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A. Motivating questions (Borcherds)

∙ How far is 𝜃B from being an equivalence? Can we construct
examples of well-known vertex algebras in the category
VA(A,H,SB) and understand their structure in that category?
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B. Motivating example (Dominic Joyce)

Let 𝒞 be a C-linear abelian category (+ conditions).

∙ e.g. C(Q)-mod, Coh(X ).

Form the moduli stack M of objects in 𝒞.

. . .H∙(M) has a structure of graded vertex algebra (after shifting
the grading).

Can we use a geometric approach to understand this better?
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C. Motivating question

Can we adapt Borcherds’ definition of a quantum
(A,H, S)-vertex algebra to the geometric setting?



D. Motivating definitions - chiral algebras

A chiral algebra on X is a right 𝒟-module 𝒜X on X equipped with
a Lie bracket

𝜇ch : j*j
* (𝒜X �𝒜X ) → ∆!𝒜X ∈ 𝒟(X × X ).



D. Motivating definitions - factorization
algebras

A factorization algebra on X consists of a collection of left
𝒟-modules {𝒜X I } on X I for any finite set I , subject to two kinds
of compatibility conditions:

1 Ran’s condition.
e.g. 𝜈 : 𝒜X

∼−→ ∆*𝒜X 2 .

2 Factorization isomorphisms.
e.g. c : j*(𝒜X 2) ∼−→ j*(𝒜X �𝒜X ).
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Example - lattice vertex algebra
[Borcherds]

Let (L, (·, ·)) be an even lattice.

Let VL = C[L] ⊗ Sym(L(1) ⊕ L(2) ⊕ · · · ), with the natural
bialgebra structure:

∙ Generators are denoted by e𝛼 ∈ C[L], T (i)(e𝛼) ∈ L(i), (𝛼 in a
basis of L).

∙ ∆(e𝛼) = e𝛼 ⊗ e𝛼; ∆(T ) = T ⊗ 1 + 1 ⊗ T .

Define (V L(I ) =
⨂︀

I V
L) ∈ Fun(Fin,A,T ,SB).



Now define a “bicharacter”

r : VL ⊗ VL → C[(x − y)±1]

∙ r(e𝛼 � e𝛽) = 𝜖𝛼,𝛽(x − y)(𝛼,𝛽).

∙ r(Tu � v) = d
dx (r(u � v)), etc.

This allows us to “twist” the natural commutative multiplication
on V L to get a singular multiplication map:

𝜇 :V L(1) ⊗ V L(2) → V L(1 : 2).

Indeed, we define

VL ⊗ VL → VL ⊗ VL ⊗ C [(x − y)±1]

u � v ↦→
∑︁

u(1)v(1)r(u(2) � v(2)).



Then 𝜃B(V L) is the well-known lattice vertex algebra structure on
the vector space VL.
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Definitions - vertex algebras

A vertex algebra V = (V, |0⟩,T ,Y (·, z)) consists of the following
data:

∙ The space of states: a complex vector space V.

∙ The vacuum vector: |0⟩ ∈ V.

∙ The translation operator: T : V → V a linear map.

∙ The vertex operators: Y (·, z) : V → EndV[[z , z−1]];we write

Y (A, z) =
∑︁
n∈Z

A(n)z
−n−1,

with A(n) ∈ EndV.

These data are subject to a bunch of axioms.
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