What is modelav representation theor?
\$1. Introdection and motivztion

- Moditio rep. Meony $=$ rep. Neay over a piald k of cluzp >0.
- Hugely different (aften mare difficult) thizn over fields of char=0 (e.g. ©)
(i) semi s:mplicity fails: Maschke's thorem cor up) of finite groups / \mathbb{C} fails in charp (proof involves divsding by $|G|$)
e.s. $\quad k=T / p \mathbb{L}=\langle g\rangle \quad N V=k_{x} \oplus k y$

$$
g \longmapsto\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad g_{v}^{n}=\binom{14}{0}, g_{v}^{p}=0 .
$$

V is redocible and indecompossble. order of g is P in char $k=P$ soch veps sbosud ear geacrel dy gip/k
(2) New symmely: Gunng zrithuetic

$$
(a+b)^{p}=a^{p}+b^{p}, a, b \in k .
$$

this aften gives rise to new submodiles which don't exist in chavo. Underlying mechznism: Frobenius endo

$$
F_{r}: G \longrightarrow E
$$

and assocrited trabenios twist on Rep E.
Rep G ana "Fractel" stwiture on Rep G.
(3) Subtlev geavetric connections: finding chirecter cornsta) eor siuple wobulus has been a gurding problem in rep thong geer the test 50 yezrs
dhwretoritic ees: deep geavetvic poofs of $k-L$ coij. by Brylingt:-kashiwo n zud Beilinson - Bemuste in (1480's)
dase $P>0$: still in process of being solved (Wust tig's ganj. Was led the way.)

- God today: Explore save of these perches, auphzsising $S L_{2}$. - Along the way we will endorser + explein He following pictures):

- These:migeses we evan:

§2. foundztions
- We fix $k=\bar{k}$ ficll of chrv. $p>0 \quad\left(k=\overline{F_{p}}\right)$
- For us, in tsebbsic shoup arev k is a group k w/th stucture of k-voriety

- A hemonouphism of x_{3}. graps $k \longrightarrow H$ slould respect both shuctures: a reydze graup lowowaphism.
- Exsuples: $G_{a}=(k, t)=A_{k}^{\prime}$

$$
\begin{aligned}
\mathbb{C}_{m}=\left(k^{x}, x\right)=\mathbb{A}_{k}^{\prime}-\{0\} \text { ind hon suevz } \|_{y} \\
\mathbb{C}_{m}^{r}=\text { dows, } r \geqslant 1 . \\
\operatorname{Gdn}(k)=D(\text { det }) \underset{\text { open }}{c} \mathbb{A}_{k}^{n^{2}} .
\end{aligned}
$$

- Solene X defined arev \#p, have a Froben:ers eudonaphism

$$
\text { Fr: } X \longrightarrow X
$$

In the case of aftine vavieties, fr is givem by the p-th pawer on coovinites.
e.j. $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \longmapsto\left(\begin{array}{ll}a^{p} & b^{p} \\ c^{p} & d^{p}\end{array}\right)$,
on $\operatorname{Mat}_{2 \times 2}(k)=\mathbb{A}_{k}^{\psi}$. (Not elwzys the : dentity wivp!)
Speciel case: als. grup ban. Fr: $G \longrightarrow G$.

- An alsebric repesutition of G is x 抆. grap lonomorphitm

$$
\varphi_{i} G \longrightarrow G L_{n}(k)=G L(v)
$$

cor some f.d. R-vectar space V. This zmounts to 2 gp. homonsorphesu.

$$
\varphi(g)=\left(\tau_{i j}(g)\right)_{i, j=1, \ldots, n} \text { s.t. lovezch }
$$

$z_{i j}: k \longrightarrow k$ is a rejusta auction.
§3. Examples eov $S L_{2}$, Chevolluy's Thum

- Let $G=S l_{2}=\left\{\binom{a b}{c d} \in M_{2 \lambda} \lambda_{2 \times 2}(k)\right.$, ad-bc $\left.=1\right\}$.

Exaples of dyebvric ueps:
(I) $S L_{2} \longrightarrow K L_{1}(k),\binom{a b}{c d} \longmapsto 1$, the trivil rep.
(2) $S L_{2} \longrightarrow G l_{2}(k),\binom{a b}{c d} \longmapsto\binom{a b}{c d}$

He netuod repesuatitia.
(3)

$$
\begin{aligned}
S L_{2} & \longrightarrow K L_{3}(k) \\
\binom{a b}{c d} & \longmapsto\left(\begin{array}{ccc}
a^{2} & a b & b^{2} \\
2 a c & d b b c & 2 b d \\
c^{2} & c d & d^{2}
\end{array}\right)
\end{aligned}
$$

- In eact, (1) ond (3) cones from (2).
let

$$
V=k x \oplus k y=n_{2} t .
$$

Sen $\Lambda^{2}(v)=k(x \wedge y)=\operatorname{det}$ has

$$
\begin{aligned}
\binom{a b}{c d} \cdot(x \wedge y) & =(a x+c y) \wedge(b x+d y) \\
& =(a d-b c)(x \wedge y) \\
& =x \wedge y,
\end{aligned}
$$

so we veconev he trivid vep.

