
INTRO TO QUANTUM GROUPS AND THEIR
REPRESENTATION THEORY

NOTES FOR A TALK BY CRAIG SMITH

Plan of action:
• Define the quantum enveloping algebras and introduce (restricted)
integral form
• Introduce induction functors to define (dual) Weyl/Verma modules
• Discuss representation theory at generic q
• Start on the representation theory at q a root of unity

Lots of Notation

First things first, we need to set some notation. So, here goes...

Fix a field k = k̄ of characteristic zero and let K = k(q) be rational func-
tions in q.

Let g be a Lie algebra over k defined by the following data:
• A weight lattice Φ, a free Z-module;
• Simple roots αi ∈ Φ indexed by i ∈ I that form a basis of the root
lattice Ψ ⊂ Φ;
• A symmetric bilinear form (·, ·) : Φ×Φ→ Q such that (αi, αi) ∈ 2N,

(αi, αj) ≤ 0 for i, j ∈ I, i 6= j;
• Simple coroots hi ∈ Φ∗ = HomZ(Φ,Z) such that hi(α) = 2(αi,α)

(αi,αi)
for

i ∈ I, α ∈ Φ.
Remark Then g can be generated by Ei, Fi, Hi for i ∈ I with the Serre
relations

[Hi, Hj ] = 0, [Ei, Fi] = δijHi, [Hi, Ej ] = hi(αj)Ej , [Hi, Fj ] = −hi(αj)Fj ,

and for i 6= j,

(adEi)1−hi(αj)Ej = 0, (adFi)1−hi(αj)Fj = 0.

We will denote by
• Φ+ = {α ∈ Φ | hi(α) ≥ 0 for all i ∈ I} be the dominant weights;
• Ψ+ = {

∑
i∈I niαi | ni ≥ 0} ⊂ Ψ the positive root lattice, Ψ− = −Ψ+

the negative roots;
• ≥ the partial ordering on Φ given by α ≥ β if and only if α−β ∈ Ψ+;
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• W the Weyl group attached to this data, generated by the simple
reflections si(α) = α− 2(αi,α)

(αi,αi)
αi = α− hi(α)αi for i ∈ I;

• w0 its unique element of highest length;

• R = W · {αi | i ∈ I} the roots of g, R+ = R ∩Φ+ the positive roots;
• ρ = 1

2

∑
α∈R+

α is the half-sum of the positive roots;

• A = Z[q, q−1];
• qi = q

(αi,αi)

2 for i ∈ I.
• and for integers m,n ∈ Z let

[n]i = [n]qi =
qni − q

−n
i

qi − q−1
i

= qn−1
i + qn−3

i + ...+ q−n+3
i + q−n+1

i

[n]i! = [n]qi ! = [n]i[n− 1]i[n− 2]i...[2]i[1]i,[
m

n

]
i

=

[
m

n

]
qi

=
[m]i!

[n]i![m− n]i!
=

n∏
t=1

qm−n+t
i − q−(m−n+t)

i

qti − q
−t
i

;

The Quantum Enveloping Algebras and Integral Forms

Definition We may now define the quantised enveloping algebra Uq = Uq(g)

to be the algebra generated over K by Ei, Fi, Hi, H
−1
i for i ∈ I with the

defining relations (the quantum Serre relations)
• HiH

−1
i = 1 = H−1

i Hi;
• HiHj = HjHi;
• HiEjH

−1
i = qhi(αj)Ej ;

• HiFjH
−1
i = q−hi(αj)Fj ;

• EiFj − FjEi = δi,j
Hi−H−1

i

qi−q−1
i

;

for all i, j ∈ I, and for i 6= j

• 0 =
∑1−hi(αj)

r=0 (−1)rE
(r)
i EjE

(1−hi(αj)−r)
i ;

• 0 =
∑1−hi(αj)

r=0 (−1)rF
(r)
i FjF

(1−hi(αj)−r)
i ;

where
• E(r)

i = 1
[r]i!

