INTRO TO QUANTUM GROUPS AND THEIR REPRESENTATION THEORY

NOTES FOR A TALK BY CRAIG SMITH

Plan of action:

- Define the quantum enveloping algebras and introduce (restricted) integral form
- Introduce induction functors to define (dual) Weyl/Verma modules
- Discuss representation theory at generic q
- Start on the representation theory at q a root of unity

LOTS OF NOTATION

First things first, we need to set some notation. So, here goes...

Fix a field $k = \overline{k}$ of characteristic zero and let K = k(q) be rational functions in q.

Let \mathfrak{g} be a Lie algebra over k defined by the following data:

- A weight lattice Φ , a free \mathbb{Z} -module;
- Simple roots $\alpha_i \in \Phi$ indexed by $i \in I$ that form a basis of the root lattice $\Psi \subset \Phi$;
- A symmetric bilinear form $(\cdot, \cdot) : \Phi \times \Phi \to \mathbb{Q}$ such that $(\alpha_i, \alpha_i) \in 2\mathbb{N}$, $(\alpha_i, \alpha_j) \leq 0$ for $i, j \in I, i \neq j$;
- Simple coroots $h_i \in \Phi^* = \operatorname{Hom}_{\mathbb{Z}}(\Phi, \mathbb{Z})$ such that $h_i(\alpha) = \frac{2(\alpha_i, \alpha)}{(\alpha_i, \alpha_i)}$ for $i \in I, \alpha \in \Phi$.

Remark Then \mathfrak{g} can be generated by E_i, F_i, H_i for $i \in I$ with the Serre relations

$$[H_i, H_j] = 0, [E_i, F_i] = \delta_{ij} H_i, [H_i, E_j] = h_i(\alpha_j) E_j, [H_i, F_j] = -h_i(\alpha_j) F_j,$$

and for $i \neq j$,

$$(\mathrm{ad}E_i)^{1-h_i(\alpha_j)}E_j = 0, (\mathrm{ad}F_i)^{1-h_i(\alpha_j)}F_j = 0.$$

We will denote by

- $\Phi_+ = \{ \alpha \in \Phi \mid h_i(\alpha) \ge 0 \text{ for all } i \in I \}$ be the dominant weights;
- $\Psi_+ = \{\sum_{i \in I} n_i \alpha_i \mid n_i \ge 0\} \subset \Psi$ the positive root lattice, $\Psi_- = -\Psi_+$ the negative roots;
- \geq the partial ordering on Φ given by $\alpha \geq \beta$ if and only if $\alpha \beta \in \Psi_+$;

- W the Weyl group attached to this data, generated by the simple we the wegt group attached to this data; generated by reflections s_i(α) = α - 2(α_i,α)/(α_i,α_i) α_i = α - h_i(α)α_i for i ∈ I;
 w₀ its unique element of highest length;
- $R = W \cdot \{\alpha_i \mid i \in I\}$ the roots of $\mathfrak{g}, R_+ = R \cap \Phi_+$ the positive roots;
- $\rho = \frac{1}{2} \sum_{\alpha \in R_{\perp}} \alpha$ is the half-sum of the positive roots;
- $\mathcal{A} = \mathbb{Z}[q, q^{-1}];$ $q_i = q^{\frac{(\alpha_i, \alpha_i)}{2}}$ for $i \in I$.
- and for integers $m, n \in \mathbb{Z}$ let

$$[n]_{i} = [n]_{q_{i}} = \frac{q_{i}^{n} - q_{i}^{-n}}{q_{i} - q_{i}^{-1}} = q_{i}^{n-1} + q_{i}^{n-3} + \dots + q_{i}^{-n+3} + q_{i}^{-n+1}$$
$$[n]_{i}! = [n]_{q_{i}}! = [n]_{i}[n-1]_{i}[n-2]_{i}\dots[2]_{i}[1]_{i},$$
$$\begin{bmatrix} m\\ n \end{bmatrix}_{i} = \begin{bmatrix} m\\ n \end{bmatrix}_{q_{i}} = \frac{[m]_{i}!}{[n]_{i}![m-n]_{i}!} = \prod_{t=1}^{n} \frac{q_{i}^{m-n+t} - q_{i}^{-(m-n+t)}}{q_{i}^{t} - q_{i}^{-t}};$$

