What is the universal enveloping alebbra? Part II
§1. Onerview.
rene is a forsetful functor.

$$
\begin{aligned}
F:\left\{\mathbb{A}-\lambda_{y s} \text { bvzs }\right\} & \longrightarrow\left\{\begin{array}{c}
\text { Lie } \\
\text { algebvzs }
\end{array}\right\} \\
(A, \cdot) & \longmapsto(A,[,])
\end{aligned}
$$

whe $[x, y]:=x \cdot y-y \cdot x$.
e.g. For a vectov spzee V over \mathbb{C} we denate

$$
F(\operatorname{Eud}(V))=: g(V) \text { suast linex } L \text { ie slectera of } V \text {. }
$$

Last tive: we lefined

$$
U:\left\{\begin{array}{c}
\text { Lie algebres } \\
\text { over } \mathbb{C}
\end{array}\right\} \longrightarrow\left\{\begin{array}{c}
\text { associative lunital) } \\
\text { alsebras ouer } \mathbb{C}
\end{array}\right\}
$$

oud $2 \mathrm{map} i: g \longrightarrow U(y)$. We shomed last time that U is left adooint to f, i.e.,

$$
\operatorname{Hon}_{\text {Lie }}(g, \operatorname{for}(A)) \simeq \operatorname{Hon}_{\substack{\text { colg }}}(U(g), A)
$$

universil proparty
of ans $\begin{gathered}U(y) \\ \uparrow\end{gathered}:=T(y) /\langle x \otimes y-y \otimes x-[x, y] \mid x, y \in y\rangle$
unital associative alsebra

Rep of $\simeq \operatorname{Rep} U(y) \leftarrow$ Teusov stuchuve is given by the lepf dsebura equivilunce of structure in $U(y)$ monoidel citeyorres

Action over $V \otimes W$: let V, W two i-modiles.
The og-module stucture on $V \otimes W$ is given by

$$
g \cdot(v \otimes w)=(g \cdot v) \otimes w+v \otimes g \cdot w .
$$

For su associative deebian A there is no uaturad A-und struchure as VOW. The key iber is for $A=U(g)$ we have a comultiplicition Δ.
$U(9)$ is a Hopf alsebora mas the action on VOW is given by:

We can obtzin ivreducible y-mod by cons:dving Vermiz modules V_{λ} for λ weight λ.
Ph:losophy: Undivstind f.d. imeducible oy-mod by using oo-dinensional modrles (he $V_{a}^{\prime} s$) which ane quotients of $U(g)$.
§2. Filthed olsebras
A R-alsobra A is \mathbb{N}-graded if

$$
A=\bigoplus_{i=0}^{\infty} A_{i}
$$

where te A_{i}^{\prime} s ove rector subspices zud $A_{n} \cdot A_{m} \subseteq A_{n+m}$.

An slgeboren A ores R is \mathbb{N}-filtered if there is an inacersing sequence

$$
\{0\} \subseteq F_{0} \subseteq F_{1} \subseteq \cdots \subseteq F_{i} \subseteq \cdots \subseteq A
$$

of subspzes of A such that

$$
A=\bigcup_{i=0}^{\infty} f_{i}
$$

and $\forall n, m \in \mathbb{N}$,

$$
F_{n} \cdot F_{m} \subseteq F_{n+m}
$$

Example: Te algebra of differential operators $B:=k\{x, d / d x\} \cong k\langle x, y\rangle$ of $A:=R[x]$. Here $B \subseteq$ End A.

$$
\begin{array}{rl}
\frac{d}{d x} x^{i}=i x^{i-1} & d / \partial x: A_{i} \\
x \cdot x^{i}=x^{i+1} & \longrightarrow A_{i-1}, x: A_{i-1} \longrightarrow A_{i} \\
& x d / d x: A_{i} \\
& \longrightarrow A_{i} \\
x^{i} & \longmapsto i x^{i-1}, d / d x \cdot x: A_{i} \longrightarrow x^{i} \longrightarrow A_{i} \\
& \longrightarrow x^{i} \longmapsto(i+1) x^{i}
\end{array}
$$

