

Fourier Transforms

Fourier transforms

Recall

The **complex Fourier series** of f(x) is given by:

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{-\frac{in\pi x}{L}}$$

where

$$c_n = \frac{1}{2L} \int_{-L}^{L} f(k) e^{\frac{in\pi k}{L}} dk$$

9/16/2015

MATH2965 Introduction to PDEs

Fourier transforms

Substitute the integral for the coefficient into the sum,

$$f(x) = \sum_{n=-\infty}^{\infty} \left[\frac{1}{2L} \int_{-L}^{L} f(k) e^{\frac{in\pi k}{L}} dk \right] e^{-\frac{in\pi x}{L}}$$

Introduce the variable $\omega_n = \frac{n\pi}{L}$

Then -

$$\frac{\Delta\omega}{2\pi} = \frac{\omega_{n+1}}{2\pi} - \frac{\omega_n}{2\pi} = \frac{1}{2L}$$

$$f(x) = \sum_{n=-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{-L}^{L} f(k) e^{i\omega_n k} dk \right] e^{-i\omega_n x} \Delta\omega$$

9/16/2015

MATH2965 Introduction to PDEs

.

Fourier transforms

Consider now the limit as $\,L\, o\infty\,$, then

$$\Delta\omega \equiv \frac{\pi}{L} \to 0$$

We can therefore interpret the sum as a

<u>Riemann sum</u> and in the limit it is replaced by an integral with respect to the continuous variable (*U*)

Ie,
$$f(x) = \int_{-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} f(k) e^{i\omega k} dk \right] e^{-i\omega x} d\omega$$

This is the **Fourier Integral Identity**

9/16/2015

MATH2965 Introduction to PDEs

Fourier transforms

We now define the **Fourier Transform** of f(x)

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{i\omega x} dx$$

Note the change of dummy variable from k to x.

Then from the integral identity we define the **Inverse Transform**

$$f(x) = \int_{-\infty}^{\infty} F(\omega) e^{-i\omega k} d\omega$$

Existence: f(x) must be piecewise smooth and absolutely integrable: $\int_{-\infty}^{\infty} |f(x)| dx < \infty$

Fourier transforms

Alternative notation

$$F(\omega) = \mathcal{F}\{f(x)\}\$$

$$f(x) = \mathcal{F}^{-1}\{F(\omega)\}\$$

Important:

There are variations in the definition of the Fourier transform and its inverse, especially in the placement of the $\frac{1}{2}$ factor and the sign of the complex exponential.

9/16/2015

MATH2965 Introduction to PDEs

Inverse Fourier transform of a Gaussian

To find the solution of the heat equation and other problems, we will need to find the inverse Fourier transform of the function

$$G(\omega) = e^{-\alpha\omega^2}$$

This is the well-known bell-shaped curve known as a **Gaussian**.

By definition, the inverse transform is given by

$$g(x) = \int_{-\infty}^{\infty} G(\omega) e^{-i\omega x} d\omega$$
$$= \int_{-\infty}^{\infty} e^{-\alpha \omega^2} e^{-i\omega x} d\omega$$

9/16/2015

MATH2965 Introduction to PDEs

Inverse Fourier transform of a Gaussian

To evaluate this integral we use the following "trick":

First, differentiate with respect to x

$$g'(x) = \int_{-\infty}^{\infty} (-i\omega)e^{-\alpha\omega^2} e^{-i\omega x} d\omega$$

Next, integrate by parts:

$$g'(x) = \frac{i}{2\alpha} \int_{-\infty}^{\infty} \frac{d}{d\omega} (e^{-\alpha\omega^2}) e^{-i\omega x} d\omega$$
$$= \frac{i}{2\alpha} \left[e^{-i\omega x} e^{-\alpha\omega^2} \right]_{-\infty}^{\infty}$$
$$- \frac{i}{2\alpha} \int_{-\infty}^{\infty} e^{-\alpha\omega^2} (-ix) e^{-i\omega x} d\omega$$

9/16/2015

MATH2065 Introduction to PDEs

Inverse Fourier transform of a Gaussian

The first term vanishes as $\omega \to \pm \infty$

Therefore
$$g'(x) = -\frac{x}{2\alpha} \int_{-\infty}^{\infty} e^{-\alpha\omega^2} e^{-i\omega x} d\omega$$

$$g'(x) = -\frac{x}{2\alpha}g(x)$$

This is a simple separable first order ODE for g(x).

