Chiral algebras, factorization algebras, and Borcherds's "singular commutative ring" approach to vertex algebras

Emily Cliff

University of Illinois at Urbana-Champaign

14 May, 2019

Section 1

Motivation

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

vertex algebras

chiral algebras

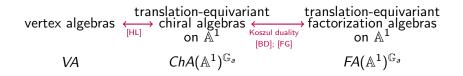
factorization algebras

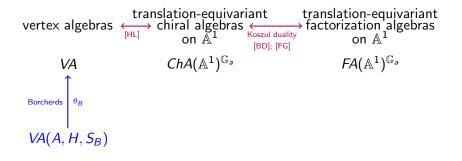
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

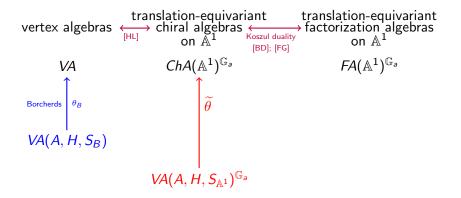
vertex algebras chiral algebras $\xleftarrow[BD]; [FG]$ factorization algebras

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで



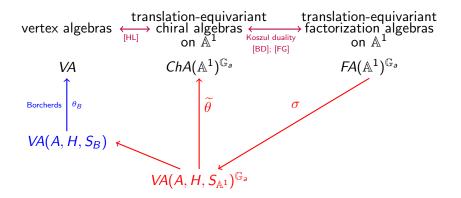


・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト



イロト 不得 トイヨト イヨト

э



A. Motivating questions (Borcherds)

<ロ> <回> <回> <回> <三> <三> <三> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

A. Motivating questions (Borcherds)

 How far is θ_B from being an equivalence? Can we construct examples of well-known vertex algebras in the category VA(A, H, S_B) and understand their structure in that category?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let C be a \mathbb{C} -linear abelian category (+ conditions).

Let C be a \mathbb{C} -linear abelian category (+ conditions).

• e.g. $\mathbb{C}(Q)$ -mod, Coh(X).

Form the moduli stack \mathfrak{M} of objects in \mathcal{C} .

Let C be a \mathbb{C} -linear abelian category (+ conditions).

• e.g. $\mathbb{C}(Q)$ -mod, Coh(X).

Form the moduli stack \mathfrak{M} of objects in \mathcal{C} .

 \dots $H_{\bullet}(\mathfrak{M})$ has a structure of graded vertex algebra (after shifting the grading).

Let C be a \mathbb{C} -linear abelian category (+ conditions).

• e.g. $\mathbb{C}(Q)$ -mod, $\operatorname{Coh}(X)$.

Form the moduli stack \mathfrak{M} of objects in \mathcal{C} .

 \dots $H_{\bullet}(\mathfrak{M})$ has a structure of graded vertex algebra (after shifting the grading).

Can we use a geometric approach to understand this better?

C. Motivating question

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Can we adapt Borcherds' definition of a quantum (A, H, S)-vertex algebra to the geometric setting?

D. Motivating definitions - chiral algebras

A chiral algebra on X is a right \mathcal{D} -module \mathcal{A}_X on X equipped with a Lie bracket

$$\mu^{ch}: j_*j^* (\mathcal{A}_X \boxtimes \mathcal{A}_X) \to \Delta_! \mathcal{A}_X \in \mathcal{D}(X \times X).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

D. Motivating definitions - factorization algebras

A factorization algebra on X consists of a collection of left \mathcal{D} -modules $\{\mathcal{A}_{X'}\}$ on X' for any finite set I, subject to two kinds of compatibility conditions:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

D. Motivating definitions - factorization algebras

A factorization algebra on X consists of a collection of left \mathcal{D} -modules $\{\mathcal{A}_{X'}\}$ on X' for any finite set I, subject to two kinds of compatibility conditions:

1 Ran's condition. e.g. $\nu : \mathcal{A}_X \xrightarrow{\sim} \Delta^* \mathcal{A}_{X^2}$.

D. Motivating definitions - factorization algebras

A factorization algebra on X consists of a collection of left \mathcal{D} -modules $\{\mathcal{A}_{X^{I}}\}$ on X^{I} for any finite set I, subject to two kinds of compatibility conditions:

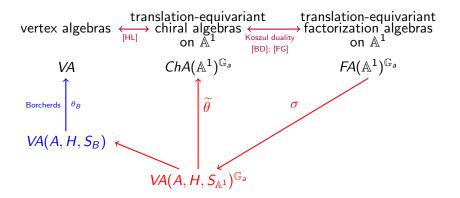
1 Ran's condition. e.g. $\nu : \mathcal{A}_X \xrightarrow{\sim} \Delta^* \mathcal{A}_{X^2}$.

2 Factorization isomorphisms. e.g. $c : j^*(\mathcal{A}_{X^2}) \xrightarrow{\sim} j^*(\mathcal{A}_X \boxtimes \mathcal{A}_X)$.

Goal

イロト 不得 トイヨト イヨト

э



Example - lattice vertex algebra [Borcherds]

Let $(L, (\cdot, \cdot))$ be an even lattice.