- We dx $s^{2}(v)=k x^{2} \oplus k x y \oplus k y^{2}$ with

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot x^{2}=(a x+c y)^{2}=a^{2} x^{2}+2 a c x y+c^{2} y^{2} \\
& \left(\begin{array}{ll}
2 & b \\
c & d
\end{array}\right) \cdot x y=\cdots \\
& \left(\begin{array}{ll}
2 b \\
c & d
\end{array}\right) \cdot y^{2}=\cdots
\end{aligned}
$$

Calwations slow we never (3).

- More generally, we have

$$
S^{n}(v)=: \nabla_{n}=k x^{n} \oplus k x^{n-1} y \oplus \ldots \oplus k y^{n} . \text { of } \operatorname{dim} n+1 \text {, }
$$

low all $n \geqslant 0$.
Sian (1), (2), (3) the precisely $\nabla_{0}, \nabla_{1}, \nabla_{2}$, respectively

- Let $M=S L_{2}$-mode. By vesturction, M is a module lar the maxing tows

$$
T=\left\{\left(\begin{array}{l}
z \\
0 \\
0 z^{\prime}
\end{array}\right): z \in k\right\} \simeq \mathrm{Cm} .
$$

- key leet: ∇_{n} loss a miracle simple subunodule

$$
L_{n}=\operatorname{soc} \nabla_{n} \stackrel{i}{ } \nabla_{n}
$$

of highest weight n, where coder(i) h_{2} a a composition series by L_{m} love $m<n$.

- If $n!\neq 0$ in k, then $\nabla_{n} \equiv \nabla_{n}{ }^{k}$
(because $S^{n}(V)^{*} \cong S^{n}\left(V^{*}\right)$, (see Brian Conrad notes)) and we con dele than that $\nabla_{n}=\ln$ is simple.

In fact, in chavocteristic zewo,

$$
\{\text { simple Sliz-moluls }\} / \underset{y}{\longleftrightarrow} \stackrel{(*)}{\longleftrightarrow}\left\{\nabla_{n}\right\}_{n \geqslant 0} \text {. }
$$

- Bot incharzcterist:i p, the stong is not so simple (pun intended!).
- Example: $k=\overline{\mathbb{F}_{3}}$. The eollowing Coruntis

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c d
\end{array}\right) \cdot x^{3}=(a x+c y)^{3}=a^{3} x^{3}+c^{3} y^{3} \\
& \left(\begin{array}{ll}
a & b \\
c d
\end{array}\right) \cdot y^{3}=(b x+d y)^{3}=b^{3} x^{3}+d^{3} y^{3}
\end{aligned}
$$

In gect is simple, $L_{3}=k x^{3} \oplus k y^{3}$.

- How did l_{3} zvire? Kinen $S L_{2}$-ap

$$
S L_{2} \xrightarrow{\varphi} G L(M)
$$

consiter the wie comesponding to
$S L_{2} \xrightarrow{\text { Fr }} S_{2} \xrightarrow{\varphi} K L(M)$ we obtrin the hobenios foist $M^{(1)}$
with $\binom{a b}{c d}$ rcting is $\quad \hbar\binom{a b}{c d}=\left(\begin{array}{cc}a^{p} & b^{p} \\ c^{p} & d^{p}\end{array}\right)$.

- chack: $L_{3}=\nabla_{1}^{(1)}=L_{1}^{(1)}$.
- Conect relonulation of (*):

$$
\left\{\operatorname{simple} S L_{2} \text {-modulus }\right\} / \simeq \longleftrightarrow\left\{L_{n} J_{n \geqslant 0}\right.
$$

 then isoclasses of s:mple t-molules se dizsified by an explicit set $X_{+} \subset X$ of domiment weights.

$$
(\mathbb{Z} \geqslant 0 \subset \mathbb{Z})
$$

- Czution: while the paraneter set X_{x} dees not vary with P, the strecture of the $L_{\lambda}, \lambda \in X_{X}$ certzinly bes (as we have seen).
§4. Charaters and Pascal's Δ
- Geevoritising the zbace: if $T \subseteq k$ is a max'l fows, then ang k-moduch M zdmits a decop.

$$
M=\bigoplus_{\lambda \in X}\left(M_{\lambda}-\lambda\right. \text {-weight spzel }
$$

when $M_{\lambda}=\{m \in M 1 \quad$ tm $=\lambda(t) m \quad \forall t \in T\}$.

