Cantor's set is not countable
Let C be the cantor set and let $c \in[0,2]$. We will first show that:

$$
C+C=[0,2] .
$$

Let $L_{c}=\{x, y \mid x+y=c\} \subset \mathbb{R}^{2}$. Note that L_{c} intersects at least

one of the 4 comer spare regions of the 9 sprite regions of $[0,1]^{2}$.

The argument repeats if we pick one of these spares intersecting L_{C} and subdivide it in other \mathcal{q} squares (see $F 1 g .1$). By completeness of \mathbb{R}^{2} and iterating this argument we conclude $(C \times C) \cap L_{C} \neq 0$. In particular, there exist $x, y \in C$ such that $x+y=c$.

This shows $[0,2] \subset C+C$. Conversely, since $C \subset[0,1]$, then $C+C \subset[0,2]$. Therefore,

$$
C+C=[0,2] .
$$

In proticulios, the function

$$
+\left.\right|_{C \times C}: C_{x C} \longrightarrow[0,2]
$$

is surjective. This shows the direct product $C X C$ is not countable. Ranepone C is not countable.

