Chiral algebras, factorization algebras, and Borcherds's "singular commutative ring" approach to vertex algebras

Emily Cliff
University of Illinois at Urbana-Champaign

14 May, 2019

Section 1

Motivation

Context

vertex algebras chiral algebras
factorization algebras

Context

vertex algebras chiral algebras $\underset{\substack{\text { Koszul duality } \\[B D] ;[F G]}}{ }$ factorization algebras

Context

vertex algebras $\underset{[\mathrm{HL}]}{\stackrel{\text { translation-equivariant }}{\longrightarrow} \text { chiral algebras }} \begin{gathered}\text { on } \mathbb{A}^{1}\end{gathered} \stackrel{\substack{\text { Koszul duality } \\[\mathrm{BD}] ;[\mathrm{FG}]}}{\stackrel{\text { chactorization }}{ }}$ falgebras

Context

Context

Context

Context

Context

A. Motivating questions (Borcherds)

A. Motivating questions (Borcherds)

- How far is θ_{B} from being an equivalence? Can we construct examples of well-known vertex algebras in the category $V A\left(A, H, S_{B}\right)$ and understand their structure in that category?
B. Motivating example (Dominic Joyce)

B. Motivating example (Dominic Joyce)

Let \mathcal{C} be a \mathbb{C}-linear abelian category (+ conditions).

B. Motivating example (Dominic Joyce)

Let \mathcal{C} be a \mathbb{C}-linear abelian category (+ conditions).

- e.g. $\mathbb{C}(Q)$-mod, $\operatorname{Coh}(X)$.

Form the moduli stack \mathfrak{M} of objects in \mathcal{C}.

B. Motivating example (Dominic Joyce)

Let \mathcal{C} be a \mathbb{C}-linear abelian category (+ conditions).

- e.g. $\mathbb{C}(Q)$-mod, $\operatorname{Coh}(X)$.

Form the moduli stack \mathfrak{M} of objects in \mathcal{C}.
$\ldots H_{\bullet}(\mathfrak{M})$ has a structure of graded vertex algebra (after shifting the grading).

B. Motivating example (Dominic Joyce)

Let \mathcal{C} be a \mathbb{C}-linear abelian category (+ conditions).

- e.g. $\mathbb{C}(Q)$-mod, $\operatorname{Coh}(X)$.

Form the moduli stack \mathfrak{M} of objects in \mathcal{C}.
$\ldots H_{0}(\mathfrak{M})$ has a structure of graded vertex algebra (after shifting the grading).

Can we use a geometric approach to understand this better?

C. Motivating question

Can we adapt Borcherds' definition of a quantum (A, H, S)-vertex algebra to the geometric setting?

D. Motivating definitions - chiral algebras

A chiral algebra on X is a right \mathcal{D}-module \mathcal{A}_{X} on X equipped with a Lie bracket

$$
\mu^{c h}: j_{* j^{*}}\left(\mathcal{A}_{X} \boxtimes \mathcal{A}_{X}\right) \rightarrow \Delta_{!} \mathcal{A}_{X} \in \mathcal{D}(X \times X) .
$$

D. Motivating definitions - factorization
 algebras

A factorization algebra on X consists of a collection of left \mathcal{D}-modules $\left\{\mathcal{A}_{X^{\prime}}\right\}$ on X^{\prime} for any finite set I, subject to two kinds of compatibility conditions:

D. Motivating definitions - factorization
 algebras

A factorization algebra on X consists of a collection of left \mathcal{D}-modules $\left\{\mathcal{A}_{X^{\prime}}\right\}$ on X^{\prime} for any finite set I, subject to two kinds of compatibility conditions:
(1) Ran's condition.
e.g. $\nu: \mathcal{A}_{X} \xrightarrow{\sim} \Delta^{*} \mathcal{A}_{X^{2}}$.

D. Motivating definitions - factorization
 algebras

A factorization algebra on X consists of a collection of left \mathcal{D}-modules $\left\{\mathcal{A}_{X^{\prime}}\right\}$ on X^{\prime} for any finite set I, subject to two kinds of compatibility conditions:
(1) Ran's condition.
e.g. $\nu: \mathcal{A}_{X} \xrightarrow{\sim} \Delta^{*} \mathcal{A}_{X^{2}}$.
(2) Factorization isomorphisms.

$$
\text { e.g. } c: j^{*}\left(\mathcal{A}_{X^{2}}\right) \xrightarrow{\sim} j^{*}\left(\mathcal{A}_{X} \boxtimes \mathcal{A}_{X}\right) \text {. }
$$

Goal

Example - lattice vertex algebra [Borcherds]

Let $(L,(\cdot, \cdot))$ be an even lattice.