THE QUANTUM ENVELOPING ALGEBRAS AND INTEGRAL FORMS

Definition We may now define the quantised enveloping algebra $U_q = U_q(\mathfrak{g})$ to be the algebra generated over K by E_i, F_i, H_i, H_i^{-1} for $i \in I$ with the defining relations (the quantum Serre relations)

- $H_i H_i^{-1} = 1 = H_i^{-1} H_i;$ $H_i H_j = H_j H_i;$ $H_i E_j H_i^{-1} = q^{h_i(\alpha_j)} E_j;$ $H_i F_j H_i^{-1} = q^{-h_i(\alpha_j)} F_j;$
- $E_i F_j F_j E_i = \delta_{i,j} \frac{H_i H_i^{-1}}{q_i q_i^{-1}};$

for all $i, j \in I$, and for $i \neq j$

- $0 = \sum_{r=0}^{1-h_i(\alpha_j)} (-1)^r E_i^{(r)} E_j E_i^{(1-h_i(\alpha_j)-r)};$ $0 = \sum_{r=0}^{1-h_i(\alpha_j)} (-1)^r F_i^{(r)} F_j F_i^{(1-h_i(\alpha_j)-r)};$

$$\sum r=0$$
 (1) $\sum r=1$

where

•
$$E_i^{(r)} = \frac{1}{[r]_i!} E_i^r, \ F_i^{(r)} = \frac{1}{[r]_i!} F_i^r.$$

This is given a Hopf algebra structure by setting

$$\begin{split} \Delta : & U_q \to U_q \otimes U_q, \qquad \varepsilon : U_q \to K \qquad S : U_q \to U_q, \\ & E_i \mapsto E_i \otimes 1 + H_i \otimes E_i, \qquad E_i \mapsto 0 \qquad E_i \mapsto -H_i^{-1}E_i, \\ & F_i \mapsto F_i \otimes H_i^{-1} + 1 \otimes F_i, \qquad F_i \mapsto 0 \qquad F_i \mapsto -F_i H_i, \\ & H_i \mapsto H_i \otimes H_i, \qquad H_i \mapsto 1 \qquad H_i \mapsto H_i^{-1}. \end{split}$$

3

Let us denote by

- U_q^{>0} (respectively U_q^{<0}) the subalgebra of U_q(g) generated by {E_i | i ∈ I} (respectively {F_i | i ∈ I});
 U_q⁰ the subalgebra generated by {H_i^{±1} | i ∈ I};
 U_q^{≥0} (respectively U_q^{≤0}) the subalgebra generated by U_q^{>0} (respectively U_q^{≤0}).
- tively $U_a^{<0}$ and U_a^0 .

Fact There is a triangular decomposition of U_q . That is, multiplication defines isomorphisms of K vector spaces

$$U_q^{>0} \otimes U_q^0 \otimes U_q^{<0} \to U_q$$
$$U_q^{<0} \otimes U_q^0 \otimes U_q^{>0} \to U_q$$

Remark For a fixed $i \in I$ we can see that the subalgebras of $U_q(\mathfrak{g})$ generated by $E_i, F_i, H_i^{\pm 1}$, denoted $U_q(\mathfrak{g})_i$, are isomorphic to $U_q(\mathfrak{sl}_2)$.

The problem with working over K = k(q) is that we cannot specialise to any value of q that is algebraic over k, including the roots of unity we are interested in. Instead, we must work with an *integral form* of U_q .

Definition An integral form of U_q is a Hopf subalgebra H over $\mathcal{A} = \mathbb{Z}[q, q^{-1}]$ such that $U_q(\mathfrak{g}) \cong H \otimes_{\mathcal{A}} K$. We may then specialise to a general $\varepsilon \in k^{\times}$, $H_{\varepsilon} = H \otimes_{\mathcal{A}} k$ via the map $\mathcal{A} \to k, q \mapsto \varepsilon$.

There are two good choices for such integral forms, the restricted and the unrestricted integral forms. We will only be interested in the restricted integral form, which is good since I know nothing about the unrestricted integral form.

