The reflections rα generate the Weyl
group of G(F).)



Hecke algebras

Let (W, R) be a Coxeter system and let L = Z[q−1, q] be the ring of
Laurent polynomials.

Definition
The Hecke algebra H of (W, R) is the associative L-algebra generated by
elements {Tr | r ∈ R} subject to the relations

T2
r = 1 + (q − q−1)Tr

TrTsTr · · ·︸ ︷︷ ︸
mrs

= TsTrTs · · ·︸ ︷︷ ︸
mrs

where mrs is the order of rs.



W-graphs

Let (W, R) be a Coxeter system.

Definition
A W-graph is a (directed or undirected) graph with vertex labels and
edge weights. The label attached to a vertex v is a subset of R (called
the descent set of v) and the edge weights are scalars (usually integers).
If Γ is the vertex set, E the edge set, and µ : E→ Z the edge weights,
the free L-module LΓ should be an H-module with respect to the
action

uTr =


−q−1u u ∈ I(u),

qu +
∑

{v∈V | s∈I(v)}

µ(v, u)v s /∈ I(u).



Sparse matrix representations

> C6 := SymmetricMatrix(
> [1, 3,1, 2,3,1, 2,3,2,1, 2,2,2,3,1, 2,2,3,2,2,1]);
> E6 := CoxeterGroup(GrpFPCox,C6);

> specht32, A4 := Partition2WGtable([3,2]); // dimension 5
> table := InduceWGtable([1,2,4,5],specht32,E6);
> wg := WGtable2WG(table);

> Hreps := WG2HeckeRep(E6,wg);
> #Hreps;
6
> Hreps[1];
Sparse matrix with 2160 rows and 2160 columns over
Univariate rational function field over Integer Ring
> Greps := WG2GroupRep(E6,wg);
> Greps[1];
Sparse matrix with 2160 rows and 2160 columns over Integer Ring



Part II. Pseudo-reflections

Let V be a vector space of dimension n.

A pseudo-reflection [Bourbaki] is a linear transformation of V whose
space of fixed points is a hyperplane. This includes transvections and
projections as well as reflections in Euclidean and Hilbert spaces.

If r is a pseudo-reflection, a root of r is vector a which spans Im(1 − r).
Then there exists ϕ ∈ V∗ such that r = ra,ϕ, where

vra,ϕ = v −ϕ(v)a.

The linear functional ϕ is the dual root of a and kerϕ is the
hyperplane of fixed points of r.

If ϕ(a) 6= 0, 1 the pseudo-reflection ra,ϕ is a reflection.

We have r(a) = (1 −ϕ(a))a and therefore, if the order of r is finite,
ζ = 1 −ϕ(a) is a root of unity.



Unitary reflection groups

A complex reflection group is a group G generated by a (finite) number
of reflections (of finite order) of a vector space V over C.

If G is finite, then G preserves a positive definite hermitian form
(−,−) and so G is generated by unitary reflections, where the action
of a unitary reflection ra with root a and eigenvalue ζ is given by

vra = v − (1 − ζ)
(v, a)
(a, a)

a.

In this case we say that G is a unitary reflection group.

The vector
(1 − ζ)

(a, a)
a is the coroot of a.



Example: the group G6

The Shephard and Todd group W = G6 is a primitive complex
reflection group of rank 2. It is isomorphic to Z4 ◦ SL2(F3) and it is
generated by a reflection r or order 2 and a reflection s of order 3:

r =
(

−1 0
−i(1 +

√
3) 1

)
and s =

(
1 −ω2

0 ω

)

There are 6 conjugates of r and
4 conjugates of s. The group is
defined over the field
K = Q[i,ω], where i2 = −1 and
ω3 = 1.

G6

B(4)
2

L2 B(2)
2

2A1

L1 A1



Complex reflection groups in MAGMA

The function ShephardTodd(n) returns the primitive Shephard and
Todd group Gn.

The generating matrices are written over the ring of integers of the
minimal field of Gn, which is the field generated by the character
values of the reflection representation.

By default the ambient field of Gn in MAGMA is a cyclotomic field,
which in some cases is larger than the minimal field. If you wish you
can instruct MAGMA to use a number field (with slower arithmetic
operations).

The function ShephardTodd(m,p,n) returns the imprimitive complex
reflection group G(m, p, n).



MAGMA code
> G := ShephardTodd(6);
> G;
MatrixGroup(2, Cyclotomic Field of order 12 and degree 4)
Generators:

[ -1 0]
[-z^3 - 2*z^2 + 1 1]

[ 1 z^2]
[ 0 z^2 - 1]

> G := ShephardTodd(6 : NumFld);
> G;
MatrixGroup(2, Number Field with defining polynomial
[ x^2 + 1, x^2 + x + 1 ] over the Rational Field)
Generators:

[ -1 0]
[-i - 2*omega - 1 1]

[ 1 omega + 1]
[ 0 omega]



Complex root data

Let D be the ring of integers of a number field F and assume that F
admits a well-defined operation of complex conjugation.

Let L and L∗ be free D-modules of rank n in duality via a pairing
L× L∗ → D : (a,ϕ) 7→ 〈a,φ〉. Let µ(D) be the group of roots of unity
in D and let V = F⊗D L.

