Factorization structures via the non-commutative Hilbert scheme of points in \mathbb{C}^{3}

Emily Cliff
University of Illinois at Urbana-Champaign

17 March, 2018

Section 1

The question

Let X be a smooth complex surface (e.g. \mathbb{C}^{2}).

The Hilbert scheme of n points of X parametrizes 0 -dimensional subschemes of X of length n.

Write $\operatorname{Hilb}_{X}=\bigsqcup_{n \geq 0} \operatorname{Hilb}_{X}^{n}$ and

$$
\mathbb{H}=H^{*}\left(\operatorname{Hilb}_{X}\right)=\bigoplus_{n \geq 0} H^{*}\left(\operatorname{Hilb}_{X}^{n}\right)
$$

It follows from the work of many people in geometry and in algebra that
(1) \mathbb{H} is an irreducible representation of the Heisenberg Lie algebra \mathfrak{h}_{X}. [Nakajima, Grojnowski]
(2) \mathbb{H} is isomorphic to the Heisenberg vertex algebra. [Frenkel-Lepowski-Meurmann]
(3) On any smooth curve C, there is associated to Hilb ${ }_{X}$ the Heisenberg chiral algebra. [Huang-Lepowski, Frenkel-Ben-Zvi]
(4) On any smooth curve C, there is a Heisenberg factorization algebra \mathcal{H}_{C}. [Beilinson-Drinfeld, Francis-Gaitsgory]

Open problem: Given a smooth curve C and a smooth surface X, find a way to construct the factorization algebra \mathcal{H}_{C} directly from the geometry of X and C and the Hilbert scheme, without passing through all of the formal algebra.

Strategy:

(1) Construct a factorization space over C whose fibres are built from copies of the Hilbert scheme.

2 Linearize (e.g. taking by cohomology along the fibres) to obtain a factorization algebra with fibres copies of \mathbb{H}.

Section 2

The physics

The AGT correspondence

In math:
Moduli space of G-instantons on X

$$
G=U(1):
$$

Hilb $_{X}$

Vertex algebra:
\mathcal{W}-algebra for \mathfrak{g}^{L}

Heisenberg vertex algebra

New strategy:

(1) Build a factorization space over $X \times C$.
(2) Use dimensional reduction to get a space over C.
(3) Linearize.

Section 3

The math

Factorization spaces

Let Z be a separated scheme.
The Ran space of Z parametrizes non-empty finite subsets $S \subset Z$.

Definition

A factorization space over Z is a space living over the Ran space,

$$
\mathcal{Y} \rightarrow \operatorname{Ran} Z,
$$

whose fibres \mathcal{Y}_{S} are equipped with compatible factorization isomorphisms:

- Given some points $\left\{S_{i}\right\}_{i=1}^{n} \subset \operatorname{Ran} Z$ such that, as subsets of Z, the S_{i} are pairwise disjoint, we have

$$
F_{\left\{S_{i}\right\}}: \prod_{i=1}^{n} \mathcal{Y}_{S_{i}} \xrightarrow{\sim} \mathcal{Y}_{\sqcup S_{i}}
$$

The Hilbert scheme factorization space

In this case, we have $Z=C$, a smooth complex curve.

We define a space $\mathcal{H i l b}_{X \times C}$, whose fibre over

$$
S=\left\{c_{1}, \ldots, c_{n}\right\} \in \operatorname{Ran} C
$$

is given by

$$
\begin{aligned}
\mathcal{H i l b}_{X \times C, S} & =\left\{\xi \in \operatorname{Hilb}_{X \times C} \mid \operatorname{Supp} \xi \subset \bigsqcup_{i=1}^{n}\left(X \times\left\{c_{i}\right\}\right)\right\} \\
& \cong \prod_{i=1}^{n} \mathcal{H i l b}_{X \times C,\left\{c_{i}\right\}}
\end{aligned}
$$

The Hilbert scheme factorization space

The Hilbert scheme as a critical locus

e.g. when $X=\mathbb{C}^{2}, C=\mathbb{C}^{3}$, we can write $\operatorname{Hilb}_{X \times C}^{n}$ as a critical locus inside the non-commutative Hilbert scheme as follows:
$\operatorname{Hilb}_{\mathbb{C}^{3}}^{n} \cong\left\{\begin{array}{l|l}(X, Y, Z, v) & \begin{array}{c}X, Y, Z \in M_{n}(\mathbb{C}), \\ {[X, Y]=[Y, Z]=[X, Z]=0 ;} \\ v \in \mathbb{C}^{3} \\ \text { a cyclic vector under } X, Y, Z\end{array}\end{array}\right\} / G L_{n}(\mathbb{C})$.

