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Abstract

Let θ be an automorphism of a thick irreducible spherical building ∆ of rank at least 3
with no Fano plane residues. We prove that if there exist both type J1 and J2 simplices
of ∆ mapped onto opposite simplices by θ, then there exists a type J1 ∪ J2 simplex of ∆
mapped onto an opposite simplex by θ. This property is called cappedness. We give applica-
tions of cappedness to opposition diagrams, domesticity, and the calculation of displacement
in spherical buildings. In a companion piece to this paper we study the thick irreducible
spherical buildings containing Fano plane residues. In these buildings automorphisms are
not necessarily capped.

Introduction

Let θ be an automorphism of a spherical building ∆ of type (W,S). The analysis of the fixed
element geometry Fix(θ) of θ is a powerful and well-established technique in building theory, see
for example the beautiful theory of Tits indices and fixed subbuildings [12, 18]. A complementary
concept to fixed element theory is the “opposite geometry” Opp(θ) consisting of all simplices of
∆ that are mapped onto opposite simplices by θ. This geometry arises naturally in Curtis-Phan
Theory, where it is used to efficiently encode presentations of groups acting on buildings (see
[3, 7]), however compared to the fixed element theory very little is known concerning Opp(θ).
In this paper we initiate a systematic analysis of the structure of the geometry Opp(θ).

To motivate and illustrate the key concepts in an example, let θ be a collineation of a thick
E7 building ∆, and construct the opposition diagram of θ by encircling all nodes s ∈ S of the
Coxeter graph with the property that there exists a type s vertex in Opp(θ). What are the
possible opposition diagrams that can arise? It turns out that the number of possible diagrams
is far less than the trivial bound of 27. In fact it follows from our work that there are only 6
possibilities:

• • • • • •
•

• • • • • •
•

• • • • • •
•

• • • • • •
•

• • • • • •
•

• • • • • •
•

A fundamental result of Leeb [8, §5] and Abramenko and Brown [2, Proposition 4.2] states
that if θ is a nontrivial automorphism of a thick spherical building then Opp(θ) is necessarily
nonempty, and hence the first diagram above occurs if and only if θ is the identity. For the second,
third, forth, and fifth diagrams it is clear that the automorphism in question maps no chamber
to an opposite chamber. Automorphisms mapping no chamber to an opposite chamber are called
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domestic automorphisms (the terminology here is aligned with the thematics of the language
of building theory, reflecting the idea that these automorphisms stay “close to home”). These
automorphisms have recently enjoyed extensive investigation, including the series [15, 16, 17]
where domesticity in projective spaces, polar spaces, and generalised quadrangles is studied,
[20] where symplectic polarities of large E6 buildings are classified in terms of domesticity, [21]
where domestic trialities of D4 buildings are classified, and [9] where domesticity in generalised
polygons is studied.

Returning to the E7 example, if θ is not domestic then the opposition diagram of θ is
necessarily the sixth of the above diagrams, with all nodes encircled. However, can this diagram
be the opposition diagram of a domestic automorphism? It is a priori possible that there are
vertices of each type 1, 2, 3, 4, 5, 6 and 7 mapped onto opposite vertices, yet no chamber mapped
to an opposite chamber. Such an automorphism is called exceptional domestic. It turns out
from the results of this paper that if the E7 building ∆ contains no Fano plane residues then
exceptional domestic automorphisms do not exist. In contrast, we show in [10] that if ∆ is an
E7 building containing a Fano residue (thus ∆ is the building of the Chevalley group E7(2)) then
∆ admits exceptional domestic automorphisms.

More generally one may ask whether the existence of both a type J1 simplex and a type J2

simplex in Opp(θ) implies the existence of a type J1 ∪ J2 simplex in Opp(θ). An automorphism
satisfying this property is called capped. An equivalent formulation of this concept is as follows.
The type Typ(θ) of an automorphism θ is the union of all subsets J ⊆ S such that there exists
a type J simplex in Opp(θ). Thus, in the above diagrams, Typ(θ) is the set of all encircled
nodes. Then an automorphism θ of a spherical building is capped if and only if there exists a
type Typ(θ) simplex in Opp(θ).

The main theorem of this paper is the following. The proof is contained in Sections 3 and 4.

Theorem 1. Let ∆ be a thick irreducible spherical building of type (W,S) of rank at least 3,
and let θ be an automorphism of ∆. If ∆ has no Fano plane residues then θ is capped.

We call the thick irreducible spherical buildings of rank at least 3 with no Fano plane residues
large buildings, and those containing at least one Fano plane residue are called small buildings.
Thus Theorem 1 says that every automorphism of a large spherical building is capped. Note
that the small buildings are precisely the buildings An(2), Bn(2), Bn(2, 4) = 2Dn+1(4), Dn(2),
E6(2), E7(2), E8(2), F4(2), F4(2, 4) = 2E6(4) for some n ≥ 3.

Theorem 1 has the following immediate corollary.

Corollary 2. No large building admits an exceptional domestic automorphism.

Cappedness places severe restrictions on the possible opposition diagram of an automor-
phism. We develop this theory in Section 2 via a combinatorial approach reminiscent of Tits
indices (see [12, Part 3]). In particular we show that the opposition diagrams of capped auto-
morphisms satisfy three simple combinatorial properties, and we then use these properties to
classify the possible opposition diagrams. The result is the following theorem.

Theorem 3. If θ is a capped automorphism of a thick irreducible spherical building then the
opposition diagram of θ appears in the corresponding Table 1–Table 5 (where in the table Γ is
the Coxeter graph of ∆, and πθ is the automorphism of Γ induced by θ).

Thus, for example, by Theorems 1 and 3 the 6 diagrams listed above exhaust the possible
opposition diagrams for automorphisms of large E7 buildings. More generally, Theorems 1 and 3
immediately imply the following corollary.
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Corollary 4. Let θ be an automorphism of a large building ∆. Then the opposition diagram of
θ appears in the corresponding Table 1–Table 5.

ord(πθ) Γ = An

1
•
•
•
•
•
•

•
•
•
•
•
•i 0 ≤ i ≤ n/2

2
• • • • • • • • • •
• • • • • • • • • • for odd n only

Table 1: Type A collineation and duality diagrams

Γ = Bn/Cn, πθ = id

• • • • • • • • • •
i

0 ≤ i ≤ n

• • • • • • • • • •
2i

0 ≤ 2i ≤ n

Table 2: Type B/C collineation diagrams

Γ = D2n, πθ = id, 0 ≤ i ≤ n− 1 Γ = D2n+1, πθ = id, 0 ≤ i ≤ n− 1

• • • • • • • • • ••2i

• • • • • • • • • ••2i

• • • • • • • • • ••

• • • • • • • • • ••

• • • • • • • • • ••2i

• • • • • • • • • ••2i

• • • • • • • • • ••

• • • • • • • • • ••
Γ = D2n, ord(πθ) = 2, 0 ≤ i < n− 2 Γ = D2n+1, ord(πθ) = 2, 0 ≤ i ≤ n− 1

• • • • • • • • • ••2i+ 1

• • • • • • • • • ••

• • • • • • • • • ••2i+ 1

• • • • • • • • • ••

Table 3: Type D collineation and duality diagrams

Γ = D4, ord(πθ) = 3

•• •• •• ••

Table 4: Triality diagrams
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Γ, πθ Diagrams

E6

πθ = id
• • •

•
•
• • • •

•
•
• • • •

•
•
• • • •

•
•
•

E6

πθ 6= id
• • • • •

•
• • • • •

•

E7

πθ = id

• • • • • •
•

• • • • • •
•

• • • • • •
•

• • • • • •
•

• • • • • •
•

• • • • • •
•

E8

πθ = id

• • • • • • •
•

• • • • • • •
•

• • • • • • •
•

• • • • • • •
•

• • • • • • •
•

F4 πθ = id:
• • • • • • • •
• • • • • • • •

πθ 6= id:
•
•
•
•

I2(m)
πθ = id

m even: • •m • •m • •m m odd:
•
• m

•
• m

I2(m)
πθ 6= id

m even:
•
• m m odd: • •m

Table 5: Diagrams of exceptional types and dihedral groups

We have listed the possible diagrams in the above tables up to automorphisms of the Coxeter
graph Γ. That is, if the triple (Γ, J, πθ) appears in the above tables (where J is the set of encircled
nodes), and if σ is an automorphism of the Coxeter graph, then the triple (Γ, Jσ, πθ) is implicit
in the tables. For example, the F4 diagram • • • • is implicit in Table 5. We also emphasise
that we work with Coxeter graphs rather than Dynkin diagrams in this paper.

In Section 2 we show that if θ is a capped automorphism of a thick spherical building then
the displacement of θ can be computed directly from the opposition diagram in a simple way
(recall that the displacement disp(θ) of an automorphism θ is the maximum gallery distance
between a chamber C ∈ ∆ and its image Cθ). More precisely, we prove:

Theorem 5. Let θ be a capped automorphism of a thick spherical building ∆ of type (W,S) and
let J = Typ(θ). The displacement of θ is

disp(θ) = diam(W )− diam(WS\J),

where diam(W ) and diam(WS\J) are the diameters of W and the parabolic subgroup WS\J .

Thus, applying Theorem 1 and Theorem 5 gives:

Corollary 6. Let θ be an automorphism of a large building ∆ of type (W,S) and let J = Typ(θ).
The displacement of θ is disp(θ) = diam(W )− diam(WS\J).

This paper can be seen as a natural continuation of [9] where automorphisms of rank 2
spherical buildings were investigated, and our series of investigations continues in [10] where
we study small buildings, and show that for these buildings not all automorphisms are capped,
exceptional domestic automorphisms exist, and that the above formula for displacement may
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fail. In future work we will show that Corollary 4 is “tight” in the sense that for each diagram
D = (Γ, J, π) listed in Tables 1–5, every thick irreducible split spherical building ∆ of type Γ
admits an automorphism with diagram D. Thus our list of diagrams has no redundancies. There
is a minor caveat here: split F4 buildings admit dualities if and only if the underlying field has
characteristic 2, and thus the duality opposition diagram for F4 listed in Table 5 is only achieved
in characteristic 2 (and a similar comment applies for dualities of split B2, C2 and G2 buildings).
Moreover we note that if ∆ is not split then it is possible that some of the diagrams in the tables
are unobtainable as the opposition diagram of an automorphism of ∆ (this will be discussed
further in future work).

We conclude this introduction with an outline of the structure of the paper. In Section 1
we provide background and expand on the definitions given above. We also outline the residue
techniques that will be used extensively throughout the paper. In Section 2 we define a class
of “admissible diagrams” via combinatorial axioms reminiscent of Tits indices. We show that
the opposition diagram of every capped automorphism is an admissible diagram, and thus we
obtain all possible opposition diagrams for capped automorphisms, proving Theorem 3. We
also provide applications to the calculation of the displacement of an automorphism, proving
Theorem 5.

The proof of Theorem 1 is divided across Sections 3 and 4. In Section 3 we prove Theorem 1
for large classical buildings (types A, B, C, and D). Most of the work here involves a series of
lemmas concerning polar spaces, which forms a natural extension and completion of the analysis
in [16]. In Section 4 we prove Theorem 1 for large exceptional buildings (types E and F). It
turns out that our residue arguments cover most cases here, with the exception of two particular
configurations in F4 and E7 buildings. In fact a large part of Section 4 is devoted to showing
that the diagram

• • • • • •
•

does not arise as an opposition diagram of any automorphism of a thick E7 building.

1 Background and definitions

Let (W,S) be a spherical Coxeter system with length function `(·) and Coxeter graph Γ =
Γ(W,S). We will adopt Bourbaki [4] conventions for the indexing of the generators of irreducible
crystallographic spherical systems. For J ⊆ S let WJ be the parabolic subgroup generated by
J , and let ΓJ = Γ(WJ , J) be the Coxeter graph of (WJ , J), a subgraph of Γ. Let w0 be the
longest element of W , and for each J ⊆ S let wJ be the longest element of WJ . Thus w0 = wS .
For each J ⊆ S the element wJ induces a diagram automorphism of ΓJ , also denoted wJ , by
swJ = w−1

J swJ . Note that for irreducible spherical Coxeter systems the automorphism w0 of Γ
is the identity except for the cases An with n ≥ 2, Dn with n odd, and E6, and in these cases w0

is the unique order 2 diagram automorphism. We also note that if the Coxeter graph of (W,S)
is disconnected then w0 is the product of the longest elements of each connected component,
and thus opposition is simply opposition on each component.

Let ∆ be a building of type (W,S). Our main references for the theory of buildings are
[1, 19], and we assume that the reader is already acquainted with the theory. Typically we
will regard spherical buildings as simplicial complexes, however at times an incidence geometry
approach is more appropriate. Let C = C(∆) denote the set of all chambers (maximal simplices)
of ∆, and let τ : ∆→ 2S be a fixed type map on the simplicial complex ∆.
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A panel of ∆ is a simplex of the form C\{v} for some chamber C and some vertex v of C.
The type of the panel C\{v} is S\{s} where s = τ(v), and we call such a panel an s-panel.
Chambers C,D are called s-adjacent if C ∩ D is an s-panel. Let δ : C × C → W be the Weyl
distance function associated to the s-adjacency relations.

Chambers C and D are opposite if and only if they are at maximal distance in the chamber
graph (with adjacency given by the union of the s-adjacency relations). Equivalently, chambers
C,D ∈ C are opposite if and only if δ(C,D) = w0. The definition of opposition extends to
arbitrary simplices as follows.

Definition 1.1. Simplices α, β of ∆ are opposite if for each chamber A containing α, there exists
a chamber B containing β such that A and B are opposite, and conversely for each chamber B′

containing β there exists a chamber A′ containing α such that A′ and B′ are opposite.

If J ⊆ S we write Jop = Jw0 = w−1
0 Jw0 (the ‘opposite type’ to J). If α and β are opposite

simplices then necessarily τ(β) = τ(α)op. Moreover, if α and β are simplices with τ(β) = τ(α)op

then α and β are opposite if and only if there exists a chamber A containing α and a chamber
B containing β such that A and B are opposite.

An automorphism of ∆ is a simplicial complex automorphism θ : ∆→ ∆. Note that θ does
not necessarily preserve types. Indeed each automorphism θ : ∆→ ∆ induces a permutation πθ
of the type set S, given by δ(C,D) = s if and only if δ(Cθ, Dθ) = sπθ , and this permutation πθ is
a diagram automorphism of the Coxeter graph Γ. When there is no risk of confusion we will often
use the symbol θ for both the automorphism of ∆ and the induced diagram automorphism πθ.
If ∆ is irreducible, then from the classification of irreducible spherical Coxeter systems we see
that θ : S → S is either:

(1) the identity, in which case θ is called a collineation (or type preserving),
(2) has order 2, in which case θ is called a duality, or
(3) has order 3, in which case θ is called a triality ; this case only occurs for type D4.

Automorphisms θ : ∆ → ∆ that induce opposition on the type set are called oppomorphisms.
For example, oppomorphisms of an E6 building are dualities, and oppomorphisms of an E7

building are collineations.
Let θ be an automorphism of ∆. The opposite geometry of θ is

Opp(θ) = {σ ∈ ∆ | σ is opposite σθ},

and the fundamental result of Leeb [8] and Abramenko and Brown [2] mentioned above is as
follows (see [6] for the generalisation to twin buildings).

Theorem 1.2 ([2, 8]). If θ is a nontrivial automorphism of a thick spherical building then
Opp(θ) is nonempty.

The following basic properties of Opp(θ) are elementary. Note that while we typically use
the notation xgh = (xg)h for group actions, it is sometimes convenient to regard gh as a function
X → X, in which case we write h ◦ g.

Lemma 1.3. Let θ be an automorphism of a spherical building ∆. Let σ ∈ Opp(θ) and J = τ(σ).
(1) The set J is stable under the diagram automorphism w0 ◦ θ.
(2) If J ′ ⊆ J is stable under w0 ◦ θ and σ′ is the type J ′ subsimplex of σ then σ′ ∈ Opp(θ).

