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Motivation

∙ Learn about factorisation:
Provide and study examples of factorisation spaces and
algebras of arbitrary dimensions.

∙ Learn about Hilbert schemes:
Factorisation structures formalise the intuition that a space is
built out of local bits in a specific way.
Factorisation structures are expected to arise, based on the
work of Grojnowski and Nakajima.



Outline

1 Main constructions : ℋilbRanX and ℋRanX
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Section 1

Main constructions : ℋilbRanX and ℋRanX



Notation

∙ Fix k an algebraically closed field of characteristic 0.

∙ Let X be a smooth variety over k of dimension d .

∙ We work in the category of prestacks:

PreStk ..= Fun(Schop,∞-Grpd)

Sch (Yoneda embedding)



The Hilbert scheme of points

Fix n ≥ 0. The Hilbert scheme of n points in X is (the scheme
representing) the functor

HilbnX : Schop → Set ⊂ ∞-Grpd

S ↦→ HilbnX (S),

where

HilbnX (S)
..=

{︂
𝜉 ⊂ S × X , a closed subscheme, flat over S
with zero-dimensional fibres of length n

}︂
.



The Hilbert scheme of points

Example: k-points

HilbnX (Spec k) =

{︂
𝜉 ⊂ X closed zero-dimensional

subscheme of length n

}︂
.

For example, for X = A2 = Spec k[x , y ], n = 2, some k-points are

𝜉1 = Spec k[x , y ]/(x , y2)

𝜉2 = Spec k[x , y ]/(x2, y)

𝜉3 = Spec k[x , y ]/(x , y(y − 1)).

Notation: let HilbX ..=
⨆︀

n≥0Hilb
n
X .



The Ran space

The Ran space is a different way of parametrising sets of points in
X :

RanX (S) ..= {A ⊂ Hom(S ,X ), a finite, non-empty set } .

Let A = {x1, . . . , xd | xi : S → X} be an S-point of RanX .

For each xi , let Γxi = {(s, xi (s)) ∈ S × X} be its graph, and define

ΓA ..=
d⋃︁

i=1

Γxi ⊂ S × X ,

a closed subscheme with the reduced scheme structure.



The Ran space

The Ran space is not representable by a scheme, but it is a
pseudo-indscheme:

RanX = colim
I∈fSetop

X I .

Here the colimit is taken in PreStk, over the closed diagonal
embeddings

Δ(𝛼) : X J →˓ X I

induced by surjections of finite sets

𝛼 : I � J.



Main definition: ℋilbRanX
Define the prestack

ℋilbRanX : Schop → Set ⊂ ∞-Grpd

S ↦→ ℋilbRanX (S)

by setting ℋilbRanX (S) to be the set

{(A, 𝜉) ∈ (RanX × HilbX )(S) | Supp(𝜉) ⊂ ΓA ⊂ S × X} .

Note: This is a set-theoretic condition.

Notation: We have natural projection maps

f : ℋilbRanX → RanX ,

𝜌 : ℋilbRanX → HilbX .



ℋilbRanX as a pseudo-indscheme

For a finite set I , we define

ℋilbX I : Schop → Grpd

by setting ℋilbX I (S) ⊂ (X I × HilbX )(S) to be{︀
((xi )i∈I , 𝜉) | ({xi}i∈i , 𝜉) ∈ ℋilbRanX (S)

}︀
.

For 𝛼 : I � J, we have natural maps

ℋilbX J → ℋilbX I ,

defined by ((xj)j∈J , 𝜉) ↦→ (Δ(𝛼)(xj), 𝜉).

Then ℋilbRanX = colim
I∈fSetop

ℋilbX I .



Factorisation

Consider (ℋilbRanX )disj = {(A = A1 ⊔ A2, 𝜉) ∈ ℋilbRanX}.

Suppose that in fact ΓA1 ∩ ΓA2 = ∅, so that if we set 𝜉i ..= 𝜉 ∩ ̂︀ΓAi
,

we see that

1 𝜉 = 𝜉1 ⊔ 𝜉2

2 (Ai , 𝜉i ) ∈ ℋilbRanX for i = 1, 2.

Proposition

(ℋilbRanX )disj ≃ (ℋilbRanX ×ℋilbRanX )disj.



Factorisation

In particular, when A = {x1} ⊔ {x2}, we can express this formally
as follows:

∙ Set U ..= X 2 ∖Δ(X )
j

−˓−−−→ X 2.

∙ Then the proposition specialises to the statement that there
exists a canonical isomorphism

c : ℋilbX 2 ×X 2U ∼−→ (ℋilbX ×ℋilbX )×X×X U.

We have similar isomorphisms c(𝛼) associated to any surjection of
finite sets I � J. These are called factorisation isomorphisms.