- De chavater of M is

$$
\operatorname{ch} M=\sum_{\lambda \in X}\left(\operatorname{dim} M_{\lambda}\right) e^{\lambda} \in \mathbb{Z}[X]
$$

- Affer dimension, chzuzctur is the nost basic attribute of M.
- Ch is additine on exact sefeenus 1

$$
\begin{array}{rl}
0 & M \longrightarrow N \longrightarrow P \longrightarrow 0 \\
\leadsto \operatorname{ch}(N) & =\operatorname{ch}(M)+\operatorname{ch}(P) \\
\operatorname{ch}(M \otimes N) & =(\operatorname{ch} M)(\operatorname{ch} N) \text { if we let } e^{\lambda} \cdot e^{\mu}=e^{\lambda+\mu} .
\end{array}
$$

- Exzmple: Reczll $\nabla_{n}=k x^{n} \oplus k x^{n-1} y \oplus \cdots \oplus k y^{n}$.

$$
G=S C_{2}
$$

Then $\left(\begin{array}{cc}x & 0 \\ 0 & z^{-1}\end{array}\right) \cdot x^{i} y^{n-i}=(z x)^{i}\left(z^{-1} y\right)^{n-i}$

$$
\begin{aligned}
& =z^{i} x^{i} z^{i-n} y^{n-i} \\
& =z^{2 i-n} x^{i} y^{n-i}
\end{aligned}
$$

so $x^{i} y^{n-i} \in\left(\nabla_{n}\right)_{2 i-n}$ and herae ne sere that $\nabla_{n} h_{z J}$

1-dimil hon-zeno weight sp>es

$$
\begin{aligned}
& -n,-n+2, \ldots,-n-2, n \in \mathbb{Z} \\
& \text { ii. } \quad \operatorname{ch} \nabla_{n}=e^{-n}+e^{-n+2}+\cdots+e^{n}=\frac{e^{n}-e^{-n-2}}{1-e^{-2}} .
\end{aligned}
$$

- Rese exist zuslogues of the ∇_{n} bov all reductive G, oud ch ∇_{n} is gien by Weyl's character cormita.
- Assonve $p=3$. Te edlowing dep:cts sebomodiles $L_{n} \subseteq \nabla_{n}=k x^{n} \oplus \cdots \oplus R y^{n}$ Car $0 \leq n \leq 6$.

$$
\begin{aligned}
& \text { R } \\
& \text { see picture in atosl. } k x \quad k y \\
& k x^{2} \quad k x y \quad k y^{2} \\
& k x^{3} \\
& k x^{4} \quad k x^{3} y \\
& k x^{3} \quad k x^{4} y \quad k x^{3} y^{2} \\
& k x^{6} \\
& k \\
& R y^{3} \\
& k y^{3} x \quad k y^{4} \\
& k x^{2} y^{3} \quad k x y^{4} \quad k y^{5} \\
& k y^{6}
\end{aligned}
$$

- Than this we can read off the charactirs divectly:

$$
\begin{aligned}
& e^{\circ} \\
& e^{-1} \quad e^{1} \\
& e^{-2} \quad e^{0} \quad e^{2} \\
& e^{-3} \\
& e^{-4} \quad e^{-2} \\
& e^{-5} \quad e^{-3} \quad e^{-1} \\
& e^{-6} \\
& e^{0} \\
& e^{1} \quad e^{3} \quad e^{5}
\end{aligned}
$$

Ris should reczll ouv previous pactive: (Veduction of Pasczl's triagle) $\bmod 3$

- Mis diagran is doteried by veducing nod 3 and coding resitue dzases.
- How does mobutav Pasial's Δ connect to dowarters?
\$5. Frobenius kernels, Steinber Q-Heam
- Motivation: suppose $N \triangle H$ re fuite groups, zud lat us assume:

All simple N-madeles extend to H-madeles (t)

- Cl:fferd: If V is a simple H-noble then $\left.V\right|_{N}$ is semisimple with G - conjugate simple selunemds, all is noophic $($ by $(t))$:

$$
\left.V\right|_{N} \equiv V^{\prime} \oplus \cdots \oplus V^{\prime}
$$

(conjugstion: eov $g \in H, W \rightarrow W^{\text {D }}$ where in W^{9} the zution is

$$
h \cdot w=g h \cdot y^{-1} w
$$

- Tin $\operatorname{Hom}_{N}\left(V^{\prime}, V\right) \otimes V^{\prime} \xrightarrow{\approx} V_{1}$

$$
f \otimes v^{\prime} \longmapsto f\left(v^{\prime}\right)
$$

is x is. of H-modules.