Definition The restricted integral form of U_q , denoted $U_{\mathcal{A}}^{\text{res}}$, is the \mathcal{A} subalgebra of U_q generated by $E_i^{(r)}$, $F_i^{(r)}$, K_i and K_i^{-1} for $i \in I$, $r \ge 0$. Since we won't be studying the unrestricted integral form, we will drop the 'res' and simply write $U_{\mathcal{A}}$. Let us define $U_{\mathcal{A}}^{\bullet} = U_{\mathcal{A}} \cap U_q^{\bullet}$ for $\bullet \in \{>0, \ge 0, < 0, \le 0, 0\}$.

(Non-Trivial) Fact $U_{\mathcal{A}}$ is an integral form of U_q and a free \mathcal{A} -module, and has a similar triangular decomposition. This is proven by constructing (using an action of the braid group) a free \mathcal{A} -basis of $U_{\mathcal{A}}$ that is also a Kbasis of U_q . Given an enumeration of the positive roots $R_+ = \{\beta_1, ..., \beta_N\}$, there exist $E_{\beta_i}, F_{\beta_i} \in U_{\mathcal{A}}^{\text{res}}$ such that $K_j E_{\beta_i} K_j^{-1} = q^{(\alpha_j, \beta_i)} E_{\beta_i}, K_j F_{\beta_i} K_j^{-1} =$ $q^{-(\alpha_j,\beta_i)}F_{\beta_i}$, and that

$$\{(E_{\beta_N})^{(l_N)}(E_{\beta_{N-1}})^{(l_{N-1})}...(E_{\beta_1})^{(l_1)} \mid l_i \ge 0\},\$$
$$\{(F_{\beta_N})^{(l_1)}(F_{\beta_{N-1}})^{(l_2)}...(F_{\beta_1})^{(l_N)} \mid l_i \ge 0\}$$

NOTES FOR A TALK BY CRAIG SMITH

are \mathcal{A} -bases of $U_{\mathcal{A}}^{>0}$ and $U_{\mathcal{A}}^{<0}$ respectively, and are K-bases of $U_q^{>0}$ and $U_q^{<0}$ respectively. Then, using a triangular decomposition we obtain the required bases.

INDUCTION AND (DUAL) VERMA AND WEYL MODULES

Definition For a $U_{\mathcal{A}}$ module M we denote by $\mathcal{O}(M)$ and F(M) the \mathcal{A} submodules

$$\mathcal{O}(M) = \bigoplus_{\lambda \in \Phi} M_{\lambda} \text{ where } M_{\lambda} := \{ m \in M \mid H_i m = q^{h_i(\lambda)} m \text{ for all } i \in I \},\$$

the direct sum of the weight spaces of M, and

4

$$F(M) = \{ m \in \mathcal{O}(M) \mid E_i^{(r)}m = 0 = F_i^{(r)}m \text{ for all } i \in I \text{ and for } r \gg 0 \},\$$

the integrable part of M. Note that these are in fact $U_{\mathcal{A}}^{\text{res}}$ submodules of M. We say that M is *integrable* if M = F(M).

Let $\mathcal{O}_{\mathcal{A}}$ be the category of $U_{\mathcal{A}}$ modules M such that $M = \mathcal{O}(M)$ and that are locally \mathcal{A} -finite (finitely generated as an \mathcal{A} module) $U_{\mathcal{A}}^{>0}$ modules. Let $\mathcal{O}_{\mathcal{A}}^{\text{int}}$ be the full subcategory of integrable modules in $\mathcal{O}_{\mathcal{A}}$.

By the commutation relations we see that, for $M \in \mathcal{O}_{\mathcal{A}}$, $E_i^{(r)} M_{\lambda} \subset M_{\lambda+r\alpha_i}$ and $F_i^{(r)} M_{\lambda} \subset M_{\lambda-r\alpha_i}$. An element $m \in M_{\lambda}$ is said to be a weight vector of weight λ and if, in addition, $E_i^{(r)} m = 0$ for every $i \in I$ and every r > 0 then we say m is a highest weight vector. A $U_{\mathcal{A}}$ module in $\mathcal{O}_{\mathcal{A}}$ that is generated by a highest weight vector is called a highest weight module.

