p-Jones-Wenzl projectors

Gaston Burrull (joint with P. Sentinelli and N. Libedinsky)

School of Mathematics and Statistics, The University of Sydney gbur0996@uni.sydney.edu.au

1 The Temperley-Lieb algebra

Let $n \in \mathbb{N}$. The Temperley-Lieb algebra $T L_{n}$ on n strands is the \mathbb{Q}-vector space with basis the set of all non-crossing pairings on a rectangle with n marked points on the top and n marked points on the bottom. It is also a \mathbb{Q}-algebra. The multiplication of two basis elements is understood in the following example.

Example 1.1. In $T L_{8}$, we have the multiplication of the following two basis elements.

If a number of r loops (pieces isomorphic to \mathbb{S}^{1}) are deleted, we put a $(-2)^{r}$ to the diagram without loops. Here $r=1$.

2 Jones-Wenzl projectors

Proposition 2.1 ([Wen87]). There is a unique non-zero idempotent $\mathrm{JW}_{n} \in T L_{n}$, called the JonesWenzl projector on n strands, such that the following recursion follows. Let us define $\mathrm{JW}_{1} \in T L_{1}$ as a single vertical line, and for $n>2$ we have

$$
\frac{|\cdots|}{\left|\mathrm{JW}_{n}\right|}=\frac{|\cdots|}{\left|\cdots W_{n-1}\right|}\left|+\frac{n-1}{n}\right| \frac{|\cdots| \mid}{|\cdots|}\left|\frac{|\cdots|}{\left|\cdots W_{n-1}\right|}\right|
$$

Example 2.2. Let us compute the first three Jones-Wenzl projectors in terms of the \mathbb{Q}-basis

Then JW_{2} represents the vector $(1,1 / 2)$ in \mathbb{Q}^{2}, and JW_{3} represents the vector $(1,2 / 3,2 / 3,1 / 3,1 / 3)$ in \mathbb{Q}^{5}.

Question 2.3. Is it possible to imitate this definition of JW_{n} in such a way the respective vectors in \mathbb{Q}^{N} are defined over the field \mathbb{F}_{p} for p prime? (Note JW_{3} above is not defined over \mathbb{F}_{3}, since 3 is not invertible in \mathbb{F}_{3}.)

Answer. Yes. We can use the p-adic expansion of n.

$3 p$-Fathers, p-Adams, and p-supports

Let n be a fixed natural number and p a prime. If $n+1=\sum_{i=m}^{r} a_{i} p^{i}$ is the p-adic expansion of $n+1$ with $a_{m} \neq 0$, then the p-father $f_{p}[n]$ (or just $f[n]$) of n is defined as $-1+\sum_{i=m+1}^{r} a_{i} p^{i}$. We denote $f[n] \succ n$. If $n+1=j p^{i}$ for some $0<j<p$ and some $i \in \mathbb{N}$, we say that n is a p-Adam (because it has no father).
The relation \succ extends to a partial order $>_{p}$ on \mathbb{N} with p-Adams as maximal elements. We define the p-support of n as the set $I_{n}=\left\{a_{i} p^{i} \pm a_{i-1} p^{i-1} \pm \cdots \pm a_{1} p \pm a_{0}-1\right\}$.
Example 3.1. • For $p=2$. We can compute $f[6]$. Since $6+1=4+2+1$, then $f[6]=(4+2)-1=5$.
In a similar way, $f[5]=3$, and 3 is a 2-Adam (and also the grandfather of 6). Therefore,
$3 \succ 5 \succ 6$. The supports are: $I_{6}=\{0,2,4,6\}, I_{5}=\{1,5\}$, and $I_{3}=\{3\}$.

- For $p=3$. We can compute $f[13]$. Since $13+1=9+3+2$, then $f[13]=(9+3)-1=11$. In a similar way, $f[11]=8$, and 8 is a 3 -Adam. Therefore, $8 \succ 11 \succ 13$. The supports are: $I_{13}=\{3,7,9,13\}, I_{11}=\{5,11\}$, and $I_{8}=\{8\}$.

4 Recursive definition of the p-Jones-Wenzl projectors

We fix a prime number p. The rational p-Jones-Wenzl idempotent on n strands $p_{\mathrm{JW}}^{n}{ }_{n}^{\mathbb{Q}}$ will be defined using induction on n with respect to $<_{p}$. Let us write it down in the form

with $\lambda_{n}^{i} \in \mathbb{Q}, p_{n}$ a crossingless matching from n points to i points, and $\overline{p_{n}}$ the symmetric of p_{n}.

