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1l As an example of a nice computational project, suppose that upon reaching the level
K . 0, say in the state (0, 7), the Markov chain is moved after one unit of time to the state
" (N, jywith N =1, and is allowed to continue. We wish to determine the smallest value
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of N which guarantees that the stationary version of the Markov chain spends a
fraction of time at least & above the level K. The quantities ,0 <@ < 1,and K =0, are
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) given. o
i In this problem, the matrices B,, v > 0, are given by B, = 1, B, =0, for v # N, and we University of Sydney

] i inc the small hi . _ r
I wish to determine the smallest value of N for which (Received: 11 November 1983)

some care, the desired value of N may be efficiently computed. More involved Abstract
problems of this type are common in applications, such as in the design of message o ‘ . o ‘ S _ 3 |

_ C ; . . ) The primary purpose of this article is to give some insight into work in probability other than iE
stora_ge buflers m comrpumcatlons engineering or 1 inventory rpodels. . that of the St. Petersburg School within the Russian Empire, specifically on the central limit .
H It is also possible to give a formally different analysis of the stationary probability x

‘ - L X . ) problem, and the linear model framework with which it was associated. It focusses in particular i
‘ | of P, which is based on the matrix G¥(z) of Section 2. That approach is more involved on the contributions and personalities of I. V. Sleshinsky (who compieted a fully rigorous proof |

|
|
|
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By implementing the aigorithm we have just described and by planning its steps with : [E
i
[
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i both in its mathematical analysis and its algorithmic implementation and we shall not of the central limit theorem before Markov) and P. A. Nekrasov who used the method of
i present it here. The matrix G*(z) and various associated first-passage-time saddlepeint, of Laplacian peaks, and of the Lagrange inversion formula to ¢stablish for sums of 3
: AT ) . : ) : ) lattice variables, the standard local and global limit theorems of central limit type for large ;
}‘ ' distributions play an essential role, however, in the study of Markov chains of the type deviations; and their relations with Chebyshev, Markov and Liapunov. The controversy
;I ‘ P, between Markov and Liapunov on one hand, and Nekrasov on the other, led Matkoy to ideas

resulting in the appearance of Markov chains.
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(ify |E{UM)<C  forall{, and all integers k =2,
where C is a constant independent of ; and k; then as 7 — oo
Pr{t < S,/B, <t'] > (2n) 12 [Vexp(—x2/2)dx (1.1

{ where

' n
: S,=3» U, B:=Y VarU,
1 i=1

i (We have changed Chebyshev’s notation and statement to accord with more modern
usage.) The technique used in the proof, which is incomplete, is the method of
moments, which dates back to Chebyshev’s interaction with Bienaymé.

il Standard accounts of subsequent carly history focus on two of Chebyshev's

i illustrious students within the ‘St. Petersburg School’, A. A. Markov and A. M.

; " Liapunov. In published letters to A. V. Vasiliev, Markov (1898a) states that a further
37
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condition needs to be added to make the statement of the theorem correct, and suggests
that this can be taken to be:

(iiiy B?/n is uniformly bounded away from 0.

In the very last part of his correction (Markoff (1898b)} of Chebyshev’s theorem, he
replaces (iii) by:

(iila) EU? is bounded from 0 as n— o0.

Finally, in 1900-1901, Liapunov proves it in the version known as Liapunov’s theorem,
whose final version (Liapounoff (1901a), §2) states (for U, discrete rather than
continuous} that (1.1} obtains, with convergence uniform with respect to ¢ and ¢, if

(a) EU,=0 all i;
(b) there exists a § > 0 such that

(Z E| Uﬂ”) /(Z E(Uf)) -0

i=1

as n— oo. The proof is carried out by characteristic-function methods and what are
now known as Liapunov’s inequalities. In §11, Liapunov alludes to Chebyshev’s and
Markov's work, in relation to deducing as a consequence of his result that his
conclusion holds if

iy EU=0;

(iiy E|¥U*< Cfor all i and positive integer k > 2 where C is a constant; and

(iii)’ there exists a 8, 0 < f < 1, such that, as n— oo

n?/B2 0.
The relation of (i)’-(iii)’' to (i)-(iii} is evident.

There is often allusion to later work of Markov (1913) who reproves Liapunov’s
resulf using the method of moments and truncated variables, but there is rarely in the
literature even passing mention of Russian contributions to the central limit problem
other than of these three members of the St. Petersburg Scheool (see e.g. Adams (1974),
who devotes his last two chapters, 7 and 8, to this work; Maistrov (1967), Chapter 4;
Gnedenko and Sheynin {1978)).

Yet, the central limit problem in pre-revolutionary Russia does not have such a
monolithic structure, and it is the intention of this essay to give some insight into work
and workers other than that of the St. Petersburg School. Indications of such are not
explicitly given by Markowv in the above sequence of works, but in the first of his two
major papers, Liapunov (Liapounotf (1900)), speaking of resolution of the central limit
problem based on the notion of the ‘discontinuity factor’ (which is essentially the
characteristic function approach), says!

‘I'was at first unaware that an attempt in this direction had been made by
Sleshinsky. Nevertheless, when I subsequently acquainted myself with it, I
saw that new investigations would not be superfluous, since Sleshinsky, in
using the ideas of Cauchy, made assumptions which are too restrictive, and
his analysis does not appear to extend to more general situations.’

 All quotations from the Russian are given in free English translation,
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The reference js to Sleshinsky (1892). Another English rendering of this passage is by
Adams (1974), pp.86-87; he transliteraies Sleshinsky as “Slechinskii’, who is not
otherwise mentioned (nor do the relevant papers of Cauchy attract comment). A fow
paragraphs further on, Liapunov {Liapouneff (1900)), says

“Yet I should mention that the question under investigation was also the
subject of investigations of Neckrasov, who recently published a note
containing a brief exposition of results obtained by him on it. Insofar as one
may judge by the note, the assumptions made by Nekrasov are essentially
different from mine. In regard to his methodology, this is still unknowa,
since Nekrasov has not published his analysis. In any case it is permissible
to suppose that this methodology is far from elementary, for, to quote
Nekrasov, it is based on general investigations relating to the Lagrange
series, which were published by him earlier.

The (implicit) reference is to Nekrasov (1898a). There is another allusion to Nekrasov
(in a footnote given as being to ‘Novie osnovania .., 1901, Mar. Shornik 21-22) in
Liapounofl (1901a) at the end of §11—after the allusion mentioned above to the
conditions of Chebyshev and Markov:

‘Nekrasov, in his work on probabilistic sums which he has recently
published, claims that Markov's supplementary condition [i.e. (iii) above]
may be replaced by one even more general, which requires only that the
quantity B? should go to infinity as n— co.

As we shall show in the next section, in seme cases this condition is
indeed sufficient. But in general it is not sufficient, as may be seen from
examples, as was already noted by Markov.

There is no explicit allusion to an article of Markov here, and the existence of such
published examples due to him is doubtful. The only examples in the central limit
connection published by Markov oceur in the Markov—Vasiliev correspondence
(Markov (1898a)) and in his (1899b) reply to Nekrasov. All these examples concern
sequences of independent random variables on [—1,1], presumably to satisfy
condition (ii); and for uniformly bounded random variables we now know it to be true
that BZ — o is necessary and sufficient for the central limit theorem to hold.

Indeed, assuming conditions (i)’ and (ii), the additional assumption B? — oo is
sufficient for the central limit theorem to hold so in essence an example of this kind
alluded to'by Liapunov as due to Markov could not have been constructed. To see this,
note that for any integer m = 0, and fixed 5 > 0, we may choose #,() so thaty B, > 2 for
i = n,(n) since B, — o0 in which case-using ()" and (i)’ for all i =1,

C2 j‘|y|>p;3n|y|2+mdP[Ui gy] 2 (T?Bn)mjiy{‘)qB"yzdP[Ui Sy]
so that

ol Cn Cn

— dP[U, <y < <
& oY LU S G g < 5
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and itis clearly possible to determine a1 = m(n) so that the right-hand side approaches
0 as n-» oo, so that the Lindeberg condition is satisfied and the central limit theorem
holds. This reasoning depends heavily on the bound C in (i}’ being uniform in 4.
Liapunov's reasoning, if not explicit statement, permits this constant to depend on k; it
has been claimed, beginning with Liapunov (1901b), p. 57, that Chebyshev's condition
(ii) might be so interpreted, but it was certainly not so interpreted by Markov.

There is an obviously understandable temptation to dismiss the apparently minor
contributions of Sleshinsky and Nekrasov engendered by a natural desire to obtain a
simplistic picture, and this is in fact what has occurred. The attitude is reinforced by the
following information concerning P. A. Nekrasov given in a biography of A, A.
Markov by his son (also A. A. Markov) in Markov (1951), pp. 610-611":

‘My father paid very great attention to the method of teaching
mathematics in high school. He protested energetically against various
harmful experiments in this area. In particular, such experiments were
attempied by a professor of Moscow university, P, A. Nekrasov, a member
of the Black Hundred and mystic, who sought to make out of mathematics
a bulwark for Orthodox Christianity and autocracy. In 1915, Nekrasov,
associated with the administration of the Ministry of National Education,
and formerly in charge of an educational area, proposed with P. 8. Florova
scheme for the introduction of probability theory into the high school
curriculom. In essence this scheme amounted to inculcation into the minds
of students the confused pscudo-scientific views of its authors as regards
probability theory, mathematical statistics and mathematics in general.

The scheme came to nothing on the initiative of A.A. Markov. A similar
characterization of Nekrasov, in generally greater detail, is given by Maistrov (1967) in
Chapter V, §1. We have for example:

‘In his numerous works Nekrasov adopted idealistic positions.”
‘Speaking of social problems, Nekrasov sharply opposes political

changes in which the masses participate. He considers private property a

prime principle, which it is the czarist regime’s provinee to protect.’

Presumably, one must understand words such as ‘mystic’ and ‘idealistic’ according
to their usage in political terminology. Maistrov mentions a number of books of
Nekrasov, purportedly of sociological, philesophical and pedagogical nature,
expressing reactionary views, as well as a probability text book based on his lectures at
Moscow university (Nekrasov (1896)) where he had been professor. We shall not
pursue any of these publications further except to note, with Maistrov, a strong attack
in 1916 on Markov by Nekrasovin apparent retaliation for Markoy’s opposition to the
high-school project. We shall see in the sequel that animosity between the two had
much carlier, technical rather than ideological, origins which have been forgotten.
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It is well known that Markov’s (‘progressive materialistic’) ideologies were
acceptable, and, indeed, welcome in post-revolutionary Russia; it is clear that
Nekrasov’s reactionary ones were not, ostensibly with good reason. Yet it is curious
that Sluginov’s (1927) obituary' is very positive.

Although I. V. Sleshinsky was ethnically Polish, his published work in probability
was done in the city of Odessa where he studied and taught at the university up to his
retirement in 1909. He subsequently moved to Krakéw. We have been able to trace a
good obituary in Polish of Sleshinsky by Hoborski (1931}, and this has been
supplemented by personal information from various sources, especially from his
Krakéw period, In addition, the article of Leibman (1961) contains much material on
Sleshinsky during his Odessa period (on p. 400, there is a photograph of him), and
on his colleagues there, within the framework of a general biographical and
evolutionary account of their academic activity, to which we shall allude in the sequel.

We include as appendices, synthesized biographical sketches of both Nekrasov and
Sleshinsky, to aid in the understanding of their roles, and their eclipse. Neither had any
lasting effect on the subsequent development of the central limit problem for reasons
which do not relate to the significance of their work. This significance has been briefly
mentioned eisewhere (Seneta (1979)), and we shall develop it at greater length below,
but it is in place to summarize it here. Nekrasov in his 1898a paper attempted to use
what we now know as the method of saddlepoint, of Laplacian peaks, and of the
Lagrange inversion formula to establish, for sums of lattice variables, the standard
local and global limit theorems of central limit type for large deviations. The attempt
was many years ahead of its time. The controversy between Matkov, Liapunov and
Nekrasov, led Markov to ideas resulting in the appearance of ‘Markov chains’ in his
work; and certainly led to a significant interaction between Markov and A. A.
Chuprov (or Tschuprow), whichin turn shaped the significant role that Chuprov was to
play in the development of statistical theory.