Proof. Since σ and σθ are opposite we have τ(σ)θ = τ(σθ) = τ(σ)w0 . Thus Jθ = Jw0 and since
w2

0 = 1 we have Jθw0 = J , hence (1). If J ′ ⊆ J is stable under w0◦θ then J ′θ = J ′op. Since σ and
σθ are opposite there is a chamber A containing σ and a chamber B containing σθ with A and
B opposite. Since A contains σ′ and B contains σ′θ the simplices σ′ and σ′θ are opposite.
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The type Typ(θ) of an automorphism θ is the union of all subsets J ⊆ S such that there
exists a type J simplex mapped to an opposite simplex by θ. The opposition diagram of θ is the
triple (Γ,Typ(θ), θ), where the third component is the automorphism of Γ induced by θ.

Less formally, the opposition diagram of θ is depicted by drawing Γ and encircling the nodes
of Typ(θ), where we encircle nodes in minimal subsets invariant under w0 ◦ θ. We draw the
diagram ‘bent’ (in the standard way) if w0 ◦ θ 6= 1. For example, consider the diagrams

(a) • • •
•
•
•

(b)
• • • • •

•

Diagram (a) represents a collineation θ of an E6 building with Typ(θ) = {1, 2, 6}, and diagram
(b) represents a duality θ of an E6 building with Typ(θ) = {1, 6}.

We call an opposition diagram empty if no nodes are encircled (that is, Typ(θ) = ∅), and full
if all nodes are encircled (that is, Typ(θ) = S). The main concepts of this paper are introduced
in the following definition.

Definition 1.4. Let ∆ be a spherical building of type (W,S). Let θ be a nontrivial automor-
phism of ∆, and let J ⊆ S. Then θ is called:

(1) capped if there exists a type Typ(θ) simplex in Opp(θ), and uncapped otherwise.
(2) domestic if Opp(θ) contains no chamber.
(3) J-domestic if Opp(θ) contains no type J simplex.
(4) exceptional domestic if θ is domestic with full opposition diagram.
(5) strongly exceptional domestic if θ is domestic, but not J-domestic for any strict subset J

of S invariant under w0 ◦ θ.
Note that if θ is a domestic automorphism with w0 ◦ θ = 1 then θ is exceptional domestic if
and only if there exists a vertex of each type mapped to an opposite vertex, and θ is strongly
exceptional domestic if and only if there exists a panel of each cotype mapped to an opposite
panel (recall that a panel is a codimension 1 simplex).

If J is not stable under the diagram automorphism w0 ◦ θ then by Lemma 1.3 the automor-
phism θ is necessarily J-domestic. For example, if θ is a nontrivial collineation of a projective
plane then Opp(θ) necessarily contains neither points nor lines, and hence θ is both {1}-domestic
and {2}-domestic. However by Theorem 1.2 Opp(θ) is nonempty, and therefore must contain a
chamber, and hence θ is not domestic. For this reason we will reserve the expression “J-domestic”
for subsets J stable under w0 ◦ θ, and with this assumption it is true that J-domesticity implies
domesticity:

Lemma 1.5. If J ⊆ S is invariant under w0 ◦ θ and if θ is J-domestic, then θ is domestic.

Proof. If θ is not domestic then there is a chamber C in Opp(θ), and by Lemma 1.3 the type
J-simplex σ of C is in Opp(θ), and hence θ is not J-domestic.

Example 1.6. The simplest example of an uncapped
automorphism is as follows. Consider the Fano plane,
drawn as an incidence geometry (with type 1 vertices
represented as “points” and type 2 vertices represented
as “lines”). Let θ be the duality given by the permu-
tation θ = (1, 2, 3, 4, 5, 6, 7, 8)(9, 10)(11, 12, 13, 14), where
the points and lines are numbered as in the diagram. The
points 11 and 13 are the only points mapped to opposite
lines, and the lines 12 and 14 are the only lines mapped
to opposite points. There is no chamber mapped to an
opposite, and so θ is uncapped.

13

75

11

9

1 3

1214

10
6

8

4

2
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Note that the above example is also exceptional domestic and strongly exceptional domestic.
In fact, the concepts of uncapped, exceptional domestic, and strongly exceptional domestic are
clearly equivalent for rank 2 buildings. More generally, the connections between these concepts
are given in the following proposition.

Proposition 1.7. Let θ be a nontrivial automorphism of a spherical building ∆ of type (W,S).
(1) If θ is strongly exceptional domestic then θ is exceptional domestic.
(2) If θ is exceptional domestic then θ is uncapped.
(3) If θ is uncapped then θ is domestic.

Proof. (1) Let θ be strongly exceptional domestic. Note that ∅ 6= Typ(θ) ⊆ S is stable under
w0◦θ (since it is a union of stable subsets), and hence J = S\Typ(θ) is stable under w0◦θ. Thus,
since J 6= S, J = ∅ by the definition of strongly exceptional domestic, and hence Typ(θ) = S,
and so θ is exceptional domestic.

(2) Let θ be exceptional domestic. Then Typ(θ) = S, yet since θ is domestic there is no type
S = Typ(θ) simplex (ie, no chamber) in Opp(θ), and so θ is uncapped.

(3) Let θ be uncapped. Hence there is no type Typ(θ) simplex in Opp(θ). Thus θ is J-
domestic for the w0 ◦ θ stable set J = Typ(θ), and hence θ is domestic by Lemma 1.5.

Before continuing we make three remarks concerning the above definitions.

Remark 1.8. In general the above concepts are distinct. It is easy to find examples of domestic
automorphisms that are capped. For example symplectic polarities of projective spaces (see
Lemma 3.4), or central collineations of generalised quadrangles. It is, however, harder to find
examples of (a) uncapped automorphisms that are not exceptional domestic, and (b) exceptional
domestic automorphisms that are not strongly exceptional domestic. Examples will be provided
in future work on uncapped automorphisms of small buildings, and so for now we simply state
that the smallest building admitting an example of (a) is the polar space C4(2) of Sp8(2), and
the smallest building admitting an example of (b) is the polar space C3(2) of Sp6(2).

Remark 1.9. A group theoretic interpretation of domesticity is as follows. Let ∆ be a thick
irreducible spherical building of rank at least 3. Thus by Tits’ classification [19] the type
preserving automorphism group G = Aut(∆) admits a BN -pair, where B is the stabiliser of a
chamber C0, and N is the normaliser of an apartment containing C0. Since δ(hB, ghB) = w if
and only if h−1gh ∈ BwB we see that an automorphism g ∈ G is domestic if and only if g is
not conjugate to any element of Bw0B. In particular, since Bw0B is the “largest” double coset
in the Bruhat decomposition G =

⊔
w∈W BwB the above interpretation shows, in a loose sense,

that domestic automorphisms are relatively “rare”.

Remark 1.10. Call an automorphism θ “strongly capped” if each simplex σ ∈ Opp(θ) is
contained in a type Typ(θ) simplex of Opp(θ). This is obviously a stronger condition than
cappedness. We note that while there are many examples of automorphisms with this strongly
capped property (for example, symplectic polarities of projective spaces), there are also many
examples of automorphisms that are not strongly capped. For example, consider the projective
space A3(F) where F is any field, and let θ be the duality induced by the linear map g : e1 7→
e1 − e2, e2 7→ −e1, e3 7→ −e4, e4 7→ e3 (that is, V θ = (gV )⊥). Then θ is not domestic, for
example the chamber 〈e1〉 ⊆ 〈e1, e2 +e3〉 ⊆ 〈e1, e2 +e3, e4〉 is mapped onto an opposite chamber.
The line L = 〈e3, e4〉 is also mapped onto an opposite line, however no point on L nor plane
through L is mapped onto an opposite. The prevalence of such counter examples to “strong
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cappedness” has lead us to believe that our “weaker” notion of cappedness is the appropriate
one.

Residue arguments are used extensively in our proofs, and so we conclude this section with
a summary of the main techniques, along with an example of how they are applied. We first
briefly define residues and projections (see [1, 19] for details). The residue Res(σ) of a simplex
σ ∈ ∆ is the set of all simplices of ∆ which contain σ, together with the order relation induced
by that of ∆. Then Res(σ) is a building whose diagram is obtained from the diagram of ∆ by
removing all nodes which belong to τ(σ).

Let α be a simplex of ∆. The projection onto α is the map projα : ∆ → Res(α) defined
as follows (see [19, Section 3]). Firstly, if B is a chamber of ∆ then there is a unique chamber
A ∈ Res(α) such that `(δ(A,B)) < `(δ(A′, B)) for all chambers A′ ∈ Res(α) with A′ 6= A, and
we define projα(B) = A. In other words, projα(B) is the unique chamber A of Res(α) with the
property that every minimal length gallery from B to Res(α) ends with the chamber A. Now,
if β is an arbitrary simplex we define

projα(β) =
⋂
B

projα(B)

where the intersection is over all chambers B in Res(β). In other words, projα(β) is the unique
simplex γ of Res(α) which is maximal subject to the property that every minimal length gallery
from a chamber of Res(β) to Res(α) ends in a chamber containing γ.

Let θ be an automorphism of ∆, and suppose that σ ∈ Opp(θ). It follows from [19, Theo-
rem 3.28] that the projection map projσ : Res(σθ)→ Res(σ) is an isomorphism. Define

θσ : Res(σ)
∼−→ Res(σ) by θσ = projσ ◦ θ.

The type map induced by θσ is as follows.

Proposition 1.11. Let θ be an automorphism of a spherical building ∆ of type (W,S). Suppose
that σ ∈ Opp(θ) and let J = τ(σ). Then the type map on S\J induced by θσ is wS\J ◦ w0 ◦ θ.

Proof. This follows easily from [1, Corollary 5.116].

Example 1.12. In words, Proposition 1.11 says that to compute the induced action on the
types of S\J , compute the type map of θ, followed by opposition of the graph Γ, followed by
opposition of the graph ΓS\J . We will use this proposition many times, often without reference.
For example, consider a duality θ of a Dn building, and suppose that v ∈ Opp(θ) is a type i vertex,
with i ≤ n−2. The residue of v is a building of type Ai−1×Dn−i, and the induced automorphism
θv of Res(v) is a duality on the Ai−1 component (with the convention that duality ≡ collineation
for A1), and a duality (respectively collineation) on the Dn−i component if i is even (respectively
odd).

The following proposition is used repeatedly throughout this paper.

Proposition 1.13. [19, Proposition 3.29] Let θ be an automorphism of a spherical building ∆
and let α ∈ Opp(θ). If β ∈ Res(α) then β is opposite βθ in the building ∆ if and only if β is
opposite βθα in the building Res(α).

The following corollary facilitates inductive residue arguments.

Corollary 1.14. Let θ : ∆ → ∆ be a domestic automorphism and let σ ∈ Opp(θ). Then
θσ : Res(σ)→ Res(σ) is a domestic automorphism of the building Res(σ).
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Proof. Let J = τ(σ). If θσ is not domestic then there is a chamber σ′ of Res(σ) mapped onto an
opposite chamber by θσ. Then σ∪σ′ is a chamber of ∆, and from Proposition 1.13 this chamber
is mapped onto an opposite chamber, a contradiction.

In light of Corollary 1.14 it is natural that the theory of domesticity in rank 2 buildings (ie,
generalised polygons) plays a central role. This analysis has been undertaken in [9, 14, 17], and
since only residues of types A1×A1, A2, and B2/C2 appear as rank 2 residues of irreducible thick
spherical buildings of rank 3 or more, the relevant results are as follows.

Theorem 1.15. [9, 14, 17] Let ∆ be a thick generalised n-gon. If n is odd then no nontrivial
collineation is domestic, and if n is even then no duality is domestic. Moreover,

(1) If n = 2 then ∆ admits no exceptional domestic automorphisms.
(2) If n = 3 then ∆ admits an exceptional domestic duality if and only if ∆ is a Fano plane,

and in this case there exists a unique exceptional domestic duality up to conjugation.
(3) If n = 4 then ∆ admits an exceptional domestic collineation if and only if the generalised

quadrangle ∆ has parameters (2, 2), (2, 4), (4, 2), (3, 5), or (5, 3), and in each case there
exists a unique exceptional domestic collineation up to conjugation.

Recall that for generalised polygons an automorphism is uncapped if and only if it is ex-
ceptional domestic. Thus the above theorem shows that uncapped automorphisms of rank 2
buildings are very rare, and are restricted to “small” buildings. Theorem 1 shows that this
pattern continues into higher rank spherical buildings.

Example 1.16. We now provide a detailed example of our residue arguments by outlining how
Propositions 1.11 and 1.13 can be used to prove Theorem 1 in the case of E7 buildings. Similar
residue techniques will be used repeatedly throughout the paper, often with briefer explanations.
Recall that we adopt the Bourbaki labelling conventions:

• • • • • •
•

1

2

3 4 5 6 7

We will require the following five facts that will be proved later in the paper. The first four
facts are relatively easy, and their utility arises naturally due the presence of An, Dn, and E6

residues in an E7 building. The fifth fact is of a rather different flavour, and turns out to be
highly nontrivial.

(1) No duality of a large A2n building is domestic (Theorem 3.5).
(2) No duality of a large A2n+1 building is {2, 4, . . . , 2n}-domestic (Theorem 3.5 and Lemma 3.4).
(3) No duality of a thick Dn building is {1}-domestic (Proposition 3.16).
(4) No duality of a large E6 building is {1, 6}-domestic (Lemma 4.2 and Theorem 1.2).
(5) If θ is {3, 7}-domestic collineation of a thick E7 building then θ is either {3}-domestic or
{7}-domestic (Proposition 4.3).

Let θ be a collineation of a large E7 building ∆, and let J = Typ(θ). We are required to show
that there exists a type J simplex in Opp(θ), or equivalently that θ is not J-domestic.

We make the following claims:
(a) If either 2 ∈ J or 5 ∈ J then θ is not domestic.
(b) If either 3 ∈ J or 4 ∈ J then θ is not {1, 3, 4, 6}-domestic.
(c) If 6 ∈ J then θ is not {1, 6}-domestic.
(d) If 7 ∈ J then θ is not {1, 6, 7}-domestic.
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To prove (a), suppose first that 2 ∈ J and let v be a type 2 vertex in Opp(θ). Then the
automorphism θv of the large type A6 building Res(v) is a duality (by Proposition 1.11), and so
by (1) θv maps a chamber σ of Res(v) to an opposite chamber of Res(v). Thus by Proposition 1.13
the chamber σ ∪ {v} of ∆ is mapped onto an opposite by θ, and so θ is not domestic.

Suppose now that 5 ∈ J , and let v be a type 5 vertex of Opp(θ). Then the automorphism θv
of the type A4 ×A2 building Res(v) acts as a duality on each component (by Proposition 1.11),
and so by (1) there is a chamber σ1 (respectively σ2) of the A4 (respectively A2) component
mapped onto an opposite chamber by θv. Thus by Proposition 1.13 the chamber σ1 ∪ σ2 ∪ {v}
of ∆ is mapped onto an opposite chamber by θ, and hence the proof of (a) is complete.

To prove (b), suppose first that 4 ∈ J , and let v be a type 4 vertex of Opp(θ). Then θv is an
automorphism of a type A1×A2×A3 building acting as a duality on the A2 and A3 components
(by Proposition 1.11), and so by (1), (2), and Proposition 1.13, there is a type {1, 3}∪{6}∪{4}
simplex of ∆ mapped onto an opposite simplex. Thus θ is not {1, 3, 4, 6}-domestic.

Suppose that 3 ∈ J , and let v be a type 3 vertex of Opp(θ). Then θv acts as a duality on
the A5 component of Res(v) (by Proposition 1.11), and so by (2) θv maps a type {2, 4} simplex
of this residue to an opposite simplex. Thus by Proposition 1.13 we have 4 ∈ J , and hence by
the previous paragraph θ is not {1, 3, 4, 6}-domestic, completing the proof of (b).

To prove (c), suppose that 6 ∈ J , and let v be a type 6 vertex of Opp(θ). Then θv acts as
a duality on the D5 component of Res(v) (by Proposition 1.11), and hence by (1) and Proposi-
tion 1.13 we see that θ is not {1, 6}-domestic.

To prove (d), suppose that 7 ∈ J , and let v be a type 7 vertex of Opp(θ). Then θv acts as
a duality on the type E6 building Res(v) (by Proposition 1.11), and hence by (4) and Proposi-
tion 1.13 we see that θ is not {1, 6, 7}-domestic.