If n is a p-Adam, we define

$$
\frac{|\cdots|}{\frac{{ }^{p} \mathrm{JW}_{n}^{\mathrm{Q}}}{|\cdots|}}: \left.=\frac{|\cdots|}{|\cdots|} \right\rvert\,
$$

or to be more precise, as $I_{n}=\{n\}$, we define $\lambda_{n}^{n}=1$ and $p_{n}^{n}=1_{n} \in T L_{n}$
If n is not a p-Adam, we set $m:=n-f[n]$. As $I_{n}=\left(I_{f[n]}-m\right) \sqcup\left(I_{f[n]}+m\right)$, for each $i \in I_{f[n]}$ we define

$$
\lambda_{n}^{i-m}=(-1)^{m} \cdot \frac{i+1-m}{i+1} \lambda_{f[n]}^{i}, \quad \lambda_{n}^{i+m}=\lambda_{f[n]}^{i}, \quad \text { and }
$$

\qquad

and \qquad $=$

With this we finish the definition of ${ }^{p} \mathrm{JW}_{n}^{\mathbb{Q}}$.
Theorem 4.1 (Main theorem [BLS19]). For all $n \in \mathbb{N}$, the morphism ${ }^{p} \mathrm{JW}_{n}^{\mathbb{Q}} \in T L_{n}$ is idempotent. Furthermore, if we express ${ }^{p} \mathrm{JW}_{n}^{\mathbb{Q}}$ in the \mathbb{Q}-basis of crossingless matchings, and write each of its coefficients as an irreducible fraction a / b, then p does not divide b.

Definition 4.2 (Main definition [BLS19]). We define the p-Jones-Wenzl projector on n-strands ${ }^{p} \mathrm{JW}_{n} \in T L_{n}\left(\mathbb{F}_{p}\right)$ as the expansion of ${ }^{p} \mathrm{JW}_{n}^{\mathbb{Q}} \in T L_{n}$ in the \mathbb{Q}-basis of crossingless matchings but replacing each of the coefficients a / b (expressed as irreducible fractions) by $\bar{a} \cdot(\bar{b})^{-1} \in \mathbb{F}_{p}$, where the bar means reduction modulo p.

Example 4.3. Let us compute ${ }^{2} \mathrm{JW}_{10}^{\mathbb{Q}}$. We first note that $f_{2}[10]=9, f_{2}[9]=7$ and 7 is a 2-Adam We have,

5 Relation to the 3-canonical basis for \tilde{A}_{1}

Consider the Coxeter system \tilde{A}_{1} with $S=\{s, t\}$. Let \mathbf{H} be the Hecke algebra with canonical basis $\left\{b_{w}\right\}$. Let \mathcal{H} be the diagrammatic Hecke category. Let $\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ be a reduced expression of w and r a simple reflection. Then $b_{w} b_{r}=b_{w r}+b_{w s_{k}}$, if $k>1$ and $r=s_{k-1}$, this is the Dyer's relation. This equation is lifted by the recursion in section 2, using the functor of Ben Elias [Eli16] which maps the Jones-Wenzl projectors into idempotents of \mathcal{H}. A visualisation of the functor is

On the other hand. As is shown in [JW17] the $\tilde{A}_{1} p$-canonical basis can be expressed in terms of the canonical basis in the following way:

$$
{ }^{p} b_{\underline{n+1}}=\sum_{i \in-1+I_{n}} b_{\underline{i}},
$$

where \underline{n} is the unique element w of length n such that $s w<w$. For $p=3$, this relation can be visualised as a "fractal" relation.

To read this picture, for example, in the row labeled by 12 , it means ${ }^{3} b_{\underline{13}}=b_{\underline{3}}+b_{\underline{7}}+b_{\underline{9}}+b_{\underline{13}}$. Note that we computed before $I_{13}=\{3,7,9,13\}$.
Our recursion defined in the previous section lifts this relation for the 3 -canonical basis in terms of the canonical basis in the same way the recursion in section 2 lifts the Dyer's relation.

References

[BLS19] Gaston Burrull, Nicolas Libedinsky, and Paolo Sentinelli. p-Jones-Wenzl idempotents. Adv. Math., 352:246-264, 2019.
[Eli16] Ben Elias. The two-color Soergel calculus. Compositio Mathematica, 152(2):327-398, 2016.
[JW17] Lars Thorge Jensen and Geordie Williamson. The p-canonical basis for Hecke algebras. Categorification and Higher Representation Theory, Contemp. Math, 683:333-361, 2017.
[Wen87] Hans Wenzl. On sequences of projections. C. R. Math. Rep. Acad. Sci. Canada, 9(1):59, 1987.