Sleshinsky’s (1892) work on the central limit theorem already manifests the notion of
‘triangular arrays’ in terms of which general central-limit-type results have latterly boen
formulated. To Cauchy and Sleshinsky (see Heyde and Seneta {1977, §§4.6-4.7) we
may attribute the first rigorous proof of the central limit theorem (albeit under
restrictive conditions), and the first really successful use of characteristic functions in
this connection. With its rigour, and its difficult and involved estimates, after earlier
authors, the paper of 1892 is modern probability theory, in anticipation of Markovand
Liapunov,

Although we shall devote most attention to Nekrasov and Sleshinsky, this work
arose out of a broader desire: to gain some insight into work in probability other than
that of the St. Petersburg School within the Russian Empire, in consequence of
Chapter 4 (on linear least squares) of the book of C. C. Heyde and E. Sencta (1977)
with which the reader will find a little overlap. Linear least squares, in its probabilistic
aspect, has had a long historic connection with the central limit problem; we shall
develop this theme beginning in the next section, and use least squares as a framework
for the general character of this account. Significant work in our general subject area

was being done at centres other than St. Petersburg in the empire, mainly under the

¥ 'The Black Hundred was a name applied by their adversaries to extreme right-wing elements it Russia of the

1 time. They supported anti-Semitism, absolutism, and nationalism, and carried out pogroms against Jews ; . : |

F and students. See Appendix 1. |
i
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indirect stimulus of Chebyshev (1821-1894), from about 189). W¢ may consider,
as examples, Moscow (P. A, Nekrasov); the three Ukrainian® cities of Odessa
(I. V. Sleshinsky, S. P. Yaroshenko), Kharkov (V. G. lmshenetsky, M. A.
Tikhomandritsky, and later Liapunov), and Kiev (V. P. Ermakov); Kazan (A. V.
Vasiliev); and the Polish city of Warsaw (P. S. Nazimov, W, Gosiewski). The account
presented here would doubtless have been more complete with access to materials
which a more appropriately-based worker might have had (although political
considerations may have constituted a hindrance); yet it is hoped that it will make more
complete, in regard to language, period and location, even the recent valuable survey of
least squares by Harter (1974-1976). In his list of 408 items, Merriman (1877-1882)
lists [6 emanating from Russia, but includes no Russian-language sources.

2, Linear least squares

The basic problem of the classical linear model is to estimate an » x 1 vector, g of
unknowns from a number N of observations Y, related linearly to f but subject to error
e={g}:

Y=Xp+e. 2.0

Here X = {x;;}isaknownfixed ¥ « rmatrix with ¥ > r, which we shall assume to be of
full column rank #. Tn the nineteenth centary this problem was generally viewed as one
of finding an r x N constant matrix X = {k;;} (or, in the usage of that time, a system of
‘multipliers’ &) such that

KX=1 (2.2)
where 7 is the unit matrix. Then f is, accordingly, estimated by f§ = {8}
B=KV=p+Ke 2.3)

the matrix K being chosen (under the constraint (2.2)) in some optimal manner. Such a
procedure is lingar, insofar as according to (2.3), the clements of # are each estimated
by a fixed linear combination of the elements of ¥, irrespective of the value of ¥.
The situation may be regarded from two viewpoints. The first is non-statistical and

regards it as a problem of interpolation, associated with the overdetermined set of
linear equations ¥ = Xf. In this case K is determined in accordance with a direct
requirement on g itself. Legendre in 1805 determined K according to the criterion that
the sum of squares of errors, &g, be minimized : this leads to the ‘least-squares’ estimate
of B:

B=(X"X) ‘XY, (2.4)
and corresponding ‘least-squares’ choice of K (which clearly satisfies (2.2)):

K=X'X)"x. (2.5)
1 See Gnedenko and Gikhman’s (1956) account of the history of Ukrainian probability; for the Odessa scene
in particular. Curiously, in a general mathematical setting, Gnedenko (1965) does not mention Sleshinsky

with his Odessa colleagues Yaroshenko, S. O. Shatunovsky, ¥, F. Kagan and 1. Yu. Timchenko, Ermakov,
Imshenetsky and Tikhomandritsky are mentioned,

e _____‘

—————
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The second viewpoint is probabilistic (statistical), X being chosen (under constraint
(2.2)) optimally in accordance with some distributional requirement on & Gauss's
contributions to this problem are essentially well known, and a historical discussion of
them (see e.g. Plackett (1949), (1972), Seal (1967), Maistrov (1967), van der Waerden
(1977), Heyde and Seneta (1977)) is not within the scope of the present work, Suffice it
to- say, for purposes of convenient reference, that in his second probabilistic
justification of least squares, Gauss in 1821 continued to assume that thee,, i=1,..., N
are i.i.d. with common mean 0 and common variance ¢? finite. He then showed that
among the class of estimates of the elements of g of the kind (2.3), satisfying (2.2),
those provided by (2.4) have minimal variance, Since it is readily seen that
E(B— B)(B— B) = 6> KK', it follows that the choice (2.5) minimizes Y _ k2, for each
i=1...,r

The long historic connection between linear least squares, in its probabilistic aspect,
and the central limit problem arises as follows. Laplace (1812), secking to justify the
least-squares choice of X on large sample grounds (Guauss’s justifications had been for
fixed sample size N), assumed (much like Gauss) the g’s to be i.i.d. with unspecified
symmetric density confined to a finite interval, and considered a general K satisfying
(2.2). He showed (at least in the case r = 1) that, in effect and under unspecified further
conditions on K, the standardized random variable

M= i ke /%’02 % k?‘}”z (2.6)
Jvarp, &0 =

has, approximately, as N — oo, an N(0, 1) distribution, where o2 = Varg, (He then
argued that, for large N, the optimal choice of K would be that minimizing the
denominator for every /). The first part is clearly an early version of the central limit
theorem for independent, but not identically distributed, random variables {k,z,},
h=1,2,.... Since the first general (i.e. for general random variables), if non-rigorous,
versions of the central limit theorem are usually associated with Laplace, the
connection of the central limit problem with linear least squares clearly has its origins
at this point. ‘

This connection persisted strongly throughout the nineteenth century within the
subsequent dominant streams of probabilistic evolution, first the French and then the
Russian; we shall in fact have much more to say about aspects of the central limit
problem than about least squares.

Apart from the early contributions of Euler and Daniel Bernoulli associated with the
beginnings of the St. Petersburg Academy, probability within the Russian empire
began to develop only in the 1820°s. From this point, Russian historians
characteristically consider its pre-revolutionary history in two stages, that preceding
the St. Petersburg School, and that of this school itself, To the earlier period notably
belong B. Ya. Buniakovsky and M. V. Ostrogradsky in St. Petersburg, and A. Yu.
Davydov in Moscow, with contributions made by a number of others. This early
period is described in some detail in the book of Maistrov (1967), Chapter 111, §12, and
we shall not dwell on it, except to note for completeness the contributions generally
relevant to our subject matter by Buniakovsky (1846), Savich (1857) and Zinger (1862)
on least squares. According to Chebotarev (1961), Savich’s was the first Russian-
language text on least squares. The era of the St. Petersburg School may be taken to
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begin in about 1860 when Chebyshev began to teach probability at the St. Petersburg
university on the departure of Buniakovsky, although he had done some work on
probability before this time. It must be mentioned that in the general Russian tradition
Chebyshev, Markov and Liapunov all made many contributions to branches of
mathematics other than probability and therefore cannot exclusively be described as
probabilists; nor did the St. Petersburg School, founded by Chebyshev, consist only of
them, though in regard to probability, they were the outstanding figures.
We now pass onto a study of the later of the two pre-revolutionary periods.

3. Interpolational aspects of least squares

The interpolational aspect of least squares devolves to methods of solution of the
system of normal equations

(XX f=XY (3.1)

for the least-squares estimator of (2.4)—the solution is unique in view of the assumed
linear independence of the columns of X, which renders X”X non-singular.

Gauss (circa 1809) gave an algorithm for solving (3.1) which has become the
standard method for solving any set of linear equations

Ax=5b, b#0 (3.2)

for x where 4 = {g;;} is  x r and non-singular and 4 and b are known; namely the
method of successive elimination of unknowns. This Gaussian elimination processis a
direct solution procedure, that is, one in which the solution is attained in a finite
number of operations. In general Gaussian elimination for solution of (3.2) will require
rearrangement of equation order to avoid a pivot becoming 0 on the triangularization,
but in the special case 4 = X'X of (3.1) this will not occur (e.g. Wendroff (1966),
pp. 124-125) since this matrix is symmetric and positive definite.

Opposed to direct solution methods are iterative procedures. Stationary linear
iterative methods generate a sequence of approximative vectors {x, } by a scheme of the
form

X, =Bx, +e, k=0, 3.3

where B and ¢ are specified, independent of &, and related te 4 and b; x, is a starting
vector. One such procedure is commonly known as the point-Gauss-Seidel procedure
after related work by Gauss in 1823 and Seidel in 1874 (sce Bodewig (1956), p. 126
et seq.; Ostrowski (1955)). This defines B and ¢ by writing A = L + U where L has the
same elements on the diagonal and below as 4, zeroes elsewhere. Then (providing A
has no zeroes on the diagonal),

B=-—L7'U, e=L"1'b (3.4)
The expression {3.3), for practical application, is then rewritten
Ly, +Ux,=b (3.5)

This reveals that the procedure has a cyclic character, inasmuch as the approximating
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vector is modified one element at a time, in strict order, a single cycle constituting
modification of all elements: that is, replacement of x, by x, . ;. From (3.3) and (3.4) it
is clear that the sequence {x,} converges for the process defined by (3.5) if
p(—L7'U) < 1where p(— L™ 'U) is the spectral radius of — L~ ' U; that this spectral
radius is then the convergence rate; and, from (3.5), that the limit vector is the unique
solution of (3.2). It is also clear that if p(— L' {/) > 1, the sequence {x,} generally
diverges.

The original context of application of Gauss—Seidel-type iterative procedures was
that of the system (3.1). {This context is thus concerned essentially with the situation of
a symmetric positive—definite coeflicient matrix 4 in (3.1), since any such matrix may be
written in the form A4 = X'X.} The predicted readings according to the least squares fit
are given by ¥ = Xfi so the residual sum of squares

¥-¥YyF-v) (3.6)

may be used as a measure of goodness of fit. Indeed, for any approximation to f, a
predicted set of readings and a corresponding residual sum of squares can be
calculated, and it was the behaviour of this with successive approximations which was
used as a criterion for the convergence of such a process of approximations. Indeed, if
the residual sum of squares was non-increasing, and presumably approaching the limit
(3.6), then the process was deemed to converge. Such processes {x, } where some object
function (the ‘entropy’) is progressively reduced are called ‘relaxation processes’. In the
context of (3.1) such a relaxation process had already been studied by Seidel (1874),
where, in contrast to the point-Gauss—Seidel method as described above, at each stage
the choice of next element of the present vector for modification is not already
determined, but optimal. We shall return to this point shortly. Such optimal-choice
variants of relaxation methods are sometimes described as ‘free-steering” (Ostrowski
(1955)). '

Nekrasov (1885b) gives as his motivation for studying the strictly cyclic point-
Gauss-Seidel procedure (he calls it Seidel's method) the instigation of the noted

-astronomer, V. K. Tserassky, in relation to a system (3.1) when a large number of

observations and unknowns are involved, with a view to determining the speed of
convergence (a problem not considered by Seidel).

If we denote by x, the first column of the design matrix X, then, in terms of (2.1),
Nekrasov first notes that we may write

ge={(¥ — XBYx, P/(x\x,) + P 3.7

where P is an expression not involving f,. On the grounds of successive expressions of
this kind he shows that successive iterative approximations (in the Gauss—Seidel
procedure) to f reduce the corresponding sum of squares of (estimated) residuals, since
upon modification of successive elements a component of the form of the first
summand in (3.7) becomes 0, while the other summand is unchanged. Seidel’s free-
steering procedure involved choosing at each stage that element for modification (in
place of §, above) which reduces the current residual sum of squares by the greatest
amount.