Eri , F
(r)
i = 1

[r]i!
F ri .

This is given a Hopf algebra structure by setting

∆ :Uq → Uq ⊗ Uq, ε :Uq → K S :Uq → Uq,

Ei 7→ Ei ⊗ 1 +Hi ⊗ Ei, Ei 7→ 0 Ei 7→ −H−1
i Ei,

Fi 7→ Fi ⊗H−1
i + 1⊗ Fi, Fi 7→ 0 Fi 7→ −FiHi,

Hi 7→ Hi ⊗Hi, Hi 7→ 1 Hi 7→ H−1
i .
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Let us denote by
• U>0

q (respectively U<0
q ) the subalgebra of Uq(g) generated by {Ei |

i ∈ I} (respectively {Fi | i ∈ I});
• U0

q the subalgebra generated by {H±1
i | i ∈ I};

• U≥0
q (respectively U≤0

q ) the subalgebra generated by U>0
q (respec-

tively U<0
q ) and U0

q .

Fact There is a triangular decomposition of Uq. That is, multiplication
defines isomorphisms of K vector spaces

U>0
q ⊗ U0

q ⊗ U<0
q → Uq

U<0
q ⊗ U0

q ⊗ U>0
q → Uq

Remark For a fixed i ∈ I we can see that the subalgebras of Uq(g) generated
by Ei, Fi, H±1

i , denoted Uq(g)i, are isomorphic to Uq(sl2).

The problem with working over K = k(q) is that we cannot specialise to
any value of q that is algebraic over k, including the roots of unity we are
interested in. Instead, we must work with an integral form of Uq.
Definition An integral form of Uq is a Hopf subalgebraH overA = Z[q, q−1]
such that Uq(g) ∼= H ⊗A K. We may then specialise to a general ε ∈ k×,
Hε = H ⊗A k via the map A → k, q 7→ ε.
There are two good choices for such integral forms, the restricted and the
unrestricted integral forms. We will only be interested in the restricted inte-
gral form, which is good since I know nothing about the unrestricted integral
form.

Definition The restricted integral form of Uq, denoted U res
A , is the A subal-

gebra of Uq generated by E(r)
i , F (r)

i , Ki and K−1
i for i ∈ I, r ≥ 0. Since we

won’t be studying the unrestricted integral form, we will drop the ’res’ and
simply write UA. Let us define U•A = UA∩U•q for • ∈ {> 0,≥ 0, < 0,≤ 0, 0}.

(Non-Trivial) Fact UA is an integral form of Uq and a free A-module,
and has a similar triangular decomposition. This is proven by constructing
(using an action of the braid group) a free A-basis of UA that is also a K-
basis of Uq. Given an enumeration of the positive roots R+ = {β1, .., βN},
there exist Eβi , Fβi ∈ U res

A such that KjEβiK
−1
j = q(αj ,βi)Eβi , KjFβiK

−1
j =

q−(αj ,βi)Fβi , and that

{(EβN )(lN )(EβN−1
)(lN−1)...(Eβ1)(l1) | li ≥ 0},

{(FβN )(l1)(FβN−1
)(l2)...(Fβ1)(lN ) | li ≥ 0}
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are A-bases of U>0
A and U<0

A respectively, and are K-bases of U>0
q and U<0

q

respectively. Then, using a triangular decomposition we obtain the required
bases.

Induction and (Dual) Verma and Weyl modules

Definition For a UA module M we denote by O(M) and F (M) the A
submodules

O(M) =
⊕
λ∈Φ

Mλ where Mλ := {m ∈M | Him = qhi(λ)m for all i ∈ I},

the direct sum of the weight spaces of M , and

F (M) = {m ∈ O(M) | E(r)
i m = 0 = F

(r)
i m for all i ∈ I and for r � 0},

the integrable part of M . Note that these are in fact U res
A submodules of M .

We say that M is integrable if M = F (M).

Let OA be the category of UA modules M such that M = O(M) and that
are locally A-finite (finitely generated as an A module) U>0

A modules. Let
Oint
A be the full subcategory of integrable modules in OA.