It follows statements (a), (b), (c), and (d) that the possibilities for J are J = {1}, {1, 6},
{1, 6, 7}, {1, 3, 4, 6}, or {1, 3, 4, 6, 7}, and that in the first four cases θ is capped. Thus it remains
to consider the possibility J = {1, 3, 4, 6, 7}. This case is not approachable by residue arguments
alone. However by (5) there exists a type {3, 7} simplex σ in Opp(θ), and by Proposition 1.11 the
automorphism θσ of the type A1×A4 building Res(σ) acts as a duality on the A4 component (by
Proposition 1.11). Hence by (1) and Proposition 1.13 there is a type {2, 4, 5, 6} ∪ {3, 7} simplex
in Opp(θ). In particular there is a type 2 vertex in Opp(θ), and so by (a) θ is not domestic.
Thus J = {1, 3, 4, 6, 7} is in fact impossible, completing the proof that every collineation of a
large E7 building is capped.

2 Opposition diagrams

In this section we introduce a diagram combinatorics for opposition diagrams of capped auto-
morphisms, and use this combinatorial approach to classify the possible opposition diagrams of
capped automorphisms, proving Theorem 3. We also give an application to the calculation of
displacement of a capped automorphism of a spherical building, proving Theorem 5.

2.1 Admissible diagrams

Let (W,S) be a (not necessarily irreducible) spherical Coxeter system with Coxeter graph Γ, and
let π be an automorphism of Γ. If K ⊆ S is invariant under w0 ◦ π then S\K is also invariant
under w0 ◦ π, and hence

πK = wS\K ◦ w0 ◦ π : S\K → S\K

is an automorphism of the subgraph ΓS\K .
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Let A denote the set of all triples (Γ, J, π) where Γ = Γ(W,S) is the Coxeter graph of some
spherical Coxeter system (W,S), J ⊆ S is a subset of the vertex set of Γ, and π is a graph
automorphism of Γ, such that the following axioms hold:

(1) if π 6= 1 then J 6= ∅,
(2) J is closed under the actions of both w0 and π,
(3) if K ⊆ J is closed under w0 ◦ π then (ΓS\K , J\K,πK) ∈ A.

This is an inductive definition, and thus we need to specify the permitted “base cases”. These
are taken to be (•, {}, id) and (•, {s}, id), where • is the Coxeter graph of the type A1 Coxeter
system with S = {s}.

The elements (Γ, J, π) of A are called admissible diagrams. The admissible diagram (Γ, J, π)
will be depicted by drawing the graph Γ and encircling each minimal w0 ◦ π invariant subset
of J . We draw the diagram ‘bent’ (in the standard way, c.f. Section 1) if w0 ◦ π 6= 1. We call
a diagram empty if no nodes are encircled, and full if all nodes are encircled. We note that
axiom (3) can be interpreted as saying that the set A is closed under “taking residues” in an
appropriate sense.

The connection between admissible diagrams and capped automorphisms is given in the
following elementary proposition.

Proposition 2.1. If θ is a capped automorphism of a thick spherical building of type (W,S)
then (Γ, J, π) is an admissible diagram, where Γ = Γ(W,S), J = Typ(θ), and π = πθ is the
automorphism of Γ induced by θ.

Proof. If π 6= id then θ is a nontrivial automorphism, and hence Opp(θ) 6= ∅ by Theorem 1.2.
Thus J 6= ∅.

By cappedness there exists a simplex σ of type J mapped to an opposite simplex by θ, and
so by Lemma 1.3(1) J is stable under w0 ◦ π. Moreover, since σ and σθ are opposite, σθ

−1
and

σ are also opposite, and hence there is a simplex of type Jπ
−1

mapped to an opposite by θ.
Cappedness forces Jπ

−1
= J , and hence J is stable under π. Since J is also stable under w0 ◦ π

we see that J is stable under both w0 and π.
Suppose that K ⊆ J is stable under w0 ◦ π. Then by Lemma 1.3(2) the type K subsimplex

σ′ of σ is mapped to an opposite by θ. The induced automorphism θσ′ : Res(σ′)→ Res(σ′) is an
automorphism of a building of type (WS\K , S\K) inducing πK = wS\K ◦w0 ◦ π on the type set
(see Proposition 1.11). Moreover, θσ′ is capped by Proposition 1.13. By the above paragraphs
the automorphism θσ′ satisfies conditions (1) and (2), and since θσ′ is capped we can continue
in this way until we reach a diagram with J = ∅ and then necessarily the associated diagram
automorphism is trivial. Such a diagram satisfies all three axioms, and hence the result.

We now classify the connected admissible diagrams. We first note that A has the following
obvious closure properties.

Lemma 2.2. Let (W1, S1) and (W2, S2) be disjoint spherical Coxeter systems (not necessarily
irreducible) and let (W,S) = (W1 ×W2, S1 ∪ S2). Let Γ be the Coxeter graph of (W,S), and let
Γi be the Coxeter graph of (Wi, Si) for i = 1, 2.

(1) If (Γi, Ji, πi) ∈ A for i = 1, 2, then (Γ, J1 ∪ J2, π1 ◦ π2) ∈ A.
(2) If (Γ, J, π) ∈ A and π(Si) = Si for i = 1, 2 then (Γi, J ∩ Ji, π|Si) ∈ A for i = 1, 2.
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Theorem 2.3. The elements (Γ, J, π) of A with Γ connected are as listed in Table 1–Table 5
(with π = πθ), along with Table 6 below.

Γ = H3/H4, π = id

• • •5 • • •5 • • •5 • • • •5 • • • •5 • • • •5

Table 6: Admissible diagrams for noncrystallographic types H3 and H4

Proof. One must show two things: Firstly that each of the listed diagrams are elements of A,
and secondly that the list is complete. The first task is a simple induction on rank, making use
of Lemma 2.2, and we omit the details. Thus we show that the list is complete.

Consider type An, with π = id. Minimal sets invariant under w0◦π are of the form {i, n−i+1}
with 1 ≤ i ≤ bn/2c. Suppose that J 6= ∅, and let i be minimal subject to {i, n − i + 1} ⊆ J .
Suppose that i > 1. The diagram ΓS\{i,n−i+1} is of type Ai−1 × Ai−1 × Ak for some k, and
π{i,n−i+1} interchanges the two Ai−1 components. Thus the restriction of π{i,n−i+1} to the
Ai−1 × Ai−1 subdiagram is nontrivial, contradicting Axiom (1). Thus i = 1. Let 1 ≤ j ≤ bn/2c
be maximal subject to {j, n−j+1} ⊆ J . If there is an index 1 < k < j such that {k, n−k+1} 6⊆ J
then the diagram ΓS\J contains an empty subdiagram of type Ar × Ar with πJ interchanging
the two components, a contradiction. Hence the result holds in this case.

Consider type An, with π 6= id. Thus n > 1 and J 6= ∅. For n = 2 it is clear by Axioms (1)
and (2) that the only possible admissible diagram is • • , starting an induction. The diagram
ΓS\J is empty of type An1 × · · · × Ank , and πJ = wS\J acts on each Ani by opposition. Hence
Axiom (1) forces ni = 1 for all i = 1, . . . , k. Thus if j is the maximal element of J we have
j = n− 1 or j = n. Suppose that n is odd. If j = n then ΓS\{j} has type An−1 with n− 1 even,
and by the induction hypothesis J = {1, . . . , n− 1} ∪ {n}. If j = n− 1 then by ΓS\{j} has type
An−2 × A1 and π{j} acts as opposition on the An−2 component. Thus by Lemma 2.2 and the
induction hypothesis either J = {1, 2, . . . , n−2}∪{n−1} or J = {2, 4, . . . , n−3}∪{n−1}. The
former case is impossible, because by the induction hypothesis (ΓS\{1}, J\{1}, π{1}) is not in A.
Now suppose that n is even. If j = n then by the induction hypothesis J = {1, 2, . . . , n−1}∪{n}
or J = {2, 4, . . . , n − 2} ∪ {n}. The latter case is impossible, since (Γ{2}, J\{2}, π{2}) /∈ A. If
j = n− 1 then by the induction hypothesis J = {1, 2, . . . , n− 2}∪ {n− 1}, a contradiction since
(ΓS\{1}, J\{1}, π{1}) /∈ A.

Consider type Bn = Cn, with π = id. If n = 2 then the possible admissible diagrams are
• •, • •, and • • , starting an induction. Suppose that n ≥ 3 and that J 6= ∅. Let 1 ≤ i ≤ n
be minimal subject to i ∈ J . If i > 2 then in the Ai−1 component of ΓS\{i} we obtain an empty
diagram with πS\{i} acting nontrivially, a contradiction. Thus i = 1 or i = 2. Suppose first that
i = 2. Then J contains no odd indices, for if j ∈ J is odd, then in the Aj−1 component of ΓS\{j}
we must have a full diagram (by the An analysis), contradicting i = 2. If 2j is the maximal even
index such that 2j ∈ J then every even index between 2 and 2j is encircled, otherwise we obtain
an empty Ak diagram with k > 1 with nontrivial diagram automorphism, a contradiction. Hence
if i = 2 we have J = {2, 4, . . . , 2j} for some 2j ≤ n. Now suppose that i = 1. Let j ≥ 1 be
maximal subject to j ∈ J . Then in the S\{j} residue we obtain an Aj−1 diagram with nontrivial
diagram automorphism and the first node encircled. Thus this subdiagram is full, and hence
J = {1, 2, . . . , j}.

Consider type Dn, with π = (n − 1, n). Suppose that either n − 1 ∈ J or n ∈ J . Then
{n − 1, n} ⊆ J because J is π-invariant. If n is odd then consideration of the An−1 residue
ΓS\{n} shows that J = {1, 2, . . . , n} and if n is even then consideration of the An−2 residue
ΓS\{n−1,n} shows again that J = {1, 2, . . . , n}. Thus the diagram is full.

13



Suppose now that {n− 1, n} ∩ J = ∅. Let 1 ≤ i ≤ n− 2 be maximal subject to i ∈ J . If i is
even, then the induced diagram automorphism in the Dn−i+1 component of ΓS\{i} is nontrivial
yet the diagram is empty, a contradiction. Thus i is odd, in which case the nontrivial diagram
automorphism in the Ai−1 component of ΓS\{i} forces J = {1, 2, . . . , i}.

The Dn case with π = id is similar to the Bn case, using similar reasoning to the previous
paragraph to show that if J = {1, 2, . . . , i} then i is necessarily even.

Consider type D4, with π = (1, 3, 4). Since π 6= id either 2 ∈ J or {1, 3, 4} ⊆ J . In the first
case, the residue is of type A1 × A1 × A1 with π{2} cyclically permuting the components. Thus
{1, 3, 4} is also encircled.

Consider type E6, with π = id. The minimal sets invariant under w0 ◦ π are {2}, {4}, {3, 5},
and {1, 6}. If {1, 6} ⊆ J then the diagram ΓS\{1,6} is a D4 with graph automorphism (3, 5)
(in the induced labelling), and hence 2 ∈ J by the above analysis of Dn. If {3, 5} ⊆ J then
ΓS\{3,5} is of type A2 ×A1 ×A1 with the induced diagram automorphism acting nontrivially on
the A2 component and interchanging the two A1 components, and hence J = S. If 4 ∈ J then
ΓS\{4} has an A2 × A2 subdiagram in which the induced diagram automorphism acts by the
permutation (1, 5)(3, 6). In particular we have {1, 3, 5, 6} ∩ J 6= ∅. Since J is w0-invariant we
have either {1, 6} ⊆ J or {3, 5} ⊆ J , and π{4} invariance of J\{4} implies that {1, 3, 5, 6} ⊆ J .
In particular {3, 5} ⊆ J , and so J = S by the above argument.

The remaining cases are all similar. For example consider type E7 with π = id. Note first
that if either 2 ∈ J or 5 ∈ J then necessarily J = S and the diagram is full. For if 2 ∈ J then
the diagram ΓS\{2} is of type A6 with nontrivial diagram automorphism, and is hence full, and if
5 ∈ J then the diagram ΓS\{5} is of type A4×A2 with nontrivial diagram automorphism on each
component, and hence is full. Furthermore, note that if 6 ∈ J then {1, 6} ⊆ J (because in the
residue we have a D5 with nontrivial diagram automorphism), and if 7 ∈ J then {1, 6, 7} ⊆ J
(because the E6 residue has nontrivial diagram automorphism). Finally, if either 3 ∈ J or 4 ∈ J
then {1, 3, 4, 6} ⊆ J , for if 4 ∈ J we look at the A2 × A3 component of the residue, and if 3 ∈ J
then the A5 residue implies that 4 ∈ J .

Remark 2.4. We note the following striking fact. The admissible diagrams listed in Table 1–
Table 5 are valid Tits diagrams (Tits indices) for Galois descent in groups of algebraic origin,
with the following exceptions: The first D4 diagram, the diagrams for G2 = I2(6) with π = id
and only one node circled, the diagram I2(8) with π 6= id, and obviously, due to lack of groups
of algebraic origin, the cases I2(m) with m 6= 2, 3, 4, 6, 8. The remaining diagrams are precisely
the Tits diagrams for which Galois groups of order 2 exist. Moreover, we conjecture that in
each of these cases there exists an involution with the given opposition diagram (but it is never
conjugate to any Galois involution). This provides a mysterious connection that warrants deeper
investigation.

We can now prove Theorem 3.

Proof of Theorem 3. By Proposition 2.1 the opposition diagram of a capped automorphism is
admissible. Now apply Theorem 2.3.

2.2 Displacement

We now show that the displacement of a capped automorphism can be computed from its op-
position diagram, proving Theorem 5. This fact is obviously false in general – for example,
a nondomestic duality of A2(2) has the same opposition diagram as the uncapped exceptional
domestic duality from Example 1.6. The former has displacement 3, while the latter has dis-
placement 2.
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Lemma 2.5. If θ maps a type J simplex σ to an opposite simplex, then for all chambers C
containing σ we have δ(C,Cθ) ∈WS\Jw0.

Proof. By definition there exists a chamber A containing σ and a chamber B containing σθ with
δ(A,B) = w0. Since C is contained in the S\J residue of A, and Cθ is contained in the (S\J)θ

residue of B, we have δ(C,Cθ) ∈ WS\Jw0W(S\J)θ . Since σ is mapped to an opposite simplex

we have Jθ = Jop, and thus (S\J)θ = (S\J)op. Therefore w0WS\Jw0 = W(S\J)θ and the result
follows.

The following theorem immediately implies Theorem 5.

Theorem 2.6. Let θ be a capped automorphism with diagram (Γ, J, π) and let C be a chamber.
Then `(δ(C,Cθ)) = disp(θ) if and only if δ(C,Cθ) = wS\Jw0. In particular,

disp(θ) = `(w0)− `(wS\J) = diam(W )− diam(WS\J).

Proof. Let K = S\J . Necessarily Jθ = Jop, and so Kθ = Kop. Since θ is capped there exists a
simplex σ of type J in Opp(θ). For any chamber D containing σ we have δ(D,Dθ) ∈WKw0 by
Lemma 2.5, and thus

disp(θ) ≥ `(w0)− `(wK).

Now let C be any chamber such that `(δ(C,Cθ)) is maximal. By the arguments of [2,
Lemma 2.4 and Theorem 4.2] we have δ(C,Cθ) = wK′w0 for some K ′ ⊆ S with K ′θ = K ′op.
Hence the type J ′ = S\K ′ simplex of C is mapped to an opposite simplex, and hence J ′ ⊆ J .
Thus K ′ ⊇ K, and so `(wK′) ≥ `(wK), and hence

disp(θ) = `(δ(C,Cθ)) = `(wK′w0) = `(w0)− `(wK′) ≤ `(w0)− `(wK) ≤ disp(θ),

and the result follows.

For example, the possible displacements of capped collineations of E7 buildings are 0, 33, 50,
51, 60, and 63, corresponding to the 6 opposition diagrams stated in the introduction.

3 Automorphisms of large classical buildings

In this section we prove Theorem 1 for classical buildings (types A, B = C, and D; note that
since we use Coxeter graphs rather than Dynkin diagrams, we do not make a distinction between
Bn and Cn buildings). Thus in this section we prove:

Theorem 3.1. Every automorphism of a large classical building of rank at least 3 is capped.

