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Abstract

In this paper we define generalised spheres in buildings using the simplicial structure and
Weyl distance in the building, and we derive an explicit formula for the cardinality of these
spheres. We prove a generalised notion of distance regularity in buildings, and develop a
combinatorial formula for the cardinalities of intersections of generalised spheres. Motivated
by the classical study of algebras associated to distance regular graphs we investigate the
algebras and modules of Hecke operators arising from our generalised distance regularity, and
prove isomorphisms between these algebras and more well known parabolic Hecke algebras.
We conclude with applications of our main results to non-negativity of structure constants
in parabolic Hecke algebras, commutativity of algebras of Hecke operators, double coset
combinatorics in groups with BN -pairs, and random walks on the simplices of buildings.

Introduction

Buildings are combinatorial/geometric objects with diverse applications in Lie theory and related
fields. Spheres and intersections of spheres in buildings (primarily of spherical and affine types)
have been studied due to their connections with combinatorial representation theory [21, 12],
harmonic analysis on groups of p-adic type [17, 10, 22], incidence structures related to groups
of Lie type [8], random walk theory [23], association schemes [8], and number theory [27, 29].

In this paper we define generalised spheres in buildings of arbitrary type using the simplicial
structure and Weyl distance in the building. We investigate the combinatorics of these spheres,
the algebraic structures related to them, and provide applications of our results, including the
non-negativity of structure constants in parabolic Hecke algebras, combinatorics of double coset
decompositions in groups with BN -pairs, and limit theorems for random walks on buildings.

A main motivation for this paper is to facilitate the study of Hecke algebras related to
buildings beyond the spherical and affine cases. Our methodology stems from the theory of
distance regular graphs, and so we begin by briefly recalling this theory (see [8]). Let Γ =
(V,E) be a locally finite graph with graph metric d(·, ·), and for each x ∈ V and k ∈ N let
Fk(x) = {y ∈ V | d(x, y) = k} be the sphere of radius k centred at x. The graph Γ is
distance regular if the intersection cardinality |Fk(x) ∩ F`(y)| depends only on k, ` and d(x, y).
In other words, there are integers amk,`, called the intersection numbers of the graph, such that

amk,` = |Fk(x)∩F`(y)| whenever d(x, y) = m. In particular, the cardinality |Fk(x)| = a0k,k does not
depend on x ∈ V . The infinite distance regular graphs are completely classified [14]. In contrast
there is no complete classification of finite distance regular graphs, although many partial results
exist, for example there are precisely 13 finite cubic distance regular graphs (see [4]).
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A primary tool in the study of finite distance regular graphs is the Bose-Mesner algebra of the
graph. As a C-vector space, this algebra is the linear span A of the matrices {Ak | k = 0, 1 . . . , d}
where d is the diameter of Γ and Ak is the k-adjacency matrix of the graph (with (x, y)-th entry 1
if d(x, y) = k and 0 otherwise). The distance regular property is equivalent to the fact that the
matrices Ak satisfy linear relations

AkA` =
d∑

m=0

amk,`Am for all k, ` ∈ {0, 1, . . . , d}. (0.1)

It follows that A is a C-algebra, and since amk,` = am`,k this algebra is commutative.
Let us now return to the setting of the current paper. Let (W,S) be a Coxeter system, and

let X be a locally finite, regular building of type (W,S) with chamber set C and Weyl distance
function δ : C × C → W . The building X is a labelled simplicial complex, and so each simplex
A ∈ X has a type τ(A) ⊆ S. The cotype of A ∈ X is S\τ(A), and for each I ⊆ S we write XI

for the set of all cotype I simplices of X. For example, a vertex of X has cotype S\{s} for some
s ∈ S, and a chamber of X has cotype ∅.

The Weyl distance function may be extended to arbitrary simplices of X, and if A ∈ XI and
B ∈ XJ we have δ(A,B) ∈ R(I, J) where R(I, J) is the transversal of minimal length (WI ,WJ)
double coset representatives (here WI and WJ are standard parabolic subgroups of W ). For
A ∈ XI and w ∈ R(I, J) the generalised sphere of “radius” (J,w) centred at A is by definition

F (A, J,w) = {B ∈ XJ | δ(A,B) = w}.

If the parabolic subgroup WI is infinite then the cardinality of the sphere F (A, J,w) is often
infinite (even in the case of a thin building; that is, a Coxeter complex), and thus we confine
our attention to the case that WI is finite, in which case I is called a spherical subset of S.

The main results of this paper are as follows.

(1) In Theorem 2.1 we prove a new theorem which determines |F (A, J,w)| in the most general
situation. Only very special cases were treated before (see [10, Proposition 2.7], [21,
Theorem 5.15], [29, Proposition 3.9]), often with considerable effort. Our approach, making
use of projections in buildings, is efficient and yields a much more general result.

(2) Having deduced the most general formula for the numbers |F (A, J,w)|, we turn our atten-
tion to the considerably more complicated intersection numbers |F (A, J, u) ∩ F (B, J, v)|.
In order to prove a formula for these numbers we introduce the new idea of pointed pre-
galleries in the Coxeter complex, a model which is inspired by (although distinct from)
the alcove walk model developed by Ram [26] and Parkinson, Ram, Schwer [24] for the
study of affine Hecke algebras and affine flag varieties. Our formula for the intersection
cardinalities is given in Theorem 3.7, and explicit computations using this formula are
given in Examples 3.8 and 3.9.

(3) In Section 4 we define generalised Hecke operators on buildings and investigate the Hecke
algebras A (I, I) and modules A (I, J) spanned by these operators. These algebras and
modules are the natural analogues of the Bose-Mesner algebra of a distance regular graph.
In Theorem 4.9 we prove that our Hecke algebras A (I, I) are isomorphic to the parabolic
Hecke algebras 1IH 1I introduced in [11], and that our modules A (I, J) are both left
and right modules for parabolic Hecke algebras. Our combinatorial interpretation of the
structure constants in these parabolic Hecke algebras yields new insights, for example the
positivity result given in Corollary 5.1.
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The interpretation of the structure constants in “non-parabolic” Hecke algebras in terms
of buildings was made in [21] (this is the case I = J = ∅ above), and association scheme
theoretic interpretations of the structure constants have been developed by Zieschang [33]. In
the spherical case implicit connections between Hecke algebras and buildings via finite groups
with BN -pairs are given by Iwahori [15], Matsumoto [19], Curtis, Iwahori, and Kilmoyer [11].
Moreover, Brouwer, Cohen and Neumaier [8, Chapter 10], Brouwer and Cohen [7], and Gomi [13]
compute structure constants in some spherical cases. In the present paper our point of view
is as general as possible. We consider buildings of arbitrary type, with the only assumptions
being local finiteness and a very mild regularity hypothesis (which is automatically satisfied in
the 2-spherical case). In this generality such buildings may not admit an “interesting” group
action, but of course our results also cover the highly symmetric cases including locally finite
affine buildings and buildings arising from Kac-Moody groups over finite fields. Also in these
cases our formulae for |F (A, J,w)| and |F (A, J, u) ∩ F (B, J, v)|, and the interpretation of the
parabolic Hecke algebras are new.

Other motivations for our investigations include the applications presented in Section 5. In
particular we prove a non-negativity result for the structure constants in parabolic Hecke alge-
bras, and classify the algebras of Hecke operators on regular buildings which are commutative.
We also obtain combinatorial formulae for double coset cardinalities in groups with BN -pairs,
and outline how our algebras generalise the theory of Gelfand pairs associated to buildings.
Finally we prove a local limit theorem for a random walk on the simplices of an Ã2 building.

1 Background and definitions

1.1 Coxeter groups and complexes

A Coxeter system (W,S) is a group W together with a generating set S with defining relations

s2 = 1 and (st)mst = 1 for all s, t ∈ S with s 6= t,

where mst = mts ∈ Z≥2 ∪ {∞} for all s 6= t (if mst = ∞ then it is understood that there is no
relation between s and t). We shall always assume in this paper that the rank of (W,S), defined
as |S|, is finite.

The length of w ∈W is

`(w) = min{n ≥ 0 | w = s1 · · · sn with s1, . . . , sn ∈ S}.

We say that a decomposition w = s1 · · · sn with s1, . . . , sn ∈ S is reduced if n = `(w). The
Bruhat order on W can be defined as follows: For u,w ∈ W, u < w if and only if a reduced
decomposition of u can be obtained by deleting some of the si in a reduced decomposition
w = s1 · · · sn of w (so that in particular `(u) < `(w)).

A standard subgroup of W is by definition a subgroup of the form WI = 〈{s | s ∈ I}〉 with
I a subset of S. Such a subset I is called spherical if WI is finite. To every Coxeter system
(W,S) one associates the Coxeter complex Σ(W,S), see [2, Section 3.1]. Thus Σ(W,S) is a
thin chamber complex, its chambers are identified with the elements of W , its simplices with
standard cosets wWI , and wWI is a face of uWJ if and only if uWJ ⊆ wWI (for u,w ∈ W and
I, J ⊆ S). The type of a simplex wWI in Σ(W,S) is by definition S\I and its cotype is I.