We may analogously define integrable $U_{\mathcal{A}}^{\geq 0}$ modules, where we only insist on $E_i^{(r)}m = 0$ for $r \gg 0$ in the definition of F, and analogous categories $\mathcal{O}_{\mathcal{A}}^{\geq 0}, \mathcal{O}_{\mathcal{A}}^{\geq 0, \text{int}}$. Then we have an induction functor $\text{Ind} : \mathcal{O}_{\mathcal{A}}^{\geq 0} \to \mathcal{O}_{\mathcal{A}},$ $N \mapsto U_{\mathcal{A}} \otimes_{U_{\mathcal{A}}^{\geq 0}} N$.

For $\lambda \in \Phi$ we denote by \mathcal{A}_{λ} the $U_{\mathcal{A}}^{\geq 0}$ module structure on \mathcal{A} where $E_i^{(r)}$ act by 0 and K_i act by $q^{h_i(\lambda)}$ on \mathcal{A} . Caution: As Kobi remarked in the talk, this is not enough to define \mathcal{A}_{λ} since $U_{\mathcal{A}}^0$ is not only generated by H_i^{\pm} , but also by $\begin{bmatrix} H_i;m \\ n \end{bmatrix} := \prod_{t=1}^n \frac{H_i q_i^{m-t+1} - H_i^{-1} q_i^{-(m-t+1)}}{q_i^t - q_i^{-t}}$ that arise from the commutation of the $E_i^{(r)}$ and $F_i^{(r)}$. We define the Verma module with highest weight λ to be $\mathcal{M}_{\mathcal{A}}(\lambda) := \operatorname{Ind}(\mathcal{A}_{\lambda}) = U_{\mathcal{A}} \otimes_{U_{\mathcal{A}}^{\geq 0}} \mathcal{A}_{\lambda}$. This is a highest weight module of weight λ generated by $x_{\lambda} = 1 \otimes 1$, and in fact $\mathcal{M}_{\mathcal{A}}(\lambda)$ is universal in the sense that it surjects uniquely up to scalar onto any other highest weight module of weight λ .

Using this induction functor, we may also define another induction functor from \mathcal{A} -finite integrable $U_{\mathcal{A}}^{\geq 0}$ modules to \mathcal{A} -finite integrable $U_{\mathcal{A}}$ modules as

5

follows.

Proposition/Definition Let N be an \mathcal{A} -finite integrable $U_{\mathcal{A}}^{\geq 0}$ module. Let $M = U_{\mathcal{A}} \otimes_{U_{\mathcal{A}}^{\geq 0}} N$. Then the set of $U_{\mathcal{A}}$ submodules L of M such that M/L is \mathcal{A} -finite has a unique minimal element, L_0 say. Then we define $D(N) = M/L_0$.

Proof. We will make use of the following Lemma:

Lemma. If M is an integrable U_A module and λ is a weight of M then $w\lambda$ is a weight of M for all $w \in W$.

This is proven by reducing to the case of w being a simple reflection and \mathfrak{g} being \mathfrak{sl}_2 , where it is straightforward to prove.

The weights of N form a finite set $X \subset \Phi$. Note that $M \cong U_{\mathcal{A}}^{\leq 0} \otimes_{U_{\mathcal{A}}^{0}} N$, so the weights of M are in $X' = X + \Psi_{-}$, which only contains finitely many dominant weights. Now each weight in Φ is in the same orbit as a dominant weight, so $X'' = X' \cap (W(X' \cap \Phi_{+}))$, the largest W-stable subset of X', is finite. If L is a $U_{\mathcal{A}}$ submodule of M such that M/L is a finitely generated \mathcal{A} module then, as the weights of M/L are stable under W, they are contained in X''. So L contains $M' = \bigoplus_{\lambda \notin X''} M_{\lambda}$. Conversely, if L_0 is the $U_{\mathcal{A}}$ submodule generated by M' then the weights of M/L_0 are contained in X'' and hence are finite, and each weight space of M is a finitely generated \mathcal{A} module, so M/L_0 is a finitely generated \mathcal{A} module. \Box

We denote by $V_{\mathcal{A}}(\lambda)$ the \mathcal{A} -finite induced module $D(\mathcal{A}_{\lambda})$, which we call the Weyl module of highest weight λ . Note that, if $\lambda \notin \Phi_+$ then $X'' = \emptyset$ and so $V_{\mathcal{A}}(\lambda) = \{0\}$. $V_{\mathcal{A}}(\lambda)$ is a highest weight module of weight λ , generated by the image of x_{λ} , v_{λ} say, and is universal in the sense that it surjects onto any \mathcal{A} -finite highest weight module of weight λ .