The case of polar spaces turns out to be particularly challenging, and requires a series of
lemmas presented in Section 3.3. We prove some of these results in greater generality than is
strictly required for this paper – for example, where possible we prove some results for small
buildings. This additional generality never requires much additional work, and will be useful in
future work on uncapped automorphisms.
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3.1 Buildings of type An

Buildings of type An play an important role in our proof techniques owing to their prevalence as
residues of spherical buildings of arbitrary type. It is therefore a pleasant and useful fact that
domesticity in buildings of type An is a very well behaved phenomenon. In this section we show
that all automorphisms of large An buildings are capped. We also prove that every exceptional
domestic duality of An(2) is strongly exceptional domestic.

Every thick building of type An with n > 2 is a projective space PG(n,K) over a division
ring K, where the type i vertices of the building are the (i − 1)-spaces of the projective space.
Thus points have type 1, lines have type 2, and so on.

Definition 3.2. Let (·, ·) be a nondegenerate symplectic form on F2n, with F a field. Write
U◦ = {v | (u, v) = 0 for all u ∈ U}. A duality θ of PG(2n− 1,F) of the form U θ = U◦ is called
a symplectic polarity.

We recall the following lemma from [15, Lemma 3.2].

Lemma 3.3. If the projective space ∆ = PG(n,K) admits a duality θ for which all points are
absolute (equivalently no type 1 vertex is mapped to an opposite), then n is odd, K is a field, and
θ is a symplectic polarity.

It is simple to show that symplectic polarities are capped. In fact we have the following
stronger result.

Lemma 3.4. If θ is a symplectic polarity of an A2n−1 building ∆ then θ is {i}-domestic for
each odd i, and each vertex mapped to an opposite vertex is contained in a type {2, 4, . . . , 2n−2}
simplex mapped to an opposite simplex.

Proof. Let ∆ = PG(2n − 1,F). Spaces U and U ′ are opposite if and only if U + U ′ = V and
U ∩ U ′ = {0}, where V = F2n. Let U be an (i − 1)-space (that is, a type i vertex). If i is odd
then the symplectic form (·, ·) defined by θ is necessarily degenerate when restricted to U , since
U has odd vector space dimension. Thus U ∩ U◦ 6= {0}, and so U + U θ 6= V , and hence θ is
{i}-domestic.

Suppose that i is even, and that the (i − 1)-space U is mapped to an opposite. Thus
U ∩ U◦ = {0}, and so (·, ·) restricted to U is nondegenerate. Hence there is a symplectic basis
e1, . . . , ei/2, f1, . . . , fi/2 of U , and extending this to a symplectic basis e1, . . . , en, f1, . . . , fn of V
we see that the flag (U2, U4, . . . , U2n) with U2j = 〈e1, . . . , ej , f1, . . . , fj〉 is mapped to an opposite
flag by θ.

Part of the following theorem is contained in [15, Theorem 3.1], however there are some
oversights there for the buildings An(2), and so we provide a proof. We extend the definition
of small buildings to include A2 buildings by declaring A2(2) “small”, and all other thick A2

buildings “large”.

Theorem 3.5. Let θ be a domestic duality of a large building of type An with n ≥ 2. Then n is
odd and θ is a symplectic polarity.

Proof. The base case n = 2 is Theorem 1.15. Suppose that n > 2 and that the result holds for
all k < n. If θ is {n}-domestic then by the dual of Lemma 3.3 n is odd and θ is a symplectic
polarity. So suppose that θ maps a type n vertex v to an opposite vertex. By Corollary 1.14
the induced automorphism θv of the An−1 building Res(v) is a domestic duality, and thus n
is even and θv is a symplectic polarity (by the induction hypothesis). Hence, by Lemma 3.4
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and Proposition 1.13, there is a type {2, n} simplex of ∆ mapped to an opposite simplex by θ.
If v′ is the type 2 vertex of this simplex then θv′ acts as a duality on the An−2 component of
Res(v′) mapping a type n vertex to an opposite (in the induced labelling). Thus by the induction
hypothesis θv′ is not domestic, and hence there is a type {2, 3, . . . , n} simplex of ∆ mapped to
an opposite by θ. By considering the residue of the type n vertex of this simplex we conclude
that θ is not domestic, a contradiction.

Corollary 3.6. Every duality of a large building of type An is capped.

Proof. Every non-domestic duality is automatically capped, and by Theorem 3.5 every domestic
duality is a symplectic polarity, and is hence capped by Lemma 3.4.

Lemma 3.7. Let n ≥ 1. No automorphism of a thick building of type An × An interchanging
the two components and acting as an involution on the type set is domestic.

Proof. If n = 1 let v be any vertex of the first component, and let v′ be a vertex of the second
component with v′ 6= vθ, vθ

−1
(by thickness). Then the chamber {v, v′} is mapped to an opposite

chamber, starting an induction. Suppose that n ≥ 2. By relabelling the types in the second
component, we may assume that the type map of θ interchanges i and n+ i for each 1 ≤ i ≤ n.
Since θ is not trivial it must map some simplex to an opposite simplex. It follows that there is a
simplex σ of type {i, n−i+1, n+1, 2n−i+1} mapped to an opposite, for some 1 ≤ i ≤ n/2. The
residue of σ is a building of type X×X where X = Ai−1 ×An−2i ×Ai−1 (with some components
of X empty if i = 1 or i = n/2), and θσ interchanges the two type X components and acts as
an involution on the types. Thus, by induction, there is a chamber of Res(σ) mapped to an
opposite chamber by θσ, and hence by Proposition 1.13 θ is not domestic on ∆.

Lemma 3.8. Let ∆ be a thick building of type An and let θ be a domestic collineation. If there
exists a simplex of type {i, n − i + 1} mapped to an opposite simplex by θ then there exists a
simplex of type {j, n− j + 1 | 1 ≤ j ≤ i} mapped to an opposite simplex by θ.

Proof. If there exists a type {i, n − i + 1} simplex σ mapped to an opposite, then the induced
automorphism of the type Ai−1×An−2i×Ai−1 building Res(σ) interchanges the Ai−1 components,
and is a collineation on the An−2i component. Thus by Lemma 3.7 there is a chamber of the
Ai−1×Ai−1 subbuilding mapped to an opposite, and the result follows from Proposition 1.13.

Corollary 3.9. Every collineation of a thick type An building is capped.

Proof. Suppose that θ is a nontrivial collineation. Let 1 ≤ i ≤ n/2 be maximal subject to there
being a type {i, n − i + 1} simplex mapped to an opposite simplex by θ. By Lemma 3.8 there
is a type {j, n− j + 1 | 1 ≤ j ≤ i} simplex mapped to an opposite, and hence θ is capped.

Hence the proof of the main theorem for buildings of type An is complete. We conclude this
section with two results on dualities of small An buildings.

Theorem 3.10. Let θ be a domestic duality of the small building ∆ = An(2) with n ≥ 2. Then
either θ is an exceptional domestic duality or n is odd and θ is a symplectic polarity.

Proof. The base case n = 2 is Theorem 1.15. Suppose that n > 2 and that the results hold for
all k < n. If θ is {n}-domestic then by the dual of Lemma 3.3 n is odd and θ is a symplectic
polarity. So suppose that θ maps a type n vertex v to an opposite vertex. By Corollary 1.14
the induced automorphism θv of the An−1 building Res(v) is a domestic duality. Then either
θv is exceptional domestic, in which case it is clear that θ is also exceptional domestic, or n is
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even and θv is a symplectic polarity. Hence there is a type {2, n} simplex of ∆ mapped to an
opposite simplex by θ. If v′ is the type 2 vertex of this simplex then θv′ acts as a duality on the
An−2 component of Res(v′) mapping a type n vertex to an opposite (in the induced labelling).
Thus θv′ is either not domestic, or θv′ is exceptional domestic, and in either case it follows that
θ is exceptional domestic.

Theorem 3.11. Every exceptional domestic duality of an An(2) building is strongly exceptional
domestic.

Proof. We begin with the following claim: If a duality θ of An(2) with n > 2 is {1, n}-domestic
then it is either {1}-domestic or {n}-domestic. We show that, if a duality θ maps a point to an
opposite, then it maps an incident point-hyperplane pair to an opposite. Thus let p be a point
mapped to an opposite, and set H = pθ. Also, set p′ = Hθ and H ′θ = p. The duality θH that
maps a point r of H onto the (n− 2)-space rθ ∩H is point-domestic (if r ∈ H were mapped to
an opposite, then {r,H} is mapped to an opposite).

Let q be a point distinct from p and not in H ∪ H ′. Then, since p /∈ H ∪ H ′, the unique
third point r on the line pq belongs to H ∩H ′. As θH is point-domestic, rθ contains r, and since
r ∈ H ′, rθ also contains p. Since pθ does not contain p, neither qθ contains p. But both pθ and
rθ contain r, hence r ∈ qθ. It follows that q /∈ qθ, so every point not in H ∪ H ′ is mapped to
an opposite. Dually, every hyperplane not containing either p or p′ is mapped to an opposite.
Since n > 2, there are at least three such hyperplanes, and thus there exists a hyperplane G
mapped to an opposite distinct from H and distinct from H ′. Suppose that G is contained in
H ∪H ′. Clearly G is not contained in H ∩H ′, so assume without loss that G contains a point
x ∈ H \ H ′. If it also contains a point x′ ∈ H ′ \ H, then the third point on the line xx′ is in
G but not in H ∪H ′, a contradiction. So G ⊆ H and G = H, a contradiction again. Hence G
contains a point r outside H ∪H ′, and then {r,G} is mapped to an opposite, hence the claim.

The result now follows by induction. If n = 2 then the two notions coincide, so suppose
that n > 2. If θ is an exceptional domestic duality then by the claim there exists a type {1, n}
simplex mapped onto an opposite simplex. In the residue of the type n vertex of this simplex we
obtain a domestic duality of An−1 mapping a type 1 vertex to an opposite. Hence this duality is
exceptional domestic, and hence strongly exceptional domestic by the induction hypothesis. It
follows, using Proposition 1.13, that there exist panels of each cotype 1, 2, . . . , n−1 of ∆ mapped
to opposites. A symmetric argument looking at the type 1 vertex gives cotype 2, 3, . . . , n panels
mapped to opposites, and hence θ is strongly exceptional domestic.

3.2 Buildings of type Bn and Dn

In this section we show that all automorphisms of large buildings of type Bn and Dn are capped.
The main additional ingredients to the residue arguments are listed in the following proposition.

Proposition 3.12. Let n ≥ 3.
(1) Let ∆ be a large building of type Bn or Dn+1 and let i < n. If θ is a {1, i}-domestic

collineation then either θ is {1}-domestic or {i}-domestic.
(2) Let ∆ be building of type Bn with thick projective space residues. If θ is a {1, n}-domestic

collineation then θ is either {1}-domestic or {n}-domestic.
(3) Let ∆ be a thick building of type Dn with n even and let θ be a collineation.

(a) If θ is {1, n}-domestic then θ is either {1}-domestic or {n}-domestic.
(b) If θ is {n− 1, n}-domestic, then θ is either {n− 1}-domestic or {n}-domestic.

(4) Let ∆ be a large building of type Dn with n odd and let θ be a collineation. If θ is
{1, n− 1, n}-domestic then θ is either {1}-domestic or {n− 1, n}-domestic.

18



Proposition 3.12 is a natural extension of the analysis of domesticity in polar spaces initiated
in [16]. The proof of the proposition is somewhat involved, and so we temporarily postpone the
proof and continue with the main theorem.

Theorem 3.13. Every collineation of a large building of type Bn with n ≥ 3 is capped.

Proof. Let θ be a nontrivial collineation, and let J = Typ(θ). Let j ∈ J be maximal, and
let v be a vertex of type j mapped to an opposite vertex by θ. If j = 1 then θ is obviously
capped. If j = 2 and J = {2} then θ is obviously capped, and if j = 2 and J = {1, 2} then by
Proposition 3.12(1) θ is capped. So assume that j ≥ 3. Then θv acts on the type Aj−1 component
of Res(v) as a duality. Suppose that j is odd. Then by Theorem 3.5 θv is not domestic on the
Aj−1 component of Res(v) and so θv maps a type {1, 2, . . . , j − 1} simplex σ of Res(v) to an
opposite. Thus by Proposition 1.13 the simplex σ ∪ {v} is mapped to an opposite simplex by θ,
and so J = {1, 2, . . . , j} and θ is capped. If j is even then either θv is non-domestic, in which
case J = {1, 2, . . . , j} and we are done as before, or θv is symplectic polarity, in which case it
follows from Lemma 3.4 and Proposition 1.13 that there is a type {2, 4, . . . , j − 2, j} simplex
mapped to an opposite by θ. If J = {2, 4, . . . , j − 2, j} then θ is capped. Otherwise there exists
j′ ∈ J odd, and then by the argument above there is a type 1 vertex mapped to an opposite.
Hence by Proposition 3.12 (1) or (2) (in the cases j < n or j = n) we have a type {1, j} simplex
mapped to an opposite simplex by θ. If v′ is the type j vertex of this simplex then θv′ acts as
a duality on the Aj−1 component of Res(v′) mapping a point to an opposite point, and thus by
Theorem 3.5 and Proposition 1.13 we have J = {1, 2, . . . , j} and θ is capped.

Theorem 3.14. Every collineation of a large building of type Dn is capped.

Proof. Let θ be a nontrivial collineation, and let J = Typ(θ). Let j ∈ J be maximal. If j ≤ n−2
then the argument from Theorem 3.13 implies that θ is capped. So suppose that j = n − 1 or
j = n. By symmetry we may suppose that j = n. Thus if n is even there is a type n vertex v
mapped to an opposite vertex, and if n is odd then there is a type {n− 1, n} simplex σ mapped
to an opposite simplex. We consider each case below.

Suppose that n is even. Then θv is a duality of the type An−1 building Res(v), and thus
by Theorem 3.5 and Proposition 1.13 there is a type {2, 4, . . . , n− 2, n} simplex mapped to an
opposite by θ. If J = {2, 4, . . . , n−2, n} then we are done. If there exists j′ ∈ J with j′ odd and
j′ ≤ n − 2 then an argument as in the proof of Theorem 3.13 implies that 1 ∈ J , and thus by
Proposition 3.12(3)(a) there is a type {1, n} simplex mapped to an opposite. If v′ is the type n
vertex of this simplex then θv′ is a duality of the An−1 building Res(v′) mapping a type 1 vertex
to an opposite. Thus θv′ is not domestic, and so θ is not domestic (by Proposition 1.13), and
hence θ is capped. If n− 1 ∈ J then by Proposition 3.12(3)(b) there is a type {n− 1, n} simplex
σ′ mapped to an opposite. Then θσ′ is a duality of the An−2 building Res(σ′), and hence by
Theorem 3.5 and Proposition 1.13 θ is not domestic, and hence is capped.

Suppose that n is odd. Then Res(σ) is an An−2 building and it follows that there is a type
{2, 4, . . . , n− 3, n− 1, n} simplex mapped to an opposite. If J = {2, 4, . . . , n− 3, n− 1, n} then
we are done. Otherwise there is j′ ∈ J with j′ ≤ n− 2 and j′ odd then as above we have 1 ∈ J .
Hence by Proposition 3.12(4) there is a type {1, n− 1, n} simplex mapped to an opposite, and
it follows that θ is not domestic, and hence is capped.

Theorem 3.15. Every duality of a large building of type Dn is capped.

Proof. Let θ be a duality, and let J = Typ(θ). Let j ∈ J be maximal. Suppose that j ≤ n− 2,
and let v be a type j vertex mapped to an opposite. If j is even then θv is a duality of the Dn−j
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component of Res(v) (note that this is true irrespective of the parity of n, see Example 1.12), and
hence maps some simplex of this residue to an opposite, contradicting maximality of j (using
Proposition 1.13). Thus j is odd. Since θv is a duality on the Aj−1 component of Res(v) it
follows from Theorem 3.5 and Proposition 1.13 that there is a type {1, 2, . . . , j} simplex mapped
to an opposite by θ, and hence J = {1, 2, . . . , j} and θ is capped.