$$\frac{g'(x)}{g(x)} = -\frac{x}{2\alpha} \quad \Rightarrow \quad g(x) = g(0)e^{-x^2/4\alpha}$$

9/16/2015

MATH2965 Introduction to PDEs

Inverse Fourier transform of a Gaussian

But

$$g(0) = \int_{-\infty}^{\infty} e^{-\alpha \omega^2} d\omega$$

and it can be shown that
$$\int_{-\infty}^{\infty} e^{-\alpha \omega^2} d\omega = \sqrt{\frac{\pi}{\alpha}}$$

Therefore, the final expression for the inverse transform of the Gaussian is:

$$g(x) = \sqrt{\frac{\pi}{\alpha}} e^{-x^2/4\alpha}$$

which itself is another Gaussian.

9/16/2015

MATH2965 Introduction to PDEs

The Dirac delta function

Let us consider the sequence of functions

$$\delta_n(x) = \sqrt{\frac{n}{\pi}}e^{-nx^2}, \quad n = 1, 2, 3, ...$$

We can show that $\int_{-\infty}^{\infty} \sqrt{\frac{n}{\pi}} e^{-nx^2} dx = 1, \quad n = 1, 2, 3, \dots$

We define the Dirac delta function $\delta(x)$ to be the limit of that sequence as $n \to \infty$ such that

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}\sqrt{\frac{n}{\pi}}e^{-nx^2}\ dx = \int_{-\infty}^{\infty}\delta(x)\ dx = 1$$

9/16/2015

MATH2965 Introduction to PDEs

1

The Dirac delta function

We can think of the delta function as an infinitely concentrated pulse which is zero everywhere, except at $x=x_0$ where it is ∞

Ie,

$$\delta(x - x_0) = \begin{cases} 0, & x \neq x_0 \\ \infty, & x = x_0 \end{cases}$$

The Dirac delta function has a physical analogy of an <u>"impulsive"</u> force acting for a short time only.

9/16/2015

MATH2965 Introduction to PDEs

The Dirac delta function - Properties

1) Filtering property:

$$\int_{-\infty}^{\infty} \delta(x - x_0) f(x) \ dx = f(x_0)$$

2) Operates like an even function:

$$\delta(x - x_0) = \delta(x_0 - x)$$

3) Derivative of Heaviside step function $H(x - x_0) = \begin{cases} 0, & x < x_0 \\ 1, & x > x_0 \end{cases}$ is the delta function:

$$H'(x - x_0) = \delta(x - x_0)$$

This can be seen by realizing that $\int_{-\infty}^{x} \delta(\lambda - x_0) \ d\lambda = \begin{cases} 0, & x < x_0 \\ 1, & x > x_0 \end{cases}$

9/16/2015

MATH2965 Introduction to PDEs

13

The Dirac delta function

4) Fourier transform of the delta function

$$\mathcal{F}\{\delta(x-x_0)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(x-x_0) e^{i\omega x} dx = \frac{1}{2\pi} e^{i\omega x_0}$$

Alternatively: $\mathcal{F}^{-1}\left\{\frac{1}{2\pi}e^{i\omega x_0}\right\} = \delta(x-x_0)$

Ie,
$$\int_{-\infty}^{\infty} e^{-i\omega(x-x_0)} d\omega = 2\pi\delta(x-x_0)$$

In the special case where $\,\chi_0^{}=0\,\,$ we get

$$\mathcal{F}\{\delta(x)\} = \frac{1}{2\pi}$$
 or $\int_{-\infty}^{\infty} e^{-i\omega x} d\omega = 2\pi\delta(x)$

9/16/2015

MATH2965 Introduction to PDEs

Derivatives and Convolution

5) Fourier transforms of derivatives

$$\mathcal{F}\{f^{(n)}(x)\} = (-i\omega)^n \mathcal{F}\{f(x)\}\$$

(Proof by integration by parts)

6) Convolution: if $F(\omega) = \mathcal{F}\{f(x)\}\$ and $G(\omega) = \mathcal{F}\{g(x)\}\$

then

$$\mathcal{F}^{-1}\{F(\omega)G(\omega)\} = f * g$$

where

$$f * g = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(\lambda) f(x - \lambda) d\lambda$$

Is the convolution of f and g.