We hove the relation

$$
x d / d x-d / d x \quad x=1
$$

Let $F_{i}=\left\{\begin{array}{c}\text { liner courbingtions of elements } \\ \text { of the form } x^{j}(d / d x)^{k} \\ \text { sk } \leq i .\end{array}\right\} \begin{aligned} & \text {, es. } x+d / d x+x^{2} \notin F_{2} . \\ & \text { Not graded! }\end{aligned}$
Let A be an \mathbb{N}-filtered algebra, the associated graded agebiva $g r(A)$ is defined as the vector spae

$$
\operatorname{gr}(A)=\bigoplus_{n=0}^{\infty} G_{n}=F_{0} \oplus F_{1} / F_{0} \oplus F_{2} / F_{1} \oplus F_{3} / F_{2} \oplus \cdots
$$

where, $k_{0}=F_{0}$ and $k_{n}=F_{n} / F_{n-1}$ for $n>0$. The multiplication is indued by Ne multiplication in A. This is 2 graded deebren.

Any \mathbb{N}-graded algebra $A=\bigoplus_{i=0}^{\infty} A_{i}$ admits $2 f_{i}$ thrition $F_{n}=\bigoplus_{i=0}^{n} A_{n}$.

Prop A graded algebra is naturally faltered
Proof: $A=\bigoplus_{i=0}^{\infty} A_{i}, F_{m}=\bigoplus_{i=0}^{m} A_{i}, U F_{m}=A$
We have the following dizguza

Fact: If A is graded then $\operatorname{gr}(i(A))=A$.
Example: The symmetric debra sym (V) of a vector spae V with bases $\left\{x_{1}, \ldots, x_{n}\right\}$ is the phonowial theebran $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ it is growled

$$
S_{y m}(V)=\bigoplus_{i_{1}, i_{m}} \mathbb{C}\left\{x_{1}^{i_{1}} \ldots x_{m}^{i_{m}}\right\}
$$

$T(v)$ is also graded
$U(y)=T(y) /\langle x \otimes y-y \otimes x-[x, y]\rangle$ is filtered but not groped.
(xu slow
$\operatorname{gr}(U(g))=\operatorname{sym}(g) \curvearrowleft$ commutative debora
$\neq U(y) \quad \therefore \quad U(y)$ is not graded.

Howerevo $\quad U(y) \simeq S_{y m}(\mathbb{O})$ as vector spaces (Hey han the sane PBW-basis!. $\quad U\left(y_{j}\right)=\Theta \mathbb{C}\left\{e_{1}^{i_{1}} e_{2}^{\tau_{2}} \ldots e_{n}^{i_{n}}\right\}$.

If gog is selim $U(g)=\operatorname{Sym}(g)=\operatorname{gv}(U(g)) \Rightarrow U(0))$ is graded.
63. Verma modules.
let I be a seani-simple f.d. Lie algebra over $\mathbb{C}($ e.g. $\operatorname{sln}(\mathbb{C}))$ let
es

$U$$\quad$	$U(g)$
U	

f m Bovel sobzlebira $m U(b)$
$U \quad U$
$b \rightarrow$ Coutan subilebera $m U(b)$

- let $\lambda \in b^{*} \quad \lambda: \zeta \longrightarrow \mathbb{C}$
- \mathbb{G}_{λ} is the 1-dimensiourd b-modole $h \in \zeta, z \in \mathbb{C}, h \cdot z=\lambda(h) z$.
\leadsto We extend \mathbb{C}_{λ} to a b-modile, $b=n^{+} \oplus b$.

$$
\begin{aligned}
n \cdot z & =0 \quad \text { for } n \in n^{+} \\
h \cdot z & =\lambda(h) z \quad \forall h \in b . \\
\Rightarrow C_{\lambda} \text { is } & \approx u(b) \text {-module. }
\end{aligned}
$$