1.2 Double cosets and reduced elements

Let (W,S) be a Coxeter system. The following facts about cosets and double cosets in W are
well-known, see for instance [2, Subsection 2.3.2]:
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(a) If J ⊆ S and w ∈W then the coset wWJ has a unique minimal length representative w1,
and `(w1y) = `(w1) + `(y) for all y ∈WJ .

(b) If I, J ⊆ S and w ∈ W then the double coset WIwWJ has a unique minimal length
representative. This representative is called (I, J)-reduced, and we let

R(I, J) = {w ∈W | w is (I, J)-reduced}.

Note that R(I, J) indexes the decomposition of W into WIwWJ double cosets.

(c) In general it is not true that `(xwy) = `(x) + `(w) + `(y) for all x ∈ WI , y ∈ WJ and
w ∈ R(I, J). In order to address this issue, we introduce the following notation, where I
and J are subsets of S and w ∈ R(I, J):

WI(J,w) = WI ∩ wWJw
−1

MI(J,w) = the set of all minimal length representatives of cosets in WI/WI(J,w).

Note that WI(J,w) = {v ∈ WI | vwWJ = wWJ} is the subgroup of WI stabilising wWJ ,
and by [2, Lemma 2.25] we have that

WI(J,w) = WI∩wJw−1 . (1.1)

Thus applying point (a) it follows that each v ∈WI can be uniquely expressed in the form

v = xz with x ∈MI(J,w), z ∈WI(J,w), and that `(v) = `(xz) = `(x) + `(z). (1.2)

We now obtain an analogous result for double cosets.

Lemma 1.1. Let I and J be subsets of S and let w ∈ R(I, J). Then each v ∈ WIwWJ can be
written in exactly one way as

v = xwz with x ∈MI(J,w) and z ∈WJ .

Moreover, if x ∈MI(J,w), w ∈ R(I, J), and z ∈WJ then `(xwz) = `(x) + `(w) + `(z).

Proof. It follows immediately from WI = MI(J,w)WI(J,w) and WI(J,w) = WI ∩ wWJw
−1

that WIwWJ = MI(J,w)wWJ . If x, x′ ∈ MI(J,w) and y, y′ ∈ WJ , then xwy = x′wy′ implies
x−1x′ = wyy′−1w−1 ∈ WI(J,w), and so x′ = x is the unique minimal length representative of
xWI(J,w), which then also implies y′ = y. Finally, assume that `(xwz) < `(x) + `(w) + `(z).
Using the deletion condition, we find x′ ∈ WI , y

′ ∈ WJ with x′ < x, y′ < y and x′wy′ = xwy
(see [2, Lemma 2.24]). However, as before xwy = x′wy′ implies xWI(J,w) = x′WI(J,w),
contradicting the minimality of x in xWI(J,w).

1.3 Buildings

We assume that the reader is already acquainted with the theory of buildings, and our main
reference for this subject is [2, Chapters 4 and 5]. In this paper, buildings will mainly be
considered as chamber (and hence as simplicial) complexes but the associated Weyl distance
will also play an important role.

In the following, X will always denote a building and C its set of chambers. The apartments
of X are all isomorphic to the standard Coxeter complex Σ(W,S) for a Coxeter system (W,S)
which is determined, up to isomorphism, by X. We then say that X is of type (W,S) and
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of rank |S|. If we fix an apartment A of X and an isomorphism f : Σ(W,S) → A, the type
τ(A) of a simplex A of A is by definition the type of f−1(A). There is then a unique extension
τ : X → {I | I ⊆ S} such that τ(A) ⊆ τ(B) whenever A is a face of B and τ(B) = S if and only
if B is a chamber of X. We fix such a type function on X and define the cotype of a simplex
A ∈ X to be S\τ(A). We set

XI = {A ∈ X | A is of cotype I}.

For c ∈ C and I ⊆ S the unique element of XI which is a face of c is denoted by cI . For A ∈ X
let

C(A) = {c ∈ C | A is a face of c},

and for any subset M ⊂ X we write C(M) =
⋃
A∈M C(A). If A ∈ XI then C(A) = {c ∈ C | cI =

A}. Panels of X are codimension 1 simplices; an s-panel is one of cotype {s} for s ∈ S. The
building X is called thick if each panel is contained in at least 3 chambers.

A pregallery in X of length n ∈ N0 is a sequence

γ = (c0, s1, c1, s2, c2, s3, . . . , sn, cn)

where s1, . . . , sn ∈ S and c0, c1, . . . , cn ∈ C and, for each j = 1, . . . , n, either cj−1 = cj or cj−1∩cj
is an sj-panel. The type of the pregallery γ = (c0, s1, c1, s2, . . . , sn, cn) is (s1, . . . , sn). The type
is called reduced if w = s1 · · · sn ∈ W satisfies `(w) = n. The chamber c0 is called the start of
γ, and the chamber cn is called the end of γ, written end(γ) = cn.

A gallery of type (s1, . . . , sn) is a pregallery γ = (c0, s1, c1, s2, . . . , sn, cn) such that cj−1 6= cj
for all j = 1, . . . , n. Note that the type of the gallery γ is already determined by the sequence
(c0, c1 . . . , cn), although this is not true for pregalleries. For c, d ∈ C the gallery distance dist(c, d)
is the minimal length of galleries starting in c and ending in d.

For any two chambers c, d ∈ C there exists an element w ∈ W with the following property:
There exists a gallery γ of reduced type (s1, . . . , sn) which starts in c and ends in d if and only
if s1 · · · sn = w. We set δ(c, d) = w for this element w, thus obtaining a Weyl distance function
δ : C × C →W . For the basic properties of δ we refer to [2, Section 4.8]. We mention in passing
that dist(c, d) = `(δ(c, d)). For A ∈ XI and B ∈ XJ (with I, J ⊆ S) we have

δ(C(A)× C(B)) = WIwWJ

whenever w = δ(c, d) for fixed chambers c ∈ C(A) and d ∈ C(B). This allows us to extend the
Weyl distance to arbitrary simplices of X by setting (for A ∈ XI and B ∈ XJ):

δ(A,B) = the unique (I, J)-reduced element of δ(C(A)× C(B)). (1.3)

1.4 Retractions and projections

We now briefly recall two fundamental concepts of building theory which we will apply later.
First, for a fixed apartment A of X and a fixed chamber a of A, there is the retraction ρA,a of X
onto A centred at a. It is the type-preserving simplicial map from X to A with the property that
for every apartment A′ containing a the restriction of ρA,a to A′ is the unique type-preserving
isomorphism of A′ onto A fixing a. From this one readily deduces the following facts:

(R1) For all c ∈ C we have δ(a, c) = δ(a, ρA,a(c)).
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(R2) If γ = (c0, . . . , cn) is a gallery of type (s1, . . . , sn) in X, then the image

ρA,a(γ) = (ρA,a(c0), s1, . . . , sn, ρA,a(cn))

is a pregallery of the same type in A.

We now turn to projections. All of the properties relevant for us can be found in [2, Sec-
tion 4.9]. For any simplex A ∈ X and any chamber c ∈ C, there is a unique chamber in C(A),
called the projection of c onto A and denoted by projA(c), such that dist(projA(c), c) < dist(d, c)
for all d ∈ C(A)\{projA(c)}. For any two simplices A,B ∈ X, there is a unique simplex con-
taining A, called the projection projA(B) of B onto A, such that {projA(c) | c ∈ C(B)} =
C(projA(B)). We shall use the following properties of projections:

(P1) If A ∈ XI , B ∈ XJ and w = δ(A,B), then projA(B) has cotype I ∩wJw−1. Furthermore,

{c ∈ C(A) | there exists d ∈ C(B) such that δ(c, d) = w} = C(projA(B)).

(P2) There exist bijections (induced by projection maps) between C(projA(B)) and C(projB(A)).

1.5 Generalised spheres in regular buildings

Spheres (and balls) in buildings can be defined using the gallery distance. In this paper we
study the refinement of this notion by considering spheres defined using the Weyl distance. For
a building X of type (W,S), c ∈ C and w ∈W , let

Cw(c) = {d ∈ C | δ(c, d) = w}.

And for I, J ⊆ S,A ∈ XI and w ∈ R(I, J), we define

F (A, J,w) = {B ∈ XJ | δ(A,B) = w}.

That is what we mean by a generalised sphere. Note that for c ∈ C and w ∈W = R(∅, ∅) we have
F (c, ∅, w) = Cw(c). It is one of the purposes of the present paper to compute the cardinalities
|F (A, J,w)| for regular, locally finite buildings and spherical cotype I (if I is not spherical then
the cardinality |F (A, J,w)| is often infinite).

A building X is called regular if there is a bijection between C(π) and C(π′) whenever π and
π′ are panels of the same cotype. If X is thick and mst <∞ for all s, t ∈ S then X is necessarily
regular (see for example, [21, Theorem 2.4]). If each panel is contained in only finitely many
chambers then we call X locally finite. For the remainder of this paper we assume that X is a
regular, locally finite building of type (W,S).

For each s ∈ S we set

qs + 1 = |C(πs)| for any s-panel πs.

