9/16/2015

MATH2965

Fourier Transforms

fier transforms
Recall
The complex Fourier series of f(x) is given by:
m .
_ ERITX
fx)= ) cpe I
n=—=oo
where
1 rt inmk
o= | fle T dk
“bdor
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fier transforms

Substitute the integral for the coefficient into the sum,

ink ) innx
fx) = 2L] fkye L dkle

n— -
nit

Introduce the variable w,, = T

Then - é_‘z_d__‘ i 1

f) = { ff(k)e‘“""dk] i g

7!——130
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Consider now the limitas £, — ¢0 ;then o =-—-—0

We can therefore interpret the sumasa
Riemann sum and in the limit it is replaced by an integral
with respect to the continuous variable (1)

Ie,

flx) = ]_: % f_ Zf(k)efwkdk e~ i9% dg

This is the Fourier Integral Identity
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Tier transforms

We now define the Fourier Transform of f(x) as

1 r® o
F A —_ ; "/,{"I [§73 0 ¢ d,r
(w) an_‘xf (x)e X

Note the change of dummy variable from k to x.

Then from the integral identity we define the Inverse Transform

f0)= [ Floe o o

— D

Existence: f(x) mustbe piecewise smooth and absolutely
integrable: J ® ()] dx < o0

o
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Tier transforms

Alternative notation F ( C{}:) —F { }c ( X}}

fx) = FHr(w)}

Important:

There are variations in the definition of the Fourier
transform and its inverse, especially in the placement

1 .
of the — factorand the sign of the complex
exponefitial.
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érse Fourier transform of a Gatissian

To find the solution of the heat equation and other problems, we
will need to find the inverse Fourier transform of the function

Glw) = e 4%

This is the well-known bell-shaped curve known as a Gaussian.

2

By definition, the inverse transform is given by

g0 = | "6 (@) e doo

— oG

o 2
:f g aw® g—lwx 4.

— 00
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T

rse Fourier

To evaluate this integral we use the following “trick™

e

transform of a

First, differentiate with respect to x

[ o]
gi(x) — f (_iw]e——amz e X o,
-

Next, integrate by parts:
) = | " (o) ot dy
2a)_,dw
i . 700
— _ fo-iwx j—aw”
- 2a [e ¢ ]—00

i re '
— _Z_f E,—(tco“ (—~ix) e—lwx d&)
a
—00
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eérse Fourier transform of a Gaussian

The first term vanishesas ¢) — +oo

Therefore x (% 2 .
g (x) = ——f @ EWT g TIOX da)
2a J_,

Ie,

g'() == g(x)

This is a simple separable first order ODE for g(x).

/ s
y Lx:) X - ~x2 /45
C=—— = glx) = g()e ¥ /4
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érse Fourier transform of a

g(0) :j e " gy

But

['s]
- _ 2 TE
and it can be shown that [ e~ duy = =

a

-0

Therefore, the final expression for the inverse transform of the
(aussian is:

T o
g(x) = | -

which itself is another Gaussian.
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Jirac delta function

Let us consider the sequence of functions

2

A n
5, (x) = ;e”m , n=1,2,3,..

We can show that fm Jge—ﬂxz dx =1, n=1,2,3,..
— 00

We define the Dirac delta function & (}C ) to be the limit of
that sequenceas 7 — 00 such that

Sl r =]
lim f \/:e""x dx = j’ §x)ydx=1
n-co j ¥IA oo
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irac
We can think of the delta function as an infinitely concentrated
pulse which is zero everywhere, exceptat X = X

whereitis €2
Ie, '

0, x+ Xxg

6(x — %) = (00, X = Xg
1

The Dirac delta function has a physical analogy of an
“impulsive” force acting for a short time only.
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irac delta function
1) Filtering property:

| 56— x)F() de = fx0)

2) Operates like an even function:

S{x — x9) = 6(xg — %)

0, x<uxy

3) Derivative of Heaviside step function H(x —xy) = { 1, x> x

is the delta function:

H'(x —x0) = 6(x — x¢)

This can be seen by realizing that + 0 x<x
j S(A— o) da:{l S

—0
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ac delta function

4) Fourier transform of the delta function

o

1 [~ 1
oA Y — (e X g, — WXy
FL6(x — xg)} - _wﬁ(x X e " dx P

1.
Alternatively: F~1 {TZ—?—I— e“"”‘ﬂ} = §(x — xp)

(o)
le, f e~ @ %0) oy = 218 (x — %)

— 0

In the special case where x g = 0 weget

1 ®
Flo(x)} = o or f et dw = 218 (x)

— 00
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T - )
ivatives and Convolution

5) Fourier transforms of derivatives

FlFO (0} = (—iw)"F{f ()}

(Proof by integration by parts)

6) Convolution: if F(w) = F{f(x)} and G(w) =F{g(x)}

then T—E{F((U}G(U}j} — f * g

where

fro=s5] oOrG-na

Is the convolution of fand g.
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equation using Fouriéer transforms
Use Fourier transforms to solve the 1-D Heat equation
ou  d*u
o o
with initial condition — u{x, 0) = f(x)
There are implicit physical conditions such as
u(x,t) >0 as x - too

=0, —w<x<o (>0

Take the FT with respect to x.

Define .
0w, = FuGs D) = o [ ulnt)e™ dx

/ —
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equation using Fourier tra
‘du o (w, t) . a%u
ot) ot 0x*

Then

} = (—iCO)ZU(_{’)x t)

Substitute into the PDE Simple ODE: @1/

at

+ kU =0

Solving the ODE U(w, t) = C(w)e —kw?t (*)

-~ 0

u(x, i) = j C(m)e_k“’zte_i“’x dw

—o0

Inverting
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equation using Fouriér transforms
o0

Letting ¢ =0 ulx, 0) ___f C(w) e—iox o)
©

Then, the initial condition u(x,0) = f(x) gives

flx) = [ C{w) e 9% da

—0G

from which we can calculate ((w) by inversion.
Ie,

() = 517—7- f  F()e” de = FIF(R))
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equation using Fouriéritransiorms

domain

is given by

where

Recall that

9/16/2015

—oo < x < co withIC u(x,0) = f(x)
o 2 .
ulx, t) = f ¢ (w)e—kw‘t e~ % doy

(@) = FF )]

=

Uw,t) = C(w)e @™
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Summarising, the solution of the heat equation in the infinite

We can now rewrite this as a convolution, but alternatively we can
use (*) from the outset:.

19

—

o - - - “%"__T LEA .‘ = s
equation using Fouriértranstorms

Therefore

Hence, u(x,t) = F " {Clw)e "t}

= F Y C(w) = FH ek

B F o)) = f()

and (from the inverse of a Gaussian:

3’-’"1{3""‘”2‘} — /‘%e~x2/4kt

— —(x=T)% 4kt

u(x, t) = %wa(i) %E‘

dx]

9/16/2015

MATH2965 Introduction to PDEs

20

9/16/2015

10



: equation using Fouriér transforms
In the special case where Fx) = 6(x)

. —(x—%)" 4kt
i(x, £) = 55?; e N/%e d%
—x? j4kt
N
This is called the

fundamental solution of the heat equation

It is the response at time t and position x to an initial input
concentratedat ¥ =0 and t =90
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