9/16/2015

MATH2965 Introduction to PDEs

15

Heat equation using Fourier transforms

Use Fourier transforms to solve the 1-D Heat equation

$$\frac{\partial u}{\partial t} - k \frac{\partial^2 u}{\partial x^2} = 0, \quad -\infty < x < \infty, \quad t > 0$$

with initial condition u(x, 0) = f(x)

There are implicit physical conditions such as

$$u(x,t) \to 0$$
 as $x \to \pm \infty$

Take the FT with respect to *x*.

Define

$$U(\omega,t) = \mathcal{F}\{u(x,t)\} \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} u(x,t)e^{i\omega x} dx$$

9/16/2015

MATH2965 Introduction to PDEs

Heat equation using Fourier transforms

Then

$$\mathcal{F}\left\{\frac{\partial u}{\partial t}\right\} = \frac{\partial U(\omega, t)}{\partial t} \qquad \mathcal{F}\left\{\frac{\partial^2 u}{\partial x^2}\right\} = (-i\omega)^2 U(\omega, t)$$

Substitute into the PDE Simple ODE: $\frac{\partial U}{\partial t} + k\omega^2 U = 0$

Solving the ODE $U(\omega, t) = C(\omega)e^{-k\omega^2 t}$ (*)

Inverting $u(x,t) = \int_{-\infty}^{\infty} C(\omega)e^{-k\omega^2t} e^{-i\omega x} d\omega$

9/16/2015

MATH2965 Introduction to PDEs

1

Heat equation using Fourier transforms

Letting
$$t = 0$$

$$u(x,0) = \int_{-\infty}^{\infty} \mathcal{C}(\omega) \, e^{-i\omega x} \, d\omega$$

Then, the initial condition u(x, 0) = f(x) gives

$$f(x) = \int_{-\infty}^{\infty} C(\omega) e^{-i\omega x} d\omega$$

from which we can calculate $C(\omega)$ by inversion.

Ie,

$$C(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{i\omega x} dx \equiv \mathcal{F}\{f(x)\}\$$

9/16/2015

MATH2965 Introduction to PDEs

Heat equation using Fourier transforms

Summarising, the solution of the heat equation in the infinite domain $-\infty < x < \infty$ with IC u(x, 0) = f(x)

is given by

$$u(x,t) = \int_{-\infty}^{\infty} C(\omega) e^{-k\omega^2 t} e^{-i\omega x} d\omega$$

where

$$C(\omega) = \mathcal{F}\{f(x)\}\$$

We can now rewrite this as a convolution, but alternatively we can use (*) from the outset:.

Recall that

$$U(\omega,t) = C(\omega)e^{-k\omega^2t}$$

9/16/2015

MATH2965 Introduction to PDEs

19

Heat equation using Fourier transforms

Hence,
$$u(x,t) = \mathcal{F}^{-1} \{ \mathcal{C}(\omega) e^{-k\omega^2 t} \}$$

= $\mathcal{F}^{-1} \{ \mathcal{C}(\omega) \} * \mathcal{F}^{-1} \{ e^{-k\omega^2 t} \}$

But

$$\mathcal{F}^{-1}\{C(\alpha)\}=f(x)$$

and (from the inverse of a Gaussian:

$$\mathcal{F}^{-1}\left\{e^{-k\omega^2t}\right\} = \sqrt{\frac{\pi}{kt}} e^{-x^2/4kt}$$

Therefore

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\overline{x}) \sqrt{\frac{\pi}{kt}} e^{-(x-\overline{x})^2/4kt} d\overline{x}$$

9/16/2015

MATH2965 Introduction to PDEs

Heat equation using Fourier transforms

In the special case where
$$f(x) = \delta(x)$$

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\overline{x}) \sqrt{\frac{\pi}{kt}} e^{-(x-\overline{x})^2/4kt}$$

$$= \frac{1}{2\pi} \sqrt{\frac{\pi}{kt}} e^{-x^2/4kt}$$

This is called the

fundamental solution of the heat equation

It is the response at time *t* and position *x* to an initial input concentrated at x = 0 and t = 0

9/16/2015

MATH2965 Introduction to PDEs