By the commutation relations we see that, forM ∈ OA, E(r)
i Mλ ⊂Mλ+rαi

and F (r)
i Mλ ⊂Mλ−rαi . An element m ∈Mλ is said to be a weight vector of

weight λ and if, in addition, E(r)
i m = 0 for every i ∈ I and every r > 0 then

we say m is a highest weight vector. A UA module in OA that is generated
by a highest weight vector is called a highest weight module.

We may analogously define integrable U≥0
A modules, where we only in-

sist on E
(r)
i m = 0 for r � 0 in the definition of F , and analogous cate-

gories O≥0
A , O≥0,int

A . Then we have an induction functor Ind : O≥0
A → OA,

N 7→ UA ⊗U≥0
A
N .

For λ ∈ Φ we denote by Aλ the U≥0
A module structure on A where E(r)

i act
by 0 and Ki act by qhi(λ) on A. Caution: As Kobi remarked in the talk, this
is not enough to define Aλ since U0

A is not only generated by H±i , but also

by
[
Hi;m
n

]
:=
∏n
t=1

Hiq
m−t+1
i −H−1

i q
−(m−t+1)
i

qti−q
−t
i

that arise from the commutation

of the E(r)
i and F (r)

i . We define the Verma module with highest weight λ to
be MA(λ) := Ind(Aλ) = UA ⊗U≥0

A
Aλ. This is a highest weight module of

weight λ generated by xλ = 1⊗1, and in factMA(λ) is universal in the sense
that it surjects uniquely up to scalar onto any other highest weight module
of weight λ.

Using this induction functor, we may also define another induction functor
from A-finite integrable U≥0

A modules to A-finite integrable UA modules as
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follows.

Proposition/Definition Let N be an A-finite integrable U≥0
A module.

Let M = UA ⊗U≥0
A
N . Then the set of UA submodules L of M such that

M/L is A-finite has a unique minimal element, L0 say. Then we define
D(N) = M/L0.

Proof. We will make use of the following Lemma:

Lemma. If M is an integrable UA module and λ is a weight of M then wλ
is a weight of M for all w ∈W .

This is proven by reducing to the case of w being a simple reflection and
g being sl2, where it is straightforward to prove.

The weights of N form a finite set X ⊂ Φ. Note that M ∼= U≤0
A ⊗U0

A
N ,

so the weights of M are in X ′ = X + Ψ−, which only contains finitely
many dominant weights. Now each weight in Φ is in the same orbit as a
dominant weight, so X ′′ = X ′ ∩ (W (X ′ ∩ Φ+)), the largest W -stable subset
of X ′, is finite. If L is a UA submodule of M such that M/L is a finitely
generated A module then, as the weights of M/L are stable under W , they
are contained in X ′′. So L contains M ′ =

⊕
λ 6∈X′′Mλ. Conversely, if L0 is

the UA submodule generated byM ′ then the weights ofM/L0 are contained
in X ′′ and hence are finite, and each weight space ofM is a finitely generated
A module, so M/L0 is a finitely generated A module. �

We denote by VA(λ) the A-finite induced module D(Aλ), which we call
the Weyl module of highest weight λ. Note that, if λ 6∈ Φ+ then X ′′ = ∅ and
so VA(λ) = {0}. VA(λ) is a highest weight module of weight λ, generated
by the image of xλ, vλ say, and is universal in the sense that it surjects onto
any A-finite highest weight module of weight λ.

Fact Both MA(λ) and VA(λ) are free A modules.