- Te $u(f)$-modile stucture of \mathbb{C}_{a} can be also be defined divectly
- let $\left\{x_{1}, \ldots, x_{r}\right\}$ be 2 besis of n^{+}
-let $\left\{h_{1}, \ldots, h_{p}\right\}$ be a besis of h
We com prek $\left\{x_{1}^{i_{1}} \ldots x_{r}^{i_{r}} h_{1}^{j_{1}} \ldots h_{p}^{j_{p}}\right\} \gg 2$ PBW-basis for $U(b)$ sud define the ation on \mathbb{C}_{λ} as

$$
\left(x_{1}^{i_{1}} \ldots x_{r}^{i_{v}} h_{1}^{j_{1}} \ldots h_{p}^{j_{p}}\right) \cdot z=\lambda\left(h_{1}\right)^{j_{1}} \lambda\left(h_{2}\right)^{j} \cdots \lambda\left(h_{p}\right)^{j p} z
$$

The vermis module sssociefed with a is the $U(Y)$-module:

$$
V(\lambda)=U(\rho) \underset{U(b)}{\otimes} \mathbb{C}_{\lambda}\left(=U\left(n^{-}\right) \text {as vector space }\right)
$$

For $x \in U(0 y)$ the action is $x \cdot(y \otimes z):=x y \otimes z$.
Prep If $\lambda \in \mathbb{N}, V(\lambda)$ wotiated by its maximal $U(J)$ - subuodele is the :reducible of -module of highest weight a.

Example:

$$
\begin{aligned}
& \text { de: } \operatorname{sh}_{2}(\mathbb{C})=\mathbb{\mathbb { }} \\
& \text { g }=\mathbb{C} f \oplus \mathbb{C} h \oplus \mathbb{C} e \\
& U \\
& f=\mathbb{C} h \oplus \mathbb{C} e
\end{aligned}
$$

$$
\begin{array}{cc}
\left(\begin{array}{ll}
0 & 0 \\
10
\end{array}\right) \oplus \mathbb{C}\left(\begin{array}{cc}
1 & 0 \\
11 & -1
\end{array}\right) \oplus \mathbb{C}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
\vdots! & ! \\
\hdashline & \underline{h}
\end{array}
$$

$$
U
$$

$$
\eta=\mathbb{C} h \quad U(b)=\mathbb{C}[h]
$$

A PBW-bosis of $U\left(S_{2}\right)$ is $\left\{f^{i} h^{j} e^{k}\right\}_{i, j, k=0}^{\infty}$.
let $\lambda \in h^{*}$. $101 \in V(\lambda)$

$$
\begin{array}{ll}
f \cdot|\theta|=f \theta \mid & f \cdot f \theta\left|=f^{2} \theta\right| \\
h \cdot|\theta|=\lambda \cdot|\theta| & h \cdot f \theta|=(f h-2 f) \theta|=(\lambda-2) f \otimes \mid \\
e \cdot|\theta|=0 & e \cdot f \theta|=(f e+h) \theta|=\lambda \cdot|\theta|
\end{array}
$$

$\left\{f^{k} \otimes 1\right\}$ is 2 basis for $V(\lambda)$. We choose $\left\{\frac{\left.f^{k} \otimes 1\right\}}{k!}\right.$ is $=$ bass

$$
\begin{aligned}
& f \cdot \frac{f^{k} 81}{k!}=(k+1) \frac{f^{k+1} 81,}{(k+1)!} \\
& h \cdot \frac{f^{k} \otimes 1}{k!}=(3-2 k) \frac{f^{k}}{k!} \otimes 1, \\
& e \cdot \frac{f^{k}}{k!}=\left\{\begin{array}{cl}
(4-k) \frac{f^{k-1}}{(k-1)!} 81 & \text { if } k \geqslant 1, \\
0 & \text { if } k=0 .
\end{array}\right.
\end{aligned}
$$

For exanple, if $\lambda(h)=3$, we haue $V(3)$ is $U(g)$-modile is:

this is the cuiere
non-trivel proper
submodule of $V(3)$

The potient of $V(3)$ with its proper subuodule is

Mis is the ste-modole of hishest weight 3 .

Thamk for attanding!
$\binom{$ Next tine: Wedt's }{ churecter formula! }