If j = n− 1 or j = n then by symmetry we may assume that j = n. If n is odd then there
is a type n vertex v′ mapped to an opposite vertex by θ, and considering the induced duality of
the An−1 building Res(v′) and applying Theorem 3.5 and Proposition 1.13 we see that θ is not
domestic, and hence is capped. If n is even then there is a type {n − 1, n} simplex mapped to
an opposite by θ, and again we conclude that θ is not domestic, and hence capped.

A similar argument to Theorem 3.15 proves the following useful fact, which we record for
later use.

Proposition 3.16. No duality of a thick building of type Dn is {1}-domestic.

Proof. Let J = Typ(θ). Let j ∈ J be maximal. If j ≤ n− 2 then the argument of Theorem 3.15
shows that j is odd, and if v is a type j vertex mapped to an opposite then Theorem 3.10 implies
that θv is either non-domestic or exceptional domestic on the Aj−1 component of Res(v). In
either case 1 ∈ J (using Proposition 1.13). Similar arguments to Theorem 3.15 show that if
j = n− 1 or j = n then 1 ∈ J and hence the result.

The final case to consider is trialities of D4.

Theorem 3.17. Every triality of a thick building of type D4 is capped.

Proof. Let θ be a triality and let J = Typ(θ). Suppose that 2 ∈ J , and let v be a type 2 vertex
mapped to an opposite vertex. Then θv is an automorphism of a thick A1 × A1 × A1 building
cyclically permuting the components, and so clearly θv is not domestic. Hence θ is not domestic,
and hence is capped. If 2 /∈ J then J = {1, 3, 4} and θ is obviously capped.

Corollary 3.18. Every automorphism of a large building of type Bn or Dn with n ≥ 3 is capped.

Proof. This follows from Theorems 3.13, 3.14, 3.15, and 3.17.

3.3 Proof of Proposition 3.12

Of course it now remains to prove Proposition 3.12. For this purpose it is much better to work
in the geometric language of polar spaces; a brief summary can be found in [16, Section 2], see
also [5, Chapter 7].

We will always assume a polar space to have thick lines, i.e., every line contains at least three
points. We call a polar space of rank n thick if every (n − 2)-dimensional singular subspace is
contained in at least three maximal singular subspaces (of dimension n − 1), and non-thick
otherwise. In the non-thick case every (n − 2)-dimensional singular subspace is contained in
exactly two maximal singular subspaces, and there are two types of maximal singular subspaces
(members of the same type intersect each other in subspaces of even codimension). The so-called
oriflamme complex of such a polar space is then a thick building of type Dn. Conversely, every
thick building of type Dn gives rise to a non-thick polar space of rank n. Most results we will
prove in this section hold for thick and non-thick polar spaces, and we will draw conclusions for
buildings of types Bn and Dn from these results.

In the language of polar spaces it is convenient to use “(projective) dimension as a singular
subspace” rather than “type of a vertex”, and therefore there is a shift in indexing. That is,
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“i-domesticity” in the polar space indexing will mean {i+ 1}-domestic in the building indexing.
Similarly, (i, i+1)-domestic in the polar space means {i−1, i}-domestic in the building indexing.
There is an exception for polar spaces of type Dn, where there are two types of maximal singular
subspaces. These both have projective dimension n−1, and we will call them (n−1)′-spaces and
(n− 1)-spaces (corresponding to vertices of types n− 1 and n in the building). The expressions
point-domestic, line-domestic, and so on, have the obvious meanings.

If U is an i-space of a polar space we speak of the “lower residue”, consisting of all spaces
contained in U and the “upper residue”, consisting of all spaces which contain U . We write θ⊆U
and θ⊇U for the induced automorphisms of the lower and upper residue, respectively. Moreover,
it is convenient at times to use terminology like “U is domestic” and “U is non-domestic” as
short hand for “θ does not map U to an opposite” and “U is mapped to an opposite by θ”.

We begin by recalling some facts from [16]. However the proof of Theorem 3.2 of [16] makes
use of the wrong fact that if a plane π of a polar space ∆ is mapped to an opposite plane by θ
then the duality θ⊆π is not domestic (this may fail if the plane is Fano). There are two ways in
which we can revise this result: The first is to assume that the planes of ∆ are not Fano planes,
and the second is to assume that θ is plane-domestic. Hence the two revisions below.

Fact 3.19 (Lemma 3.1 of [16]). A collineation of a polar space ∆ which is both point-domestic
and line-domestic is the identity.

Fact 3.20 (Revision of Theorem 3.2 of [16]). A collineation of a polar space ∆ of rank at
least 3 without Fano plane residues which is (point, line)-domestic is either point-domestic or
line-domestic.

Fact 3.21 (Revision of Theorem 3.2 of [16]). A collineation of a polar space ∆ of rank at least 3
which is both (point, line)-domestic and plane-domestic is either point-domestic or line-domestic.

Fact 3.22 (Theorem 6.1 of [16]). A collineation of a polar space ∆ of rank n ≥ 3 which is both
i-domestic and (i+ 1)-domestic, 0 ≤ i < n− 1, fixes at least one point in every i-space.

3.3.1 Proof of Proposition 3.12(1)

Recall that we allow non-thick polar spaces, however we always assume polar spaces to have
thick lines.

Lemma 3.23. Let θ be a collineation of a polar space ∆ of rank n ≥ 3. If θ is (0, i)-domestic
with 2 ≤ i < n and i even, then θ is i-domestic.

Proof. Suppose θ is not i-domestic and let U be an i-space mapped onto an opposite. Then θ⊆U
is a point-domestic duality of U . Hence, as i ≥ 2, Lemma 3.3 implies that θ⊆U is a symplectic
polarity, contradicting i being even.

Lemma 3.24. Let θ be a collineation of a polar space ∆ of rank n ≥ 3. If θ is (0, i)-domestic
with 3 ≤ i < n− 1 and i odd then θ is (i+ `)-domestic for all odd positive ` < n− i.

Proof. Suppose θ is not (i + `)-domestic for some odd positive ` < n − i, and let U be an
(i+ `)-space mapped onto an opposite. Then θ⊆U is a domestic duality of the projective space
U . Since dimU = i+` is even, this duality is exceptional domestic (by Theorem 3.10). However,
by Theorem 3.11, every exceptional domestic duality of a projective space is strongly exceptional
domestic, contradicting the (0, i)-domesticity of θ and the fact that i+ ` ≥ 4.
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Lemma 3.25. Let θ be a collineation of a polar space of rank n ≥ 3. Let 0 ≤ i < n−1. Suppose
U and U ′ are two adjacent non-domestic i-spaces (adjacent means that they are contained in a
common (i+ 1)-space W ), and suppose that W contains a fixed point p for θ. Then the dualities
θU and θU ′ are conjugate. In particular, they are either both domestic or both non-domestic.

Proof. By the assumptions we know that p /∈ U ∩ U ′. Consider the isomorphism ϕ : U → U ′

mapping u ∈ U onto 〈p, u〉 ∩U ′. Then we show that uθUϕ = uϕθU′ , which will prove the lemma.
Now, uθU = projU u

θ = projW uθ ∩U , whereas similarly uϕθU′ = projW uϕθ ∩U ′. Since u, uϕ

and p are collinear, and since pθ = p, also uθ, uϕθ and p are collinear. Hence, since p ∈W ,

projW uθ = (uθ)⊥ ∩W = (uϕθ)⊥ ∩W = projW uϕθ,

and this set contains p. Hence (projW uθ ∩ U)ϕ = projW uϕθ ∩ U ′. This also holds if u = u′ ∈
U ∩ U ′. Hence the lemma is proved.

Lemma 3.26. Let ∆ be a projective space of dimension n ≥ 2 over some division ring K, and
let θ be a duality of ∆. Let 0 ≤ ` ≤ n − 1, with |K| > 2 if (`, n) = (0, 2), and suppose that
there exists some non-domestic flag (Vi)0≤i≤` for θ, with Vi−1 ⊆ Vi, for all i = 1, 2, . . . , `, and
dimVi = i, for all i ∈ {0, 1, . . . , `}. Let L be any line of ∆. Then there exists some non-domestic
flag (Ui)0≤i≤` for θ, with Ui−1 ⊆ Ui, for all i = 1, 2, . . . , `, dimUi = i, for all i ∈ {0, 1, . . . , `},
and L not incident with any Ui, 0 ≤ i ≤ `.

Proof. Suppose i ≤ ` is maximal with respect to the property that Vi does not contain L. Then
i is well defined since V0 does not contain L. Also, if i = ` ≥ 1, then we only need to show
that, in case V0 ∈ L, we can select a second non-domestic point U0 ∈ V1 distinct from V0. But
this follows from the fact that θV1 is not the identity (as V0 is not fixed) and hence has at least
two non-fixed points V0 and U0. So we may assume that 0 ≤ i ≤ ` − 1 or i = ` = 0. First
suppose 0 ≤ i ≤ ` − 1. We claim that there exists a non-domestic (i + 1)-space Ui+1, with
Vi ≤ Ui+1 ≤ Ui+2 (if i = `− 1, then Ui+2 = ∆), with L not contained in Ui+1.

Indeed, suppose first i ≤ `−2. The spaces Vi+2 and V θ
i intersect in a line M . Then M ∩Vi+1

is a point p and M ∩ V θ
i+1 is some point p′. Since Vi+1 is opposite V θ

i+1, we have p 6= p′. Set
Ui+1 = 〈Vi, p′〉. Then U θi+1 intersects M in a point distinct from p′ and is hence opposite Ui+1.
Thus, since 〈Vi, L〉 = Vi+1, L is not contained in Ui+1 and the claim follows.

Next, suppose i = ` − 1. If ` = n − 1, then putting Vi+2 = ∆, we can copy the argument
of the previous paragraph. So we may assume that ` ≤ n − 2. The duality in V θ

`−1 induced by

projection onto V`−1 followed by θ has a non-domestic point V` ∩ V θ
`−1. If there is any other

non-domestic point, say q, then U` = 〈V`−1, q〉 does the job.
Hence assume that a duality ϕ of a projective space Γ has at least one non-domestic point p.

We assert that there is a second one. If p 6= pϕ
2
, then pϕ

2
is a second non-domestic point.

So suppose p = pϕ
2
, that is, pϕ

−1
= pϕ. If dim Γ = 1, then the assertion is trivial since non-

domesticity is the same as non-fixed, and one cannot fix everything except precisely one point.
Hence dim Γ ≥ 2 and we can consider a line K through p. Since p /∈ pϕ, we deduce K 6⊆ Kϕ.
It follows that for at most one point r ∈ K the property r ∈ rϕ holds (and then r = K ∩Kϕ).
Hence all points on K except for this possible r are non-domestic. This completes the proof of
the claim.

If ` > 0, then an obvious induction argument now completes the proof of the lemma.
Finally, assume that i = ` = 0. Then we have to prove that not all non-domestic points

of θ are contained in the line L, given that L contains at least one such, say p, and assuming
|K| > 2 if n = 2. Let U = pθ and consider the duality ϕ defined on U by first projecting on
p and then applying θ. Since above we have shown that a duality is either point-domestic or
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has at least two non-domestic points, we may assume that every point of U is domestic. But
if U θ = p then, as above, every line through p contains at least two non-domestic points, and
we are done. Hence we may assume that U θ = r ∈ L \ (U ∪ {p}). Let L′ be a line through
p distinct from L. Since L′θ ⊆ U , there is exactly one point s on L′ such that L′ ⊆ s⊥. If
|K| > 2, then it follows that there is a point t ∈ L′ \ (U ∪ {p, s}), and it is easy to see that
t is non-domestic. Hence we may assume that |K| = 2, and consequently n ≥ 3. Suppose
L = {p, q, r} 6= L′ = {p, q′, r′}, with q, q′ ∈ U and q′ ∈ qθ (this is possible since n > 2). Since p
and r are the only non-domestic points for θ, we deduce pθ

−1
= rθ. Since q′ ∈ qθ ∩ pθ, we have

q′ ∈ rθ = pθ
−1

, and so p ∈ q′θ. Since q′ ∈ q′θ, we then have r′ ∈ q′θ. Since also r′ is domestic,
we have r′ ∈ r′θ. Then r′ ∈ q′θ ∩ r′θ = L′θ ⊆ pθ, which is a contradiction as r′ /∈ U = pθ. This
completes the proof of the lemma.

A flag (Vi)0≤i≤`, with Vi−1 ⊆ Vi, for all i = 1, 2, . . . , `, and dimVi = i, for all i ∈ {0, 1, . . . , `},
will be referred to as a flag of type [0, `].

An almost identical proof as the previous one shows the following lemma (the reason why
the exception for |K| = 2 and (`, n) = (0, 2) is not turning up is because we know that every
duality of the Fano plane contains at least two non-domestic points).

Lemma 3.27. Let ∆ be a projective space of dimension n ≥ 2 over some division ring K, and
let θ be a duality of ∆. Let 0 ≤ ` ≤ n− 1 and suppose that there exists some non-domestic flag
of type [0, `]. Let x be any point of ∆. Then there exists some non-domestic flag of type [0, `]
no element of which contains x.

Lemma 3.28. Let θ be a collineation of a polar space ∆ of rank n ≥ 3. Let 0 ≤ i < n − 2.
Suppose that there exists an i-space U0 mapped onto an opposite. Let either θ be (i, i + 1)-
and (i, i + 2)-domestic, or suppose there is an integer `, 0 ≤ ` ≤ i − 1 such that U0 contains
a non-domestic flag of type [0, `] and, whenever some i-space U is mapped onto an opposite,
and contains a non-domestic flag of type [0, `] for θ⊆U , then θ⊇U is the identity. Then every
(i+ 1)-space has a fixed point. In particular, θ is j-domestic for every j ≥ i+ 1.

Proof. By the hypothesis, θ⊇U0 is both (i+ 1)-domestic and (i+ 2)-domestic, and hence is the
identity by Fact 3.19. Thus every singular subspace W containing U0 is mapped onto the unique
singular subspace through U θ0 containing all points of W collinear to all points of U θ0 .

First we show that every (i + 1)-space containing U0 contains a fixed point. Suppose for a
contradiction that some (i+1)-space Z containing U0 contains no fixed point. Let {p} = Z∩Zθ.
Then, clearly, p ⊥ pθ. Let L be the preimage of the line ppθ. Then L is contained in Z and
contains p. Let W be an (i + 2)-space containing Z and let M be the preimage of the line
N = W ∩W θ.

We first claim that under the assumption that if |K| = 2 (where K is the division ring of the
projective space residues) then i > 2, the lines M and N intersect nontrivially. Indeed, suppose
not. Let K be the line obtained by intersecting U0 with the subspace of W generated by N
and M .

By Lemma 3.26, we can select an (i− 1)-space V0 in U0 not containing K, such that, if θ is
not both (i, i+ 1)-domestic and (i, i+ 2)-domestic, then V0 contains a non-domestic flag of type
[0, `]. Now we can easily choose an i-space U ′ in W containing V0 and disjoint from M ∪ N .
Without loss of generality, we may assume that V0 is also disjoint from L, as we can otherwise
interchange the roles of Z and another (i + 1)-space in W containing U0. Since U ′ does not
intersect M , the image U ′θ does not intersect W . Also, the subspace of W spanned by U ′ and
N is W . Hence a point a of U ′θ collinear with all of U ′ is collinear with all of W , hence with
all of U0. Hence all of U0 is collinear with all of the plane spanned by N and a, and this plane
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intersects U θ0 in some point b. Then b ∈ U θ0 is collinear with all of U0, contradicting the fact that
U0 and U θ0 are opposite. So, we have verified that U ′θ is opposite U ′. By the choice of V0, our
assumptions imply that θ⊇U ′ is the identity. Consequently, the subspace Z ′ generated by U ′ and
p is mapped onto the subspace Z ′θ generated by V θ

0 and p. Since Z ′ contains p, the subspace
Z ′θ contains pθ. And since Z ′θ also contains p, it contains Lθ. So Z ′ contains L, contradicting
our choice of Z ′. Hence p is fixed. So p ∈M ∩N and our claim is proved.