Factorisation

Theorem

f : ℋilbRanX → RanX defines a factorisation space on X . If X is
proper, f is an ind-proper morphism.



Linearisation of ℋilbRanX

Set-up: Let 𝜆I ∈ 𝒟(ℋilbX I ) be a family of (complexes of)
𝒟-modules compatible with the factorisation
structure.

Then the family
{︀
𝒜X I

..= (fI )!𝜆
I ∈ 𝒟(X I )

}︀
defines a

factorisation algebra on X .

More precisely: For every 𝛼 : I =
⨆︀

j∈J Ij � J, we have
isomorphisms

1 v(𝛼) : Δ(𝛼)!𝒜X I
∼−→ 𝒜X J

⇒ {𝒜X I } give an object “colim𝒜X I ” of
𝒟(RanX ), which we’ll denote by f!𝜆.

2 c(𝛼) : j(𝛼)*(𝒜X I ) ∼−→ j(𝛼)*
(︀
�j∈J𝒜X

Ij

)︀



Linearisation of ℋilbRanX

Definition

Set ℋX I
..= (fI )!𝜔ℋilb

XI
.

This gives a factorisation algebra

ℋRanX = f!𝜔ℋilbRan X
.

Goal for the rest of the talk: study this factorisation algebra.



Section 2

Chiral algebras



Chiral algebras

A chiral algebra on X is a 𝒟-module 𝒜X on X equipped with a Lie
bracket

𝜇𝒜 : j*j
* (𝒜X �𝒜X ) → Δ!𝒜X ∈ 𝒟(X × X ).



Factorisation algebras and chiral algebras

Theorem (Beilinson–Drinfeld, Francis–Gaitsgory)

We have an equivalence of categories{︂
factorisation algebras

on X

}︂
∼−→

{︂
chiral algebras

on X

}︂
.



Idea of the proof

Let {𝒜X I } be a factorisation algebra.

j*j
* (𝒜X �𝒜X )

𝒜X 2 j*j
* (𝒜X 2) Δ!Δ

!𝒜X 2

Δ!𝒜X
∼

∼



Idea of the proof

Let {𝒜X I } be a factorisation algebra.

j*j
* (𝒜X �𝒜X )

𝒜X 2 j*j
* (𝒜X 2) Δ!Δ

!𝒜X 2

Δ!𝒜X

∼

∼

This defines 𝜇𝒜 : j*j
* (𝒜X �𝒜X ) → Δ!𝒜X .

To check the Jacobi identity, we use the factorisation isomorphisms
for I = {1, 2, 3}.



Aside: chiral algebras and vertex algebras

Let (V ,Y (·, z), |0⟩) be a quasi-conformal vertex algebra, and let C
be a smooth curve.

We can use this data to construct a chiral algebra (𝒱C , 𝜇) on C .

This procedure works for any smooth curve C , and gives a
compatible family of chiral algebras. Together, all of these chiral
algebras form a universal chiral algebra of dimension 1.



Lie ⋆ algebras

A Lie ⋆ algebra on X is a 𝒟-module ℒ on X equipped with a Lie
bracket

ℒ� ℒ → Δ!ℒ.

Example: we have a canonical embedding

𝒜X �𝒜X → j*j
* (𝒜X �𝒜X ) .

So every chiral algebra 𝒜X is a Lie ⋆ algebra.



Universal chiral enveloping algebras

The resulting forgetful functor

F : {chiral algebras} → {Lie ⋆ algebras}

has a left adjoint

Uch : {Lie ⋆ algebras} → {chiral algebras} .

Uch(ℒ) is the universal chiral envelope of ℒ.

1 Uch(ℒ) has a natural filtration, and there is a version of the
PBW theorem.

2 Uch(ℒ) has a structure of chiral Hopf algebra.



Commutative chiral algebras

A chiral algebra 𝒜X is commutative if the underlying Lie ⋆ bracket
is zero.

Translation into factorisation language:

j*j
* (𝒜X �𝒜X )

𝒜X 2 j*j
* (𝒜X 2) Δ!Δ

!𝒜X 2

Δ!𝒜X

∼

∼



Commutative chiral algebras

A chiral algebra 𝒜X is commutative if the underlying Lie ⋆ bracket
is zero.

Translation into factorisation language:

𝒜X �𝒜X j*j
* (𝒜X �𝒜X )

𝒜X 2 j*j
* (𝒜X 2) Δ!Δ

!𝒜X 2

Δ!𝒜X

∼

0

∼



Commutative chiral algebras

A chiral algebra 𝒜X is commutative if the underlying Lie ⋆ bracket
is zero.