Fact Both $M_{\mathcal{A}}(\lambda)$ and $V_{\mathcal{A}}(\lambda)$ are free \mathcal{A} modules.

More explicitly, $M_{\mathcal{A}}(\lambda)$ is isomorphic to the quotient of $U_{\mathcal{A}}$ by the left ideal generated by $E_i^{(r)}$ and $H_i - q^{h_i(\lambda)} \cdot 1$ for $i \in I$ and $r \geq 1$, where x_{λ} is the image of 1 in the quotient. Then $V_{\mathcal{A}}(\lambda)$ is the quotient of $M_{\mathcal{A}}(\lambda)$ by the submodule generated by $F_i^{(s_i)} x_{\lambda}$ for $i \in I$ and $s_i > h_i(\lambda)$. This follows from the relation

$$E_i^{(r)} F_i^{(s)} = \sum_{0 \le t \le r, s} F_i^{(s-t)} \left(\prod_{l=1}^t \frac{K_i q_i^{2t-r-s-l+1} - K_i^{-1} q_i^{-(2t-r-s-l+1)}}{q_i^l - q_i^{-l}} \right) E_i^{(r-t)}$$

For example, if we take $\mathfrak{g} = \mathfrak{sl}_2$, so $\Phi = \mathbb{Z}$ with simple root is 2, then we may give explicit descriptions of $M_{\mathcal{A}}(\lambda)$ as follows:

$$M_{\mathcal{A}}(\lambda) = \bigoplus_{i \ge 0} \mathcal{A}F^{(i)}x_{\lambda},$$

$$K(F^{(i)}x_{\lambda}) = q^{\lambda - 2i}F^{(i)}x_{\lambda},$$

$$F^{(j)}(F^{(i)}x_{\lambda}) = \begin{bmatrix} i+j\\i \end{bmatrix} F^{(i+j)}x_{\lambda},$$

$$E^{(j)}(F^{(i)}x_{\lambda}) = \begin{cases} \begin{bmatrix} \lambda - (i-j)\\j \end{bmatrix} F^{(i-j)}x_{\lambda} & \text{if } i-j \ge 0, \\ 0 & \text{otherwise,} \end{cases}$$

Note that, by definition, $\begin{bmatrix} \lambda - (i-j) \\ j \end{bmatrix} = \prod_{t=1}^{j} \frac{q^{\lambda - i + t} - q^{-(\lambda - i + t)}}{q^t - q^{-t}}$ is zero if and only if zero appears as one of these terms, which only happens when $\lambda + j \ge i > \lambda$. This shows that $\bigoplus_{i>\lambda} \mathcal{A}F^{(i)}x_{\lambda}$ is a submodule. Quotienting out by this submodule gives the Weyl module:

$$V_{\mathcal{A}} = \bigoplus_{i=0}^{\lambda} \mathcal{A}F^{(i)}v_{\lambda},$$

$$K(F^{(i)}v_{\lambda}) = q^{\lambda-2i}F^{(i)}v_{\lambda},$$

$$F^{(j)}(F^{(i)}v_{\lambda}) = \begin{cases} {i+j \atop i} F^{(i+j)}v_{\lambda} & \text{if } i+j \le n, \\ 0 & \text{otherwise}, \end{cases}$$

$$E^{(j)}(F^{(i)}v_{\lambda}) = \begin{cases} {\lambda-(i-j) \atop j} F^{(i-j)}v_{\lambda} & \text{if } \lambda \ge i-j \ge 0, \\ 0 & \text{otherwise}. \end{cases}$$

