On the dimension of affine domains

D. E. Taylor

21 January, 2014

Given a field k, an affine domain over k is an integral domain A which is finitely generated as a k-algebra; that is $A \simeq k\left[x_{1}, \ldots, x_{n}\right] / p$ for some prime ideal \mathfrak{p} of a polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$.
The dimension of $A(\operatorname{denoted} \operatorname{by} \operatorname{dim} A)$ is the supremum of the integers n such that A contains a chain $\mathfrak{p}_{0} \subset \mathfrak{p}_{1} \subset \cdots \subset \mathfrak{p}_{n}$ of prime ideals. The height of a prime ideal \mathfrak{p} of A is the dimension of the localisation $A_{\mathfrak{p}}$ of A at \mathfrak{p}; that is, ht $\mathfrak{p}=\operatorname{dim} A_{\mathfrak{p}}$.

Theorem 1. Let \mathfrak{p} be a prime ideal of an affine domain A and suppose that $h t \mathfrak{p}=1$. Then $\operatorname{dim} A / \mathfrak{p}=\operatorname{dim} A-1$.

The purpose of this note is to prove this theorem, based on the following results.
(i) A polynomial ring over a field is a unique factorisation domain.
(ii) Chapter 5 of [1] on (a) integral dependence, (b) the 'going-up' theorem, and (c) the 'going-down' theorem.
(iii) Noether's normalisation theorem as in [2, Theorem A.12].

The following lemma is a revised version of [2, Lemma A.13].
Lemma 2. Let $A \subseteq B$ be integral domains, A integrally closed, B integral over A. Then $\operatorname{dim} A=\operatorname{dim} B$ and for all prime ideals \mathfrak{q} of B, the ideal $\mathfrak{p}=\mathfrak{q} \cap A$ is a prime ideal of A such that ht $\mathfrak{p}=\mathrm{ht} \mathfrak{q}$ and $\operatorname{dim} A / \mathfrak{p}=\operatorname{dim} B / \mathfrak{q}$.

Proof. By the 'going-up' theorem, given a chain of prime ideals

$$
\mathfrak{p}_{0} \subset \mathfrak{p}_{1} \subset \cdots \subset \mathfrak{p}_{s}=\mathfrak{p} \subset \mathfrak{p}_{1} \subset \cdots \subset \mathfrak{p}_{n}
$$

of A, there is a chain of prime ideals $\mathfrak{q}_{s} \subset \cdots \subset \mathfrak{q}_{n}$ of B such that $\mathfrak{p}_{i}=\mathfrak{q}_{i} \cap A$ for $s \leq$ $i \leq n$. And by the 'going-down' theorem there is a chain of prime ideals $\mathfrak{q}_{0}^{\prime} \subset \cdots \subset \mathfrak{q}_{s}^{\prime}$ of B such that $\mathfrak{p}_{i}=\mathfrak{q}_{i}^{\prime} \cap A$ for $0 \leq i \leq s$. Thus ht $\mathfrak{p} \leq \operatorname{ht} \mathfrak{q}$ and $\operatorname{dim} A / \mathfrak{p} \leq \operatorname{dim} B / \mathfrak{q}$.
Conversely, if

$$
\mathfrak{q}_{0} \subset \mathfrak{q}_{1} \subset \cdots \subset \mathfrak{q}_{s}=\mathfrak{q} \subset \mathfrak{q}_{1} \subset \cdots \subset \mathfrak{q}_{n}
$$

is a chain of prime ideals of B, then the ideals $\mathfrak{p}_{i}=\mathfrak{q}_{i} \cap A$ form a chain of distinct prime ideals of A. Hence ht $\mathfrak{p} \geq \mathrm{ht} \mathfrak{q}$ and $\operatorname{dim} A / \mathfrak{p} \geq \operatorname{dim} B / \mathfrak{q}$. It follows that we have equalities ht $\mathfrak{p}=\operatorname{ht} \mathfrak{q}$ and $\operatorname{dim} A / \mathfrak{p}=\operatorname{dim} B / \mathfrak{q}$. In particular, $\operatorname{dim} A=\operatorname{dim} B$.

Lemma 3 (Nagata [3, Lemma (14.1)]). Let $A=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field k. If f is an element of A which is not in k, then there exist algebraically independent elements $y_{1}, y_{2}, \ldots, y_{n}$ in A with $y_{1}=f$ such that A is integral over $k\left[y_{1}, \ldots, y_{n}\right]$.

Proof. Given n-tuples of integers $d=\left(d_{1}, \ldots, d_{n}\right)$ and $e=\left(e_{1}, \ldots, e_{n}\right)$ then $x^{e}=$ $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}$ is a monomial in A and we define its weight to be $d_{1} e_{1}+\cdots+d_{n} e_{n}$. Choose d with $d_{1}=1$ so that no two monomials in f have the same weight and put $y_{i}=x_{i}-x_{1}^{d_{i}}$ for $2 \leq i \leq n$. Then $f=a x_{1}^{h}+g\left(x_{1}, y_{2}, \ldots, y_{n}\right)$ where g is a polynomial whose degree in x_{1} is less than h and where $a \in k$ is the coefficient of the term with the highest weight in f. Thus x_{1} is integral over $B=k\left[f, y_{2}, \ldots, y_{n}\right]$ and hence $x_{i}=y_{i}+x_{1}^{d_{i}}$ is integral over B for $2 \leq i \leq n$. Therefore A is integral over B and consequently the elements f, y_{2}, \ldots, y_{n} are algebraically independent.