Translation into factorisation language:

𝒜X �𝒜X j*j
* (𝒜X �𝒜X )

𝒜X 2 j*j
* (𝒜X 2) Δ!Δ

!𝒜X 2

Δ!𝒜X

∼

∼



Commutative factorisation algebras
A factorisation algebra {𝒜X I } is commutative if every factorisation
isomorphism

c(𝛼)−1 : j*
(︀
�j∈J𝒜X

Ij

)︀
∼−→ j*𝒜X I

extends to a map of 𝒟-modules on all of X I :

�j∈J𝒜X
Ij → 𝒜X I .

Proposition (Beilinson–Drinfeld)

We have equivalences of categories⎧⎨⎩
commuative
factorisation

algebras

⎫⎬⎭ ≃

⎧⎨⎩
commutative

chiral
algebras

⎫⎬⎭ ≃
{︂

commutative
𝒟X -algebras

}︂
.
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Results on ℋRanX



Chiral homology

Let pRanX : RanX → pt.

The chiral homology of a factorisation algebra 𝒜RanX is defined by∫︁
𝒜RanX

..= pRanX ,!𝒜RanX .

It is a derived formulation of the space of conformal blocks of a
vertex algebra V :

H0(

∫︁
𝒱RanX ) = space of conformal blocks of V .



The chiral homology of ℋRanX

Goal: compute

∫︁
ℋRanX

..= pRanX ,!f!𝜔ℋilbRan X
.

ℋilbRanX

HilbX RanX

pt

𝜌 f

pHilbX pRan X

⇒
∫︁

ℋRanX ≃ pHilbX ,!𝜌!𝜔ℋilbRan X

≃ pHilbX ,!𝜌!𝜌
!𝜔HilbX .



The chiral homology of ℋRanX

Theorem

𝜌! : 𝒟(HilbX ) → 𝒟(HilbRanX )

is fully faithful, and hence 𝜌! ∘ 𝜌! → id𝒟(HilbX ) is an equivalence.

Corollary

∫︁
ℋRanX ≃ pHilbX ,!𝜔HilbX

..= H∙
dR(HilbX ).



Identifying the factorisation algebra
structure on ℋRanX

Theorem

The assignment

X
dim. d

 ℋRanX

gives rise to a universal factorisation algebra of dimension d.

i.e. it behaves well in families, and is compatible under pullback by
étale morphisms Y → X.

This allows us to reduce to the study of ℋRanX for
X = Ad = Spec k[x1, . . . , xd ].



Identifying the factorisation algebra
structure on ℋRanAd

Conjecture

ℋRanAd is a commutative factorisation algebra.

Remarks on the proof:

1 The case d = 1 is clear:
ℋilbRanA1 is a commutative factorisation space.

2 The case d = 2 has been proven by Kotov using
deformation theory.



Strategy for general d : first step

The choice of a global coordinate system {x1, . . . , xd} gives an
identification of

HilbX ,0
..= {𝜉 ∈ HilbX | Supp(𝜉) = {0}}

with HilbX ,p for every p ∈ X = Ad .

⇒ ℋilbX ≃ X × HilbX ,0 .

It follows that

ℋX ≃ 𝜔X ⊗ H∙
dR(HilbX ,0).



Strategy for general d : second step

Universality of ℋRan ∙ means that, in particular, the fibre of ℋAd

over 0 ∈ Ad , is a representation of the group

G = Autk[[t1, . . . , td ]].

This fibre is H∙
dR(HilbX ,0), and the representation is induced from

the action of G on the space HilbX ,0.



Strategy for general d : steps 3, 4 . . .

Claim 1: The induced action is canonically trivial, except
perhaps for an action of Gm ⊂ G corresponding to a
grading.

Claim 2: This forces the chiral bracket

j*j
*(𝜔X � 𝜔X )⊗ H∙

dR(HilbX ,0)⊗ H∙
dR(HilbX ,0)

→ Δ!(𝜔X )⊗ H∙
dR(HilbX ,0)

to be of the form 𝜇𝜔X
⊗m, where m is a map

H∙
dR(HilbX ,0)⊗ H∙

dR(HilbX ,0) → H∙
dR(HilbX ,0).

Claim 3: m induces a commutative 𝒟X -algebra structure on
ℋX = 𝜔X ⊗ H∙

dR(HilbX ,0).

Claims 1 and 2 seem straightforward to prove in the non-derived
setting, but in the derived setting there are subtleties.



Future directions

∙ Push forward other sheaves to get more interesting
factorisation algebras: replace 𝜔ℋilb

XI
by sheaves constructed

from e.g. tautological bundles, sheaves of vanishing cycles.

∙ How is this related to the work of Nakajima and Grojnowski?
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