For $M \in \mathcal{O}_{\mathcal{A}}$ we define the dual module of M to be $M^* = \bigoplus_{\lambda \in \Phi} M'_{\lambda}$ where $M'_{\lambda} = \operatorname{Hom}_{\mathcal{A}}(M_{\lambda}, \mathcal{A})$ is the dual to M_{λ} . Since $M^* \subset \operatorname{Hom}_{\mathcal{A}}(M, \mathcal{A})$ we may endow it with the $U_{\mathcal{A}}$ module structure arising from the antipode S(namely $(x \cdot \phi)(m) = \phi(S(x) \cdot m)$). Unfortunately, this is no longer in $\mathcal{O}_{\mathcal{A}}$ it's kind of upside-down - however if the roles of E_i and F_i were interchanged it would be. Therefore we must twist the action using the automorphism ω of $U_{\mathcal{A}}$ determined by $E_i^{(r)} \mapsto F_i^{(r)}, F_i^{(r)} \mapsto E_i^{(r)}$ and $H_i \mapsto H_i^{-1}$. So the action on M^* is given by $(x \cdot \phi)(m) = \phi(S(\omega(x)) \cdot m)$ and gives a dual module in \mathcal{O} . Then we call $M^*_{\mathcal{A}}(\lambda)$ the dual Verma module and $V^*_{\mathcal{A}}(\lambda)$ the dual Weyl module. If $x^*_{\lambda} \in M'_{\mathcal{A}}(\lambda)_{\lambda}$ is such that $x^*_{\lambda}(x_{\lambda}) = 1$ then $(E_i^{(r)} \cdot x^*_{\lambda})(m) =$ $x^*_{\lambda}(S(F_i^{(r)}) \cdot m) = 0$ for r > 0 since $S(F_i^{(r)})$ is a scalar multiple of $H_i^r F_i^{(r)}$ and so reduces the weight of m, but λ is of highest weight. So there is a morphism $M_{\mathcal{A}}(\lambda) \to M^*_{\mathcal{A}}(\lambda)$, and in fact this factors as

$$M_{\mathcal{A}}(\lambda) \twoheadrightarrow V_{\mathcal{A}}(\lambda) \to V^*_{\mathcal{A}}(\lambda) \hookrightarrow M^*_{\mathcal{A}}(\lambda).$$

We will see that, in the case where q is generic (and so we work over K instead of \mathcal{A}) this is an isomorphism but this is not the case at roots of unity.

Representation Theory at Generic q

Let us first deal with q transcendental over k, where things are nice.

Let $M(\lambda) = M_{\mathcal{A}}(\lambda) \otimes_{\mathcal{A}} K$ be the Verma modules of U_q of weight λ and let $V(\lambda) = V_{\mathcal{A}}(\lambda) \otimes_{\mathcal{A}} K$ be the Weyl modules. Let \mathcal{O} and \mathcal{O}^{int} be defined analogously for U_q .

Theorem 0.1 (Lusztig). Every $M \in \mathcal{O}^{int}$ can be written as a direct sum of Weyl modules $V(\lambda)$ for $\lambda \in \Phi$, which are simple and distinct for different λ .

In order to prove the above, we will make use of the *Quantum Casimir Operator*, specifically the one found in Lusztig's 'Introduction to Quantum Groups'. We will not need an explicit description of the operator, so we shall just summarise its properties.

Given any U_q module $M \in \mathcal{O}$, we have an operator $\Omega : M \to M$, the *Quantum Casimir Operator*, that commutes with the action of U_q such that:

- The eigenvalues of Ω are of the form q^c for various integers c;
- There is a function $G : \Phi \to \mathbb{Z}$ such that Ω acts by scalar $q^{G(\lambda)}$ on the Verma module $M(\lambda)$;
- If $\lambda \ge \lambda'$ and $G(\lambda) = G(\lambda')$ then $\lambda = \lambda'$.

Proof. First we show that Weyl modules $V(\lambda)$ are simple. In fact, we show that any integrable quotient M of a Verma module $M(\lambda)$ is simple (and hence $V(\lambda)$ is the unique integrable quotient of $M(\lambda)$). Suppose we have a proper non-trivial submodule M' of M. Then $M'_{\lambda} = \{0\}$, and we can find a maximal $\lambda' \in \Phi$ such that $M'_{\lambda'} \neq \{0\}$. Let $m \in M'_{\lambda'}$ be nonzero, so $E_i m = 0$ for all $i \in I$. So there is a morphism $M(\lambda') \to M$. Since Ω acts by $q^{G(\lambda)}$ on M and by $q^{G(\lambda')}$ on $U_q \cdot m$, and since $\lambda \geq \lambda'$, we have $\lambda = \lambda'$ giving a contradiction.