We next claim that, if N and M intersect non-trivially, then N = M and so p = pθ. Indeed,
suppose q = N ∩M . We may assume p 6= q. Then clearly q is a fixed point for θ, as the subspace
spanned by U0 and q is mapped onto the one spanned by U θ0 and q, and the intersection of the
former with M (being {q}) is mapped onto the intersection with M θ = N (also being {q}).
Now by Lemma 3.27, we can select an (i − 1)-space V0 in U0 disjoint from L, such that, if θ is
not both (i, i+ 1)-domestic and (i, i+ 2)-domestic, then V0 contains a non-domestic flag of type
[0, `]. Then we choose an i-space U ′ through V0 not containing p. Completely similar to the
previous paragraph one shows that U ′ is opposite U ′θ, that θ⊇U ′ is the identity, and that this
leads to p being fixed. Hence the claim.

This already shows that, if (|K|, `, i) 6= (2, 0, 2), then every (i+ 1)-space through U0 contains
a fixed point.

Now suppose (|K|, `, i) = (2, 0, 2). Observe that, by connectivity of the polar space U⊥0 ∩
(U θ0 )⊥, and by our previous claim, it suffices to show the existence of at least one (i+ 1)-space
(that is, a 3-space) containing U0 and containing a fixed point for θ. Note that the rank of ∆ is
at least i+ 3 = 5, and U0 is a Fano plane. There are three cases.

• Either ∆ is a symplectic polar space Bn(2) with n ≥ 5. Then ∆ is embedded, in a standard
way, into a projective space of dimension d at least 9. The perp of a plane (the subspaces
consisting of all points collinear to that pane) has dimension d− 3. Hence U⊥0 ∩ (U θ0 )⊥ has
dimension at least d − 6. Then U⊥0 ∩ (U θ0 )⊥ ∩ (U θ

2

0 )⊥ has dimension at least d − 9 ≥ 0.
Hence there exists a point x ∈ U⊥0 ∩ (U θ0 )⊥ ∩ (U θ

2

0 )⊥. Let Z be the singular subspace of
dimension i+ 1 spanned by U0 and x. Then, as before, Z is mapped onto the (i+ 1)-space
spanned by U θ0 and x. Likewise, Zθ is mapped onto the (i + 1)-space spanned by U θ

2

0

and x. It follows that xθ = (Z ∩Zθ)θ = Zθ ∩Zθ2 = x. Hence x is fixed, and the assertion
follows.

• Or ∆ is the Bn(2, 4) polar space, with n ≥ 5. Then ∆ can be represented as a quadric in
(2n+1)-dimensional projective space, with 2n+1 ≥ 11. Similarly as above, the intersection
of the perp of three planes is now a subspace π of dimension at least (2n + 1) − 9 ≥ 2.
Since no plane of the ambient projective space is disjoint with a quadric, we again obtain a
fixed point in some (i+1)-space Z containing U0. By our previous arguments, this implies
the assertion.

• Or ∆ is the non-thick polar space associated to Dn(2) with n ≥ 5. Then ∆ can be
represented as a quadric in (2n − 1)-dimensional projective space. Thus if n ≥ 6 an
argument similar to the previous bullet point applies. For the case n = 5 we have verified
the lemma by direct computation and we omit the details.

Next we show that every (i + 1)-space contains a fixed point. To that aim, we note that,
if some i-subspace U is mapped to an opposite, and if θ⊆U is conjugate to θ⊆U0 , then these
dualities have the same properties; in particular, if U0 contains a flag of type [0, `] mapped to
an opposite for θ⊆U0 , then so does U for θ⊆U , and the above part of the proof implies that every
(i+ 1)-space containing U has a fixed point.
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We assume for a contradiction that some (i+1)-space Z has no fixed point. Let k be maximal
with respect to the property that there exists an i-space U which is mapped onto an opposite,
such that θ⊆U is conjugate to θ⊆U0 , and which intersects Z in a k-space. If k = i, then the
foregoing paragraph leads to a contradiction. Now suppose k < i (note that we allow k to equal
−1). Since dimZ > dimU , we find a point x ∈ Z \ U collinear to all points of U . Let Z ′ be
the (i+ 1)-space spanned by U and x. By the previous paragraph, Z ′ has a unique fixed point
p (namely, Z ′ ∩ Z ′θ), and it is not contained in Z. In Z ′, we find at least one i-subspace U ′

containing Z ∩Z ′ and avoiding p. Now U ′ is mapped onto an opposite, θ⊆U ′ is conjugate to θ⊆U
by Lemma 3.25, and dim(U ′ ∩ Z) = dim(U ∩ Z) + 1, contradicting the maximality of k. Hence
Z contains a fixed point after all.

We now mention the special cases of Lemma 3.28 for (i, i + 1)- and (i, i + 2)-domestic
collineations. After that, we prepare a more serious application, namely, for ` = 0. An ap-
plication for ` = i−1 will be presented in [10] when we study automorphisms of small buildings.

Corollary 3.29. Let θ be a collineation of a polar space ∆ of rank n ≥ 3. Suppose that θ is both
(i, i + 1)-domestic and (i, i + 2)-domestic for some 0 ≤ i ≤ n − 3. Then either θ is i-domestic,
or every (i+ 1)-space has at least one fixed point. In particular, if θ is not i-domestic, then θ is
j-domestic for all j with i+ 1 ≤ j ≤ n− 1.

Lemma 3.30. Let θ be a collineation of a polar space ∆ of rank n ≥ 3. If θ is (0, i)-domestic,
3 ≤ i < n− 1 and i odd, but not i-domestic, then θ is (i− 1)-domestic.

Proof. Suppose for a contradiction that some (i−1)-space U is mapped onto an opposite. Since
i−1 is even, the duality θ⊆U in U is not point-domestic. Hence {0, i}-domesticity of θ implies that
no i-space containing U is mapped onto a opposite. This means that θ is (i−1, i)-domestic. Since
projective spaces of even dimension either do not admit domestic dualities, or, by Theorem 3.11,
only strongly exceptional domestic ones, θ is (i+ 1)-domestic and hence (i− 1, i+ 1)-domestic,
Lemma 3.29 implies that θ is i-domestic, a contradiction.

Lemma 3.31. Let θ be a collineation of a polar space ∆ of rank n ≥ 3. If θ is (0, i)-domestic
for some 3 ≤ i < n− 1 with i odd, but not i-domestic, then θ is (0, i− 2)-domestic.

Proof. Suppose for a contradiction that θ maps some {p, U} to an opposite, with U an (i− 2)-
space and p a point in U . Then (0, i)-domesticity of θ implies that no i-space containing U is
mapped onto an opposite. Also, by Lemma 3.30, θ is (i − 1)-domestic. Hence U satisfies the
conditions of Lemma 3.28 for ` = 0 and i replaced by i− 2. Hence every i-space contains fixed
points, which implies that θ is i-domestic, a contradiction to our hypotheses.

We are now ready to prove Proposition 3.12(1), in the following formulation:

Lemma 3.32. Let θ be a collineation of a polar space ∆ of rank n ≥ 3, assumed to be thick if
n = 3. If θ is (0, i)-domestic for some 1 ≤ i < n−1, and if the planes of ∆ are not Fano planes,
then θ is either point-domestic or i-domestic.

Proof. We argue by induction on i. If i = 1, then this is Fact 3.20. Now suppose i > 1. Suppose
that θ is not i-domestic. Then we have to show that θ is point-domestic. Lemma 3.23 implies
that i is odd. So Lemma 3.31 implies that θ is (0, i − 2)-domestic. Induction implies that θ is
either point-domestic, in which case we are done, or (i− 2)-domestic. Lemma 3.30 implies that
θ is (i− 1)-domestic. Fact 3.22 now implies that every (i− 2)-space has at least one fixed point,
and hence θ is j-domestic for i − 2 ≤ j ≤ n − 1. In particular θ is i-domestic, a contradiction.
Hence θ is point-domestic after all.
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Corollary 3.33. Let θ be a collineation of a polar space ∆ of rank n ≥ 3, assumed to be thick
if n = 3. If θ is (0, i)-domestic for some 1 ≤ i < n− 1, and also plane-domestic, then θ is either
point-domestic or i-domestic.

Proof. In view of Lemma 3.32, we only need to show this for polar spaces having Fano planes.
In the proof of Lemma 3.32, there is only one place where we need the planes not to be Fano
planes, and that is in the first step, the base of the induction. However, Fact 3.21 states that
the base is valid if θ is plane-domestic.

3.3.2 Proof of Proposition 3.12(4)

We now turn to Proposition 3.12(4). The following lemma allows us to translate ((n−1)′, (n−1))-
domesticity in the oriflamme complex (a type Dn building) to (n−2)-domesticity in the associated
non-thick polar space (a type Bn building).

Lemma 3.34. Let ∆ be a non-thick polar space of rank n with n odd. A collineation θ of ∆ is
(n−1, (n−1)′)-domestic (on the oriflamme complex) if and only if θ is (n−2)-domestic (on ∆).

Proof. Suppose that (U, V ) is an incident (n − 1, (n − 1)′) pair of subspaces of the oriflamme
complex, and that (U, V )θ is opposite (U, V ). Let W = U ∩ V be the associated (n − 2)-space
of ∆. Then U is opposite V θ and V is opposite U θ. Thus U and V θ are disjoint, and so W and
W θ are disjoint. If there is a point p of W θ collinear with all points of W then 〈p,W 〉 is either
U or V , contradicting the fact that U is opposite V θ and V is opposite U θ. Thus W and W θ

are opposite in ∆.
Conversely, suppose that W is an (n−2)-space of ∆ mapped onto an opposite space by θ. In

particular, W and W θ are disjoint. Let (U, V ) be the n− 1 and (n− 1)′-spaces associated to W .
Thus U ∩ V = W . Since n is odd and θ is a collineation the projective dimensions of U ∩ V θ

and V ∩ U θ are odd. Since W and W θ are disjoint this forces U and V θ to be disjoint, and V
and U θ to be disjoint, and hence (U, V ) is opposite (U, V )θ in the oriflamme complex.

We can now prove Proposition 3.12(4), which, in the present language, reads as follows.

Lemma 3.35. Every (0, n− 1, (n− 1)′)-domestic collineation θ of an oriflamme complex of odd
rank n with no Fano plane residues is either point-domestic or (n− 1, (n− 1)′)-domestic.

Proof. By Lemma 3.34 we see that θ is (0, n − 2)-domestic in the associated non-thick polar
space. Thus by Lemma 3.32 it follows that θ is either point-domestic or (n− 2)-domestic, hence
the result.

3.3.3 Proof of Proposition 3.12(2)

Let ∆ be a polar space of rank n ≥ 3 (recall that we only assume thick lines). By an oppomor-
phism of ∆ we shall mean
• any collineation in the thick case, and
• if ∆ is non-thick, a collineation of ∆ that induces an oppomorphism in the associated thick

building of type Dn.
The main result of this subsection is Lemma 3.36 below, from which Proposition 3.12(2) is
immediate.

Lemma 3.36. Let θ be an oppomorphism of a polar space ∆ of rank n ≥ 3. If θ is (0, n − 1)-
domestic then θ is either (n− 1)-domestic, or point-domestic.
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Note that Lemma 3.23 takes care of the case when n is odd. So we may assume that n ≥ 4
is even. Before proving Lemma 3.36 we require three additional lemmas.

Lemma 3.37. Let ∆ be a projective space of dimension n ≥ 2 over some division ring K, with
|K| > 2, and let θ be a non-domestic duality of ∆. Then the set of non-domestic points is not
contained in a hyperplane of ∆.

Proof. We give an inductive proof on n. First let n = 2. Suppose that the set of non-domestic
points is contained in the line L. Then every line not incident with Lθ is domestic. Let M 6= L
be such a line. Then it is easy to see that all points of M \ {M θ,M θ−1} are non-domestic,
contradicting the fact that only M ∩ L is possibly non-domestic and |M \ {M θ,M θ−1}| ≥ 2.

Now let n ≥ 3. Suppose that the set of non-domestic points is contained in the hyperplane
H. Select a non-domestic chamber C and let p ∈ H ∩ C. Then θp is a non-domestic duality
in the residue of p, and so not all non-domestic lines through p can be contained in H, by the
induction hypothesis. Hence there exists some non-domestic line L 3 p, with L /∈ H. All points
of L\{p} are domestic, hence satisfy qθ = 〈Lθ, q〉, which implies by exhaustion that pθ = 〈Lθ, p〉,
contradicting the fact that p is non-domestic.

Lemma 3.38. Let θ be an oppomorphism of a polar space ∆ of rank n ≥ 3. Suppose that n is
even, and that θ is (0, n− 1)-domestic. Suppose θ maps some flag {p, U} to an opposite, where
p is a point and U an (n− 3)-space. Then θ fixes pointwise either a geometric hyperplane of the
rank 2 polar space U⊥ ∩ (U θ)⊥, or θ fixes every point of this rank 2 polar space.

Proof. By (0, n − 1)-domesticity, θ⊇U is line-domestic. Hence, if ∆ is non-thick, then θ⊇U is
clearly the identity. If ∆ is thick, then θ⊇U is either the identity, or pointwise fixes a proper
geometric hyperplane with the following property: If θ⊇U fixes a line, then all points of that line
belong to that geometric hyperplane (see [17]). We note that there are three kinds of geometric
hyperplanes of a generalised quadrangle: the set of points collinear to a certain point (in which
case every fixed point is contained in a pointwise fixed line), the set of points of a large full
subquadrangle (where the adjective “full” means that the subquadrangle is a subspace and the
adjective “large” just means that it is a geometric hyperplane; also in this case every fixed
point is contained in a pointwise fixed line), and the set of points of an ovoid (i.e., a geometric
hyperplane without lines; here no point is contained in a fixed line). In the next paragraph we
will consider the case where no fixed point is contained in a fixed line. Hence this only applies to
the case of an ovoid. Since in a generalised quadrangle of order (2, 2) no nontrivial collineation
fixes an ovoid pointwise, and since a generalised quadrangle of order (2, 4) does not admit ovoids
(see [11, Theorem 1.8.3]), we may suppose that the underlying field has at least 3 elements.

Now let H be the set of points of U⊥ ∩ (U θ)⊥ that corresponds to the set of fixed points of
θ⊇U . Let x ∈ H. We first assume that θ⊇U does not fix any (n − 1)-space containing x (hence
H is an ovoid). Let Z be such an (n − 1)-space, and let W be the singular (n − 2)-subspace
containing U and x. Suppose for a contradiction that x′ := xθ 6= x. Then also x′′ := xθ

−1 6= x.
Since θ⊆U is not point-domestic (as p is non-domestic), and the underlying field has at least 3
elements, by (the dual form of) Lemma 3.37 we can find a non-domestic (n − 4)-space V ⊆ U
disjoint from the line 〈x, x′′〉, i.e. V is not through the point u := 〈x, x′′〉∩U (note that dimU > 2
or U is a line, in which case U contains at least two non-domestic points one of which must be
different from u). Since n− 4 is even, V contains a non-domestic point p0. Let W ′ 6= W be an
(n − 2)-space in Z containing U . Since U does not contain x′′, nor will W ′ contain it. Since
W ′ 6= W , the former does not contain x either (but u ∈ W ′). Hence W ′θ does not contain x,
and if some point of it is collinear with all points of W ′, then it is collinear with all points of
Z, hence belongs to Z, hence coincides with x, a contradiction. So W ′ is non-domestic. Hence
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there is a second non-domestic (n− 3)-space U0, V ⊆ U0 ⊆W ′ apart from U . Since u ∈ U and
u /∈ V , we deduce u /∈ U0. Note p0 ∈ U0. Hence θ⊇U0 is line domestic, but does not fix the line
corresponding to Z. Since Z∩Zθ = {x}, the only (n−2)-space through U0 that is possibly fixed
by θ⊇U0 is the one containing x, call it W0. Hence x ∈ W θ

0 , so x′′ ∈ W0. But then xx′′ ⊆ W0

and so xx′′ intersects U0 ⊆W ′, necessarily in u, a contradiction as we already noted above that
u /∈ U0. This contradiction shows that x = x′ = x′′.

Now we forget the previous notation and suppose that θ⊇U fixes some (n − 1)-space Z
containing x. Since Z is fixed under θ⊇U0 , for every non-domestic (n− 3)-space U0 in Z, every
(n − 2)-space containing U0 and contained in Z will be fixed by θ⊇U0 as soon as U0 contains a
non-domestic point. Following the third paragraph of the proof of Lemma 3.28 we obtain that
θ fixes x.

