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Abstract

The concepts to be treated are non-norma! limit laws, and martingales. The historical role of the
Poisson as a limiting distribution is discussed with emphasis on the Poisson approximation to
the binomial. The Poisson is shown to figure in this last context in two works of Ernst Abbe
(18783, (1895), within the context of counting with a haemacyiometer, thus anticipating
Student’s work in the area. Abbe, whose name has recently been of interest in a time-series
context, further obtained the standard normal limit for a standardized Poisson random variable
and discussed the degree of approximation in both his limit laws. An indication of the implicit
use by De Moivrein {711 of a martingale notion in his treatment of the gambler’s ruin problem is
pointed out.

1. The Poisson approximation to the binomial: background

The question of the origin of the Poisson approximation to the binomial, which is
the forerunner of general theorems on triangular arrays of random variables
independent within rows in relation fo convergence to a compound Poisson
distribution, has some interesting features. This origin is usually perceived in the paper
of Student {1907) which certainly contains a derivation (p. 353); and contains also the
famous data-set of 400 independent readings (on the number of yeast cells in 400
squares of a haemacytometer) from (accordingly) a Poisson distribution with mean 2.
This parameter is estimated by the sample mean, and a chi-squared goodness-of-fit
applied to obtained and expected values. The other well-known source popularizing
the Poisson distribution as the ‘law of small numbers’ (or the law of rare events) is the
book of Bortkiewicz (1898) which appeared under this name. This contains the famous
data on deaths (from horsekicks)/year/corps in the Prussian army, which is shown to
be fitted extremely well if treated as a sample from the Poisson distribution.

Indeed, Poisson {1837} did not arrive at the Poisson as a limit of the binomial. As
Ulbricht (1980) (see also Stigler (1982)) points out, Poisson begins with the (Pascal)
probability distribution (Seneta (1979)) with probability mass function ("X~ )p"y%,
x=0,1,2,... for the number of Bernoulli trials, x, beyond the mth to attain m
successes, where p is the success probability in a single trial. Working with the
summands of its distribution function (he seems to have been the first to use it,
according to Sheynin (1978)) he considers the consequences of letting m — o¢ and g — 0
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in such a way that gm-+ 2> 0, which results in the Poisson expression e~ *1%/x!,
x=0,1,2,... for the mass function. In fact even the appearance of the Poisson mass
function can be traced to earlier sources: for example, M. G. Kendall (1968) points out
that it oceurs (with 4 = 1) as the limiting form of the probability of x coincidences in the
game of rencontre with two identical sets of n objects (first considered by Montmort
circa 1708), as n— oo in 1819 in the published writings of Thomas Young. In fact,
Poisson limits of the first few binomial probabilities occur in the context of a special
gambling problem in the writings of De MoivreT, and he states

‘...the law of continuation of these equations is manifest.

(See De Moivre (1967), Problem V, p.45; David (1962), pp. 16§-169.)

Given the preceding information the following footnote by the erudite A.A.
Chuprov (1914) from an oration on the anniversary of the law of large numbers, which
appears on p. 18] of a recent English translation of the Markov—Chuprov
correspondence (Ondar (1981)), proved tantalizing:

‘Apart from its methodological interest, the problem of counting the number of biood
corpuscles deserves to be mentioned in the history of theroretical statistics because, in 1878, in
studying it, the well known physicist Abbe developed the mathematical theory of the law of
large numbers in the case of very small probabilities. His attention had been called to this
problem by the manufacture, at the Zeiss factory, of a special instrument for counting biood
corpuscles ... Abbe’s paper completely escaped Bortkiewicz’s attention and it was not
mentioned by physicists, but Abbe’s formulas found application both in the field for which
they were developed and in research on plankton.’