The parameters of X are the integers (qs)s∈S . Note that qs = |Cs(c)| for any c ∈ C. Induction
on `(w) shows that if w ∈W has a reduced decomposition w = s1 · · · s`, then

|Cw(c)| = qs1 · · · qs` , (1.4)

see [21, Proposition 2.1]. In particular, the number qw = qs1 · · · qs` = |Cw(c)| (with the convention
that q1 = 1) does not depend on the choice of the chamber c ∈ C or the reduced expression
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for w. Therefore quv = quqv whenever `(uv) = `(u) + `(v). It also follows that qs = qt whenever
the order of st in W is finite and odd (but we will not explicitly use this here).

If A ∈ XI and c ∈ C(A) then

C(A) =
⊔

w∈WI

Cw(c).

Thus if I is spherical and A ∈ XI then the cardinality N(I) := |C(A)| is finite and does not
depend on A ∈ XI , since

N(I) = |C(A)| =
∑
w∈WI

qw. (1.5)

If I, J ⊆ S with I spherical, A ∈ XI , B ∈ XJ and w = δ(A,B) then properties (P1) and
(P2) in Section 1.4 imply that

N(I ∩ wJw−1) = N(J ∩ w−1Iw). (1.6)

2 Counting simplices at given Weyl distance

In the following theorem we give our explicit formula for the cardinality of generalised spheres
in a regular building.

Theorem 2.1. Let I be a spherical subset of S, J a subset of S, and suppose that A ∈ XI . If
w ∈ R(I, J) then

|F (A, J,w)| = N(I)

N(I ∩ wJw−1)
qw,

where N(K), for K spherical, is given by (1.5).

Proof. Let c ∈ C(A) and d ∈ Cw(c). Then dJ ∈ F (A, J,w). If c′ ∈ C(A) with c′ 6= c then
Cw(c)∩Cw(c′) = ∅, for if d ∈ Cw(c) and δ(c′, c) = wI ∈WI then δ(c′, d) = wIw (since w ∈ R(I, J)).
Hence if d ∈ Cw(c) then d /∈ Cw(c′).

The above observations show that there is a well defined map

f :
⊔

c∈C(A)

Cw(c)→ F (A, J,w), given by f(d) = dJ .

By (1.4) and (1.5) the domain of f has cardinality N(I)qw. We now compute the cardinalities
of the fibres of f . For B ∈ F (A, J,w) we have

f−1(B) = {d ∈ C(B) | there exists c ∈ C(A) such that δ(c, d) = w},

and by (P1) in Section 1.4 it follows that

f−1(B) = {d ∈ C(B) | projB(A) ⊆ d} = C(projB(A)).

The cotype of the simplex projB(A) is J ∩w−1Iw (see (P1) in Section 1.4), and thus by (1.5) we
have |f−1(B)| = N(J ∩ w−1Iw) ≥ 1. This shows firstly that f is surjective, and secondly that

|F (A, J,w)| = N(I)qw
N(J ∩ w−1Iw)

.

The claim now follows since N(J ∩ w−1Iw) = N(I ∩ wJw−1) by (1.6).
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Remark 2.2. We make the following remarks.

(a) In the case of special vertices of a fixed type in an affine building, our formula in Theo-
rem 2.1 recovers [10, Proposition 2.7] (in the case of Ãn buildings) and [21, Theorem 5.15]
(for general affine buildings).

(b) We outline a representation theoretic proof of Theorem 2.1 in Remark 4.7. An advantage of
the building theoretic proof presented above is that a combinatorial significance is attached
to the denominator N(I ∩ wJw−1) in the formula.

(c) We note that for all finite Coxeter groups WI there is an explicit closed formula for the
polynomial N(I) (this polynomial is often called the Poincaré polynomial of WI). See, for
example [18]. Thus the formula in Theorem 2.1 can be made completely explicit.

The gallery distance between simplices A and B is dist(A,B) = `(δ(A,B)). The following
elementary corollary gives formulae for the cardinalities of spheres with respect to this numerical
distance.

Corollary 2.3. If I is a spherical subset of S, J is a subset of S, and A ∈ XI , then

|{B ∈ XJ | dist(A,B) = n} =
∑

{w∈R(I,J)|`(w)=n}

N(I)

N(I ∩ wJw−1)
qw. (2.1)

In particular, if A ∈ XI is a vertex of spherical cotype I = S\{s}, and if B is a vertex of X
with dist(A,B) = 1, then B is a vertex of cotype I and

|{B ∈ XI | dist(A,B) = 1}| = N(I)qs
N(I ∩ sIs)

=
N(I)qs

N({t ∈ I | st = ts})
. (2.2)

Proof. Equation (2.1) follows immediately from Theorem 2.1. For equation (2.2), note that if
A ∈ XI is a vertex of cotype I = S\{s} and if B ∈ XJ is a vertex of cotype J = S\{s′}
with dist(A,B) = 1 then δ(A,B) = t for some t ∈ S with t ∈ R(I, J). Thus t /∈ I ∪ J ,
and hence I = J and t = s. Thus B is a vertex of cotype I, and if I is spherical then
equation (2.1) gives |{B ∈ XI | dist(A,B) = 1}| = N(I)qs/N(I ∩ sIs). It is elementary that
I ∩ sIs = {t ∈ I | st = ts}, hence (2.2).

In the literature [27, 29] computing the cardinality of the sphere of vertices at numerical
distance 1 from a given vertex has been an issue even for classical affine buildings of types Ãn
and C̃n over local fields. Corollary 2.3, and in particular (2.2), gives a very general and explicit
solution to this problem.

Example 2.4. Let X be an affine building of type Ãn with thickness q. By (2.2) the number
of vertices at numerical distance 1 from a given vertex of cotype I = S\{s} is

N(I)

N(I ∩ sIs)
q =

|An(q)|
|An−2(q)|

q =
(qn+1 − 1)(qn − 1)

(q − 1)2
q, (2.3)

where we use the elementary formula for the number of chambers of an An building An(q)
with thickness q (or, alternatively, the well known closed form for the Poincaré polynomial).
The formula (2.3) was conjectured by Schwartz and Shemanske in [27], and proven by Setyadi
in [29].
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Example 2.5. Let X be an affine building of type C̃n, and assume that qs = q for all s ∈ S.

(a) Suppose first that s ∈ S is a special type (that is, s is an end node of the Coxeter diagram).
Then by (2.2) the number of vertices at numerical distance 1 from a given cotype I = S\{s}
vertex is

N(I)

N(I ∩ sIs)
q =

|Cn(q)|
|Cn−1(q)|

q =
q2n − 1

q − 1
q,

where we use elementary and well known formulae for the number of chambers of a Cn(q)
building with thickness q. This recovers [29, Proposition 3.9].

(b) Suppose now that s ∈ S is not a special type. If s is at length k from an end of the Coxeter
diagram, then WI = Ck×Cn−k and WI∩sIs = Ck−1×Cn−k−1, and hence the number of vertices
at numerical distance 1 from a given vertex of cotype I = S\{s} is

N(I)

N(I ∩ sIs)
q =

|Ck(q)| × |Cn−k(q)|
|Ck−1(q)| × |Cn−k−1(q)|

q =
(q2k − 1)(q2(n−k) − 1)

(q − 1)2
q.

3 Intersection numbers in regular buildings

Let Γ = (V,E) be a locally finite graph, and for k ∈ N let Fk(x) = {y ∈ V | d(x, y) = k} be
the sphere of radius k centred at x ∈ V . As recalled in the introduction, the graph Γ is distance
regular if for all k, ` ∈ N we have |Fk(x)∩F`(y)| = |Fk(x′)∩F`(y′)| whenever d(x, y) = d(x′, y′).
In other words, there are numbers amk,` ∈ N such that

amk,` = |Fk(x) ∩ F`(y)| whenever y ∈ Fm(x).

Distance regular graphs have been extensively studied, and have a rich algebraic theory centring
around the intersection numbers amk,` (see for example [8]).

In this section we prove a generalised notion of distance regularity for regular buildings
using the Weyl distance between simplices. We also develop a combinatorial formula for the
corresponding intersection numbers. Consider first the simplest case, where the simplices are
chambers. By [21, Proposition 3.9] there are numbers cwu,v ∈ N (u, v, w ∈W ) such that

cwu,v = |Cu(a) ∩ Cv(b)| whenever a, b ∈ C with b ∈ Cw(c). (3.1)

We now extend this chamber distance regularity to a general distance regularity result for regular
buildings.

Theorem 3.1. Let I, J,K be spherical subsets of S, and suppose that u ∈ R(I, J), v ∈ R(K,J),
and w ∈ R(I,K). There are numbers cwu,v(I, J,K) ∈ N such that

cwu,v(I, J,K) = |F (A, J, u) ∩ F (B, J, v)| whenever A ∈ XI and B ∈ F (A,K,w).

Moreover, for any z ∈WIwWK we have

cwu,v(I, J,K) =
1

N(J)

∑
x∈WIuWJ
y∈WKvWJ

czx,y. (3.2)

where the numbers czx,y ∈ N are from (3.1).
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Proof. Let A ∈ XI and B ∈ F (A,K,w), and let a, b be any chambers with a ∈ C(A) and
b ∈ C(B) and set z = δ(a, b). We claim that

C(F (A, J, u) ∩ F (B, J, v)) =
⊔

x∈WIuWJ
y∈WKvWJ

Cx(a) ∩ Cy(b).