We conclude from the two previous paragraphs that H is pointwise fixed by θ.

Lemma 3.39. Let θ be an oppomorphism of a polar space ∆ of rank n ≥ 3. Suppose that n is
even, and that θ is (0, n− 1)-domestic. If θ is not (n− 1)-domestic then θ is (0, n− 3)-domestic
and (n− 2)-domestic.

Proof. Suppose for a contradiction that θ is not (0, n − 3)-domestic. Let Z be a non-domestic
(n−1)-space chosen in such a way that amongst all non-domestic (n−1)-spaces, k := dim(Z∩U),
with U a non-domestic (n − 3)-space containing a non-domestic point, is maximal. Note that
k is well defined by the assumption that θ is not (0, n − 3)-domestic. Suppose k < n − 3. The
following is a slight variation of the last paragraph of the proof of Lemma 3.28. Let Z ′ be the
unique (n − 1)-space containing U and intersecting Z in a (k + 2)-space. Lemma 3.38 implies
that Z ′ contains some fixed point z. Since Z is non-domestic we have z /∈ Z. Let W be the
(n − 2)-space generated by U and z, and let U ′ be any (n − 3)-space in W not through z and
intersecting Z in the (k+ 1)-space W ∩Z. Then one easily verifies that U ′ is non-domestic, and
by Lemma 3.25, U ′ contains a non-domestic point. This contradicts the maximality of k. Hence
k = n− 3 and Z contains a fixed point by Lemma 3.38. Hence Z is domestic.

These contradictions show that θ is (0, n− 3)-domestic. Suppose now an (n− 2)-space V is
non-domestic. Then, since n− 2 is even, V contains a {0, n− 3}-flag mapped to an opposite, a
contradiction. Hence θ is (n− 2)-domestic.

We can now prove Lemma 3.36, and hence Proposition 3.12(2).

Proof of Lemma 3.36. Recall that we may assume n ≥ 4 is even. Let θ be (0, n−1)-domestic, and
suppose that θ is neither point-domestic nor (n−1)-domestic. By Lemma 3.39 the automorphism
θ⊇p is i-domestic for i = n − 3, n − 2, n − 1. We take the natural number j ≤ n − 4 maximal
with respect to the property that there exists a non-domestic j-space containing a non-domestic
point (we allow j = 0). Then Lemma 3.28 for ` = 0 and i = j shows that every (j + 1)-space
contains a fixed point. Since j+ 1 ≤ n− 3, this implies that every (n− 1)-space contains a fixed
point, contradicting the assumption that θ is not (n− 1)-domestic.

3.3.4 Proof of Proposition 3.12(3)(a)

In the polar space language Proposition 3.12(3)(a) reads as follows.

Lemma 3.40. Let ∆ be the oriflamme complex of a non-thick polar space of rank n ≥ 4 with n
even. Every (0, n− 1)-domestic collineation of ∆ is either point-domestic or (n− 1)-domestic.
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Proof. Suppose some point-(n− 1)′-space pair (p, U) is mapped to an opposite. Then, since θU
is not 0-domestic, there exists some non-domestic (n− 1)-space U ′ incident with p and U . This
contradicts the (0, n−1)-domesticity of θ. Hence θ is also (0, (n−1)′)-domestic. Consequently θ
is (0, n−1)-domestic as an oppomorphism of the associated non-thick polar space. The assertion
now directly follows from Lemma 3.36.

3.3.5 Proof of Proposition 3.12(3)(b)

We now turn to Proposition 3.12(3)(b), which reads as follows.

Lemma 3.41. Let ∆ be the oriflamme complex of a non-thick polar space of rank 2n ≥ 4.
If a collineation θ of ∆ is (2n − 1, (2n − 1)′)-domestic, then it is either (2n − 1)-domestic or
(2n− 1)′-domestic.

Note that by triality, Lemma 3.40 for n = 4 proves Lemma 3.41 for n = 2. Hence we can
give an inductive proof of Lemma 3.41, where the initial step n = 2 is already done. So we may
suppose that n > 2 and that the lemma holds for ranks strictly smaller than 2n. Let θ be a
(2n− 1, (2n− 1)′)-domestic collineation.

Lemma 3.42. If U and U ′ are non-domestic (2n− 1)-spaces and (2n− 1)′-spaces, respectively,
then U ∩ U ′ is a totally singular subspace for both symplectic polarities θU and θU ′.

Proof. If U ∩ U ′ is a point, then there is nothing to prove. So suppose U ∩ U ′ has at least
dimension 2. Let for a contradiction L be a line in U ∩ U ′ which is not totally singular for θU .
Then L is non-domestic and the induction hypothesis shows that θU cannot map both U and
U ′ to opposites, a contradiction.

In particular, Lemma 3.42 implies that the dimension of the intersection of two non-domestic
maximal singular subspaces of distinct type is at most n− 1. In fact we can say much more:

Lemma 3.43. If U and U ′ are non-domestic (2n− 1)-spaces and (2n− 1)′-spaces, respectively,
then U ∩ U ′ is a point.

Proof. Suppose for a contradiction that U ∩ U ′ is a subspace V of dimension 2i, with i ≥ 1.
Then there is a (2i+ 1)-space W of U containing V and not being contained in V ⊥

′
, where ⊥′

denotes collinearity in the symplectic polar space induced in U by θU . Set T = W⊥
′ ∩ V . Then

dimT = 2i − 1, and since i ≥ 1, we see that T 6= ∅. Let Y be the unique (2n − 2)-space in U ′

all of whose points are collinear to each point of W (and note that, reciprocally, W is the set of
points of U collinear to each point of Y ). The domestic (2n− 3)-spaces of Y are precisely those
that contain the point Y θU′ ∈ Y . Hence we can select a non-domestic (2n− 3)-space Z ⊆ Y not
containing T . Then Z ∩ V is (2i− 1)-dimensional. Since U ′ ⊇ Z is non-domestic, there is some
other non-domestic (2n− 1)′-space U ′′ ⊇ Z. Since V ∩ Z ⊆ U ∩ U ′′ is (2i− 1)-dimensional, we
have dim(U ∩ U ′′) ≥ 2i. Since Z contains an (2n − 2i − 3)-dimensional subspace disjoint from
V , we have dim(U ∩U ′′) ≤ (2n− 1)− (2n− 2i− 3)− 1 = 2i+ 1. We conclude dim(U ∩U ′′) = 2i.
A point of U ∩ U ′′ is collinear to all points of Z ∪ V , hence to all points of Y , hence it belongs
to W . Obviously, if T ⊆ U ′′, then U ′ = U ′′. So U ∩ U ′′ is a 2i-space in W not containing T . If
U ∩U ′′ were totally singular for θU , then, since all points of the singular subspace T are collinear
for the symplectic polarity θU with all points of the singular subspace U ∩U ′′, the subspace W ,
which is generated by U ∩U ′′ and T (because i > 0), would be singular for θU , a contradiction.
Hence U ∩ U ′′ is not totally singular for θU , contradicting Lemma 3.42.

29



Lemma 3.44. Let U be a non-domestic (2n − 1)-space and suppose that L is a non-domestic
line in U . Let U0 be the (2n − 1)-space containing L and intersecting U θ in a (2n − 3)-space,
say W . Then U0 is non-domestic.

Proof. Suppose for a contradiction that U0 ∩ U θ0 contains a point z. Then z is collinear to all
points of Lθ ∪W . Since L is non-domestic, Lθ and W are disjoint and so they generate U θ.
Hence z ∈ U θ, and so zθ

−1 ∈ U . But as z ∈ U θ0 , we see that zθ
−1 ∈ U0. Clearly, U0 ∩ U = L.

Hence z ∈ Lθ. But Lθ ∩ (U0 ∩ U θ) = Lθ ∩W = ∅, a contradiction.

We are now ready to finish the proof of Lemma 3.41.

Proof of Lemma 3.41. Suppose for a contradiction that θ maps a (2n−1)-space U to an opposite,
and also a (2n − 1)′-space U ′. By Lemma 3.43, x = U ∩ U ′ and y = U θ ∩ U ′ are points. Note
that xθ 6= y. Hence there is a line L in (y⊥ ∩ U) \ ((xθ)⊥ \ {x}), with x ∈ L. Since L is not in
(xθ)⊥, it is non-domestic, and so is W := L⊥ ∩U θ. Lemma 3.44 implies that the (2n− 1)-space
U0 containing L ∪W is non-domestic. But it intersects U ′ is at least a line xy, contradicting
Lemma 3.43.

The proof of Proposition 3.12 is now complete.

4 Automorphisms of large exceptional buildings

In this section we conclude the proof of Theorem 1 by proving cappedness of automorphisms
of large buildings of exceptional types E6, E7, E8, and F4. We point out that in [20], where
domestic dualities of E6 buildings are investigated, the exceptional behaviour of the small E6(2)
building is overlooked. In particular, the results [20, Main Result 2.2 and Corollary 2.3] hold
for all large E6 buildings, but fail for the E6(2) building.

We first prove some elementary lemmas.

Lemma 4.1. No duality of a thick F4 building is domestic.

Proof. Suppose that θ is a domestic duality. Since θ maps some simplex to an opposite there
is either a type {1, 4} simplex σ1 mapped to an opposite simplex, or a type {2, 3} simplex
σ2 mapped to an opposite. In the former case, θσ1 is a domestic duality of a B2 building, a
contradiction (see Theorem 1.15). In the latter case, θσ2 is a domestic automorphism of an
A1 × A1 building interchanging the components, a contradiction.

Lemma 4.2. Let θ be a domestic automorphism of a large building ∆ of type X.
(1) If X = F4 and θ is a collineation then θ is {i}-domestic for all i ∈ {2, 3}.
(2) If X = E6 and θ is a duality then θ is {i}-domestic for all i ∈ {2, 3, 4, 5}.
(3) If X = E6 and θ is a collineation then θ is J-domestic for all J ∈ {{4}, {3, 5}}.
(4) If X = E7 then θ is {i}-domestic for all i ∈ {2, 5}.
(5) If X = E8 then θ is {i}-domestic for all i ∈ {2, 3, 4, 5}.

Proof. Throughout the proof we repeatedly use Proposition 1.13 without reference.
(1) If there exists a type 2 vertex v mapped to an opposite, then θv is an automorphism of

an A1 × A2 building acting as a duality on the A2 component. Hence there is a type {2, 3, 4}
simplex mapped to an opposite by θ. If σ is the type {3, 4} subsimplex of this simplex then θσ
is a domestic duality of a large A2 building, a contradiction. The argument for type 3 vertices
is dual.
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(2) Suppose that there exists a type 3 vertex v mapped to an opposite vertex. Then θv
acts as a duality on the A4 component of Res(v), and hence by Theorem 3.5 there is a type
{2, 3, 4, 5, 6} simplex of ∆ mapped to an opposite by θ. If σ is the type {2, 4, 5, 6} subsimplex of
this simplex then θσ is a domestic duality of a large A2 building, a contradiction. The argument
for type 5 vertices is dual.

If there is a type 2 vertex mapped to an opposite, then considering the type A5 residue we
see that there is a type 3 vertex mapped to an opposite (because the induced duality is either a
symplectic polarity, or is not domestic), contradicting the previous paragraph. If there is a type
4 vertex v mapped to an opposite, then θv acts as a duality on each of the A2 components of
Res(v), and hence there is a type 3 vertex mapped to an opposite, a contradiction.

(3) Suppose that there exists a type 4 vertex v mapped to an opposite by θ. Then θv is an
automorphism of an A2×A1×A2 building interchanging the two A2 components, and hence by
Lemma 3.7 there is a type {1, 3, 4, 5, 6} simplex of ∆ mapped to an opposite by θ. If σ is the
type {1, 3, 5, 6} subsimplex of this simplex then θσ is a domestic duality of a large A2 building,
a contradiction.

Suppose that there exists a type {3, 5} simplex σ mapped to an opposite simplex. Then θσ
is an automorphism of an A1×A1×A1 building interchanging two of the components. Therefore
there is a type {1, 3, 5, 6} simplex σ′ mapped to an opposite. Then θσ′ is a domestic duality of
a large A2 building, a contradiction.

(4) See Example 1.16.
(5) If there exists a type 2 vertex v mapped to an opposite then θv is a symplectic polarity of

an A7 building, and hence there exists a type {2, 3, 5, 7} simplex mapped to an opposite by θ. If
v′ is the type 3 vertex of this simplex then θv′ is an automorphism of an A1×A6 building acting
as a duality on the large A6 component, and hence there is a type {2, 3, 4, 5, 6, 7, 8} simplex
mapped to an opposite by θ. If σ is the type {2, 4, 5, 6, 7, 8} subsimplex of this simplex, we see
that θσ is a domestic duality of a large A2 building, a contradiction.

The remaining cases are similar: If there is a type 3 or 5 vertex mapped to an opposite
then by considering the residue we see that there is a type 2 vertex mapped to an opposite,
contradicting the previous paragraph. If there is a type 4 vertex mapped to an opposite then
in the residue we see that there is a type 3 vertex mapped to an opposite, contradicting the
previous sentence.

To prove cappedness of automorphisms in large F4 and E7 buildings we require two additional,
and nontrivial, facts. Note that the second statement below applies also to small E7 buildings.

Proposition 4.3.
(1) Let θ be a collineation of a large F4 building. If θ is {1, 4}-domestic then θ is either
{1}-domestic or {4}-domestic.

(2) Let θ be a collineation of a thick E7 building. If θ is {3, 7}-domestic then θ is either
{3}-domestic or {7}-domestic.

We temporarily postpone the proof of Proposition 4.3, and first show how the main theorem
readily follows.

Theorem 4.4. Every automorphism of a large building of type En or F4 is capped.

Proof. Every non-domestic automorphism is automatically capped, and hence it suffices to con-
sider only nontrivial domestic automorphisms θ. Let J be the union of all J ′ ⊆ S such that
there is a type J ′ simplex mapped to an opposite simplex by θ.
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Let ∆ be a large building of type F4. By Lemma 4.1 we may assume that θ is a nontrivial
domestic collineation, and thus by Lemma 4.2 θ is {i}-domestic for i = 2, 3. Thus J = {1}, {4},
or {1, 4}. In the first two cases θ is trivially capped, and if J = {1, 4} then Proposition 4.3(1)
implies that there is a type {1, 4} simplex mapped to an opposite, and so θ is capped.

Let θ be a domestic duality of a large E6 building. By Lemma 4.2 θ is {i}-domestic for
i ∈ {2, 3, 4, 5}. If θ maps a type 6 vertex v to an opposite then θv is a duality of a D5 building,
and hence maps a type 1 vertex to an opposite by Proposition 3.16. It follows that J = {1, 6},
and θ is capped.

Let θ be a nontrivial domestic collineation of a large E6 building. By Lemma 4.2 θ is {4}-
domestic and {3, 5}-domestic. If J = {2} then θ is trivially capped. If {1, 6} ⊆ J then there
is a type {1, 6} simplex σ mapped to an opposite simplex. Then θσ is a duality of the type D4

building Res(σ), and hence by Proposition 3.16 J = {2, 1, 6} and θ is capped.
See Example 1.16 for the details for collineations of large E7 buildings. Note that Proposi-

tion 4.3(2) is invoked at this stage.
Let θ be a nontrivial domestic collineation of a large E8 building. By Lemma 4.2 we have

J ⊆ {1, 6, 7, 8}. Basic residue arguments show that if 1 ∈ J then {1, 8} ⊆ J , and if either 6 ∈ J
or 7 ∈ J then J = {1, 6, 7, 8}. Thus J = {8}, {1, 8}, or {1, 6, 7, 8}, and the residue arguments
show that in each case θ is capped.

4.1 Proof of Proposition 4.3

It remains to prove Proposition 4.3.

4.1.1 Proof of Proposition 4.3(1)

We now prove Proposition 4.3(1). In fact it is useful to prove the following slightly stronger
version, which will also be useful for small buildings in later work (by Lemma 4.2 the {i}-
domesticity assumption for i = 2, 3 is superfluous for large F4 buildings).