Ernst Abbe had come to the attention of historians of statistics in 1966 and 1971
when O. B. Sheynin, followed by M. G. Kendall, described his remarkable discovery in
1863 of the distribution of the first circular serial correlation coefficient (see Seneta
(1982)). Chuprov’s footnote (above) seemed the more mysterious in that M. G. Kendall
{1971) remarked:

‘I cannot find that Abbe ever returned to the subject of the dissertation, but he was never eager
to publish his work and his private papers, if they stil] exist, might possibly contain something
-of interest.’

Further investigation into Chuprov's writings (Tschuprow (1926)) revealed the
following comment (given here in English transiation from the Russian version of a
Swedish oration)

‘...Abbe encountered the same statistical-mathematical problem [as Poisson], when on
direction from the Zeiss workshops he began to work on a projected haemacytometer. Abbe’s
formulae found application also in the study of plankton, but his contributions were not
noticed outside this framework. About 20 years fater Professor Bortkiewicz published his
well-known investigation on “the law of small numbers”. .. Subsequently, the same problem
became an object of study of physicists, ignorant of the works of Abbe, Bortkiewicz, and
others. Also, the talented disciple of Pearson, using the psendonym “Student”, published . .. a
short, but complete work on the topic developed by Abbe-—the counting of haemacytes-—with
no concept of any of his predecessors.’

The reference to the Poisson distribution in the work of physicists may have in mind in

t The author is indebted to Chris Heyde for peointing this out.
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particular the work of Smoluchowski in about 1915, in which it occurs in connection
with a simple Galton-Watson process with immigration. However, again Chuprov
gives no explicit citation to Abbe’s investigations. These, however, exist as
publications, and ocecur in Abbe’s collected works (Abbe {1904-1940)).

The author is indebted to Dr W. Pfeiffer, of Carl Zeiss, Oberkochen, for, at his
request, finding them and supplying copies. The following section supplements an
encyclopedia entry on Abbe (Seneta (1982)).

2. Limit theorems in the work of Abbe

There appear to be two contributions pertaining to the material described by
Chuprov: Abbe (1878) and Abbe (1895).

The first is largely descriptive, dealing firstly with the use of the haemacytometer
constructed by C. Zeiss and secondly giving a theoretical discussion on the question of
the degree of reliability with which the mean value (4, say) of the number of blood 4
corpuscles in a specific (say unit) volume can be determined by the method of counting.
Here the Poisson expressione ™ *A%/x!, x =0, 1,2, ... is given for the ‘relative frequency’
with which x corpuscles occur in such a volume. As an attempt to guantify the
variability of such a Poisson random variable X about its mean 1, he states, again
without proef, that, in effect, for large A (‘larger than 30 gives a quite adequate
approximation’) (X — i)/\/ 4 has a standard normal distribution approximately.

Consequently, the ‘probable’ deviation from £ is w= 0-674\/ 4 {in modern usage
2 x 0-674\//7v is the interquartile range) which Abbe takes as the degree of reliability
of the determination of A. In these passages Abbe’s work shows a degree of
statistical confusion; he proposes, for exampie, zlso the probable deviation w =
Wik = 0'674/\/ﬁhcorresponding 1o the ‘relative’ error (X — 2)/4. What would seem to be
most appropriate is a 50 per cent symmetric confidence interval for 4, on the basis of a
sample X, X,, ..., X,, from a Poisson (1) distribution about the sample mean X, viz.
X+ 0-674(\//1/—11), where /£ need not be large, but » should. Indeed Student ({1907,
p.355) gives the expression 0-674 49\/;1—/; as the probable error of the mean.

The second paper {only the book which contains it suggests some connection with
plankton) contains derivations of the two hmit theorems fmpleit in the above (the
Poisson approximation to the binomial, the normal approximation to the Poisson),
both in local-limit form, starting with the binomial and Peisson mass functions
respectively and considering their asymptotic behaviour. An important feature is that
Abbe considers the degree of approximation by the Limiting distribution also. Thus,
proceeding from the Bin(x, p) distribution, where np = 4 = constant, he obtains, for
large n, the approximate expression for the probability of value x:

L )
(e*@.ﬁx!)(; +f;)(1 LA ")2),
" 2n

from which he infers that the Poisson approximation will be good if 4 and x — 4 are
small relative to \/n. He alsc determines 4 as the modal value of the Poisson (4)
distribution; since the modal value is [2], he clearly has in mind £ an integer. He next



78 E. Sencta

shows that if X has such a distribution, that for large 4, A = X — 4 has the approximate
density

_i“T exp { — AN KL — (424}

2ni

so that, for good approximation, A small relative to 4 is required.