NCHilb $_{\mathbb{C}^{3}}^{n}:=\left\{\begin{array}{l|l}(X, Y, Z, V) & \begin{array}{l}X, Y, Z \in M_{n}(\mathbb{C}) ; \\ v \in \mathbb{C}^{3} \\ \text { a cyclic vector under } X, Y, Z\end{array}\end{array}\right\} / G L_{n}$.

$$
\begin{aligned}
W: \text { NCHilb }_{\mathbb{C}^{3}}^{n} & \rightarrow \mathbb{C} \\
{[X, Y, Z, v] } & \mapsto \operatorname{Tr}(X,[Y, Z])
\end{aligned}
$$

$\operatorname{Hilb}_{\mathbb{C}^{3}}^{n}=\operatorname{Crit}(W)$.

Generalizing the factorization structure

For $S \in \operatorname{Ran} C$, a point $\xi=[X, Y, Z, v] \in \operatorname{Hilb}_{\mathbb{C}^{3}}$ lives in the fibre $\mathcal{H i l b}_{\mathbb{C}^{3}, S}$ whenever the eigenvalues of Z are contained in the set $S \subset \mathbb{C}$.

The factorization maps of Hilb are given by creating block diagonal matrices.

Definition

We define a space $\mathcal{N C H} \mathcal{H i l b}_{\mathbb{C}^{3}}$ whose fibre over $S \in \operatorname{Ran} C$ consists of those points $[X, Y, Z, v] \in \mathrm{NCHilb}_{\mathbb{C}^{3}}$ such that the eigenvalues of Z are contained in the set S.

Remark: In general, if we start with two points [$X_{1}, Y_{1}, Z_{1}, v_{1}$], [$X_{2}, Y_{2}, Z_{2}, v_{2}$], there is no reason to hope that the data

$$
\left[\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right],\left[\begin{array}{cc}
Y_{1} & 0 \\
0 & Y_{2}
\end{array}\right],\left[\begin{array}{cc}
Z_{1} & 0 \\
0 & Z_{2}
\end{array}\right],\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

will again be stable.

However, in the case that the eigenvalues of Z_{1} and Z_{2} are distinct, stability is ensured.

This gives us factorization maps

$$
F_{\left\{S_{i}\right\}}^{N C}: \prod_{i=1}^{n} \mathcal{N C H i l b}_{\mathbb{C}^{3}, S_{i}} \rightarrow \mathcal{N C H i l b}_{\mathbb{C}^{3}, \sqcup s_{i}}
$$

Results (jt. with Itziar Ochoa)

- The maps $F^{N C}$ are closed embeddings, not isomorphisms.
- The factorization space $\mathcal{H i l b}_{\mathbb{C}^{3}}$ can be realized as a critical locus in $\mathcal{N C H i l b}{ }_{\mathbb{C}^{3}}$.
- Over this critical locus, $F^{N C}$ restrict to the factorization isomorphisms.
- We have a perverse sheaf $\mathcal{P V}$ of vanishing cycles on $\mathcal{H i l b}_{\mathbb{C}^{3}}$, a candidate for linearizing the factorization space to get a factorization algebra on $C=\mathbb{C}$.

Work in progress: Is this sheaf compatible with the factorization structure on $\mathcal{H i l b}_{\mathbb{C}^{3}}$?

- After applying results of Brav-Bussi-Dupont-Joyce-Szendroi, this amounts to checking vanishing of (or adjusting $\mathcal{P V}$ to account for) certain $\mathbb{Z} / 2 \mathbb{Z}$-bundles $J_{F^{N C}}$ on spaces associated to $\mathcal{H i l b}_{\mathbb{C}^{3}}$.