Lemma 4 (Nagata [3, Theorem (13.1)]). If A is a unique factorisation domain then every prime ideal p of height 1 in A is a principal ideal.

Proof. Every nonzero element of A is a product of irreducible elements. Therefore, if $0 \neq r \in \mathfrak{p}$, where \mathfrak{p} is a prime ideal, it follows that \mathfrak{p} contains an irreducible factor f of r. In a unique factorisation domain, every irreducible element is prime and so the ideal (f) is prime. Thus if ht $p=1$, then $(f)=\mathfrak{p}$.

Remark 5. Nagata also proved the converse of this result. Namely, if A is a Noetherian integral domain in which every prime ideal of height 1 is principal, then A is a unique factorisation domain. To prove this it suffices to show that every irreducible element is prime and this follows directly from Krull's principal ideal theorem.

Lemma 6. If k is a field and $A=k\left[x_{1}, \ldots, x_{n}\right]$, then $\operatorname{dim} A=n$.
Proof. The chain of prime ideals $0 \subset\left(x_{1}\right) \subset\left(x_{1}, x_{2}\right) \subset \cdots \subset\left(x_{1}, \ldots, x_{n}\right)$ has length n and therefore $\operatorname{dim} A \geq n$. The proof proceeds by induction on n and the lemma is certainly true when $n=0$. So suppose that $n>0$ and let $0=\mathfrak{p}_{0} \subset \mathfrak{p}_{1} \subset \cdots \subset \mathfrak{p}_{m}$ be a chain of prime ideals of A. We shall prove that $m \leq n$.
Choose a non-zero element $r \in \mathfrak{p}_{1}$. Then r is a product of irreducible polynomials and since \mathfrak{p}_{1} is prime, an irreducible factor of r belongs to \mathfrak{p}_{1}. Thus we may suppose that $\mathfrak{p}_{1}=(f)$, for some f. By Lemma 3 there exist algebraically independent elements $y_{1}=f, y_{2}, \ldots, y_{n}$ in A such that A is integral over $B=k\left[y_{1}, \ldots, y_{n}\right]$. Therefore $0 \subset \mathfrak{p}_{1} \cap B \subset \cdots \subset \mathfrak{p}_{m} \cap B$ is a chain of prime ideals of B of length m and their images modulo $\mathfrak{q}=\mathfrak{p}_{1} \cap B$ form a chain of prime ideals of length $m-1$ in $B / \mathfrak{q} \simeq k\left[y_{2}, \ldots, y_{n}\right]$. By induction $m-1 \leq n-1$ and so $m \leq n$, as required.

Proof of Theorem 1. We begin with a prime ideal \mathfrak{p} in an affine domain A over a field k such that ht $\mathfrak{p}=1$. By Noether's normalisation theorem there are algebraically independent elements x_{1}, \ldots, x_{n} in A such that A is integral over the polynomial ring $B=k\left[x_{1}, \ldots, x_{n}\right]$.

By Lemma 2 the ideal $\mathfrak{q}=\mathfrak{p} \cap B$ is a prime ideal of $B, \operatorname{ht}(\mathfrak{q})=1, \operatorname{dim} A / \mathfrak{p}=\operatorname{dim} B / \mathfrak{q}$, and $\operatorname{dim} A=\operatorname{dim} B$. Thus we may replace A by B and assume that $A=k\left[x_{1}, \ldots, x_{n}\right]$.

It follows from Lemma 4 that there exists $f \in A$ such that $\mathfrak{p}=(f)$. By Lemma 3, there exist algebraically independent elements $y_{1}=f, y_{2}, \ldots, y_{n}$ in A such that A is integral over $C=k\left[y_{1}, \ldots, y_{n}\right]$. By another application of Lemma 2 we may suppose that $A=C$. That is, we have reduced to the situation where \mathfrak{p} is the prime ideal $\left(y_{1}\right)$ in the polynomial ring $A=k\left[y_{1}, \ldots, y_{n}\right]$. Then $A / \mathfrak{p} \simeq k\left[y_{2}, \ldots, y_{n}\right]$ and by Lemma 6 we have $\operatorname{dim} A / \mathfrak{p}=n-1=\operatorname{dim} A-1$, as required.

References

[1] M. F. Atiyah and I. G. Macdonald. Introduction to Commutative Algebra. AddisonWesley, Reading, Massachusetts, 1969.
[2] G. I. Lehrer and D. E. Taylor. Unitary Reflection Groups. Cambridge University Press, Cambridge 2009.
[3] M. Nagata. Local rings. Interscience Tracts in Pure and Applied Mathematics, No. 13. Interscience Publishers a division of John Wiley \& Sons New York-London, 1962.