His introduction to the second paper shows his remarkable physical perception of
the Poisson process, as well as conveying something of his statistical uncertainty. We
give it in free translation from the German:

‘Suppose objects are distributed randomly in some manner in space, or specific events
randomly in time, or specific characteristics randomly within a set of discrete things; and it is
required to determine the mean frequency of these objects or events or characteristics through
counting in a known volume or time interval or subset. Then the result of a single counting (x)
will be more or less than the mean value (/) for the unit under investigation, which will result
from repeated counting. We wish to determine the probability that ... in a single case the
difference {x — 1) lies outside specific limits absolutely or percentagewise.’ .

3. De Moivre and the concept of a martingale

Consider a Markov chain { X}, n = 0, on the states {0,1,2, .. ., N} where the states 0
and Nare absorbing and passage fromeach of the states {1,2, ..., N — 1}to0or Nmay
occur in some finite number of steps with positive probability. Then it is well known
that absorption into state 0 or N occurs with probability 1, and if {p{§’},-, is the
matrix of k-step transition probabilities for the chain, p¥'—0 as k- oo,
ij=1,...,N—1,andify,,and y, , are the probabilities of ultimate absorption into 0
and N respectively (v, o+ 9,y = 1) from i=1,.. N~ 1, pll =y, and pf =y, v A
particular well-known instance of such a Markov chain is the simple random walk with
absorbing barriers, or the gambler’s ruin problem, where p{%) | =1 —n, p{}l,, =7,
i=1,..,N-1,0<n<l, X, denoting a gambler’s foriune.

In regard to one of the fundamental problems associated with such chains, that of
determination of vy, , or, equivalently, y, . in terms of the parameters involved in the
specification of the process, the notion of a martingale has sometimes been used
implicitly. :

To take a specific instance, in the random walk example mentioned, Moran
(1959-1960) notes that if xs£ 0 is an arbitrary number

EGFXY = x5 4 (x4 (1 —m)x ™t D, X, £ 0, N
= x ., X, =0N

and hence if we take x = (1 — n)/m, &{x"1|X,) = x*_ (Thus we see that, with this
choice of x, {x¥*} is a martingaie.) From the fact that then '

N1
P g . Ky Ky N
x' =8 (x| Xy = 1) = pl§ + z P(ij])‘J"i"Pﬁ',;)vx
i=1
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letting k — oo and using the fact y, o + 7, 4 = 1, we obtain

] —x*

N =R where x = (1 — m)/n.

It is remarkable that as early as 1711 (see Thatcher (1957)) De Moivre devised an
ingenious argument for determining y, , and v,  in the same (‘gambler’s ruin’) example,
which is based in essence on a similar martingale device. He follows the fluctuation of

Xa
Y, =Y {1 —nm)/n}, n=0

j=1

(371 =0), and notices that
(Y, = Y IX) = {1 =)y - (1 ~ m)/m}{l —n}=0

(Here we see that {¥Y, #,} is a martingale, where #  is the o-ficld generated by
{Xo, ..., X, 1.y It follows in particular that

E{Y =6{Y =3 {1 —m)ny

=1

if Xy =1 Letting n— o0 we obtain similarly to the previous argument

N i
?i.N{Z {1 “ﬂ)/ﬂ}j}m Z {1 “ﬁ)/ﬂ}j

i=1

which is precisely De Moivre’s reasoning.

Note added in proof. Mention of Abbe (1878) is made in Lancaster, H. O. {1950}
Statistical control in haematology. J. Hygiene 48, 402-417.
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