Nekrasov concludes that the Gauss—Seidel method for the setting (3.1) always
converges; it is not, however, clear from his argument that the limit to which the
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progressively modified sum of squares of residuals is decreasing is the required
minimum, or that the sequence of iterates is converging to §. In his §3 he says the
method ‘doubtless converges’, but in a later paper (Nekrasov (1892)) again claims that
convergence has been proved in the setting of the present paper. He does deduce that
the quantities of interest as regards convergence are the solutions A to the
determinantal equation |AL + U| =0 (i.e. the eigenvalues of (— L ~1¥/)) but cannot
prove that p(— L~ ' U) = max || < | always, as is required. This is a very early attempt
to establish convergence of the Gauss—Seidel iterative method for a system (3.2) with
symmetric positive definite matrix 4; indeed, a complete proof seems not to have been
given until Mises and Geiringer (1929),

As regards the purported main problem, that of speed of convergence, he
investigates it by means of examples and difference equations (essentially matrix
spectral methods), showing that it is fast if p(— L1 U/) is small, and slow if p(— L~ /)
is close to unity; and then obtains a lower bound on p{ — L~ 1 U), the argument leading
to which Ostrowski ((1953), p. 179, footnote) describes as very useful (‘sehr niitzlich’).
Nekrasov (1883b) passes onto Seidel’s free-steering variant of the procedure and uses
examples to show that the sum of squares of estimated residuals does seem to decrease
faster, but does not consider this variant in his subsequent papers in the area.
Nekrasov’s further work on Gauss—Seidel iteration, in conjunction with Mchmke, is
discussed in Seneta {1981).

The contributions of Chebyshev to interpolational least squares are well known in
broad outline if not in details, and we shall only sketch them here. Chebyshev
(Tchébichef (1855)) was apparently the first author to make use of an orthogonalized
design matrix, produced from a given matrix X = {x;,} in a rather specialized setting in
that x;;=x{"',i=1,..,,N,j=1,...,r In other words, he was concerned with fitting,

— M
for fixed r, a polynomial

¥
y= 3 B (3.9)
i=1
on the basis of N pairs of observations (x;, ¥}, i=1,..., N, and does so by producing
from the r powers 1, x,...,x" " a set of » polynomials Ty(x) =1, 7,(x),..., T,_ (%)
which are orthogonal in respect of the points x,,..., xy in that

N
i; T(x)T{x) =0, k#j

The coefficients fitted to the readjusted polynomial system: Zj= L B T, (x) are those
arising out of a least-squares fit to the data, as he makes clear at the outset of his paper.
Apart from its important connections with orthogonal polynomials the paper is
devoted largely to the application of continued-fractions theory to this specific
problem, as is reflected in its title, Chebyshev’s treatment is also more general than we
have indicated, in that he minimizes a ‘weighted sum of squares’ of residuals; that is, he
effectively considers the ‘peneralized’ least-squares approach to (2.1), allowing
heteroscedasticity.

The full significance of the orthogonalization is not made apparent until a follow-up

T See Appendix 2 for Chebyshev’s possible influence on Sleshinsky from this standpoint,
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paper (Tchébichef (1859)). Its appearance is largely dueto 1. ). Bienaymé as catalyst,
who had translated Chebyshev’s 1855 paper into French in 1858 with a long prefatory
footnote (Heyde and Seneta (1977)). This refers to the problem that, say, in the original
setting of (3.8), one might wish to continue fitting with progressively higher r, until an
‘adequate fit’ (as measured, say, by (3.6)) obiains (this problem was first raised by
Cauchy—see Heyde and Seneta (1977), Chapter 4). Translated to the context of (2.1),
one wishes to add, in general, further columns to the design matrix X. If one proceeds
directly by least-squares fit to the system (3.8), and goes from stage  to stage  + 1, the
new fitted vector of coefficients §,.,. , is different in general, in every element, specifically
in the first r, to f,, and most of the work done at stage r is wasted, However, if one
progressively orthogonalizes the columns of the design matrix as one increases #, the
estimate of |f,/forms the first r elements of the estimate for §, ., and only the last element
of the latter needs to be calculated at stage # + 1. The decrease in residual sum of squares
in going from stage r to r-+1 is &% ,,62,, where £ ., is the (r+ I)th
(orthogonalized) column, and EP +1 is the estimate of ., ,, and the simplicity of this is
understood by Chebyshev. The central role of the estimated residual sum of squares in
early least-squares work is again clear.

It is worth mentioning also three additional papers of Chebyshev in the area: those
of 1838, 1864, and 1875, which explore the consequences of assuming the points
x,i=1,...,, N at equidistant intervals in the context of ordinary least squares. The
orthogonal polynomials so produced by Chebyshev are the finite difference analogues
of the Legendre polynomials; they are widely tabulated and often associated with the
name of Chebyshev. In this connection the reader should consult pp. 878881 of
Chebyshev (1955) for a commentary by N. I. Achiezer.

It should be noted, however, that in all his work in the area, Chebyshev was
preoccupied with polynomial (or, as it is sometimes known, parabolic) regression, and
approached it via continued-fractions theory. There is a less-known note in the stream
of Chebyshev’s work, viz. Tchébichef (1870), stimulated by practical considerations. In
this he deals with a more general system than hitherto, viz.

v =F(x) i ™!
j=1

where F is a known function. The polynomials now produced are orthogonal with
respect to the weight function F(x):

N
iZ‘l Tk(xi)'Tj(xi)F(xi) =0, k#J,

assuming homoscedasticity.

[t is appropriate to conclude this section by mentioning that subsequently
‘Chebyshev’s methods’ were a stimulus for, and indeed tended to permeate, all Russian-
language writings on least squares. (This statement applies not only to writings of
interpolational nature, but those with a probabilistic viewpoint of linear least
squares, where we shall see shortly that attempts to justify optimality of the pro-
cedure on the grounds of Chebyshev’s (more accurately, the Bienaymé-Chebyshev)
inequality {Tchébichef (1867)) were not infrequent.) As examples we cite here Maievsky
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(1881), Grave (1889), Kleiber (1890), Yaroshenko (1893a,b), Veselovsky (1897),
Tikhomandritsky (1898), Zabudsky (1898), Avrinsky (1904), Ermakov (1905) and
Iveronov (1912). In early post-revolutionary times, the booklet of Khotimsky (1925) is
even appropriately subtitled as ‘Chebyshev’s Method’,

We shall have more to say shortly about the writings of Maievsky, Yaroshenko and
Tikhomandritsky. The latter two are representatives of the Odessa—Kharkov groups,
and therefore of particular interest to us.

4. Probabilistic aspects of least squares {Qdessa and Kharkov)

In his probabilistic study of the linear model, Sleshinsky {(1892) assumes the residual
random variables &, i=1,..., Nin (2.1) are i.i.d. with symmetric positive density f(-)
on the finite interval [—1,7], and is first concerned with proving rigorously the
convergence as N— oo

S i / {oz 5 ﬂuf}l'i:N(o, 1) @1
i=1 | i=1 )

in line with investigations aleng these lines (see Section 2) initiated by Laplace. Notice
that it may be assumed without loss of generality that A = {4,} = 0. Sleshinsky’s line of
investigation in this respect is not original, but is actually a carefully detailed and
rigorous reworking and supplementation of a proof sketched by Cauchy in 1853 (see
Cauchy (1853) and Heyde and Seneta ((1977), Chapter 4). He obtains by characteristic
function methods an estimate of closeness of two probabilities;

N
Z A,

i=1

where I,, I, I, are certain integrals satisfying:

<t exp(—w*2dw|< L+, +1, (4.2)

._1‘[‘
ﬁwr

1
I <— -M
1 _ﬂMexp{ }
with
N
M =${c’A®%(1 + 072207},  A=max(l,..,4), A=Y A},

and @ is essentially arbitrary;
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The various peripheral conditions required for the validity of the inequalities are stated
beginning at the bottom of his p. 251, and reformulated on p. 253, If we first take two
positive numbers /, L such that / < NA, < NA < L, where 4, =min{4,,..., ), these
are

472 8112
N =max<8

[
? [2 0,212

and

232 /N N
\[ <@ <—

I L

Hence taking [ and L as fixed, and letting ® grow as a power law of N, betwegen N'/2
and N¥*, each of I, I,, I, approaches 0, and Sleshinsky obtains the limit result (4.1)
under the condition that the numbers

|NA'1|5|N;LZ|7"'9|N1N|3 (4.3)

be uniformly bounded away from 0 and oo as N— oo,

With its rigour and difficult and involved estimates, some of which are not contained
in Cauchy’s work (neither is the conclusion), Sleshinsky achieves for the first time, as he
has intended, full rigour of mathematical analysis in a proof of the central limit
theorem.

The bounds on I, and I, are independent of ¢ and go down exponentially fast as
N—oa. The I, bound unfortunately involves ¢, so overall Sleshinsky’s bound is
inhomogeneous. Asymptotics for this show that A <const. N*"~! and the log
expression < const. log (N7t), if we put @ = N'2%7 0 <y <1, Thus overall we have

I+ 1, +I3£const.%, b<y<ld

which can be seen to be a quite good asymptotic estimate if y is chosen close to 0 {the
‘const.’, independent of ¥, will in general depend on ¢ and ). In fact we know from the
later work of Liapunov (Liapounoff (1901a)), since the |4, N| are uniformly bounded
away from 0 and oo and ;€ [—7, ], that the left-hand side of (4.2) can be bounded by
the homogeneous bound const. (log N)/N /2,

It is also an immediate deduction that Sleshinsky’s results actually hold under
conditions more general than he believes. For suppose for all N,

O<i<|p(N)| <L <0, i=1,,.,N

[

! i

h /3 0. /32N ZOZ0A (! and L independent of N}. Then ]
Izszflog{ ;I + 1+———i'——}, 7

\/— 3 N N vz N N iz |
Zﬂsﬁz/{ﬂzz&?} =Z;Li5i/{0'22’1?} ) !
=1 i=1 1=1 j

i=1

i # being the larger of

il S G\t WG § S,V § . &xp — {0’A®%2}
P 8 : PIT—@zedpn = meireyz

where T, = 4, ¢(N)/N, so that I < |NI| < L,i=1,..., N, so the results hold for such A
also. Conversely, without loss of generality we may assume that fori =1,..., N, and all
N, 1= |4] < L where, may still depend on N. Now, we know that if an infinite sequence f?
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independent of N, {1,},i=1,2,...satisfies |4, < £, = 1, then necessary’ and sufficient
in this situation for convergence to normality is » i1, A7 =c0; in Sleshinsky’s
formulation this divergence is replaced by the stronger assumption: (A} = 1= 0,i>1,

It is evident and remarkable, as mentioned in our Section 1, that Sleshinsky’s
boundedness condition (4.3) on the A, =A(N),i=1,..., N already manifests the
notion of ‘triangular’ arrays in terms of which general central-limit-type results have
since been formulated. Indeed, he is clearly dealing with the triangular array of
variables (with obvious independence within rows) where

XN,i = Ai(N)EN,i

the ey ;,i=1,..., N being i.i.d. with density f.
Gnedenko and Gikhman (1956), p. 490, remark that Sleshinsky’s paper:

3

..is passed over in silence in the literature. Gnly A. M.
Liapunov. .. refers to the work of Sleshinsky, and, in the event, does not
characterize it with complete accuracy.’

but do relatively little (loc. cit., p. 491-492) to remedy the situation, and conclude as
follows:

‘Even so, in the work of Sleshinsky the method of characteristic functions,
from a conceptual and technical standpoint, is not yet sufficiently
developed. This circumstance, and possibly the narrowness of his purpose,
associated with the specific problem of elucidating the method of least
squares, resulted in unnecessary restrictions in the formulation and proof
of the theorem.’

A little later, in an analysis of Liapunov’s work in probability, Gnedenko (1959),
pp. 145-146, does no more in relation to Sleshinsky than to give Liapunov's
assessment, quoted in our Section 1,

Gnedenko and Gikhman have to some extent in mind the last part of Sleshinsky’s
paper. In his last section (§11, p. 261 er seg.) Sleshinsky reveris to the linear least-
squares setting of his motivating problem, that is, the framework represented by our
(2.1)+2.3), in attempting to bring his theory to bear to justify Laplace’s conclusion
(2.6). He effectively makes the following assumptions on the design matrix X = {x, nE

N . . .
(1) Every one of the (r) matrices formed from selecting » rows of X is non-

singular [this is rather stronger than the assumption that X is of full rank r].
(2) The absolute values of the determinants of these maltrices are bounded away
from 0 as N — co, .
(3) |xyl<u<oo,j=1,..,ri=12,...