For if d ∈ C(F (A, J, u) ∩ F (B, J, v)) then D = dJ ∈ F (A, J, u) ∩ F (B, J, v) and so δ(A,D) = u
and δ(B,D) = v. Thus δ(a, d) ∈WIuWJ and δ(b, d) ∈WKvWJ . Conversely, if d ∈ Cx(a)∩Cy(b)
with x ∈ WIuWJ and y ∈ WKvWJ and D = dJ then δ(A,D) = u and δ(B,D) = v. Thus
D ∈ F (A, J, u) ∩ F (B, J, v), and so d ∈ C(D) ⊆ C(F (A, J, u) ∩ F (B, J, v)).

Hence, by (3.1), we have

|C(F (A, J, u) ∩ F (B, J, v))| =
∑

x∈WIuWJ
y∈WKvWJ

czx,y.

Since each J-simplex of F (A, J, u) ∩ F (B, J, v) is contained in precisely N(J) chambers of
C(F (A, J, u)∩F (B, J, v)) formula (3.2) holds. Thus |C(F (A, J, u)∩F (B, J, v))| depends only on
u, v and w (for we could choose a ∈ C(A) and b ∈ C(B) with δ(a, b) = w).

Remark 3.2. If I, J,K are spherical and if u ∈ R(I, J), v ∈ R(K,J), and w ∈ R(I,K) then
cwu,v(I, J,K) = 0 if `(w) > `(u)+`(v)+`(wJ), where wJ ∈WJ is the longest element ofWJ . To see
this, note that if A ∈ XI and B ∈ XK with δ(A,B) = w, and if D ∈ F (A, J, u)∩F (B, J, v), then
there are chambers a ∈ C(A), d1, d2 ∈ C(D), and b ∈ C(B) with δ(a, d1) = u and δ(d2, b) = v−1.
Thus `(w) = `(δ(A,B)) ≤ `(u) + `(δ(d1, d2)) + `(v−1) ≤ `(u) + `(v) + `(wJ).

The numbers cwu,v(I, J,K) are called intersection numbers. The following refined formula for
the intersection numbers will be used for our combinatorial formula in Theorem 3.7. It appears
that the formula in Proposition 3.3 does not easily follow from the formula in Theorem 3.1 by
obvious algebraic manipulations, despite the apparent similarity in the formulae. Thus we give
a direct and independent proof below.

Proposition 3.3. Let I, J,K ⊆ S be spherical and suppose that u ∈ R(I, J), v ∈ R(K,J), and
w ∈ R(I,K). For any z ∈WIwWK we have (with MK(J, v) as in Section 1.2):

cwu,v(I, J,K) =
∑

x∈WIuWJ
y∈MK(J,v)v

czx,y.

Proof. Choose A ∈ XI and B ∈ F (A,K,w), and fix chambers a ∈ C(A) and b ∈ C(B) such that
δ(a, b) = z. We claim that the mapping c 7→ cJ gives a bijection⊔

x∈WIuWJ
y∈MK(J,v)v

Cx(a) ∩ Cy(b)→ F (A, J, u) ∩ F (B, J, v).

To check surjectivity, let D ∈ F (A, J, u) ∩ F (B, J, v). Since b ∈ C(B) and δ(C(B) × C(D)) =
WKvWJ = MK(v, J)vWJ we have δ({b} × C(D)) = mvWJ for some m ∈MK(J, v). Thus there
is a chamber d ∈ C(D) with δ(b, d) = mv ∈MK(J, v)v. Since d ∈ C(D) and D has cotype J , we
have dJ = D. Since a ∈ C(A), d ∈ C(D) and δ(A,D) = u we have δ(a, d) ∈WIuWJ .

To check injectivity, suppose that d, d′ ∈ C with δ(b, d) = mv ∈ MK(J, v)v and δ(b, d′) =
m′v ∈ MK(J, v)v and dJ = d′J . Then δ(d, d′) ∈ WJ , and so m′v = δ(b, d′) ∈ δ(b, d)WJ . Thus
m′v = mvwJ for some wJ ∈WJ , and it follows from Lemma 1.1 that m′ = m and wJ = 1. Thus
d = d′. The formula now follows by taking cardinalities and using (3.1).
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We now develop a combinatorial formula for the intersection cardinalities cwu,v(I, J,K) in
terms of “pointed pregalleries” (see the definition in the following paragraph). These combina-
torial objects are inspired by the alcove walk model developed by Ram [26]. For the readers
familiar with this theory, our pointed pregalleries are analogues of positively folded alcove walks
where instead of the ‘folding’ occurring away from a point at infinity, instead the folding oc-
curs away from a fixed chamber. Note that our pointed pregalleries are defined for all Coxeter
systems, whereas positively folded alcove walks are only defined for affine Coxeter systems.

Let A be an apartment of X and let a be a chamber of A. An a-pointed pregallery in A of
type (s1, . . . , sn) is a pregallery γ = (c0, s1, c1, s2, . . . , sn, cn) in A such that

if cj−1 = cj then δ(a, cj−1)sj < δ(a, cj−1).

Our interest in a-pointed pregalleries stems from the following elementary fact.

Lemma 3.4. Let a, b ∈ C and let A be an apartment with a, b ∈ A. If Γ is a gallery in X of
type v starting at b then ρA,a(Γ) is an a-pointed pregallery in A of type v starting at b

Proof. Write ρ = ρA,a. In view of (R2) in Section 1.4 it suffices to show that ρ(Γ) is a-pointed.
Write Γ = (b0, s1, . . . , sn, bn) and suppose that ρ(bj−1) = ρ(bj). If δ(a, ρ(bj−1))sj > δ(a, ρ(bj−1))
then δ(a, bj−1)sj > δ(a, bj−1) by (R1), and hence δ(a, bj) = δ(a, bj−1)sj . Thus by (R1) we have
δ(a, ρ(bj)) = δ(a, ρ(bj−1))sj , contradicting ρ(bj−1) = ρ(bj). Thus δ(a, ρ(bj−1))sj < δ(a, ρ(bj−1))
and so ρ(Γ) is a-pointed.

If γ = (c0, s1, . . . , sn, cn) is an a-pointed pregallery in an apartment A, and s ∈ S then we
define

αs(γ) = |{j | sj = s and δ(a, cj−1) < δ(a, cj)}|
σs(γ) = |{j | sj = s and cj = cj−1}|.

(Intuitively, αs(γ) counts the number of “ascent steps” in the pointed pregallery that occur on
cotype s panels, where ascent step means that the gallery increases length from a, and σs(γ)
counts the number of stutters in the gallery that occur on cotype s panels).

If γ is an a-pointed pregallery we define

q(γ) =
∏
s∈S

qαs(γ)
s (qs − 1)σs(γ).

Proposition 3.5. Let X be a thick regular building of type W with parameters (qs)s∈S. Let
a, b ∈ C with δ(a, b) = w and let A be an apartment containing a and b. Let v = (s1, . . . , sn) ∈ Sn
and define

G(b,v) = {galleries in X of type v starting at b},
PA,a(b,v) = {a-pointed pregalleries in A of type v starting at b}.

Then

1. ρA,a(G(b,v)) = PA,a(b,v), and

2. |ρ−1A,a(γ)| = q(γ) for all γ ∈ PA,a(b,v)
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Proof. Write ρ = ρA,a. From Lemma 3.4 we have ρ(G(b,v)) ⊆ PA,a(b,v). We prove the
remaining statements by induction on n. Thus suppose that the result is true for v′ = (s1, . . . , sn)
and let v = (s1, . . . , sn, t). Let

γ = (c0, s1, c1, . . . , sn, cn, t, cn+1) ∈ PA,a(b,v)

(and so c0 = b) and let γ′ = (c0, s1, c1, . . . , sn, cn) ∈ PA,a(b,v′). By the induction hypothesis
there are q(γ′) galleries Γ′ = (b0, s1, . . . , sn, bn) ∈ G(b,v′) with ρ(Γ′) = γ′ (that is, ρ(bj) = cj
for all 0 ≤ j ≤ n). For each such gallery Γ′ the number of ways of extending Γ′ to a gallery
Γ = (b0, s1, . . . , sn, bn, t, bn+1) with ρ(Γ) = γ is equal to the number of chambers bn+1 such that
δ(bn, bn+1) = t and ρ(bn+1) = cn+1.
Case 1: Suppose that δ(a, cn)t > δ(a, cn). Thus cn+1 6= cn (because γ is a-pointed) and
hence δ(a, cn+1) = δ(a, cn)t. Since cn = ρ(bn) we have δ(a, cn) = δ(a, bn), and so δ(a, bn)t >
δ(a, bn). This implies that δ(a, bn+1) = δ(a, bn)t for all bn+1 with δ(bn, bn+1) = t, and therefore
δ(a, ρ(bn+1)) = δ(a, cn)t = δ(a, cn+1) and so ρ(bn+1) = cn+1. Thus there are qt extensions Γ of
Γ′ so that ρ(Γ) = γ, and so

|ρ−1(γ)| = |ρ−1(γ′)|qt = q(γ′)qt.