More explicitly, MA(λ) is isomorphic to the quotient of UA by the left
ideal generated by E(r)

i and Hi − qhi(λ) · 1 for i ∈ I and r ≥ 1, where xλ is
the image of 1 in the quotient. Then VA(λ) is the quotient of MA(λ) by the
submodule generated by F (si)

i xλ for i ∈ I and si > hi(λ). This follows from
the relation

E
(r)
i F

(s)
i =

∑
0≤t≤r,s

F
(s−t)
i

(
t∏
l=1

Kiq
2t−r−s−l+1
i −K−1

i q
−(2t−r−s−l+1)
i

qli − q
−l
i

)
E

(r−t)
i
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For example, if we take g = sl2, so Φ = Z with simple root is 2, then we
may give explicit descriptions of MA(λ) as follows:

MA(λ) =
⊕
i≥0

AF (i)xλ,

K(F (i)xλ) = qλ−2iF (i)xλ,

F (j)(F (i)xλ) =

[
i+ j

i

]
F (i+j)xλ,

E(j)(F (i)xλ) =

{[
λ−(i−j)

j

]
F (i−j)xλ if i− j ≥ 0,

0 otherwise,

Note that, by definition,
[
λ−(i−j)

j

]
=
∏j
t=1

qλ−i+t−q−(λ−i+t)

qt−q−t is zero if and only
if zero appears as one of these terms, which only happens when λ+j ≥ i > λ.
This shows that

⊕
i>λAF (i)xλ is a submodule. Quotienting out by this

submodule gives the Weyl module:

VA =

λ⊕
i=0

AF (i)vλ,

K(F (i)vλ) = qλ−2iF (i)vλ,

F (j)(F (i)vλ) =

{[
i+j
i

]
F (i+j)vλ if i+ j ≤ n,

0 otherwise,

E(j)(F (i)vλ) =

{[
λ−(i−j)

j

]
F (i−j)vλ if λ ≥ i− j ≥ 0,

0 otherwise.

For M ∈ OA we define the dual module of M to be M∗ =
⊕

λ∈ΦM
′
λ

where M ′λ = HomA(Mλ,A) is the dual to Mλ. Since M∗ ⊂ HomA(M,A)
we may endow it with the UA module structure arising from the antipode S
(namely (x · φ)(m) = φ(S(x) ·m)). Unfortunately, this is no longer in OA -
it’s kind of upside-down - however if the roles of Ei and Fi were interchanged
it would be. Therefore we must twist the action using the automorphism ω of
UA determined by E(r)

i 7→ F
(r)
i , F (r)

i 7→ E
(r)
i and Hi 7→ H−1

i . So the action
on M∗ is given by (x · φ)(m) = φ(S(ω(x)) ·m) and gives a dual module in
O. Then we call M∗A(λ) the dual Verma module and V ∗A(λ) the dual Weyl
module. If x∗λ ∈ M ′A(λ)λ is such that x∗λ(xλ) = 1 then (E

(r)
i · x∗λ)(m) =

x∗λ(S(F
(r)
i ) ·m) = 0 for r > 0 since S(F

(r)
i ) is a scalar multiple of Hr

i F
(r)
i

and so reduces the weight of m, but λ is of highest weight. So there is a
morphism MA(λ)→M∗A(λ), and in fact this factors as

MA(λ) � VA(λ)→ V ∗A(λ) ↪→M∗A(λ).
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We will see that, in the case where q is generic (and so we work over K
instead of A) this is an isomorphism but this is not the case at roots of
unity.

Representation Theory at Generic q

Let us first deal with q transcendental over k, where things are nice.

Let M(λ) = MA(λ) ⊗A K be the Verma modules of Uq of weight λ and
let V (λ) = VA(λ) ⊗A K be the Weyl modules. Let O and Oint be defined
analogously for Uq.

Theorem 0.1 (Lusztig). Every M ∈ Oint can be written as a direct sum of
Weyl modules V (λ) for λ ∈ Φ, which are simple and distinct for different λ.

In order to prove the above, we will make use of the Quantum Casimir
Operator , specifically the one found in Lusztig’s ’Introduction to Quantum
Groups’. We will not need an explicit description of the operator, so we shall
just summarise its properties.