A complex root datum is a 4-tuple (L, L∗,Φ, ρ), where Φ is a finite
subset of L and ρ is a map from Φ to L∗ such that, for all a ∈ Φ:

1 for all λ ∈ F, we have λa ∈ Φ if and only if λ ∈ µ(D);
2 for all λ ∈ µ(D), we have ρ(λa) = λρ(a);
3 f (a) = 1 − 〈a, ρ(a)〉 ∈ µ(D) \ {1};
4 the reflection ra of V defined by ra(v) = v − 〈v, ρ(a)〉a and the

reflection r∗a of V∗ defined by r∗a (ϕ) = ϕ− 〈a,ϕ〉ρ(a) satisfy:
I ra(Φ) ⊆ Φ and r∗a (Φ∗) ⊆ Φ∗, where Φ∗ = ρ(Φ).
I f (rb(a)) = f (a), for all a, b ∈ Φ.



The complex Weyl group

The Weyl group of a complex root datum Σ = (L, L∗,Φ, ρ) is the group
W = W(Σ) generated by the reflections { ra | a ∈ Φ }.

The group W is finite and acts faithfully on Φ. Furthermore,
w(a∗) = w(a)∗ and wraw−1 = rw(a), where a∗ = ρ(a) and the action of
W on V∗ is given by w(ϕ) = ϕw−1.

> roots, coroots, rho, W, J := ComplexRootDatum(27);
> K := BaseRing(J);
> V := VectorSpace(K,Nrows(J),J);
> roots := ChangeUniverse(roots,V);
> coroots := ChangeUniverse(coroots,V);
> rho := map< roots->coroots | a :-> rho(a) >;
> R := {@ W!PseudoReflection(a,rho(a)) : a in roots @};
> R[1];
[ -1 0 0]
[ 1 1 0]
[-z^4 - z 0 1]



Complex Cartan matrices

Suppose that K ⊆ C is a field and that A and B are `× n matrices over
K, where ` > n.

Let a1, a2, . . . , a` be the rows of A and let b1, b1, . . . , b` be the rows
of B.

For 1 6 i 6 ` we have a pseudo-reflection ri of V = Cn defined by

vri = v − vbT
i ai.

The pseudo-reflections r1, r2, . . . , r` are reflections of finite order if
and only if the diagonal elements of I − ABT are roots of unity 6= 1. In
this case we say that C = ABT is a complex Cartan matrix.

(Note that if C is an `× ` matrix of rank n then C = ABT for some
`× n matrices A and B.)



The reflection group G3,3,3

> A,B,J,gen,ord := ComplexRootMatrices(3,3,3);
> A;
[ 1 -1 0]
[ 0 1 -1]
[ 0 1 -z]
> B;
[ 1 -1 0]
[ 0 1 -1]
[ 0 1 z + 1]
> gen,ord;
-z
6
> BaseRing(J);
Cyclotomic Field of order 3 and degree 2
> r := PseudoReflection(A[3],B[3]);
> r;
[ 1 0 0]
[ 0 0 z]
[ 0 -z - 1 0]



The reflection group G27 = J(5)3

> A,B,J, gen, ord := ComplexRootMatrices(27 : NumFld);
> // A is the identity matrix
> B;
[ 2 -1 omega*tau + tau]
[ -1 2 -1]
[ -omega*tau -1 2]
> gen, ord;
-omega
6
> r1 := PseudoReflection(A[1],B[1]);
> r1;
[ -1 0 0]
[ 1 1 0]
[-omega*tau - tau 0 1]



Reflection subgroups and parabolic subgroups

Suppose that G is a finite unitary reflection group acting on V.

A reflection subgroup of G is simply a subgroup which is generated by
reflections.

The support of a reflection subgroup H is the subspace of V spanned
by the roots of the reflections in H; the rank of H is the dimension of
its support.

A subgroup of G is parabolic if it is the pointwise stabiliser G(X) of a
subspace X of V. By a theorem of Steinberg, every parabolic
subgroup is a reflection subgroup.

The parabolic closure of a reflection subgroup H is the group
G(Fix(H)); it is the smallest parabolic subgroup which contains H.



Simple extensions

What are the reflection subgroups of a unitary reflection group and
which ones are parabolic?

Theorem
Suppose that H is a reflection subgroup of the finite unitary reflection group
G and suppose that K = 〈H, r〉, where r is a reflection. If K is parabolic and
the rank of K is greater than the rank of H, then H is parabolic.

Corollary
If the rank of G is n and if R = {r1, . . . , rn} is a set of n reflections which
generate G, then every subset of R generates a parabolic subgroup.

Note. Not every reflection group of rank n can be generated by n
reflections; some require n + 1 reflections.



Reflection subgroups of G24 = J(4)3

J(4)
3

B3.1 B3.2

A1B2

3A1.1 A3.1 A3.2 3A1.2

B2

2A1.1 A2 2A1.2

A1



MAGMA code
> orbit_reps := function(G,T)
> reps := [];
> while #T gt 0 do
> t := Rep(T);
> Append(~reps,t);
> S := t^G;
> T := { x : x in T | x notin S };
> end while;
> return reps;
> end function;
>
> extendGrp := function(W, refreps, H)
> N := Normaliser(W,H);
> X := [ r : r in refreps | r notin H ];
> orbreps := orbit_reps(N,X);
> return [ G : r in orbreps |
> not exists{ E : E in Self() | IsConjugate(W,E,G) }
> where G is sub< W | H, r > ];
> end function;