We have αt(γ) = αt(γ
′) + 1, αs(γ) = αs(γ

′) for all s 6= t, and σs(γ) = σs(γ
′) for all s ∈ S, and

so q(γ′)qt = q(γ) completing the induction in this case.
Case 2: Suppose that δ(a, cn)t < δ(a, cn) and that cn 6= cn+1, and so δ(a, cn+1) = δ(a, cn)t.
Since ρ(bn) = cn we have δ(a, bn)t < δ(a, bn). Therefore ρ(bn+1) = cn+1 if and only if δ(a, bn+1) =
δ(a, cn)t = δ(a, bn)t, and this occurs for bn+1 ∈ Ct(bn) if and only if bn+1 = projπ(a) where π is
the cotype t panel of bn. Thus there is a unique extension Γ of Γ′ so that ρ(Γ) = γ, and so

|ρ−1(γ)| = |ρ−1(γ′)| = q(γ′).

Since αs(γ) = αs(γ
′) and σs(γ) = σs(γ

′) for all s ∈ S we have q(γ′) = q(γ).
Case 3: Suppose that δ(a, cn)t < δ(a, cn) and that cn = cn+1. In this case ρ(bn+1) = cn+1 if
and only if δ(a, bn+1) = δ(a, cn+1) = δ(a, cn) = δ(a, bn), and this occurs for bn+1 ∈ Ct(bn) if and
only if bn+1 6= projπ(bn). Thus there are precisely qt − 1 extensions Γ of Γ′ so that ρ(Γ) = γ,
and so

|ρ−1(γ)| = |ρ−1(γ′)|(qt − 1) = q(γ′)(qt − 1).

We have αs(γ) = αs(γ
′) for all s ∈ S, σs(γ) = σs(γ

′) for all s 6= t, and σt(γ) = σt(γ
′) + 1, and

hence q(γ) = q(γ′)(qt − 1) completing the proof.

A 1-pointed pregallery in the Coxeter complex Σ(W,S) is simply called a pointed pregallery.
Thus a pointed pregallery of type (s1, . . . , sn) is a sequence

γ = (w0, s1, w1, s2, . . . , sn, wn)

such that

1. w0, . . . , wn ∈W with wj ∈ {wj−1, wj−1sj} for each j = 1, . . . , n, and

2. if wj−1 = wj then `(wj−1sj) < `(wj−1).

If w ∈ W and v = (s1, . . . , sn) let P(w,v) be the set of all pointed pregalleries in Σ(W,S) of
type v starting at w, and for each u ∈W let

P(w,v)u = {γ ∈ P(w,v) | end(γ) = u}.
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Theorem 3.6. Let u, v, w ∈W and let v = (s1, s2, . . . , sn) be a reduced expression for v. Then

cwu,v =
∑

γ∈P(w,v)u

q(γ).

Proof. Let a, b ∈ C(X) be chambers of X with δ(a, b) = w. Let A be an apartment of X
containing a and b, and let ρ = ρA,a. Since v is reduced the map G(b,v) → Cv(b), Γ 7→ end(Γ)
is a bijection. Thus if c is the unique chamber of A with δ(a, c) = u we have

|Cu(a) ∩ Cv(b)| = |{d ∈ Cv(b) | ρ(d) = c}| = |{Γ ∈ G(b,v) | ρ(end(Γ)) = c}|.

Thus by Proposition 3.5 we have

|Cu(a) ∩ Cv(b)| = |{Γ ∈ ρ−1(γ) | γ ∈ PA,a(b,v), end(γ) = c}| =
∑

γ∈PA,a(b,v)c

q(γ)

where PA,a(b,v)c = {γ ∈ PA,a(b,v) | end(γ) = c}. Since A ∼= Σ(W,S) and δ(a, b) = w we
may identify A with Σ(W,S) such that a↔ 1 and b↔ w. Under this identification, PA,a(b,v)c
becomes P(w,v)u, hence the result.

In the following theorem (the main theorem of this section) we present our combinatorial
formula for the intersection numbers cwu,v(I, J,K).

Theorem 3.7. Let I, J,K be spherical subsets of S, and suppose that u ∈ R(I, J), v ∈ R(K,J),
and w ∈ R(I,K). Then

cwu,v(I, J,K) =
∑
γ

q(γ)

where the sum is over

γ ∈
{

pointed pregalleries γ of type mv in Σ(W,S)
starting at w and with end(γ) ∈WIuWJ

∣∣∣∣ m ∈MK(J, v)

}
,

where v is a fixed reduced expression for v, and for each m ∈MK(J, v) we fix a reduced expres-
sion m.

Proof. This follows from Proposition 3.3 and Theorem 3.6.

Example 3.8. Let (W,S) be an F4 Coxeter system with S = {1, 2, 3, 4} in standard Bourbaki
labelling and fix I = {2, 3, 4}. Consider an F4 building with parameters q1 = q2 = s and
q3 = q4 = t. The minimal length double coset representatives for WI\W/WI are

w0 = e, w1 = 1, w2 = 12321, w3 = 12324321, w4 = 123423121324321

where e is the identity element of W . In this example we apply Theorem 3.7 to compute the
intersection cardinalities cw3

wi,w1
(I, I, I) for each i = 0, 1, 2, 3, 4. We have WI(I, w1) = W{3,4},

and MI(I, w1) consists of the 8 elements

m0 = e, m1 = 2, m2 = 32, m3 = 432, m4 = 232, m5 = 2432, m6 = 32432, m7 = 232432.

To apply Theorem 3.7 we must find all pointed pregalleries of type mkw1 (with 0 ≤ k ≤ 7)
starting at w3, and compute q(γ) and end(γ) for each such pointed pregallery.
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To abbreviate notation, we write a pointed pregallery γ of type i1 · · · in starting at w as
γ = w ·~i1~i2 ~i3̂i4 · · · ~in (for example), where the symbol ~i indicates that the length increases in
that step of the pregallery, ~i indicates length decreases in that step, and î indicates an i-stutter
in the pregallery. Then end(γ) is simply the word obtained by deleting all terms î.

Note that `(wjmk) = `(wj) + `(mk) for all j, k, and so the first `(mk) steps of a pointed
pregallery of type mkw1 starting at wj are necessarily~i steps. Since `(w31) < `(w3) we have two
pointed pregalleries of type m0w1 starting at w3, namely γ0 = w3 · ~1 and γ′0 = w3 ·1̂, and q(γ0) = 1
and q(γ′0) = s− 1. Similarly, for each k = 1, 2, 3 we have `(w3mk1) < `(w3mk), and so for each
of these values of k there are two pointed pregalleries γk = w3 · ~mk

~1 and γ′k = w3 · ~mk1̂. We have
q(γ1) = s, q(γ2) = st, q(γ3) = st2, q(γ′1) = (s− 1)s, q(γ′2) = (s− 1)st, and q(γ′3) = (s− 1)st2.

On the other hand, for k = 4, 5, 6, 7 we have `(w3mk1) > `(w3mk), and so for these values
of k there is only 1 pointed pregallery of type mkw1 starting at w3, given by γk = w3 · ~mk

~1. We
have q(γ4) = s3t, q(γ5) = s3t2, q(γ6) = s3t3, and q(γ7) = s4t3.

We see that end(γ′k) ∈WIw3WI for all k = 0, 1, 2, 3, and end(γ0) ∈WIw1WI , and end(γk) ∈
WIw2WI for k = 1, 2, 3, and end(γk) ∈ WIw3WI for k = 4, 5, 6, and end(γ7) ∈ WIw4WI . For
example, consider γ2. Performing Coxeter moves gives end(γ2) = w3m21 = 12324321321 =
4(12321)432 ∈WIw2WI .

Thus Theorem 3.7 gives cw3
w0,w1

(I, I, I) = 0, cw3
w1,w1

(I, I, I) = 1, and

cw3
w1,w1

(I, I, I) = 1, cw3
w2,w1

(I, I, I) = s(t2 + t+ 1),

cw3
w3,w1

(I, I, I) = (s− 1)(st2 + st+ s+ 1) + s3t(t2 + t+ 1), cw3
w4,w1

(I, I, I) = s4t3.

Example 3.9. The formula in Theorem 3.7 is easily implemented in the MAGMA computational
algebra system [5], making use of the existing Coxeter group package. For example, consider
an E8 Coxeter system with S = {1, . . . , 8} in standard Bourbaki labelling and fix I = S\{2}.
Consider an E8 building with parameter q. There are 35 distinct WI\W/WI double cosets. Let
wi, with 0 ≤ i ≤ 34, denote the minimal length representatives of these double cosets. Fixing
an order, we take w0 = e, w1 = 2, w2 = 243542, w3 = 24315436542, w4 = 243542654376542,
w5 = 2431542654376542, and w6 = 2435426543176543876542. Write Cki,j = cwk

wi,wj
(I, I, I).

Implementing Theorem 3.7 into MAGMA we obtain

C1
2,1 = φ2(q

2)φ3(q)φ5(q)q
5 C2

2,1 = φ2(q
2)(φ3(q)

2q3 − 1) C3
2,1 = φ3(q)

2q

C4
2,1 = φ3(q

2)φ5(q) C5
2,1 = φ3(q) C6

2,1 = 1,

where φn(x) = xn−1 + · · ·+ x+ 1 and Ck2,1 = 0 for k = 0 and 7 ≤ k ≤ 34.