He deduces in regard to the ‘multipliers’ matrix K = {k,;} that
lkyl =O(N 1) as N— oo (4.4)

T Necessity follows from e.g. Cramér’s theorem (Lukacs {1960}, p. 173), and is not a consequence of the
Lindeberg-Feller Theorem, as Fisz ((1963), pp. 206-207) suggests,
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i=1,...,r,uniformly inj > 1. Itisclear that he had hoped to get a two-sided condition
0 </<[Nk;| < L < o0, 50 that the preceding central limit work would be applicable in
regard to (2.6), but it seems that the lower bound eluded him; and the paper terminates
at this point in rather unresolved fashion.

However, (4.4)1s sufficient for consistency of the estimator B, given by (2.3)for §, and
this point is immediately noticed by Sleshinsky’s Odessa colleague, Yaroshenko, in a
paper with identical title. He considers the full-rank system (2.1), with the &
independently and symmetrically distributed, but not necessarily identically distri-
buted, &, taking on a set of discrete values on [— 1, 1;]. The reason for the discretencss
seems to be in relation to his forthcoming use of the ‘Chebyshev’ inequality, referenced
from the Russian version of ‘Chebyshev’s paper {Tchébichef (1867)), where it is proved
f01 discrete variables. Indeed, since the variance of f; = '\ k,,¥;is 3')_ kZo?, where
a? | =Vare;, and f,isunbiased for §,, application of that mequahly to the zth element of
(2.3), y1elds

Prif,—Bl=ze}< E kict/ (4.5)

which will -0 as N— oo, if |k,0,| < L/N, umform[y in j=1. Now, this is precisely
Sleshinsky’s conclusion (4.4), once Yaroshenko’s heteroscedastic situation (possibly
unequal 67} is transformed to Sleshinsky’s homoscedastic one in the manner

RIS 3 REE) (B eh

where T = Varg = diag (¢7), with K— KX'/? (Sleshinsky’s conditions (1},(2),(3) then
being applied to the matrix Z~1/2X),

Yaroshenko also shows that the requirement (hat what is now known as the
generalized least-squares estimate for g, viz.

=z ix) 'x'x ¥

obtained by Yaroshenko through use of Lagrange multipliers (a technique used by
Sleshinsky), also emerges from requiring the ‘tightest’ interval in the bound provided in
(4.3) for i=1,...,r. This use of Chebyshev’s inequality is of course quite irrelevant,
since the conclusion emerges out of the minimality of the Var B,,i=1,...,r, and that
result had already been obtained by Gauss, in his 1821 work. He goes on to consider in
the same manner a slightly more general situation of his model still with w = Ez, where
w is not necessarily 0; this situation also requires only a simple transformation to revert
to the simpler one, so needs no separate discussion,

There is a French version of the paper (Yarochenko (1893)) which otherwise differs
substantially only in now citing the French version of Chebyshev (Tchébichef (1867)),
and omitting all reference to Sleshinsky in connection with the situation leading to
(4.4), glossing over that whole central and difficult issue. [t would appear from the dual
publication that Yaroshenko thought the paper important, but for the wrong reasons;
only the consistency is of interest, not, as it were, the justification of generalized least
squares on the basis of Chebyshev's inequality.

Sleshinsky (1893-1894), hot on the heels of Yaroshenko, begins by noting that
Chebyshev’s inequality leads to least squares, and that both Chebyshev and
Yaroshenko deal with the discrete case. With a view to extending Yaroshenko's
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conclusions, he modifies Chebyshev's proof to obtain the inequality for the case of a
single random variable described by a probability density on a finite interval [4, B],
and then to a linear function A'(e — Ee) where the ¢ are independent, and g is
distributed on [4,, B,]. Itis quite surprising that Sleshinsky, who was very familiar with
the work of Bienaymé (1853), discussing it on p. 210 of his own 1892 paper, did not
perceive that in the paper cited Bienaymé had already proved the inequality in its
general form and Chebyshev (Tchébichef (1874)) had more or less conceded priority.
Even more surprising is the fact that Sleshinsky did not notice that the use of the
inequality is totally irrelevant, since the first part of the 1892 paper is much concerned
with the history and nature of least squares. This follow-up note of Sleshinsky is thus
only interesting inasmuch as it is the second and apparently the last of his writings in
probability and statistics. The anomaly mentioned above is not pointed out by
Gnedenko and Gikhman {(1956), p. 487! who are presumably aware of this note of
Sleshinsky from Tikhomandritsky’s book, which we mention shortly.

It is clear that Sleshinsky and Yaroshenko share a somewhat nationalistic desire to
emphasize the contributions to probability of Chebyshev, particularly in the matter of
the discovery and importance of the celebrated inequality. This has ever since been the
case with Russian authors; we find it even in the writings (as we shall see) of Nekrasov,
let alone in those of Chebyshev’s students. In the probability textbook of one such
student, M. A, Tikhomandritsky (1898), we find very definite evidence of this. While
manifesting considerable influence by Chebyshev’s exposition, it dwells extensively on
the work of Yaroshenko, and, in part, on that of Sleshinsky. The tone of the book is set
byits preface, where Tikhomandritsky emphasizes least squares as the most important
practical application of probability. He states (!17):

“...least squares does not give the most probable estimates, as is
acknowledged by everybody, but only those giving tightest bounds [in the
sense of Chebyshev's inequality].. .’

and refers to Yaroshenko in this connection, His actual exposition on least squares, in
Chapter VIII, follows Yaroshenko’s closely, but he allows his residuals to have a
probability density, in view of the fact that in his §30 he had reported Sleshinsky
(1893-1894). In the preceding section, §49, he follows Chebyshev's derivation of the
inequality in the discrete case. Chapter VIII itself contains no explicit mention of
Yaroshenko or Sleshinsky, although elementary textbooks of the time, of Ermakov
and Nekrasov, are mentioned.

There is some confusion in Tikhomandritsky’s exposition: the residuals are allowed
to have densities on (— oo, o¢) without apparent justification; and random variables
and their expectations are used more or less interchangeably. This last is particularly
unfortunate in relation to one of the few features of the exposition not following
previous Russian writing, when he arrives (§70, p. 101 ef seq.) at what is tantamount to
the fermula

2 B —XpyaT'(¥—XB)}

N7 (4.6)

1 Sleshinsky (1893-1894) is again presumably alluded to as ‘Sleshinsky [2] on p. 488 of Gnedenko and
Gikhman; however, the allusion there is invalid, and ‘Sleshinsky [2]' is missing from their bibliography.
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where A4 =diagk, = ¢~ 2X—having written ¢ = k,0>—is assumed known, and o, a
‘measure of precision’ is not. He credits this formula to Gauss, in whose writings it
indeed is well known to occur. Its importance lies in the fact that it implies

s = XBy A XP)
N—vr

(4.7)

is an unbiased estimator of ¢2.

5. Markov, Liapunov and Sluisky on probabilistic least squares

Markov expresses himself on linear least squares within a letter to Vasiliey
(published within Markov (1898a}, which itself is reprinted within Markov (1951), of
which the relevant pages are pp.246-251). His view is thal the only rational
justification for (generalized) least-squares estimation is that it vields minimum
variance estimators: that is, the early justification of Gauss of 1821, that he mentions,
which bascome to be known as the Gauss—Markov theorem. He is less impressed with
Gauss’s justification of least-squares estimators as being the ‘most probable’ (or, as we
should now say, maximum likelihood). In the matter of the name ‘Gauss—Markov
theorem’, we have found no reason to differ from the opinion of Seal (1967), who writes
concerning the proof of this proposition to be found in editions of Markov’s textbook
beginning in 1900;

‘The Markov proof, essentially the same as Helmert’s, was thought by
Neyman...to be an original theorem and the Russian writer’s name
became attached to it.’

We have examined the last edition (Markov (1924)) which presumably differs little in
regard to Chapters [-VIII from earlier editions. Chapter VII (“The method of least
squares’), on its opening page (p. 323) carries a footnote referring to Markov (1898a):

‘My view on various attempts at theoretical justification of the method of
least squares is presented in The law of large numbers and the method of
least squares....

In the course of the chapter he considers independently distributed residuals with
possibly different variances. In §30 he treats of Chebyshev’s parabolic interpolation,
referring specifically to Tchébichef (1875). In §51 he considers the situation where there
is linear dependence between the columns of the design matrix, but does so in an
unremarkable manner, reducing the situation to one of independence. At theend ofthe
chapter is a short bibliography which includes Sleshinsky (1892), who does not appear
to be mentioned in the text. The only other Russian-language works mentioned in the
bibliography are Maievsky (1881) and the theoretical part of an astronomy text of
N. Zinger.

Only faint echoes of the work discussed in our Section 4 are to be found in the
writings of Markov and Liapunov, generally.
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Markov (1898a); (1951), p. 249, for example, refers to Russian work which has
attempted to justify least squares on the basis of results found in Tchébichef (1867). He
criticizes explicitly only the work of Maicvsky ((1881), §31); but then on p.250
mentions Russian mathematicians who have attempted justification on the basis of
Chebyshev’s inequality, making clear, as we have noted, the non-relevance of this
approach. It seems cbvious that he has Yaroshenko and Tikhomandritsky in mind.
Tikhomandritsky’s book is mentioned in Markov's textbook, but only in connection
with Markov's Chapter VI (*Probabilities of hypotheses and future events’),

There is also in existence a manuscript by Liapunov whose date is unknown but
which is closely related to Liapunov’s other papers (Liapounoff (1900), (1901a)) in theme
and technique, which bears on linear least squares in the heteroscedastic situation
discussed in the preceding section, in particular on (4.6) and (4.7). This has now been
published (Liapunov (1975)) with a commentary by O. B. Sheynin (1975). Liapunov
claims that (4.6) is as yet to be rigorously justified, and can be based on a deduction
that he makes in his note: that if (£¢')/(Ee?)? remains uniformly bounded above for all
i, then 6% — ¢% in probability as ¥ — oo, Thus Liapunovis concerned with what we now
call consistency of 62 as an estimator of ¢%. To achieve his end, Liapunov uses the
inequality for a non-negative random variable &:

Pr{{>a} < E(f)/a
which can be used to deduce Chebyshev’s inequality; it is now known as ‘Markov’s
inequality’ though Liapunov refers to the ‘considerations of P. L. Chebyshev’. Sheynin
(1975) notices the absence of direct references to Gauss, and also that in his §§39-40,
Gauss had in 1823 already demonstrated an inequality whose right-hand side reads

2g*
Varé? <
arg S

—
Clearly the righi-hand part of this alone is enough to yield the consistency of 42 as
N — w0, and Liapunov’s condition is redundant. It is easy to conjecture, with Sheynin,
reasons why Liapunov discontinued work on this project.

E. E. Slutsky’s (1914) paper needs to be mentioned in this section, although it treats a
slightly different problem. In general this relates to fitting a function f(x; 8,,..., 8,) of
one variable x, depending on r parameters 3, . . ., 8,, for example the polynomial (3.8),
when there are repeated readings on response Y for each value of x considered, the
system additionally being normal and possibly heteroscedastic. If there are »,; responses
for the value x,, and their average is ¥,,i=1,..., N, then

}7|‘=f(xi;181='-')ﬁr>+gi9 i=1""5N
where the ¢, are independent and ¢, ~ N(0, 67/n,), whete ¢? is the variance of a normal
response corresponding to setting x,. Slutsky proposes to estimate § by minimizing
N

xi= 3 m(Y—fx By, B) 0} (5.1)

i=1
which he recognizes as a chi-square variable, so we may regard this procedure as an

¥ Maievsky was a student of Chebyshev’s, and an artillery theoretician; in this connection the nature of
Tchébichef (1870) is interesting. :
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early instance of minimum-y”* estimation (if we assume o7 known). Of course it is also
obviously maximum-likelihood estimation and (without the normality assumption) an
instance of weighted least squares, and, in the particular case of (3.8), of the linear
model with repeated observations.

Slutsky, in this paper much influenced by K. Pearson on the topic of chi-square,
proposes to use the estimated value of (5.1); that is, the residual sum of squares,
(estimating o7 in the usual way), as a measure of goodness-of-fit, by comparison with
tabulated values of x, and uses N degrees of freedom following K. Pearson.

6. Central limit theorems for large deviations and Nekrasoy

Although Nekrasov’s first paper in probability may have been written in about 1890,
it is his paper of 1898 (Nekrasov (1898a)), dedicated to the memory of Chebyshev,
which is the beginning of a long and bitter controversy between himself and Markoy
(and also Liapunov) which lasted tifl 1915, The first controversy thus spanned the
crucial years 1898-1901 of the central limit theorem.