Let $V_{L}=\mathbb{C}[L] \otimes \operatorname{Sym}(L(1) \oplus L(2) \oplus \cdots)$, with the natural bialgebra structure:

- Generators are denoted by $e^{\alpha} \in \mathbb{C}[L], T^{(i)}\left(e^{\alpha}\right) \in L(i),(\alpha$ in a basis of L).
- $\Delta\left(e^{\alpha}\right)=e^{\alpha} \otimes e^{\alpha} ; \Delta(T)=T \otimes 1+1 \otimes T$.

Define $\left(V^{L}(I)=\bigotimes_{I} V^{L}\right) \in \operatorname{Fun}\left(\right.$ Fin, $\left.A, T, S_{B}\right)$.

Now define a "bicharacter"

$$
r: V_{L} \otimes V_{L} \rightarrow \mathbb{C}\left[(x-y)^{ \pm 1}\right]
$$

- $r\left(e^{\alpha} \boxtimes e^{\beta}\right)=\epsilon_{\alpha, \beta}(x-y)^{(\alpha, \beta)}$.
- $r(T u \boxtimes v)=\frac{d}{d x}(r(u \boxtimes v))$, etc.

This allows us to "twist" the natural commutative multiplication on V^{L} to get a singular multiplication map:

$$
\mu: V^{L}(1) \otimes V^{L}(2) \rightarrow V^{L}(1: 2)
$$

Indeed, we define

$$
\begin{aligned}
V_{L} \otimes V_{L} & \rightarrow V_{L} \otimes V_{L} \otimes C\left[(x-y)^{ \pm 1}\right] \\
u \boxtimes v & \mapsto \sum u_{(1)} v_{(1)} r\left(u_{(2)} \boxtimes v_{(2)}\right) .
\end{aligned}
$$

Then $\theta_{B}\left(V^{L}\right)$ is the well-known lattice vertex algebra structure on the vector space V_{L}.

Recall - Goals

Recall - Goals

Recall - Goals

Definitions - vertex algebras

A vertex algebra $\mathbb{V}=(\mathbb{V},|0\rangle, T, Y(\cdot, z))$ consists of the following data:

Definitions - vertex algebras

A vertex algebra $\mathbb{V}=(\mathbb{V},|0\rangle, T, Y(\cdot, z))$ consists of the following data:

- The space of states: a complex vector space \mathbb{V}.

Definitions - vertex algebras

A vertex algebra $\mathbb{V}=(\mathbb{V},|0\rangle, T, Y(\cdot, z))$ consists of the following data:

- The space of states: a complex vector space \mathbb{V}.
- The vacuum vector: $|0\rangle \in \mathbb{V}$.

Definitions - vertex algebras

A vertex algebra $\mathbb{V}=(\mathbb{V},|0\rangle, T, Y(\cdot, z))$ consists of the following data:

- The space of states: a complex vector space \mathbb{V}.
- The vacuum vector: $|0\rangle \in \mathbb{V}$.
- The translation operator: $T: \mathbb{V} \rightarrow \mathbb{V}$ a linear map.

Definitions - vertex algebras

A vertex algebra $\mathbb{V}=(\mathbb{V},|0\rangle, T, Y(\cdot, z))$ consists of the following data:

- The space of states: a complex vector space \mathbb{V}.
- The vacuum vector: $|0\rangle \in \mathbb{V}$.
- The translation operator: $T: \mathbb{V} \rightarrow \mathbb{V}$ a linear map.
- The vertex operators: $Y(\cdot, z): \mathbb{V} \rightarrow$ End $\mathbb{V} \llbracket z, z^{-1} \rrbracket$;

Definitions - vertex algebras

A vertex algebra $\mathbb{V}=(\mathbb{V},|0\rangle, T, Y(\cdot, z))$ consists of the following data:

- The space of states: a complex vector space \mathbb{V}.
- The vacuum vector: $|0\rangle \in \mathbb{V}$.
- The translation operator: $T: \mathbb{V} \rightarrow \mathbb{V}$ a linear map.
- The vertex operators: $Y(\cdot, z): \mathbb{V} \rightarrow$ End $\mathbb{V} \llbracket z, z^{-1} \rrbracket$;we write

$$
Y(A, z)=\sum_{n \in \mathbb{Z}} A_{(n)} z^{-n-1}
$$

with $A_{(n)} \in \operatorname{End} \mathbb{V}$.

Definitions - vertex algebras

A vertex algebra $\mathbb{V}=(\mathbb{V},|0\rangle, T, Y(\cdot, z))$ consists of the following data:

- The space of states: a complex vector space \mathbb{V}.
- The vacuum vector: $|0\rangle \in \mathbb{V}$.
- The translation operator: $T: \mathbb{V} \rightarrow \mathbb{V}$ a linear map.
- The vertex operators: $Y(\cdot, z): \mathbb{V} \rightarrow$ End $\mathbb{V} \llbracket z, z^{-1} \rrbracket$;we write

$$
Y(A, z)=\sum_{n \in \mathbb{Z}} A_{(n)} z^{-n-1}
$$

with $A_{(n)} \in \operatorname{End} \mathbb{V}$.

These data are subject to a bunch of axioms.