4 Hecke operators on regular buildings

If Γ is a distance regular graph with intersection numbers amk,` then, as discussed in the intro-
duction, the k-adjacency operators

Akf(x) =
∑

y∈Fk(x)

f(y) for f : V → C

satisfy linear relations

AkA` =
∑
m∈N

amk,`Am for all k, ` ∈ N.

Thus the vector space over C with basis {Ak | k ∈ N} is an algebra A .
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This brings us to an investigation of generalised adjacency operators on buildings, one of
our primary motivations for studying intersection cardinalities of generalised spheres in regular
buildings. For each pair I, J of spherical subsets, and each w ∈ R(I, J), define the (I, J, w)-
adjacency operator T IJw : {f : XJ → C} → {f : XI → C} by

(T IJw f)(A) =
∑

B∈F (A,J,w)

f(B), for all A ∈ XI and f : XJ → C.

We also refer to these operators as Hecke operators on the building.

Proposition 4.1. Let I, J and K be spherical, and suppose that u ∈ R(I, J) and v ∈ R(K,J).
Then

T IJu T JKv =
∑

w∈R(I,K)

cwu,v−1(I, J,K)T IKw ,

where for fixed u and v, cwu,v−1(I, J,K) is nonzero for only finitely many w ∈ R(I,K).

Proof. Directly from definition of the adjacency operators we compute, for A ∈ XI ,

(T IJu T JKv f)(A) =
∑

B∈F (A,J,u)

∑
D∈F (B,K,v)

f(D)

=
∑

D∈XK

∑
B∈XJ

1F (A,J,u)(B)1F (B,K,v)(D)f(D),

where for any subset F ⊆ X we write 1F for the indicator function of F . Since D ∈ F (B,K, v)
if and only if B ∈ F (D,J, v−1) we have 1F (B,K,v)(D) = 1F (D,J,v−1)(B), and thus

(T IJu T JKv f)(A) =
∑

D∈XK

|F (A, J, u) ∩ F (D,J, v−1)|f(D).

Since XK is the disjoint union of the sets F (A,K,w) with w ∈ R(I,K) we have

(T IJu T JKv f)(A) =
∑

w∈R(I,K)

∑
D∈F (A,K,w)

|F (A, J, u) ∩ F (D,J, v−1)|f(D),

and the result follows from Theorem 3.1 and Remark 3.2.

Corollary 4.2. Let I and J be spherical, and let A (I, J) be the vector space over C spanned by
the operators {T IJw | w ∈ R(I, J)}. Then {T IJw | w ∈ R(I, J)} is a basis of A (I, J). Moreover,
A (I, I) is an algebra, and A (I, J) is a left A (I, I)-module and a right A (J, J)-module.

Proof. Let T =
∑

w∈R(I,J) awT
IJ
w , with aw ∈ C. Let A ∈ XI , and B ∈ F (A, J, v) with

v ∈ R(I, J), and let δB : XJ → C be the function δB(B) = 1 and δB(B′) = 0 for all
B′ ∈ XJ\{B}. Then TδB(A) = av, and hence the operators {T IJw | w ∈ R(I, J)} are lin-
early independent, and thus form a basis of A (I, J). Proposition 4.1 shows that A (I, I) is
closed under multiplication, and that A (I, J) is closed under left multiplication by elements of
A (I, I) and right multiplication by elements of A (J, J). Hence the result.

In the language of association schemes (see [8]), the algebra A (I, I) is the Bose-Mesner
algebra of the natural association scheme on the cotype I simplices of X.
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Example 4.3. Consider the F4 example of Example 3.8. Write Ai = T IIwi
for i = 0, 1, 2, 3, 4.

Note that the minimal length double coset representatives wi are involutions. This implies
that A (I, I) is commutative, for if δ(A,B) = w ∈ R(I, I) then δ(B,A) = w−1 = w and so

cwu,v−1(I, I, I) = |F (A, I, u) ∩ F (B, I, v−1)| = |F (B, I, v) ∩ F (A, I, u−1)| = cwv,u−1(I, I, I).

By Proposition 4.1, the computations in Example 3.8 give the coefficient of A3 in the expansions
of A1A1, A2A1, A3A1, and A4A1. We obtain:

A1A1 = s(s+ 1)(st+ 1)(st2 + 1)A0 + [s2(t2 + t+ 1) + s− 1]A1 + (s+ 1)(st+ 1)A2 +A3

A2A1 = s3t(t2 + t+ 1)A1 + (s2 − 1)(st+ 1)A2 + s(t2 + t+ 1)A3

A3A1 = s4t3A1 + s2t2(s+ 1)(st+ 1)A2 + [(s− 1)(st2 + st+ s+ 1) + s3t(t2 + t+ 1)]A3

+ (s+ 1)(st+ 1)(st2 + 1)A4

A4A1 = s4t3A3 + (s2 − 1)(st+ 1)(st2 + 1)A4.

We note that these formulae are sufficient to compute the character table for the algebra A (I, I).

Example 4.4. Consider the E8 example of Example 3.9. Write Ai = T IIwi
for 0 ≤ i ≤ 34. In this

case the algebra spanned by the operators Ai is not commutative, for example in the notation
of Example 3.9 we have C6

2,1 = 1 and C6
1,2 = 0 (see Corollary 5.2 for more on commutativity).

Proposition 4.1 gives A2A1 = C1
2,1A1 + C2

2,1A2 + C3
2,1A3 + C4

2,1A4 + C5
2,1A5 + C6

2,1A6.

Consider the case I = J = ∅. Write T ∅∅w = Tw for all w ∈ W and let H = A (∅, ∅). By
Proposition 4.1 we have

TuTv =
∑
w∈W

cwu,v−1Tw for all u, v ∈W, (4.1)

where the numbers cwu,v−1 are defined in (3.1). From the geometry of the building it is not hard

to show that (see [21, Theorem 3.4])

TwTs =

{
Tws if `(ws) > `(w)

qsTws + (qs − 1)Tw if `(ws) < `(w).
(4.2)

Thus the algebra H is isomorphic to the extensively studied (Iwahori) Hecke algebra of the
Coxeter system (W,S) (see [16]). Our goal now is to interpret our more general algebras and
modules A (I, J) in terms of the more familiar Hecke algebra H .

For each spherical subset I of S define an element 1I of H by

1I =
1

N(I)

∑
w∈WI

Tw.

The subalgebra 1IH 1I of H is called a parabolic Hecke algebra (see [3, 11]). Note that 1IH 1I
and H have different units (1I and T1 respectively).

Lemma 4.5. Let I be spherical. Then Tu1I = 1ITu = qu1I for all u ∈WI , and 12I = 1I .

Proof. By (4.2) the vector space spanned by {Tu | u ∈ WI} is a subalgebra of H . Therefore if
u ∈WI we have

Tu1I =
1

N(I)

∑
v∈WI

TuTv =
1

N(I)

∑
w∈WI

( ∑
v∈WI

cwu,v−1

)
Tw.
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If w ∈ WI and a, b ∈ C with b ∈ Cw(a) then
∑

v c
w
u,v−1 =

∑
v |Cu(a) ∩ Cv−1(b)| = |Cu(a)| = qu.

Thus Tu1I = qu1I , and the proof that 1ITu = qu1I is similar.
Then

12I =
1

N(I)

∑
w∈WI

Tw1I =
1

N(I)

∑
w∈WI

qw1I =
N(I)

N(I)
1I = 1I ,

completing the proof.

For spherical subsets I and J of S and w ∈ R(I, J) define an element P IJw ∈ 1IH 1J by

P IJw =
N(I)

N(I ∩ wJw−1)
1ITw1J .

The reason for this choice of normalisation will become clear in Theorem 4.9.

Lemma 4.6. If I and J are spherical subsets of S and w ∈ R(I, J) then

P IJw =
1

N(J)

∑
z∈WIwWJ

Tz.

Proof. Using (1.2)

1ITw1J =
1

N(I)

∑
u∈WI

TuTw1J =
1

N(I)

∑
x∈MI(J,w)

∑
y∈WI(J,w)

TxTyTw1J .

Since w is (I, J)-reduced, and since y ∈ WI(J,w), we have `(yw) = `(y) + `(w). Moreover
yw = wy′ with y′ = w−1yw ∈WJ and `(wy′) = `(w)+ `(y′). This implies that qy′ = qy (because
qyqw = qyw = qwy′ = qwqy′), and by (4.2) and Lemma 4.5 we have

TyTw1J = Tyw1J = Twy′1J = TwTy′1J = qy′Tw1J = qyTw1J .

Thus by (1.1) we have
∑

y∈WI(J,w)
TxTyTw1J = N(I∩wJw−1)TxTw1J , and so using Lemma 1.1,

P IJw =
N(I)

N(I ∩ wJw−1)
1ITw1J =

∑
x∈MI(J,w)

TxTw1J =
1

N(J)

∑
z∈WIwWJ

Tz.

