Centor's set is not countable let C be the centor set and let  $c \in [0,2]$ . We will first show that: C+C = [0,2].

let Lo = {x,y | x+y=c} < 12<sup>2</sup>. Note that Lo intersects at least



The segment reports if we pick one of these seprenes intersecting LC and subdivide it in other 9 seprenes (see Fig. 1). By completeness of  $1R^2$  and iterating this segment we conclude  $(C \times C) \cap L_C \neq 0$ . In particular, there exist  $x_i y \in C$ such that x+y = C. This shows  $[0,2] \subset C+C$ . Conversely, since  $C \subseteq [0,1]$ , flow  $C+C \subseteq [0,2]$ . Noregone, C+C = [0,2].

In protocher, the function

$$+|_{C\times C}: C\times C \longrightarrow [0,2]$$

is surjective. This shows the direct product CXC is not countable. Nonegane C is not countable.