Let $V_L = \mathbb{C}[L] \otimes \text{Sym}(L(1) \oplus L(2) \oplus \cdots)$, with the natural bialgebra structure:

- Generators are denoted by e^α ∈ C[L], T⁽ⁱ⁾(e^α) ∈ L(i), (α in a basis of L).
- $\Delta(e^{\alpha}) = e^{\alpha} \otimes e^{\alpha}; \ \Delta(T) = T \otimes 1 + 1 \otimes T.$

Define $(V^{L}(I) = \bigotimes_{I} V^{L}) \in \operatorname{Fun}(Fin, A, T, S_{B}).$

Now define a "bicharacter"

$$r: V_L \otimes V_L \to \mathbb{C}[(x-y)^{\pm 1}]$$

•
$$r(e^{\alpha} \boxtimes e^{\beta}) = \epsilon_{\alpha,\beta}(x - y)^{(\alpha,\beta)}$$
.
• $r(Tu \boxtimes v) = \frac{d}{dx}(r(u \boxtimes v))$, etc.

This allows us to "twist" the natural commutative multiplication on V^L to get a singular multiplication map:

$$\mu: \mathcal{V}^{\mathcal{L}}(1) \otimes \mathcal{V}^{\mathcal{L}}(2) \to \mathcal{V}^{\mathcal{L}}(1:2).$$

Indeed, we define

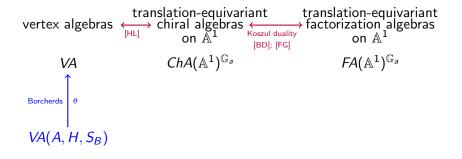
$$V_L \otimes V_L \to V_L \otimes V_L \otimes C[(x-y)^{\pm 1}]$$
$$u \boxtimes v \mapsto \sum u_{(1)}v_{(1)}r(u_{(2)} \boxtimes v_{(2)}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

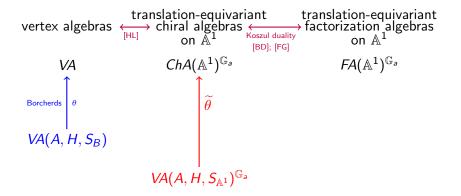
Then $\theta_B(V^L)$ is the well-known lattice vertex algebra structure on the vector space V_L .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Recall - Goals



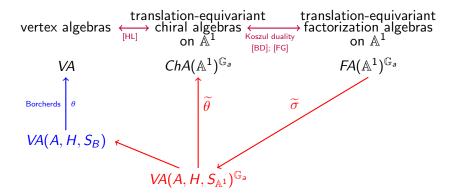
Recall - Goals



Recall - Goals

イロト 不得 トイヨト イヨト

э



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A vertex algebra $\mathbb{V} = (\mathbb{V}, |0\rangle, T, Y(\cdot, z))$ consists of the following data:

• The space of states: a complex vector space \mathbb{V} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- The space of states: a complex vector space \mathbb{V} .
- The vacuum vector: $|0\rangle \in \mathbb{V}$.

- The space of states: a complex vector space \mathbb{V} .
- The vacuum vector: $|0\rangle \in \mathbb{V}$.
- The translation operator: $T : \mathbb{V} \to \mathbb{V}$ a linear map.

- The space of states: a complex vector space \mathbb{V} .
- The vacuum vector: $|0\rangle \in \mathbb{V}$.
- The translation operator: $T : \mathbb{V} \to \mathbb{V}$ a linear map.
- The vertex operators: $Y(\cdot, z) : \mathbb{V} \to \operatorname{End} \mathbb{V}\llbracket z, z^{-1} \rrbracket$;

A vertex algebra $\mathbb{V} = (\mathbb{V}, |0\rangle, T, Y(\cdot, z))$ consists of the following data:

- The space of states: a complex vector space \mathbb{V} .
- The vacuum vector: $|0\rangle \in \mathbb{V}$.
- The translation operator: $T : \mathbb{V} \to \mathbb{V}$ a linear map.
- The vertex operators: $Y(\cdot, z) : \mathbb{V} \to \operatorname{End} \mathbb{V}\llbracket z, z^{-1} \rrbracket$;we write

$$Y(A,z)=\sum_{n\in\mathbb{Z}}A_{(n)}z^{-n-1},$$

with $A_{(n)} \in \operatorname{End} \mathbb{V}$.

A vertex algebra $\mathbb{V} = (\mathbb{V}, |0\rangle, T, Y(\cdot, z))$ consists of the following data:

- The space of states: a complex vector space \mathbb{V} .
- The vacuum vector: $|0\rangle \in \mathbb{V}$.
- The translation operator: $T : \mathbb{V} \to \mathbb{V}$ a linear map.
- The vertex operators: $Y(\cdot,z): \mathbb{V} \to \operatorname{End} \mathbb{V}[\![z,z^{-1}]\!]$;we write

$$Y(A,z)=\sum_{n\in\mathbb{Z}}A_{(n)}z^{-n-1},$$

with $A_{(n)} \in \operatorname{End} \mathbb{V}$.

These data are subject to a bunch of axioms.