Remark 4.7. Lemma 4.6 gives an independent algebraic proof of Theorem 2.1, as follows. The
linear map π : H → C with π(Tw) = qw for all w ∈W satisfies

π(Tw)π(Ts) =

{
π(Tws) if `(ws) > `(w)

qsπ(Tws) + (qs − 1)π(Tw) if `(ws) < `(w),

and so by (4.2) the map π is a 1-dimensional representation of H . Applying this representation
to the formula in Lemma 4.6 gives, for w ∈ R(I, J),

N(I)

N(I ∩ wJw−1)
qw =

1

N(J)

∑
z∈WIwWJ

qz. (4.3)

If A ∈ XI then C(F (A, J,w)) =
⊔
z∈WIwWJ

Cz(a) for any fixed a ∈ C(A). Thus

|C(F (A, J,w))| =
∑

z∈WIwWJ

qz,

and since each simplex B ∈ F (A, J,w) is contained in N(J) chambers of C(F (A, J,w)), the right
hand side of (4.3) equals |F (A, J,w)|, proving Theorem 2.1.
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Corollary 4.8. If I and J are spherical subsets of S then the vector space 1IH 1J has basis
{P IJw | w ∈ R(I, J)}.

Proof. Let z ∈ W . Then z ∈ WIwWJ for some w ∈ R(I, J), and we can write z = xwy with
x ∈MI(J,w) and y ∈WJ . Thus `(z) = `(x) + `(w) + `(y). Using (4.2) and Lemma 4.5 we have

1ITz1J = 1ITxTwTy1J = qxqy1ITw1J .

Hence the set {P IJw | w ∈ R(I, J)} spans 1IH 1J . It follows from Lemma 4.6 and the linear
independence of the Tz, z ∈ W , that the operators P IJw , w ∈ R(I, J), are linearly independent.

The following theorem, which shows that the multiplication table for the operators T IJw and
P IJw are the same, is the main result of this section.

Theorem 4.9. Let I, J,K be spherical, and suppose that u ∈ R(I, J) and v ∈ R(K,J). Then

P IJu P JKv =
∑

w∈R(I,K)

cwu,v−1(I, J,K)P IKw

where cwu,v−1(I, J,K) is as in Theorem 3.1. In particular, the linear map

θ : A (I, I) −→ 1IH 1I
T IIw 7−→ P IIw

is an isomorphism of algebras,

and A (I, J) is a left 1IH 1I-module and a right 1JH 1J -module.

Proof. By Lemma 4.6, the expansion TxTy =
∑

z∈W czx,y−1Tz (see (4.1)), and the decomposition

of W into WIwWK double cosets with w ∈ R(I,K), we have

P IJu P JKv =
1

N(J)N(K)

∑
x∈WIuWJ
y∈WJvWK

TxTy

=
1

N(J)N(K)

∑
w∈R(I,K)

∑
z∈WIwWK

( ∑
x∈WIuWJ
y∈WJvWK

czx,y−1

)
Tz.

Thus by Theorem 3.1 and Lemma 4.6 we have

P IJu P JKv =
∑

w∈R(I,K)

cwu,v−1(I, J,K)

N(K)

∑
z∈WIwWK

Tz =
∑

w∈R(I,K)

cwu,v−1(I, J,K)P IKw .

It follows that the linear map θ : A (I, I) → 1IH 1I with T IIw 7→ P IIw is an isomorphism
of algebras by using the fact that A (I, I) has basis {T IIw | w ∈ R(I, I)} and 1IH 1I has basis
{P IIw | w ∈ R(I, I)}. The final statement follows from Corollary 4.2.

5 Applications

In this final section we describe some applications of our main theorems.
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5.1 Structure constants in parabolic Hecke algebras

Theorem 4.9 gives a combinatorial interpretation of the structure constants in parabolic Hecke
algebras, and Theorem 3.7 gives a formula for these structure constants. In the case when W
has type Ãn and I = S\{s0} these structure constants are Hall polynomials, and nonnegativity
of these polynomials was proved by Miller Malley [20]. More generally, if W is of affine type and
I = S\{s0} then the structure constants are the structure constants of the algebra spanned by
the Macdonald spherical functions, and nonnegativity of these structure constants was proved
independently by Parkinson [21] and Schwer [28]. Our formula in Theorem 3.7 immediately
gives a considerable generalisation of these results to arbitrary type:

Corollary 5.1. The structure constants in the parabolic Hecke algebra 1IH 1I relative to the
basis {P IIw | w ∈ R(I, I)} are nonnegative.

5.2 Commutativity of algebras of Hecke operators on buildings

Recall that for distance regular graphs the algebra A of averaging operators is necessarily
commutative (this boils down to the fact that the graph distance satisfies d(x, y) = d(y, x)). In
contrast, the algebra A (I, I) is not necessarily commutative. Using Theorem 4.9 we have the
following commutativity classification (where we use standard Bourbaki labelling [6]), showing
that in fact commutativity is extremely rare.

Corollary 5.2. Suppose that (W,S) is irreducible. Let I be a spherical subset of S. The algebra
A (I, I) is noncommutative if |S\I| > 1. If I = S\{i} then A (I, I) is commutative in the cases

1. W = An and 1 ≤ i ≤ n, W = Bn and 1 ≤ i ≤ n, W = Dn and 1 ≤ i ≤ n/2 or i = n−1, n,
W = E6 and i = 1, 2, 6, W = E7 and i = 1, 2, 7, W = E8 and i = 1, 8, W = F4 and
i = 1, 4, W = H3 and i = 1, 3, W = H4 and i = 1, W = I2(p) and i = 1, 2, or

2. W affine and i is a special type (that is, i is in the orbit of the special node 0 under the
action of diagram automorphisms),

and noncommutative otherwise.

Proof. By Theorem 4.9 the algebra A (I, I) is isomorphic to the parabolic Hecke algebra 1IH 1I .
The commutative parabolic Hecke algebras are classified in [3, Theorem 2.1], and the result
follows from this classification.

5.3 Combinatorics of double cosets in groups with BN-pairs

Let G be a group acting on X by type preserving simplicial automorphisms. The group G has
a strongly transitive action on X (with respect to some fixed system of apartments) if G is
transitive on the set of pairs (A, a) with A an apartment and a ∈ A a chamber of A. The group
G has a Weyl-transitive action on X if for all w ∈W the action is transitive on all ordered pairs
(a, b) of chambers such that δ(a, b) = w. Recall that strong transitivity implies Weyl transitivity,
although the reverse implication does not hold in general (see [1]).

If G acts Weyl transitively on X then it is immediate that |F (A, J, u)∩F (A′, J, v)| depends
only on u, v and δ(A,A′), and therefore Theorem 3.1 is most interesting in that case where the
building does not admit a Weyl transitive group action.

We now outline applications of our formula in Theorem 3.7 to double coset combinatorics
in groups G acting strongly transitively on X. Fix a chamber a ∈ C and an apartment A with
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a ∈ A. Let B = stabG(a) and N = stabG(A). The pointwise stabiliser of A is H = B ∩ N ,
and N/H is isomorphic to W (the Coxeter group of X). It is well-known that (G,B,N,W )
is a BN -pair (also called a Tits system, see [2, Theorem 6.56]). The stabiliser of the cotype I
simplex A = aI of a is the parabolic subgroup PI =

⊔
w∈WI

BwB.

Proposition 5.3. With the above notation, if I, J and K are spherical, u ∈ R(I, J), v ∈
R(K,J), and w ∈ R(I,K), then

CardG/PJ
(PIuPJ ∩ wPKvPJ) = cwu,v(I, J,K).

Thus Theorem 3.7 gives a formula for these cardinalities.

Proof. The cotype I simplices XI of X can be identified with G/PI . Let A = PI under this
identification. If w ∈ R(I, J) then F (A, J,w) is the set of PJ cosets in PIwPJ . Therefore if I, J
and K are spherical, and if u ∈ R(I, J), v ∈ R(K,J), and w ∈ R(I,K), then

CardG/PJ
(PIuPJ ∩ wPKvPJ) = |F (A, J, u) ∩ F (wA, J, v)| = cwu,v(I, J,K).

5.4 Convolution algebras and Gelfand pairs

Suppose that G is a locally compact group acting strongly transitively on the building X, and
let B = stabG(a) be the stabiliser of a fixed chamber (as in the previous section). Assume that
B is compact. A function f : G → C is bi-B-invariant if f(bgb′) = f(g) for all g ∈ G and all
b, b′ ∈ B. Let F(B\G/B) be the space of bi-B-invariant complex valued functions supported on
finitely many double cosets. Define convolution in F(B\G/B) by

(f1 ∗ f2)(g) =

∫
G
f1(gh)f2(h

−1) dµ(h),

where µ is a Haar measure on G normalised so that µ(B) = 1. It is elementary that F(B\G/B)
is closed under convolution, and so F(B\G/B) is an algebra.

For I, J ⊆ S spherical and w ∈ R(I, J), let ψPIwPJ
= 1

N(J)χPIwPJ
, where χPIwPJ

is the
characteristic function of the double coset PIwPJ .

Proposition 5.4. Let I, J,K ⊆ S be spherical, and let u ∈ R(I, J) and v ∈ R(J,K). Then

ψPIuPJ
∗ ψPJvPK

=
∑

w∈R(I,K)

cwu,v−1(I, J,K)ψPIwPK
.