- UpJbt : simple H-madile $\simeq($ simple H / N-motile) θ (simple N-modile)
- Back to dyebvzic group): Asssune techniczl conditions on G : semisimple, simply courected
- Con consider an exat seep.

$$
1 \longrightarrow k_{1} \longrightarrow G \xrightarrow{F r} G \longrightarrow 1
$$

See Jeutren's book.
\xrightarrow{c} Frdencus Revenal = "N". p-restricted

- Curtis: Reve is zu explicit set $X_{1} \subseteq X_{x}$ such that

$$
\left.\{\text { simple G-modiles }\} /\left.\cong \longleftrightarrow L_{2}\right|_{G_{1}}\right\}_{\lambda+x_{1}}
$$

- Reoven [onologee to opstot]: If $\lambda=\mu+v \in X_{t}$ with $\mu \in X_{1}$, $v=p v^{\prime} \in X_{t}$. Nun

$$
\begin{array}{rl}
L_{\lambda} \cong L_{\mu} \oplus L_{\nu^{\prime}} \tag{1}\\
& \text { simple eov } \\
\text { sor } G_{1}=N & G E / G_{1} \\
& ={ }^{\prime \prime} G / N^{\prime \prime}
\end{array}
$$

- In our setting, every $\lambda \in X_{*}$ coubl written (bout of)

$$
\lambda=\lambda_{0}+p \lambda_{1}+\cdots+p^{v} \lambda_{V} \quad, \quad \lambda_{i} \in X_{i}
$$

"expzulion in base pll

- Corolliny [Steinbery]:

$$
L_{\lambda} \cong L_{\lambda_{0}} \otimes L_{\lambda_{1}}^{(1)} \otimes \ldots \& L_{\lambda_{v}}^{(v)}
$$

Eximple: $G=S L_{2}$ has

$$
x=\mathbb{Z} \supseteq x_{x}=\mathbb{Z} \geqslant 0 \supseteq x_{1}=\{0, \ldots, p-1\} .
$$

to (*) is the bixe p expzusion of $\lambda \in \mathbb{Z} \geqslant 0 r \lambda=n=n_{0}+p u_{1}+\cdots+p^{r} n_{r}$, $0 \leq n_{i} \leq p-1$.

- Since $\operatorname{lm}=\nabla_{m}$ lov $0 \leq m \leq p-1$, now hare

$$
\text { ch } \begin{aligned}
L_{n} & =\left(\operatorname{ch} \nabla_{n_{0}}\right)\left(\operatorname{ch} \nabla_{n_{1}}\right)^{(i)} \cdots\left(\operatorname{ch} \nabla_{n_{v}}\right)^{(1)} \\
& =\prod_{i=0}^{v}\left(e^{-n_{i}}+e^{-n_{i}+2}+\cdots+e^{n_{i}-2}+e^{n_{i}}\right)^{(i)}
\end{aligned}
$$

whe

$$
\left(e^{m}\right)^{(i)}=e^{p^{i} m} \text { is extended linezrly. }
$$

- We con ask when $\left(\operatorname{Ln}_{n}\right)_{n-2 j} \neq 0$ i.e. when does $e^{n-2 j}$ opperv in $c h L_{n}$?
- Write $j=j_{0}+j_{1} p+\cdots+j_{r} p^{r}$ in bise p.

It is visitle erom the product (*) that to set $e^{n-z j}$ we need $j_{i} \leq v_{i}$ lar ill $0 \leq i \leq r$.

- Anstlur way of phosesing that : no p-adic cawies wim adding j to u-j.
- Kummer: $V_{p}\binom{n}{j}=$ p-2dic cawizs whan adting j to $n-j$.
- $S_{0}\left(l_{n}\right)_{n-2 j} \neq 0 \Leftrightarrow v_{p}\binom{n}{j}=0$

$$
\Leftrightarrow\binom{n}{j} \neq 0(\bmod p)_{1}
$$

solving the modula Pascal mustery!

- Oher explzaztions possible, using Shapalov corm + Joatzon filturstion.

Books:

J. C. Jantzen. Representations of Algebraic Groups. American Mathematical Society, Providence, RI, 2003.
T. A. Springer. Linear Algebraic Groups, volume 9 of Progress in mathematics. Birkhaüser, 1981.

Online notes:

I. Losese. Lectures on Representation Theory. https://gauss.math. yale.edu/~il282/RT/

Articles:

J. Ciappara and G. Williamson. Lectures on the geometry and modular representation theory of algebraic groups. To appear in Journal of the Australian Mathematical Society, 2020.
G. Williamson. Algebraic representations and constructible sheaves. Japanese Journal of Mathematics, 12(2):211-259, 2017.