Given any Uq module M ∈ O, we have an operator Ω : M → M , the
Quantum Casimir Operator, that commutes with the action of Uq such that:

• The eigenvalues of Ω are of the form qc for various integers c;
• There is a function G : Φ → Z such that Ω acts by scalar qG(λ) on
the Verma module M(λ);
• If λ ≥ λ′ and G(λ) = G(λ′) then λ = λ′.

Proof. First we show that Weyl modules V (λ) are simple. In fact, we show
that any integrable quotient M of a Verma module M(λ) is simple (and
hence V (λ) is the unique integrable quotient of M(λ)). Suppose we have a
proper non-trivial submodule M ′ of M . Then M ′λ = {0}, and we can find a
maximal λ′ ∈ Φ such that M ′λ′ 6= {0}. Let m ∈M ′λ′ be nonzero, so Eim = 0

for all i ∈ I. So there is a morphism M(λ′) → M . Since Ω acts by qG(λ)

on M and by qG(λ′) on Uq ·m, and since λ ≥ λ′, we have λ = λ′ giving a
contradiction.

Now we prove that every M ∈ Oint is a direct sum of simple V (λ), for
which it is enough just to show it is a sum of these modules. By writing M
as a direct sum of generalised eigenspaces of Ω, we may assume that (Ω−qc)
is locally nilpotent on M . Let P = {m ∈ M | Eim = 0 for all i ∈ I},
which decomposes as P =

⊕
Pλ for Pλ = P ∩Mλ. The submodules of M

generated by m ∈ Pλ are integrable quotients of Verma modules, and so are
each isomorphic to some Weyl module. So the submodule M ′ generated by
P is a sum of Weyl modules. Let us show that M ′′ = M/M ′ is trivial. If
it weren’t, we would be able to find λ maximal such that M ′′λ 6= {0}, and a
nonzerom ∈M ′′λ and a representative m̃ ∈M ofm. Since (Ω−qc) acts locally
nilpotently on M ′′, and since Ω acts by qG(λ) on the submodule generated
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by m, we have c = G(λ). By assumption, not all Eim̃ = 0 for i ∈ I, so we
may find λ′ ≥ λ, λ′ 6= λ, such that Mλ′ 6= {0} and a nonzero m′ ∈ Mλ′ .
Then by a similar argument to before c = G(λ′), giving a contradiction. So
M ′′ is trivial and we have our result. �

Representation Theory at qn = 1

Unfortunately, we don’t get such a nice picture when q takes the value of
a root of unity.

Let ε ∈ k be a primitive lth root of unity (l 6= 2), and let Uε = UA ⊗A k
given by the map A → k, q 7→ ε, and likewise Vε(λ).

Let us consider, for simplicity, g = sl2. If l is odd, the Weyl modules V (λ)
for 0 ≤ λ < l − 1 are simple (and if l is even a similar statement may be
made with l

2 in place of l). A proof using the Quantum Casimir operator
works, but uses the fact that 1, q2, .., q2n are distinct. But if we look at Vε(λ)

for λ > l, we see that Spank{F (i)vλ | i = 0, .., l− 1} is a submodule. Clearly
it is closed under the action of H and E(r) for r ≥ 0, and the fact that it is
closed under the action of F (r) follows from

F (j)(F (i)vλ) =

{[
i+j
i

]
ε
F (i+j)vλ if i+ j ≤ n,

0 otherwise,

and the fact that
[
i+j
j

]
ε

= 0 if i+ j ≥ l since [l]ε = 0. So Vε(λ) is no longer
simple, and in fact this new submodule does not split. So the category C is
no longer semisimple. (Note that, if l is even, ε

l
2 = ε−

l
2 and so [ l2 ]ε = 0.

For a general g and l odd we have:

Theorem 0.2 (Andersen, Polo & Wen). The modules Vε(λ) are irreducible
if (λ+ ρ, α) < l for all positive roots α ∈ R+.

The set of λ ∈ Φ+ with (λ + ρ, α) < l for all positive roots α ∈ R+ is
called the principal alcove. A similar statement is true for l even, where we
use l

2 in place of l.

Run away before people start throwing things