The 1898a paper, as Liapunov comments ' in 1900, contains no proofs. Assessing it
now, we may say in general that in this and later publications on the same topic
Nekrasov, highly proficient in the use of complex-variable theory in general and
knowledgeable about the Lagrange expansion in particular (Nekrasov (1883a)),
attempted to use what we now call the method of saddlepoints, of Laplacian peaks, and
of the Lagrange inversion formula, to establish, for sums of non-identically distributed
lattice variables, what are now standard local and global limit theorems of central-limnit
type for large deviations. The attempt was very many years ahead of its time. A
standard reference for this type of theory is Petrov ((1972), Chapter 8); the earliest
references there are to Khinchin in 1929 in connection with treatment of the Bernoulli
scheme by using Stirling’s formula. The direct use of saddlepoint methods in problems
of this kind is generally attributed to Daniels (1954). Nekrasov's attempt was only
partly successful, poorly presented, badly defended, and never understood by Markov
and Liapunov, nor noticed by their successors. Indeed, Nekrasov's enormous
outpouring of material on the subject subsequent to 1898, in the form of a monograph
of some 1000 pages spread serially over volumes 21, 22 and 23 of Matematicheskii
Sbornik under the grandiose title ‘Novie osnovania . . which in translation reads ‘New
foundations of the study of probabilistic sums and mean values’, made the task of
penetrating to the essence of this work formidable. Markov and Liapunov,
consequently, reject Nekrasov's work on the grounds of a few of the more obvious
points only. We shall come to these later (one has been mentioned in our Section 1),

To understand the general nature and components of Nekrasov’s working, it seems
unavoidable to outline first the mathematical content of the kind of theorem which he
attempted to prove. W. Richter (1957) seems to have been the first in modern times to
take up consideration of such general central limit problems by methods of the same
kind; and we begin by stating a result of his. We follow the notation of our Section 1:
that is, U,, U,,... are independently but not necessarily identically distributed
random variables. '

t Cited in our Section 1,
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We assume each U, has zero mean, and is defined on a lattice a; +rh,
r=0,+1,+2,... where 4 is the (common) period. We put as before §,=Y"_, U,
and B2 =>3"_, Var U,.We further make the following assumptiens (which are not as
weak as possible, but serve our historical purpose best), where M (z) = E(exp (zU;)).

Assumption A. There are positive numbers K, k and 4 independent of jsuch that for
complex z in the circle |z| < 4

k<M=K, j=1,2,...,
Assumption Bt. For all n, and some positive constant &
Brjn=>d>0.

Then, under an additional assumption (‘Assumption C’) whose precise form need not
concern us, putting

( y al-) +rh
P,,(I"):PI’ {Sn/‘Bn=x}, xzx”‘r:_j_%’

"

it can be shown that if x> 1 and xzo(\/H) as n—» oc,

Pr= anﬁ exp(—x?/2)exp ((ﬁ/\/ﬂ)ln(x/\/;;)) %’1 +0 (ﬁ)} 6.1

where A,(1) is a power series in t convergent for sufficiently small |t|, uniformly for ali n.
(If x < —1 always, then the ‘O’ term is replaced by O(va\/ﬁ).)

This kind of theorem is a focal limit theorem of central limit type for large deviations
for non-identically distributed lattice random variables.

Assumption A implies that M (z) is analytic along the strip [Rez| < 4 and the
cumulant generating functions K;(z) = In M ;(z) where ‘[n’ denotes the principal branch
of the logarithm, are each analytic in |z| < A, and all the K,(z), Kj(z) and K] (z) are
uniformly bounded in modulus in some circle |z| < 4; < A. Richter’s subsequent
argument focusses on the function X, (z) = Z;L 1 K(2)/n. He seeks a saddlepoint, that
is, a real stationary point w,, at which the real function K,,(w) — B xw/n, — 4, <w <
A,, is minimal in this interval, Its existence for sufficiently large n follows from an
inversion of the equation

Kiy(2)=B,7//n (6.2)

{where 7= x/\/ﬁ) by Lagrange's inversion formula (Lagrange series) to give an
expansion for z in strictly positive powers of 7 using Assumption B. Its uniqueness
follows from convexity of the function considered. The existence and uniqueness of the
requisite wy, in general dependent on #, in (— A4,, 4,) leads to an asymptotic treatment

t Notice that this is the same as Markov’s condition (iii) of our Section i.
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of integrals by Laplace’s method of peaks, to give first the expression

exp {n {K(")(wo) — Wyt %}}
P,(r) = - .
\/ﬂ A/ PR (W)

to which we shall need to refer to shortly, where 1, is a complex expression negligible
(under ‘Condition C’) relative to the first term stated; and then to give (6.1),
Mathematical details of this argument may be found in Petrov (1972), esp. p. 274.

A corresponding global limit theorem given by Richter needs only Conditions A and
B (and does not require different treatment for lattice and non-lattice variables) and
states that if x> 1 and x = o(\/ﬁ)

(2o (]
ay e Zal- e ()]

Fx)=Pr{S,/B, <x}, @0x)=02r) "2 _exp(—u*/2)du.

Most important for the sequel is to notice that if we put x, x* = o(n"%) (assuming
X, X = xo > 0) then from (6.4)

1= F ) =(1-0N{l +to(D)},  F(—x)=0(-x"){l +o(l)}

which suggests, for large », the reasonableness under the stated conditions, of the
approximation

b
H+0@l4o=L  (63)

(6.4)

where

Pr{—x <.§"/Bn5x}§¢)(x)m®(—x’). (6.5)

In particular we may take fixed x, x’ > 0. We then have by an indirect route, and under
rather restrictive conditions, what in fact follows more easily from the central limit
theorem.

However, the basic importance of (6.5) is its plausibility in the case of x and x’
increasing with n, which is what is meant by large deviation results. Nekrasov (1898a),
Theorems 2 and 3, has this kind of result in mind, when he requires that x’, x < p{t/2-?
where 1/3 < v < 1/2; indeed then, certainly n'1/?) =% = o(n'/®), At a later time, within his
grandiose ‘Novie osnovania .. .’ in reply to Liapunov (1901b) he simply requires v >
1/3, which is also correct.

We have tried to indicate the crucial role played by Assumption B, in the above
argument. We have noted this assumption in Markov's work, albeit in the context of a
very conventional global limit theorem (see our Section 1); it is lacking in Nekrasov's
work, and is the point on which both Markov and Liapunov focus in the controversy,
from the standpoint of conventional global limit theorems, which are in fact particular
cases {(as we have noted) albeit under excessive conditions, of such theorems for large
deviations (as Nekrasov is aware),

The controversy does not emphasize the local limit theorems; these do not figure in
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Markov's and Liapunov's work even in conventional form. If we let x = o(n*/®} in{6.1)
we obtain as 1 — w

_ hexp(—x%/2)

P =

The conclusion of Nekrasov's (1898a) Theorem 1 under the assumption (infer alia) that
1/3 < v < 1/2 is that this conclusion holds providing |x| < n‘t/® ",

The preceding exposition enables us to deseribe the procedure which was the general
thrust of Nekrasov's argument; we paraphrase this from §3 of his (1898a) paper.
Suppose ¢,(s) = E(s*7) where the U, are assumed to have zero means. The generating
functions exist at least on the unit circle, Now put

{14+o(1)}.

7 1in
V=111 qbg(s)s*x%}

where in place of s Nekrasov wishes to use the “positive root of ¥'(s) = 0", If we assume
that Richter’s Assumptions A and B are satisfied, we note that if we take principal
values

IOg ]4{](82) = K(n)(z) o XZBH/” = K(n)(z) - TZBn/\/E-

Treating z as a real variable as in our previous exposition, w, we find that
dlogyr{e™)fdw = ' (e”}e" ey = 0 yields the saddlepoint w,, so the ‘positive root of
w'(s) = " is @ = ™. He adds that the definition of the root « presents no problems, for
a given rh=xB, since the equation ¥'(s)=0 can be written in the form
s—1= T(Bn/\/E)F {), {this is obviously analogous to (6.2}, and would follow from an

“expansion of 1/(s) in the vicinity of s = 1, taking into account that y/'(1) =(— TB"/\/E)),

at which point s may be expanded in terms of r(Bn/\/ﬁ) in a rapidly convergent
Lagrange expansion,
He assumes the analyticity for all i of ¢,(¢") = M,(z) within a fixed circle. This more
or less corresponds to Assumption A, but is, it would seem, far from adequate.
There is a final assumption which is qualitatively important for the sequel. If w,
denotes the saddlepoint, let

Ry(¥) = lexp { K, (wo + i) — 10wy + v} B,/ /n ).

As yvaries from - oo to oo, this modulus clearly achieves its maximum at y = 0 (that is,
at the saddlepoint), and is periodic in y with period 2n/h. He says: “We imagine the
remaining maxima of the function R, (v) and denote by R, (x) the largest of these. If
R;(¥) has no other maxima, we shall take for R, the minimum of R, (y).” That is,
R (n) is the largest local (but not global) maximum of R,(y). He then appears to
require (Nekrasov (1898a), p.437)

1/(n{K (o) — TwoB,/n/n —log R (1)}) = O(1 /"),

where ¢ > 0, although this is not altogether clear. This condition, unclearly expressed
thoughitis, is likely envisaged by Nekrasov as playing a role in'what we have presented
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as the estimation of 7,. In any case, his stated theorem immediately following his
statement of assumption, viz. Theorem 4, has the general form of the local limit
expression (6.3) expressed in terms of y(s); Theorem 5 is a global limit theorem for
large deviations, and Theorem 6 attempts to give a more explicit (asymptotic-
expansion type) correction term of Laplacian type, in the global limit theorem.
Theorems 4 to 6 do not appear to require the assumption [x| < a7 1/3 <v < 1/2,
but are intended as more general propositions of the kind we have exposited under the
general assumption (x/\/ﬁ) = ¢(1) from which Theorems 1,2, 3 would follow under
the more specific assumption x = o(n'/%).

Nekrasov (1898a) applies his Theorem 6 to the case of Bernoulli trials with constant
success probability p = 1 — g. First we need to say that if we denote by {S,} the partial
sums of i.i.d. random variables X, i =1,2,.. . where Pr (X, = 1) =p =1 — Pr(X, =0)
and specialize his (local limit theorem for large deviations) Theorem 1 to this
case, we deduce, after considerable manipulation, that for any r = r{n) satisfying
|r — npl/(npg)t/? < n2~* where 1/3 < v < 1/2, that

Pri{S,=r}=Pr{S,= —np+r}~ Quapg)~"*exp {— (v — np)*/(2npq)}

as n— o0, Recoutse to Khinchin (Khintchine (1929)) shows this conclusion is correct,
certainly if |r — np|/(npg)'/* > 1, although the restriction »> 1/3 is unnecessary.
Theorem 6 is imprecise in its formulation; nevertheless for the Bernoulli case we may
establish from its statement by tedious asymptotics, using Nekrasov's notes, the
expression

Pr (S, <np + t(npg)'*} = Pr {8, < t(npg)"*}

exp( —~12/2)(1 — *)(p — q)

6./ (2anpg)

= (2m) "2 [ exp(—y*/2)dy +

exp(—12/2) (1)
¥ 2/ (2nnpgq) HO

under the assumption that »” = np + t(npg)'/* is an integer, and ¢ (> 0) is constant.
Recourse to the detailed treatment of Uspensky (1931), p. 130, shows that this
expression is also correct; in that more general result, the third term on the right is
multiplied by (1 — 28, @ being the fractional part of n”, and Uspensky actually gives an
error bound instead of an ‘O’ term. The idea of expansions of this kind for the binomial
distribution go back to Laplace in 1812, and they have their genesis for general
distributions in Chebyshev (Tchébichef (1887)); Markov latet makes much of the
application of Chebyshev’s ideas to the binomial case in Markov (1914a), but makes no
mention of Nekrasov and his more general setting. This would seem to be a
consequence of his own and Liapunov’s refutations of Nekrasov's work in the interim,
which, it is clear from the above, were not totally justified.