Now we prove that every $M \in \mathcal{O}^{\text{int}}$ is a direct sum of simple $V(\lambda)$, for which it is enough just to show it is a sum of these modules. By writing Mas a direct sum of generalised eigenspaces of Ω , we may assume that $(\Omega - q^c)$ is locally nilpotent on M. Let $P = \{m \in M \mid E_i m = 0 \text{ for all } i \in I\}$, which decomposes as $P = \bigoplus P_{\lambda}$ for $P_{\lambda} = P \cap M_{\lambda}$. The submodules of Mgenerated by $m \in P_{\lambda}$ are integrable quotients of Verma modules, and so are each isomorphic to some Weyl module. So the submodule M' generated by P is a sum of Weyl modules. Let us show that M'' = M/M' is trivial. If it weren't, we would be able to find λ maximal such that $M''_{\lambda} \neq \{0\}$, and a nonzero $m \in M''_{\lambda}$ and a representative $\tilde{m} \in M$ of m. Since $(\Omega - q^c)$ acts locally nilpotently on M'', and since Ω acts by $q^{G(\lambda)}$ on the submodule generated by m, we have $c = G(\lambda)$. By assumption, not all $E_i \tilde{m} = 0$ for $i \in I$, so we may find $\lambda' \geq \lambda$, $\lambda' \neq \lambda$, such that $M_{\lambda'} \neq \{0\}$ and a nonzero $m' \in M_{\lambda'}$. Then by a similar argument to before $c = G(\lambda')$, giving a contradiction. So M'' is trivial and we have our result.

Representation Theory at $q^n = 1$

Unfortunately, we don't get such a nice picture when q takes the value of a root of unity.

Let $\varepsilon \in k$ be a primitive l^{th} root of unity $(l \neq 2)$, and let $U_{\varepsilon} = U_{\mathcal{A}} \otimes_{\mathcal{A}} k$ given by the map $\mathcal{A} \to k$, $q \mapsto \varepsilon$, and likewise $V_{\varepsilon}(\lambda)$.

Let us consider, for simplicity, $\mathfrak{g} = \mathfrak{sl}_2$. If l is odd, the Weyl modules $V(\lambda)$ for $0 \leq \lambda < l-1$ are simple (and if l is even a similar statement may be made with $\frac{l}{2}$ in place of l). A proof using the Quantum Casimir operator works, but uses the fact that $1, q^2, ..., q^{2n}$ are distinct. But if we look at $V_{\varepsilon}(\lambda)$ for $\lambda > l$, we see that $\operatorname{Span}_k\{F^{(i)}v_{\lambda} \mid i = 0, ..., l-1\}$ is a submodule. Clearly it is closed under the action of H and $E^{(r)}$ for $r \geq 0$, and the fact that it is closed under the action of $F^{(r)}$ follows from

$$F^{(j)}(F^{(i)}v_{\lambda}) = \begin{cases} {i+j \brack i}_{\varepsilon} F^{(i+j)}v_{\lambda} & \text{if } i+j \le n, \\ 0 & \text{otherwise,} \end{cases}$$

and the fact that ${i+j \brack j}_{\varepsilon} = 0$ if $i+j \ge l$ since $[l]_{\varepsilon} = 0$. So $V_{\varepsilon}(\lambda)$ is no longer simple, and in fact this new submodule does not split. So the category C is no longer semisimple. (Note that, if l is even, $\varepsilon^{\frac{l}{2}} = \varepsilon^{-\frac{l}{2}}$ and so $[\frac{l}{2}]_{\varepsilon} = 0$.

For a general \mathfrak{g} and l odd we have:

Theorem 0.2 (Andersen, Polo & Wen). The modules $V_{\varepsilon}(\lambda)$ are irreducible if $(\lambda + \rho, \alpha) < l$ for all positive roots $\alpha \in R_+$.

The set of $\lambda \in \Phi_+$ with $(\lambda + \rho, \alpha) < l$ for all positive roots $\alpha \in R_+$ is called the *principal alcove*. A similar statement is true for l even, where we use $\frac{l}{2}$ in place of l.

Run away before people start throwing things