Proof. The assumption that I and J are spherical ensures that ψPIwPJ
is supported on finitely

many B double cosets, thus ψPIwPJ
∈ F(B\G/B). If g1 ∈ PI and g2 ∈ PK then for all g ∈ G

we have

(ψPIuPJ
∗ ψPJvPK

)(g1gg2) =

∫
G
ψPIuPJ

(g1gg2h)ψPJvPK
(h−1) dµ(h)

=

∫
G
ψPIuPJ

(gh′)ψPJvPK
(h′−1g2) dµ(h′) = (ψPIuPJ

∗ ψPJvPK
)(g).

Thus ψPIuPJ
∗ ψPJvPK

is left PI -invariant and right PK-invariant, and hence is a linear combi-
nation of terms ψPIwPK

with w ∈ R(I,K). To compute the coefficient of ψPIwPK
in this linear
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combination, note that from the definition of convolution, and using Proposition 5.3, we have

1

N(J)
(ψPIuPJ

∗ ψPJvPJ
)(w) =

1

N(J)
CardG/B(w−1PIuPJ ∩ PKv−1PJ)

=
1

N(J)
CardG/B(PIuPJ ∩ wPKv−1PJ)

= CardG/PJ
(PIuPJ ∩ wPKv−1PJ) = cwu,v−1(I, J,K),

completing the proof.

Corollary 5.5. With the above notation, let F(PI\G/PI) be the subalgebra of F(B\G/B) con-
sisting of bi-PI-invariant functions. Then

F(PI\G/PI) ∼= 1IH 1I ,

with the isomorphism given by ψPIwPI
7→ P IIw for w ∈ R(I, I).

Proof. This is immediate from Theorem 4.9 and Proposition 5.4.

Recall that for any locally compact group G and compact subgroup K, the pair (G,K)
is called a Gelfand pair if the convolution algebra of compactly supported continuous bi-K-
invariant functions on G is commutative.

Corollary 5.6. The pair (G,PI) from Corollary 5.5 is a Gelfand pair if and only if A (I, I) is
commutative, and hence only in the cases listed in Corollary 5.2.

Proof. From Theorem 4.9 and Corollary 5.5 we have A (I, I) ∼= 1IH 1I ∼= F(PI\G/PI) and the
result follows.

Note that Corollary 5.6 implies that the only Gelfand pairs arising from buildings with
infinite Coxeter groups are those Gelfand pairs (G,K) where K is the stabiliser of a special
vertex in an affine building. These Gelfand pairs have received considerable attention (see for
example [9]).

5.5 Isotropic random walks on the simplices of buildings

Fix I ⊆ S spherical, and let (Zn)n≥0 be a random walk on the set XI of all cotype I simplices
of a locally finite regular building X. Thus (Zn)n≥0 is a Markov chain of XI -valued random
variables, with evolution governed by transition probabilities

p(A,B) = P[Zn+1 = B | Zn = A] for A,B ∈ XI .

For simplicity we assume throughout that (Zn)n≥0 has bounded jumps. That is, for each A ∈ XI

the probability p(A,B) is nonzero for only finitely many B ∈ XI .
One important goal in random walk theory is to obtain estimates for the n-step transition

probabilities
p(n)(A,B) = P[Zn = B | Z0 = A],

and in particular for the n-step return probabilities p(n)(A,A). Such a result is called a local
limit theorem, and ideally it takes the form of an asymptotic formula.

A random walk on XI is called isotropic if p(A,B) = p(A′, B′) whenever δ(A,B) = δ(A′, B′).
In other words, a walk is isotropic if the transition probabilities depend only on the Weyl distance.
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In this section we use Theorem 4.9 to reduce the ‘general’ case of isotropic random walks on
the cotype I simplices of a building to the ‘special’ case of isotropic random walks on the set of
chambers of the building (where I = ∅). This latter case admits a rather complete theory when
X is an affine building (see [25]), and thus we can now obtain precise local limit theorems for
isotropic random walks on the cotype I simplices of an affine building. We will give a concrete
example at the end of this section.

The transition operator of a random walk (Zn)n≥0 on XI is the operator T acting on the
space of all functions f : XI → C by

Tf(A) =
∑
B∈XI

p(A,B)f(B).

Thus the transition operator of an isotropic random walk (Zn)n≥0 on XI is given by

T =
∑

w∈R(I,I)

pwT
II
w where pw = p(A,B) for any A,B ∈ XI with δ(A,B) = w, (5.1)

and so T is an element of the algebra A (I, I) (here we use the bounded jumps assumption to
ensure that T is a finite linear combination; in the general case T lies in a completion of the
algebra A (I, I)). It is useful to note that if δ(A,B) = w then p(n)(A,B) is the coefficient of T IIw
in the expansion of Tn ∈ A (I, I) as a linear combination of the basis {T IIv | v ∈ R(I, I)}.

Proposition 5.7. Let I ⊆ S be spherical. Let (Zn)n≥0 be an isotropic random walk on XI with
bounded jumps and transition probabilities p(A,B), and let pw = p(A,B) for any A,B ∈ XI

with δ(A,B) = w. Let (Zn)n≥0 be the isotropic random walk on C with transition probabilities

p(a, b) =
pw
N(I)

if δ(a, b) ∈WIwWI with w ∈ R(I, I).

Then for all A,B ∈ XI and all a, b ∈ C with δ(a, b) ∈WIδ(A,B)WI we have

p(n)(A,B) =
1

N(I)
p(n)(a, b) for all n ∈ N.

Proof. We must first check that p(a, b) defines a transition probability, and thus we verify that∑
b∈C p(a, b) = 1 for each a ∈ C. We have∑

b∈C
p(a, b) =

∑
w∈R(I,I)

∑
{b|δ(a,b)∈WIwWI}

p(a, b) =
∑

w∈R(I,I)

pw
N(I)

|{b | δ(a, b) ∈WIwWI}|.

The cardinality in the summand is equal to N(I)|F (A, I, w)| where A is the cotype I simplex of a,
since each element of F (A, I, w) is contained in exactly N(I) chambers of {b | δ(a, b) ∈WIwWI}.
Thus ∑

b∈C
p(a, b) =

∑
w∈R(I,I)

pw|F (A, I, w)| =
∑
B∈XI

p(A,B) = 1.

Let T ∈ A (I, I) be the transition operator of (Zn)n≥0, as in (5.1). Let θ : A (I, I)→ 1IH 1I
be the isomorphism from Theorem 4.9. By Lemma 4.6

θ(T ) =
∑

w∈R(I,I)

pwP
II
w =

∑
w∈R(I,I)

pw
N(I)

∑
z∈WIwWI

Tz =
∑
z∈W

pzTz,
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where pz = pw/N(I) if z ∈WIwWI with w ∈ R(I, I). Thus θ(T ) ∈H is the transition operator
of the isotropic random walk (Z)n≥0 on C.

Let A,B ∈ XI with δ(A,B) = w ∈ R(I, I). Then p(n)(A,B) is the coefficient of T IIw in
the expansion of Tn, and this equals the coefficient of P IIw in the expansion of θ(Tn) = θ(T )n.
By Lemma 4.6 this equals N(I)−1 times the coefficient of Tz in the expansion of θ(T )n for any
z ∈WIwWI , and this equals p(n)(a, b)/N(I) for any a, b ∈ C with δ(a, b) = z ∈WIwWI .

We conclude with a concrete example illustrating how Proposition 5.7 can be used, in con-
junction with the techniques in [25], to give new local limit theorems for random walks on
simplices of affine buildings.

Let X be a locally finite thick Ã2 building with thickness parameter q. Let the vertices of
X have types {0, 1, 2} and let X0 be the set of all cotype 0 simplices of X (that is, the cotype
0 panels of X). The ‘neighbours’ of A ∈ X0 are those simplices B ∈ X0 with d(A,B) = 1,
or equivalently, δ(A,B) ∈ {s1, s2}. Note that |{B ∈ X0 | d(A,B) = 1}| = 2q(q + 1) for each
A ∈ X0. The simple random walk on X0 is the random walk with transition probabilities

p(A,B) =

{
1

2q(q+1) if d(A,B) = 1

0 otherwise.

This walk is isotropic, with transition operator

T =
1

2q(q + 1)
(T 00
s1 + T 00

s2 ).

Let p(a, b) be the transition probabilities of the associated isotropic random walk (Zn)n≥0 on C
(as in Proposition 5.7). The transition operator of this walk is

θ(T ) =
1

2q(q + 1)2
(Ts1 + Ts1s0 + Ts0s1 + Ts0s1s0 + Ts2 + Ts2s0 + Ts0s2 + Ts0s2s0) .

By Proposition 5.7 we have p(n)(A,A) = p(n)(a, a)/(q + 1). An asymptotic formula for
p(n)(a, a), and hence p(n)(A,A), can be computed using the techniques in [25]. The details of
the calculation are somewhat involved, using the representation theory of the associated affine
Hecke algebra. Thus we content ourselves here to simply stating the final result.

Theorem 5.8. For the simple random walk on the set X0 of cotype 0 simplices of an Ã2 building
we have

p(n)(A,A) ∼
√

3(q2 + 4q − 1)4

πq(q + 1)(q − 1)6

(
q2 + 4q − 1

2q(q + 1)

)n
n−4 as n→∞

for all A ∈ X0, where ∼ denotes asymptotic equivalence.
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