There is one more thing to note: in relation to his Theorems 1 to 3, Nekrasov's
definition of R, {n) by taking w, =0 in the expression for R, (y) as given above; let us
call the corresponding value R,(n) (<1). Then he accordingly requires that
{R;(n)}"~0 as n— co. It is not easy to sec what Nekrasov has in mind with such a
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condition, in modern terms. A plausible modern condition of similar product-
appearance, if we write M ,,(s) = E(s%), is

lim sup | M, (exp {iy,))| = lim sup _ﬂl [d(exp(iy,))] <1 (6.6)
[ dvs) w2 =

asn - oo, for any sequence {y,1, | »,] = «. This, of course, cannot be satisfied for lattice

random variables, ’

7. Nekrasov, Markov and Liapunoyv

We have noted in our Section 5 that Nekrasov’s full treatment of the topic of his 1898
paper appeared in volumes 21 (1900-1901), 22 (1901-1902) and 23 {1902) of
Matematicheskii Sbornik; and in our Section 1 that at least the first two sets of writings
are cautiously mentioned by Liapunoy in his ultimate paper (Liapounoff (1901a)). We
recall also that Nekrasov’s (1898a) summary paper was dedicated to the memory of
Chebyshev; and mention in passing that it was followed by a paper by Nekrasov
(1898b) dealing exclusively with the aspect of Bernoulli trials. We need to recall also,
from our Section 1, Markov's (1898a) first rigorization, in correspondence with
Vasiliev, of Chebyshev’s version of the central limit theorem, and his follow-up paper
(Markoff (1898b)),

Nekrasov (1899), writing in the same Kazan mathematical journal with which
Vasiliev was closely associated, claims that his (1898a) publication preceded both of
Markov’s contributions, that he sent Markov a copy of'it, and states that since Markov
does not mention the similarities, he must needs indicate them himself, He claims also
that Markov's main results can be deduced from his own (local limit) Theorem 1, and
its conditions. He states that his condition (R, (r))"—0 as n— oo implies Markov’s
condition ({ilia) in our Section 1), and supports this with some excitably written
mathematics. He also responds to criticism by "one critic’ that in his (1898a) paper
Nekrasov mentions Chebyshey’s (Tchébichef (1867)) paper, but not Tchébichef (1887)
on the central limit problem, that he had done so for brevity and because he used
methods which he regards as more productive than Chebyshev’s. He also explicitly
states that a global limit theorem (such as in Chebyshev’s paper) does not suftice for all
statistical applications, and a local limit theorem is necessary. There is a footnote
which points out that his results give probability Pr {9800 < X < 10200}—where X is
the number of successes in 20000 tosses of a fair coin, as 0-995330 with an error which in
absolute value is smalier than 0-0001, and that nobody had hitherto succeeded in

. obtaining such accuracy. This reference is to pp.585-586 of Part I of ‘Novie

osnovania. ...

There are really two notes by Markov in the same journal. The first, Markov (1899a)
notes (it would seem in ignorance of Nekrasov (1899)), that in his follow-up papers on
Bernoulli trials, Nekrasov (1898b) obtained the numerical value of the above
probability as 0-9953301 with an error of less than 0-600085; but his own method of
attacking such problems by continued fractions and thereby obtaining actual bounds
on the required probability gives the interval (0:995424, 0-995428). He also notes that
Laplace’s formula (with correction term) gives (9954256, The paper (Martkov (1899a))
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is interesting in that his approach has to some extent passed into the folklore-
methodology of the subject of the binomial distribution (see Uspensky (1937), p. 52,
for example), but its motivation has been forgotten. At the time of the second response,
Markov (1899b) has obviously read Nekrasov’s (1899a) comments, and the note is
written in a very sharp tone. He gives as a counterexample to Nekrasov's claim a
probability distribution for U, concentrated on the points (+1, —1,27%, —27%).with
probabilities, respectively, (1 — p, 1 — p, p, p) where pis independent of k and 0 < p <
%, for which EU? is bounded away from 0, while

h

My (e?) = Il |{(1 — p)cos y +peos (y/29)}
i

which attains a local maximum of 1 — 2p at y =2"x, s0 (R, (n))" = 1 — 2p. The example
would not do to contradict (6.6) since M, (exp(i2""'x)) =1, where we use the
sequence {y,}, ¥, =2"" 'x; nevertheless it is clear that this kind of condition has little to
do with moment conditions, since these relate to the behaviour of characteristic
functions at the origin. There is a response to this by Nekrasov (1900}, in
Matematicheskii Sbornik this time, which asserts that Markoy’s counterexample is
irrelevant, since R, (n) must be <1 even in the limit as #—» co. This would seem to
accord with a condition such as (6.6), which relates to. Cramér’s condition for similar
contexts in the case where all ¢,(-) =¢(-) (i.i.d. random variables):

lim sup |p(e™)| < 1.

|| =0

At this stage we need to say a little about Nekrasov’s full exposition of his technique
‘Novie osnovania ...’ to which we have alluded in particular in our Section 6. The
motivation is set out in the Introduction, pp. 579-586 of Matematicheskii Shornik 21
(1900-1901). This is to refine existing results in the study of sums of independent
random variables—coarse results such as Bernoulli’s, Poisson’s and Chebyshev’s laws
of large numbers; and theorems such as Chebyshev's central limit theorem, which (with
oblique reference to Markov) are sometimes proved under conditions which are too
restrictive’, To this end, new methods of proof are needed to yield greater precision,
and complexity of technique is unavoidable. The work is to be in three parts, of
increasing level of sensitivity of analysis, whose general scope is explained in terms
which make it clear that a central role is to be played by Nekrasov’s specialty developed
in other publications listed in our bibliography: the theory of the Lagrange series and
complex-variable methods. We have tried to convey the essence of what this might
involve in our Section 6. A point on which much of the justification hangs is the
excellent approximation to the binomial which we have mentioned above. Chapter VI
of PartT (pp.99-111 of 22 (1901-1902), entitled ‘Historical and Critical Remarks’)
again attempts to set out his philosophy. It mounts a direct attack on the St.
Petersburg school in general: Chebyshev and Markov explicitly, others implicitly, in
particular on the grounds of ‘Petersburg Methods’ and that it was his own (1898a)
paper that led to the realization of inadequacies in Chebyshev’s (Tchébichef (1887))
conditions and proof of the central limit theorem, and Markov’s attempt to save it

t There is no reference in any of his writing to Sleshinsky (1892).

e
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through introduction of condition (iii) (see our Section 1). The question, for us, still
exists: was Sleshinsky in 1892 aware of defects (in either aspect) in Chebyshev's
treatment? He only says that the proof of Chebyshev’s theorem .. .cannot be called
simple.... This would seem to be a characteristically gentlemanly stance in full
awareness of the problems, and rather preempts Nekrasov's claims, although not the
value of his contribution in concept and methodology. The issue on which Liapunov
later seizes as exemplifying the weakness of Nekrasov's argument, viz, that Markov’s
condition (iii) can be replaced by the weaker: B? — oo, occurs within this chapter
(pp- 108-109); we have noted in our Section | that this claim is not, in the setting, false,
although it is unlikely that Nekrasov could have established it. As a whole, Nekrasov's
presentation is rambling and unclear, and we leave it to the interested reader to pursue
mathematical detail.

Nekrasov’s (1901) direct confrontation with Liapunov actually interrupts the
presentation of his own “Novie osnovania . . ." in 22 (1901) 225-238 of Matematicheskii
Sbhornik, occurring between the second and third instalments; the first and second
instalments, as we have noted, are alluded to by Liapunov in his (Liapounoft (1901a}))
paper. This paper of Nekrasov is an immediate attack on Liapunov’s methodology.
There is a reply by Liapunov (1901b) (which reference Adams ((1974), p. 110) mentions
with the comment; ‘Lyapunov’s reply to a misdirected attack on his probabilistic
investigations by P. A. Nekrasov-—the only time Nekrasov is mentioned in this work);
and a further response directed at Liapunov’s work on the central limit problem in the
conclusion of Nekrasov's ‘Novie osnovania. . . in Matematicheskii Sbornik 23 (1902)
41-462, specifically within pp. 413-455. B, V. Gnedenko (1959), in his assessment of
Liapunov's probabilistic ceuvre, discusses the overall exchange in §5, understatedly
entitled ‘Discussion with P. A. Nekrasov'. Gnedenko comments concerning Nekrasov
(1901): '

“The critical remarks of P. A. Nekrasov were so vague in terms of
mathematical content and so dogmatic in character that even today they
elicit only wonder and irritation.’

In essence Nekrasov asserts that Liapunov's results:

‘,..contain all the main inadequacies of proof of his predecessors,
indicated in detail in my cited investigation,’

He asserts that Liapunov, using in his proofs the discontinuous Dirichlet multiplier, has
overlocked the well-known difficulties associated with the use of this multiplier in
relation to the problems raised (and cites in support Markov's Ischislenie Veroiatnostei
as well as the historico-critical section of his own ‘Novie osnovania..."). Nekrasov's
various criticisms, cited at some length by Gnedenko, are indeed unfounded; but his
article (1901) contains what appear to be several clarifications of his own attempts—in
particular; (p. 227) that he is indeed dealing with sums of independent lattice variables
of common period (this concept would appear to be new for its time); and (p. 237) that
whereas Chebyshev, Markov and Liapunov all deal with what is now called
convergence in distribution, what is needed in the case of large deviations is a
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consideration of asymptotic expressions. Liapunov’s (1901b) reply is, according to
Gnedenko,

‘... restrained in form, but very sharp in content..."

It js, like Nekrasov’s attack, largely polemical, but much to the peint; and in his
response at the conclusion of his ‘Novie osnovania .., Nekrasov rather unwillingly,
partially withdraws his remarks (pp. 441-446), while trying to save face and give the
impression that his earlier work stimulated Liapunov. At one point (§168) he states that
in Liapounoff (190 1a}, equation (8) is an assumption which Liapunov uses but does not
state {and is enough to ensure that Nekrasov’s own conditions are satisfied); but this
claim appears not to be true.

Much of the controversy between Nekrasov and Markov/Liapunoy involves aspects
of analytical approach to the probabilistic problems of the time. Some of these are no
longer familiar, at least in the form pertinent to the time, and we shall speak of a central
one here which is effectively crucial as regards motivation for both Sleshinsky and
Nekrasov.

This central notion is that of a “factor of discontinuity’ sometimes associated with the
name of Dirichlet (*Dirichlet multiplier”), who appears to have introduced use of such
factors, though he did not concern himself with problems of probability. The simplest
version of a factor of discontinuity is a specific function of two variables (generally
involving trigonometric functions) which is unity over portion of the range of definition
of the variables and 0 elsewhere,

The Dirichlet discontinuity factor as used by Glaisher and Liapunov (see Gnedenko
(1959)) is

2 in At
I= ﬁ!"m smt COs stdi,

which is unity if 4> 5= 0. Various modern ‘inversion formulae’ for characteristic
functions of probability distributions may be regarded as applications of the notion,
For example, for a lattice distribution en the peints ¢ +rk, r=0,+1,..., the
characteristic function is

o(1) = i Pr{X =a+ rhexp (itla + rh)), ¢ real.

If we multiply this by exp (— it(¢ + kk)) and integrate from — /A to n/h we obtain the
inversion formula

Pr{X =a+kh} :% [ bty exp(—it(a + ki))dt.

—=/h

Here the operative factor of discontinuity is

0, r#k

h .
o exp (it(r — K)h)dt = {1 -

27

Inversion formulae for passing from a characteristic function to a distribution
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function, or to a probability density if one exists, essentially necessitate integration
over an infinite range of ¢, an objection to Liapunov’s work raised by Nekrasov. A
frequent objection to the use of factors of discontinuity has ever been

‘that the result is given in the form of some definite integral or definite sum
whose value is often unknown.’
(Jordan (1972}, p.71)

This is a statement about the practical applicability of inversion formulae, which,
however, does not detract from their use, after introduction of transforms, in the
proofs of limit theorems such as the central limit theorem, Clearly, also, the present
widespread use of the notion of an indicator random variable in probability theory
may derive in part from the notion of a factor of discontinuity, even though such
random variables are used as an analytical aid in contexts where explicit functional
form for them is not required. :

It is to be noted again that much of the early development was in terms of discrete
(lattice) distributions. Thus, as we have already mentioned, Chebyshev’s (Tchébichef
(1867}) treatment of the Bienaymé&—Chebyshev inequality occurs in this setting, Barlier,
the characteristic function was introduced as a generating function for discrete random
variables by Laplace (1812}, and the specific simple ‘factor of discontinuity’ mentioned
above is due to him. Continuing preoccupation with discrete distributions seems
temporarily to have caused a drift from characteristic functions; thus, Laurent (1873),
p. 5, commenting' on this work of Laplace;

“....le calcul des fonctions génératrices est aujourd’hui & peu pres oublié,
parce que le calcul des résidus de Cauchy conduit plus sirement au méme
but.’

A footnote beginning on the same page explains this in reference to a generating
function

o
flz)= % az
¥r=0
with Cauchy’s inversion formuia

1 fl2)dz
a, _'E;I_E @’C zn+1 (7'1)

the contour integral being taken along C about the origin, The reader will note that this
is not generally appropriate even for a lattice distribution characterized by the numbers
r=0,=%1, £2,..., although (7.1) continues to hold for all n=0, +1, +2,...
providing

=5 a7

- T4 the calculus of generating functions is today almost forgatten, because the calculus of residues of
Cauchy leads more surely to the same objective.’
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is regular within an annulus about the origin, if C lies within the annoulus. Laurent’s!
analytical abilities and inclinations are manifested in this remarkable book of 1873,
whose entire first chapter is concerned with analytical methods appropriate in
probability. He uses Laplace’s characteristic functions approach when he sets out to
prove on pp. 98 et seq. Poisson’s law of large numbers (that is, for independent trials,
where the probability of success in the ith tyial depends on i); though Sleshinsky (1892)
notes that this proof contains an error on p. 103, line 13 er seq. which substantially
alters the conclusion, and himself aims tq improve, consequently, the discontinuity
factor approach. One of the uses to which Laurent puts the generating function
method in his introduction is the deduction (pp. 8-10) of Stirling’s asymptotic formula
for n! through consideration of the power series for e*, and inversion, with appropriate
estimation procedures en route. It ig well known that this is akin to the method of
Laplacian peaks for integrals (see Bruijn, (1961), Chapter 4}. Inasmuch as Nekrasoy
was familiar with Laurent’s book (citing it in a number of places), it is not unlikely that
it was an influencing factor on his own approach, in view of his own mathematical
capabilities, in avoiding a discontinuity factor.

8. The aftermath: The law of large pumbers and Markov chains

We mention in our Appendix | the probably tenuous association dating to before
1896 between Nekrasovand A. A, Chuprov, and Chuprov's citation of Nekrasov twice
in his 1909 book 4 Precis of Statistical Theory, a fundamental influence on statistics in
the Russian Empire, On pp. 167-168 (Chuprov (1959)), Nekrasov is mentioned in
connection with the weak law of large numbers (WLLN), where Chuprov speaks* of all
its mathematical formulations, beginning with Bernoulli and Laplace, and

‘... finishing with the more general “law of large numbers” of Poisson, the
even more general theorem of Chebyshev and, most general of all, the
constructions of P. A, Nekrasov and Bruns....

This sentence provoked Markov into the first item of his correspondence with Chuprov
(Ondar (1977), p. 10)—a postcard which reads:

‘I note with astonishment that. ., together with Chebyshev is mentioned
P. A. Nekrasov, whose works of recent years represent an abuse of
mathematics.'

In a long editorial comment on this Ondar (loc. cit.) is of the opinion that both
Chuprov and Markov have in mind the paper Nekrasov (1898a), the source of the
controversy we have discussed in Section 7. This opinion is too restrictive in regard to

t Mathieu Paul Hermann Laurent, also author of Théorie des résidus (1865), Gauthier-Villars, Pais,
although the Laurent expansion is named after P, A. Laurent,

tIn Nekrasov's and Chuprov's writings, as often among Russian authors of the period, the WLLN in the
modern sense is often called Chebyshev's theorem, without further qualification,
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Markov, who probably has in mind more the mystical connotations (see below) which
Nekrasov was wont to ascribe to mathematics. It is incorrect as regards Chuprov as,
firstly, consultation of the reference list of Chuprov's book reveals that the only work of
Nekrasov was wont to ascribe to mathematics. It is incorrect as regards Chuprov as,
mention of Nekrasov is, further, made clear at the second point (pp. 222-223) where
Nekrasov is mentioned:

‘Attempts to enlist statistics as a foundation for the theory of will have
not abated, even so. But the weaponry is now directed against those who
first attempted to use it; from the fact of stability of statistical numbers
deduction is made of free will.... Of considerable interest in this
connection is the reasoning of a group of Russian academics inclined to call
itself the “Moscow School”. In recent vears their views have received
publicity well beyond the limits of Russia thanks to the German-language
articles of V. G. Alekseev, which exposit them in readily comprehensible
form. The “Moscow School” decidedly insists on the tenet that free will is
the cenditio sine qua non of statistical laws governing everyday life. The
proof of this proposition, put forward by P. A. Nekrasouv, is based on his
analysis of the logical underpinnings of Chebyshev’s theorem, which is a
fundamental entity in the theoretical elucidation of the stability of
arithmetic means. The proot of Chebyshev’s theorem, Nekrasov (Filosofia i
Logika Nauki o Massovikh Proiavleniakh, p. 29) points out, assumnes
mutual pairwise independence of those separate events considered as a
whole for the calculation of arithmetic means.

Indeed, the BienayméChebyshev inequality, in the version of Chebyshev for
independent but not identically distributed random variables X,,i=1,...,n, with
S,=2>1., X, takes the form

Pr{(|S,— E(S)/n=¢) < Y_, Var X;/(ne)?,

so a WLLN holds if (37}_, Var X;)/n* >0, as n—co. By examining the ‘logical
underpinnings’ of the inequality, Nekrasov (1902) notices that ‘pairwise independence’
of the X, is sufficient for the same conclusions. This (with its suggestion of
orthogonality) is an important advance on *Chebyshev's theorent’, and is so recognized
by Chuprov (1959), p. 168, in 1909. Fowever, Nekrasov also wishes to use observed
stability of large numbers to deduce pairwise independence of the X's (i.e. that pairwise
independence is necessary for the wLLN), as proof of ‘free will’; and Chuprov (1959),
pp. 222-224, rightly perceives this position as both mathematically and philosophically
invalid. It is Nekrasov's propensity to use such ideas which were sometimes even not
mathematically well-founded, in mystical connotations, that partly earned him the
contempt of Markov.

Markov's postcard evoked a spirited, if appropriately deferential, reply from
Chuprov (Ondar (1977), p. 11, Communication No. 2), that, nonetheless, Nekrasov
deserves for various reasons to be mentioned in the above connection, irrespective of

T The work of Nekrasov mentioned in this quotation is Nekrasov (1902),
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his mathematical failings. Markov’s reply {Ondar, pp. 11-12, Communication No, 3) -

is illuminating in a number of respects:

‘Certainly, I was astonished also by your citation of Bruns, whom 1
regard as a nonentity,

I can evaluate writings only from a purely mathematical standpoint, and
from this stand point it is clear to me, that neither Bruns, nor Nekrasov, nor
Pearson have done anything worthy of attention. You speak of some
extremely general formulations, but T do not find them in the writings of
these authors.

On the other hand, I do find really quite general theorems by authors
whom you have essentially overlooked: A. M. Liapunov and A.A.
Markov. The only credit P. A. Nekrasov deserves, to my way of thinking,
consists in the fact that he sharply revealed his error, shared, I claim, by
many, to the effect that independence is a necessary condition for the law of
large numbers. This state of affairs stimulated me to elucidate in a sequence
of articles that the law of large numbers and Laplace’s formula may held
for dependent variables. In this manner a formulation of very wide
applicability, of which P, A, Nekrasov could not even dream, was indeed
achieved.

Iinvestigated quantities, associated into a simple chain, but this leads to
the notion of the possibility of extending limit theorems of the probability
calculus also to a complex chain.’

Nekrasov’s error in the above specific connection thus stimulated Markov to give
thought to the wLLN for dependent random variables (noted also by Ondar (1977),
p. 12). This resulted in the paper: Markov (1906), whose last sentence reads

“Thus, independence of quantities does not constitute a necessary condition
for the existence of the law of large numbers.’

though Nekrasov is not mentioned. It is, indeed, in §5 of this paper, as N. Sapogov’s
commentary in Markov (1951}, p. 662, points out, that *“Markov chains’ first make their
appearance in Markov's writings. This is probably the paper (and net the 1910 one of
Markov mentioned as likely candidate by Ondar (1977), p. 13) an offprint of which
Markov sent to Chuprov with this letter. By the time of Communication 7, (Ondar,
p. 12) (from Markov to Chuprov, a few days later) Markov’s attitude seems to have
softened somewhat:

‘Bohlmann’s work caused me to reinember, that, as was remarked by me
earlier in lectures, and as was noted by P. A. Nekrasov, in the investigation
of the expectation of a known squared expression, pairwise independence
suffices.’

It is clear that, albeit indirectly, or even as a catalyst, Nekrasov had a significant
effect on the development of probability theory, and does not altogether deserve the
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usual picture which is painted of him. Markov was certainly influenced by Nekrasov's
writings.

We shall pursue elsewhere the focussing of Chuprov's researches onto a theoretical
direction embodied in mathematical statistics, and away from practical aspects, as a
result of the intense exchange of correspondence with Markov. It seems important to
do this since it is, unfortunately, only the evolution of Markov's thinking as a result of
this correspondence that interests reviewers as eminent as Neyman (1978), (1981). Asa
conclusion to this work it is relevant to quote several lines' from this review of Neyman,
whe had indirect acquaintance with Markov:

‘During the early decades of the present century, Markov was somewhat
conspicuous by the sharpness of his polemics and was frequently referred to
as ‘Andrew the Terrible’ (=Neistoviy Andrey). This trait of Markov is
reflected in the correspondence.... In fact, this correspondence was
initiated by Markov scolding Tshuprov for mentioning the name of
Necrasov next to that of Chebyshev.’

Appendix 1. P. A. Nekrasov (1853-1924)

The information we have been able to obtain is sketchy, possibly due to his political
and ideological inclinations already alluded to in the text. Sluginov’s (1927) short
obituary generally lacks detail. It does not even give Nekrasov's full name (nor have we
been able to determine from other sources what ‘P. A’ stands for) nor the years of his
birth and death {(which we have from Maistrov (1967)) let alone the dates and places,
nor a bibliography. It may be more revealing to translate most of it rather than to give a
commentary almost as long.

‘In recent years, science has lost a whole sequence of famous savants. It
wag therefore all the more difficult to learn of the death of P. A. Nekrasov,
professor of the Ist Moscow State University, one of the most eminent
representatives of mathematical knowledge. The name of P. A. Nekrasovis
widely known not only in Russia, but also beyond, Possessing a rare
erudition, P. A, Nekrasov distinguished himself in various areas of pure
and applied mathematics. The deceased’s work included writings on the
most delicate and difficult problems. He worked out with completeness the
theory of the Lagrange series. . ., P. A. Nekrasov is well known not only in
specialist circles, but also to the general public. His fine work on the theory
of probability enjoys deservedly general fame. The larger part of the works
of P. A, Nekrasov is contained in the Moscow journal Matematicheskii
Sbornik, in relation to which P, A. played a most active role. Taking lively
and vociferous part in the life and activity of the Moscow Mathematical
Society, in which the deceased assumed in turn almost all administrative
positions, P. A. through his numerous works affected very significantly the
development of the printed organ of this Society on the one hand, and, on
the other, the development of the scientific capacity of young researchers,
connected in one way or another with the Society.

¥ Using Neyman’s transliterations of Russian names.
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Far from restricting himself to purely academic activity ... he was very
interested in pedagogics, to which he devoted considerable energy and time.
He wrote several pedagogical works, and talks which were presented by him
at all-Russian meetings of lecturers. The name of P. A. was widely popular
in pedagogical circles, .. ..

P. A. Nekrasov belonged to that far from large number of savants for
whom science represents the main aim and meaning in life ., ., Till his very
death he continued to enrich learning by his numerous and valuable.
contributions, some of which have considerable general significance, such
as the yet unpublished memoir “Anthropological Precis”. ... He helped
many . ... The author of the present note is not a little indebted to P. A. as
hisunforgettable guide for a period of a number of years, and this academic
guidance did not cease to the end.

The deceased stood out for his very wide outlook, and his extremely high
scientific objectivity with which, regrettably, far from all savants are
endowed ... P. A, Nekrasov’s work has deep significance, some of his
original mathematical ideas being well ahead of their time. ...

These comments make an interesting contrast to those of Markov's son and of
Maistrov already mentioned. It is perhaps notable that the obituary was written at a
time of reconstruction and detente in post-revolutionary Russia.

The following is additional to information already given in the present text and this
appendix.

Maistrov (1967), Chapter V, §1, mentions that Nekrasov was rector of Moscow
university, as of 1873, An examination of the review journal Jahrbuch iiber die
Fortschritte der Mathematik (Berlin—Leipzig) reveals that Nekrasov’s last-listed and
only post-revolutionary publication, appears to be a six-page booklet in 1923, entitled
(in English translation) “‘New Periodic Functions’ with place of origin given as Samara,
which came to be known as Kuybishev in 1936. It may be significant that this town, on
the Volga and the main Moscow—Siberia railway, was in 1918 the seat of the anti-
Bolshevik Committee of Members of the Constituent Assembly; and that a university,
founded here in 1918, was abolished in 1927,

Unlike Sleshinsky, Nekrasov published (as Sluginov remarks) prodigious amounts
of material, beginning, according to the Fortschritte, in 1883. We have therefore not
listed all his publications, which may be found in that source, and the companion
review source of the times which we have used in our investigations, Revue semestrielle
des publications mathématiques (redigée sous les auspices de la Société mathématique
d’Amsterdam). He was particularly proficient in complex-variable theory and his
dissertation, partly published as Nekrasov (1885a), is menticned in our discussion of
his probabilistic work. The same year sees the publication of his paper (1885b) on least
squares, though in ‘interpolational’ setting, on convergence of the Gauss—Seidel
iterative method of solution to the ‘normal equations’

(X’'X)p=X7Y
(where X is the design matrix and ¥ the observation vector in the classical lincar model)
giving as solution the least-squares estimator § = fi. This important line of work, in
collaboration with R. Mehmke, which has its conclusion in Nekrasov (1892) is
discussed in our Section 3 and Seneta (1981). It represents the only favourable context
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within our subject area in which Neckrasov is remembered today: the work is
mentioned, for example, by Ostrowski (1955), Faddeeva (1959), and, consequently,
Varga (1962); and Faddeev and Faddeeva (1963).

Nekrasov was elected to the ‘Moskovskoe Matematicheskoe Obschestvo’ (Moscow
Mathematical Society) in 1883 and became very active from about 1887; all such
information may be traced from the protocols of the Society published from time to
time in its organ till 1935, the journal Matematicheskii Shornik, He ultimately became
vice-president in 1891 and president in 1903, resigning the presidency on moving to St.
Petersburg in 1905, It may be assumed, therefore, that he could publish in the Sbhornik
virtually at will. We note from the protocols that Chebyshev was a foundation member
of the Society, that Liapunov was elected in about 1893, and Sleshinsky, Yaroshenko,
and Tikhomandritsky in 1894; and that there were disputes between the Society and
Markov on certain matters, specifically in 1895, Markov being supported by Liapunov
at the time. [tis unclear whether Markov was ever a member; he was not a subscriber to
the Sbornik in 1897. An obvious further factor which may be important in the nature of
the later enmity between Markov and Nekrasov is the fact that while Chebyshey,
Markov and Liapunov were all ultimately elected to the St. Petersburg Academy,
doubitless deservedly though perhaps in the often nepotic manner of such things,
Nekrasov, in spite of his power and influence, apparently never was. It may be that
partly out of resentment he may have attempted consequently to sustain (perhaps with
the cooperation of the eminent number-theorist, N. V. Bugaiev) an opposing polarity
(the ‘“Moscow School’; see Section ) to the St. Petersburg School within the Society.
There is evidence of this even in the title of the grandiose philosophical article of
Nekrasov (1904-1906). Relations, at any rate, seemed cordial enough at an earlier
time, for according to the selected works of Markov (1951), p. 686, in 1892, Nekrasov
read a paper of Markov's to the Society.

Although Nekrasov's first writings on probability were published earlier it is his
paper of 1898a, dedicated to the memory of Chebyshev, which is the beginning of a
long and bitter controversy between himself and Markov (and also Liapunov) which
lasted till 1915, thus spanning the crucial years 18981901 of the central limit problem.
Some details have been considered in Section 7.

Nekrasov seemed to enjoy controversies; he was also involved in one of a
philosophical nature within the ramifications of the Moscow Psychological Society.
The relevant poelemics appear in Voprosy Filosofii i Psikhologii (68-70, 1903,
Moscow).

The contact of the eminent statistician A. A. Chuprov’ with Nekrasov seems to date
to before 1896, when Chuprov finished his baccalaurcate studies at the faculty of
mathematics at the University of Moscow (Tschetwerikoff (1926)). His baccalaureate
thesis, The Mathematical Bases of Statistics, was examined by Nekrasov, then in
charge of the course in the theory of probabilities. Nekrasov, writes Chetverikov
(Tschetwerikoff, p. 315), was only interested

‘.. in the caleulations within the work insofar as Chuprov brought to the
forefront logic as one of the precise bases for the adoption of probability
theory to statistical methodology.’

! Whose contributions to statistics will be treated elsewhere.
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but implies that Nekrasov had po influence on Chuprov. In 1909, Chuprov’s
magisterial dissertation (A Precis of Statistical Theory, for which the University of
Moscow awarded the grade of doctor) was published (Chuprov (1959)). In this
Nekrasov is mentioned twice (pp. 167-168, 222-223); we have discussed. this in
Section 8. Chuprov’s contact with Markov only began as a result of Markov’s reaction
to these citations, and his own assessment of Nekrasov’s work seems a more rational
one.

Appendix 2. I. V. Sleshinsky (1854-1931)

The correct (latinized Polish) version of Sleshinsky’s name is Jan Sleszyfski: an
English transliteration of the Russian version (the middle name being the patronymic)
is Ivan Viadislavovich Sleshinsky. During his life in Odessa (Novorossisk) his two
probabilistic articles (Sleshinsky (1892), (1893-4)) appeared, and since during his
Odessa period he published exclusively in Russian, we use this transliteration. He used
the German transliteration, Sleschinsky.

He was born in Lysianka, a small town in the Kiev region of Ukraine on 11 July (old
style) 1854 and died in Krakow on 9 March 1931, He finished high school (gymmnasium)
in Odessa in 1871 with a silver medal, and subsequently, in 1871-1875, studied
mathematics at the university there, and completed his course by winning a gold medal
for a treatise on trigonometric series. This treatise, a subsequent one on continued
fractions (not published until 1889), and finally an examination for a master’s degree in
pure mathematics, revealed his considerable potential. In 1880 he received a stipend of
the Russian Ministry of Education and the directive (according to Russian practice) to
continue his studies for two years outside Russia. He travelled to Berlin where he
attended lectures by Kronecker, Kummer and Weierstrass. Here also he worked on a
dissertation on variational calculus in the sense of Weierstrass, and on the basis of this
gained the teaching post of ‘privat-dozent’ on his return to Odessa in 1883,

His published writings of the Odessa period begin in 1885, and the early ones can be
seen, from his list of publications which we include in our bibliography, to be in
continued fractions and analytic functions. Some bare trace of him in this connection
remains: his papers Sleshinsky (1889a,b); (1890)" are mentioned by Khovansky (1956),
from p. 35 of which we learn that these were unjustly criticized by Pringsheim (1898).

The substantial and important paper Sleshinsky (1892), ostensibly .on linear least
squares, but actually giving a rigorous proof of the central limit theorem in the manner
of connection described in our Section 2, is essentially his doctoral dissertation. We
have discussed it in our Section 4. This paper is mentioned briefly in the survey of
Czuber (1899) without due recognition; only mentioned in a bibliography at the end of
Chapter 7 (on the method of least squares) in Markov (1924), as we have noted in our
Section 5, and possibly in the earlier editions, which begin in 1900, of this celebrated
book; mentioned, as we have noted in our Section 1, by Liapunov (1900); and then
forgotten till a brief description by Gnedenko and Gikhman (1956), pp. 490-491, and
the more recent discussion, in the context of Chapter 4, in Heyde and Seneta (1977) and
Seneta (1979), §5. It should benoted that this 1892 paper, like a number of his others of

¥ Note that the first two of these are in Matematicheskii Shornik.
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the Odessa period, was published in a4 provincial (Odessa—Novorossisk) journal. This,
combined with its being written in Russian, then an even greater obstacle for the
foreign reader than now, doubtless contributed in no small measure (perhaps in
conjunction with Sleshinsky’s personality) to its being neglected.

The work of this 1892 paper was motivated by the Bienaymé—Cauchy controversy on
least squares entailing the central limit problem (Heyde and Seneta (1977), Chapter 4).
We have noted Sleshinsky's early interest in continued fractions; and Chebyshev, at the
time a prevailing influence in Russian mathematics, contributed directly to this area,
and also used continued fractions as a tool in his interpolational writings. These in turn
were connected to least squares and the controversy (Heyde and Seneta (1977), §4.5), so
bearing in mind Chebyshev’s {Tchébichef (1887)) work on the central limit theorem, it
is evident how Sleshinsky came to choose his subject,

Sleshinsky was made ordinary professor in 1898 and until his retiremsnt from the
university i Odessa in 1909 he taught analysis continuously, and otherwise mainly
calculus, number theory and probability calculus. His students included the later
eminent Odessa mathematicians V. F. Kagan and 8. O. Shatunovsky (see Leibman
(1961)).

From 1888 Sleshinsky was very active, within the mathematical section of the
Novorossisk (Odessa) Society of Natural Scientists, in the pedagogical and
methodological aspects of elementary mathematics (Leibman (1961), p. 413 et seq.).
This has the consequence that he became strongly associated with the well-known
‘mathematical-educational’ journal whose proper name was Vestnik Opitnoi Fiziki i
Elementarnoi Matematiki (i.e. ‘Messenger of Experimental Physics and Elementary
Mathematics’), though this was often, confusingly, in the mathematical literature such
as the Fortschritte known by a German contraction involving the name of its current
editor, e.g. as ‘Spaczinski’s Bote’ and ‘Kagan’s Bote'. The detailed history of this
journalis given by Dakhia (1936). This journal, in turn, was published from 1904 by a
mathematical publishing association in Odessa called ‘Mathesis’, which became
influential in the Russian empire of the time. It also published a series of general
mathematical monographs, and translations from western languages. Sleshinsky
remained associated with ‘Mathesis” till his departure for the Polish city of Krakow in
October 1911, as his listed publications testify. It is interesting, and perhaps indicates
some kind of belated connection between Markov and Sleshinsky, that the second
edition (1910} of Markov’s cclebrated book on finite differences was published by
‘Mathesis’, as well as the later important article Markov {1914b).

His move to Krakéw was at the invitation of the Polish Academy of Sciences, which
on the occasion of a large bequest for the specific purpose of improving the quality of
lectures in mathematics in this city, chose Sleshinsky as a suitably eminent
mathematician. He immediately began to teach at the Jagiellonian University in much
the same areas as in Odessa, and in addition in mathematical logic, a new atea in
Krakéw, which gained wide popularity there. Sleshinsky’s publications show his
interest in this area from his Odessa days.

His Krakéw period is notable for his role as a teacher; his lectures were meticulously
prepared and continuously reworked, so that the proofs he gave, unlike those of his
sources, were absolutsly complete. This left him little time for additional research
activity, and he wasnot, in any case, in the habit of publishing hastily. In fact, claiming
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that people were publishing too much and reading too little, at about the time of his
arrival in Krakow he decided to stop publishing altogether. The article Sleshinsky
(1921) was an exception which he made under strong persuasion; it may have been
associated with his election to the Polish Academy as correspondent that year. Also
under strong persuasion he agreed to the publication of the beok Teoria Dowodu on
the condition that he would not look at the text till it was printed ; his books listed in out
bibliography from this period were prepared from his lectures by his students. His
pedanticism and meticulousness explain his progressive inclination towards math-
ematical logic and the foundations of mathematics.

Sleshinsky finally retired, at his own request, in 1924 at the age of 70, and after a
short rest began to work on his favourite area, number theory.

[is personality, honesty and mathematical and general culture greatly impressed
people, but he does not seem to have had any appreciable influence in Poland outside
Krakow. Within Krakdw, he created no mathematical school, and in particular, does
not seem to have inspired any disciples in probability/mathematical statistics.
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