Lemma 4.5. Let θ be a collineation of a thick F4 building and suppose that θ is {i}-domestic
for i = 2, 3. If θ is {1, 4}-domestic then θ is either {1}-domestic or {4}-domestic.

Recall that F4 buildings are metasymplectic spaces, with vertices of types 1, 2, 3, 4 being the
points, lines, planes, and symplecta of the space (see, for example, Chapter 18 of [13]). Hence
throughout this section we assume that θ is line-domestic and plane-domestic, and that p is a
point mapped onto an opposite point. We will show that no symplecton is mapped onto an
opposite symplecton.

Lemma 4.6. The map θp is the identity.

Proof. We assume that no lines or planes are mapped to an opposite, and the assumption
of {1, 4}-domesticity says that every symplecton containing p is domestic. Thus θp has only
domestic elements, and hence is the identity.

Lemma 4.7. Let π be a plane containing p, and let L be the projection of pθ onto π. Then Lθ

is the projection of p onto πθ, every point x of L is mapped onto the unique point on Lθ that is
collinear to x, and no point of π \ L is domestic.

Proof. Set p′ = pθ and π′ = πθ. Let L′ be the projection of p onto π′. First we claim that

L′ = Lθ. Suppose not. Let q = L∩L′θ
−1

and pick a point r on the line pq distinct from p and q.
Then r′ := rθ is not contained in L′ and so is opposite p, and hence also opposite r. Consequently
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θr exists and is the identity. Notice that qθ = Lθ ∩L′, and since qθ belongs to the unique line of
π′ not opposite pq, the point qθ is collinear to q and we have the path p ⊥ q ⊥ qθ ⊥ pθ. Now take
any line K in π containing r and not containing p. Put u = K ∩L. The projection of K onto p′

is the line p′u′, where u is the unique point on L′ collinear to u. Since θp and θr are the identity,
we have that puθ = p′u′ and (ru)θ = r′u′ and so uθ = (pu∩ru)θ = (pu)θ∩(ru)θ = p′u′∩r′u′ = u′.
Now it is also clear that L′ = Lθ and the other statements also follow easily.

Lemma 4.8. Let Σ be a symplecton containing p, and let pΣ be the projection of pθ onto Σ.
Then pθΣ = pΣ and the set of points of Σ mapped onto an opposite coincides with the set Σ \ p⊥Σ.
Also, every point of p⊥Σ ∩ Σ is mapped onto a collinear point, except for pΣ, which is fixed.

Proof. Noticing that, by the general theory (see [19]), the projection of pθ onto p⊥ ∩Σ is equal
to the projection of pΣ onto p⊥ ∩ Σ, Lemma 4.7 implies that all points of (p⊥ ∩ Σ) \ p⊥Σ are
non-domestic. Now let w be any point of Σ not collinear with pΣ. If w ⊥ p, then by Lemma 4.7,
w is non-domestic. In the other case, let M be any line in Σ through w. It is easy to see that
there exists some line M ′ through p in Σ which is, with self-explaining terminology, Σ-opposite
M . Then some point z of M ′ \ p⊥Σ is collinear to some point z′ of M \ p⊥Σ (since there are at
least three points per line). Lemma 4.7 again yields that z is non-domestic, similarly, letting z
play the role of p, z′ is non-domestic, and similarly again, w is non-domestic.

Now let q be the preimage of pΣ; so qθ = pΣ, and notice that q ∈ Σ since pΣ ∈ Σθ. Let
x ∈ q⊥ ∩ Σ be arbitrary. We claim that x is domestic. If x = q, this is obvious, so assume
x 6= q. Then xθ ⊥ qθ = pΣ ∈ Σ. By a general property of metasymplectic spaces (see [13]), xθ

is collinear to all points of a line L ⊆ Σ, and so xθ ⊥ y ⊥ x, for some point y ∈ L. Hence the
claim. So q⊥ ∩Σ ⊆ p⊥Σ ∩Σ, yielding q = pΣ as an obvious general property of polar spaces. The
rest of the statement is now obvious, in view of Lemma 4.7.

For the final lemma, we note that opposite symplecta do not contain respective points which
are collinear.

Lemma 4.9. No symplecton is mapped onto an opposite.

Proof. By the {1, 4}-domesticity assumption, no non-domestic symplecton is incident with a
non-domestic point. Let Σ be any non-domestic symplecton. Then there are two possibilities
(see Chapter 18 of [13]).

(1) p is collinear to all points of a line L ⊆ Σ: Let π be the plane through p and L. Then L
and the projection of pθ onto π have at least one point x in common, which, by Lemma 4.7,
is mapped onto a collinear point xθ. Since xθ ∈ Σθ, the latter is not opposite Σ 3 x.

(2) p is not collinear to any point of Σ: Let y be the projection of p onto Σ. Let u be the
projection of pθ onto the unique symplecton Ω containing p and y. If y /∈ u⊥, then y is
non-domestic, a contradiction as also Σ is non-domestic and as θ is {1, 4}-domestic. If
y ∈ u⊥, then by Lemma 4.8, y is either fixed (in which case y ∈ Σθ, contradicting the fact
that Σ is non-domestic) or y ⊥ yθ, again implying that Σ is domestic.

Hence in all cases we reached a contradiction, implying that no non-domestic symplecton exists.
Hence θ is either 1-domestic or 4-domestic.

33



4.1.2 Proof of Proposition 4.3(2)

Here we need to argue in the strong parapolar space P of type E7,7 associated to a building ∆
of type E7, where vertices of type 7 of ∆ correspond to points of P, and where vertices of type
3 of ∆ correspond to 5-dimensional maximal singular subspaces of P (see, for example, [13]).

Before embarking on the proof of the lemma, we need to recall some basics about P, mainly
concerning the possible mutual positions of objects like points, symplecta and maximal singular
5-spaces.

First recall that P is a strong parapolar space of diameter 3, which implies that two distinct
points p, q are either collinear (and the unique line passing through them is denoted pq), or
opposite (this is distance 3), or not collinear and contained in a unique symplecton which we
denote by Σ(p, q). In the latter case we say that p is symplectic to q.

Secondly recall that the maximal singular subspaces come in two flavours: there are 5-
dimensional maximal singular subspaces, which we shall call 5-spaces, and 6-dimensional ones,
which we shall call 6-spaces. The 5-dimensional subspaces of the 6-spaces shall be referred to as
5′-spaces. Every other singular space shall be referred to as an i-space, where i is its dimension.

Fact 4.10. Let p be a point and let Σ be a symplecton. Then exactly one of the following
possibilities occurs.

(i) p ∈ Σ (we say p and Σ are incident);
(ii) the set of points of Σ collinear with p is a 5′-space U , and U and p are contained in a

unique 6-space. All points of Σ \ U are symplectic to p. We say that p is close to Σ, or
that p and Σ are close.

(iii) There is a unique point x of Σ collinear with p; every point of Σ collinear with x is
symplectic to p, every other point of Σ is opposite p. We say that p is far from Σ, or that
p and Σ are far.

Fact 4.11. Let Σ and Σ′ be two distinct symplecta. Then exactly one of the following holds.
(i) Σ and Σ′ intersect in a 5-space. We say that Σ and Σ′ are adjacent.

(ii) Σ and Σ′ intersect in a line. We say that (Σ,Σ′) is a polar pair.
(iii) Σ ∩ Σ′ = ∅ and there exists a unique symplecton adjacent to both Σ and Σ′. We say that

(Σ,Σ′) is a special pair.
(iv) Every point of Σ is collinear to a unique point of Σ′. Then we say that Σ is opposite Σ′.

Fact 4.12. Let p be a point and let U be a 5-space. Then exactly one of the following occurs.
(i) p ∈ U .

(ii) p /∈ U and p is collinear to all points of a (unique) 4-space in U .
(iii) p is collinear to all points of a unique plane in U .
(iv) p is collinear with a unique point of U .
(v) p is symplectic to every point of a unique 4-space of U and opposite the other points of U .

From now on we assume that the point p of P is non-domestic, and put p′ = pθ. We have
to show that every 5-space is domestic. Note that two 5-spaces are opposite if and only if
every point of one 5-space is symplectic to all points of a unique 4-space of the other 5-space
and opposite the other points of the other 5-space. In particular, if two 5-spaces contain two
respective collinear points, then they are not opposite.

We begin with an easy lemma.

Lemma 4.13. The mapping θp is a symplectic polarity in the residue of p.
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Proof. The {3, 7}-domesticity immediately implies that no 4-space of the residue of p is mapped
under θp to an opposite line of the residue. Thus θp is a duality of the E6 residue, domestic on type
3 vertices, and it follows from [20] that θp is a symplectic polarity. (In fact, as mentioned above,
the main results of [20] only apply to large E6 buildings since the existence of the exceptional
domestic duality of the Fano plane was overlooked in [20]. In the case of the small building E6(2)
it is easy to see that every domestic duality is either a symplectic polarity or an exceptional
domestic duality, see [10] for details, and since the latter is not {3}-domestic the result claimed
above holds in this building too.)

The previous lemma implies that there are two types of symplecta through p: (1) a sym-
plecton Σ of the first kind satisfies Σθp ⊆ Σ, (2) a symplecton Σ of the second kind satisfies
Σθp ∩Σ = {p}. This also defines two types of lines through p: (1) lines of the first kind are lines
L for with L ⊆ Lθp and (2) lines L of the second kind satisfy L ∩ Lθp = {p}.

The well known general properties of symplectic polarities in geometries of type E6,1 imply
the following facts (see [20]).

Fact 4.14. As above, let p be a non-domestic point of P.
(i) Let L be a line through p such that L ⊆ Σ := Lθp. Then all lines of Σ through p contained

in a common plane with L are of the first kind, while all other lines through p in Σ are of
the second kind.

(ii) If a plane through p contains at least two lines through p of the first kind, then all lines
of that plane through p are of the first kind. Dually, if two distinct symplecta sharing a
5-space through p are of the first kind, then all symplecta containing that 5-space are of
the first kind.

(iii) Every plane through p contains at least one line through p of the first kind. Dually, every
5-space through p is contained in at least one symplecton of the first kind.

Lemma 4.15. Let L 3 p be any line of the first kind. Let q be the unique point of L not
opposite p′ = pθ. Let q′ be the projection of p onto Lθ. Then q ⊥ q′ = qθ. In particular, all
points of L \ {q} are non-domestic.

Proof. Since L is of the first kind, the projection Σ of Lθ onto p contains the line L and intersects
Lθ in the point q′. We see that inside Σ(p, q′), there is a unique point q of L collinear with q′,
and it is the projection of p′ onto L, since it is symplectic to p′.

Consider any plane π in Σ(p, q′) containing L. Let K be a line of π containing p and distinct
from L. Since θp is a polarity (and hence has order 2), the image Kθp contains the image
(Σ(p, q′)θp)θp = L. As before, we obtain points r on K and r′ on Kθ with r and r′ collinear.
The symp Σ(p, r′) contains π. Obviously Lθ and Kθ are contained in a plane, namely πθ. It is
the projection of Σ(p, q′) ∩ Σ(p, r′) (which is a 5-space) onto pθ. If the line (qr)θ coincides with
q′r′, then the lemma follows. Suppose now (qr)θ 6= q′r′. Then (qr)θ intersects q′r′ in some point,
and without loss of generality we may assume r′ = (qr)θ ∩ q′r′. Let u be any point in K \ {p, r}.
Then u and uθ are opposite and applying the foregoing to u instead of p yields (uq)θ = uθq′.
Hence qθ = (pq ∩ uq)θ = pθq′ ∩ uθq′ = q′, implying (qr)θ = q′r′ after all.

Lemma 4.16. Let Σ and Σ′ be two symplecta intersecting in a line L. Let u ∈ Σ and u′ ∈ Σ′

be two points. Then u and u′ are opposite if and only if no point on L is collinear with both.
Also, if u and u′ are collinear with the same unique point of L, then they are symplectic.

Proof. Clearly if some point on L is collinear with both u and u′, then u and u′ cannot be
opposite as they have distance at most 2. Now suppose u and u′ are not opposite and at the
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same time not collinear a common point on L. Then they have a unique projection v and v′,
respectively, on L, with v 6= v′. If u ⊥ u′, then Σ = Σ(u, v′) = Σ(u′, v) would contain u′,
a contradiction. Suppose u and u′ are symplectic. Let z be a point collinear to both. Then
z /∈ Σ ∪ Σ′. If u were the only point of Σ collinear with z, then by Fact 4.10, v′ is opposite z,
clearly absurd as z ⊥ u′ ⊥ v′. Hence z is close to Σ and collinear to all points of some 5′-space
U of Σ. As v′ is not collinear with u, the set of points of U collinear with v′ is a 4-space W .
Then W and u′ belong to Σ(v′, z). Hence some w ∈W is collinear with both v and u′ and thus
belongs to Σ(u′, v) = Σ′, a contradiction.

Now suppose that u and u′ are collinear with the same point r on L and not with any other
point of L. Suppose u ⊥ u′. Then u′ is collinear to all points of a 5′-space of Σ, and at least
one such point t /∈ L is collinear to all points of L. If r′ is such point distinct from r, then
t ∈ Σ(r′, u′) = Σ′, a contradiction.

Corollary 4.17. Let K be a line of P all of whose points are symplectic to p. Then there
exists a unique 5-space U such that the set of symplecta containing U coincides with the set of
symplecta containing p and a point of K.

Proof. Take two distinct points x, y on K and assume Σ(p, x) ∩ Σ(p, y) = L is a line. Since
neither of x, y is collinear to p, the points x and y are both collinear to a unique respective point
of L. Lemma 4.16 implies that x and y are either opposite or symplectic, a contradiction. Hence
Fact 4.11 yields a unique 5-space U = Σ(p, x) ∩ Σ(p, y).

Consider an arbitrary point z on K. We claim that U ⊆ Σ(p, z). Indeed, x is collinear to all
points of the 5′-space of Σ(p, y) generated by x⊥ ∩U and y. Hence x⊥ ∩U = y⊥ ∩U =: W , and
W and K are contained in a unique 6-space. This implies that z is collinear to all points of W .
This also implies W ⊆ Σ(p, z), and the claim follows.

Now, conversely, suppose some symplecton Σ contains U en assume that Σ is disjoint from
K. The subspace W and the line K generate a 6-space A; the point x is collinear to all points of
a 5′-space B and A∩B contains x and W , hence is a 5′-space. But then Σ(a, b), with a ∈ A \B
and b ∈ B \A, contains A and B, which is totally absurd.

Lemma 4.18. Let L be a line of the first kind through p. If K is the unique line concurrent
with both L and Lθ then Kθ = K.

Proof. Let q be the projection of pθ onto L and q′ the projection of p onto Lθ. Then we already
know by Lemma 4.15 that qθ = q′. So, if K 6= Kθ, then Kθ is a line in Σ′ (the projection of L
onto pθ) intersecting Σ (the projection of Lθ onto p) in the point q′ (note that Σ∩Σ′ = K). Let
u be any point of K \ {q, q′} and let y be any point in Σ collinear to u but not to q. Then yθ is
collinear to uθ on Kθ, but not to q′. Hence there is a unique point on (uy)θ collinear to q, and
we may without loss of generality assume it is yθ. Letting y play the role of p in the foregoing,
we conclude that uθ = q. So K is fixed after all.

We can already rule out some possibilities for a non-domestic 5-space.

Lemma 4.19. If U is a non-domestic 5-space of θ, then p is collinear with at most one point
of U .

Proof. By the assumption of {3, 7}-domesticity, p /∈ U . Suppose p is collinear with all points of a
line M of U . By Fact 4.14, the plane π generated by p and M contains a line L through p of the
first kind. Then L∩U either is a non-domestic point, a contradiction with the {3, 7}-domesticity,
or gets mapped under θ to a collinear point, and then U θ cannot be opposite U .
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Now we need two lemmas for polar spaces. We prove them in the most general case, even
though we only need them for polar spaces of ranks 4 and 6.

Lemma 4.20. Suppose Ω is a polar space, L a line of Ω, x a point of Ω not on L, and y a
point of Ω on L. Then there exists a point collinear with or equal to x, collinear with y, but not
collinear with all points of L.

Proof. If x ⊥ y, then considering the residue in y, we find a line through y all of whose points
are collinear with x but not with any point of L distinct from y. Any point on such line does
the job. If x is not collinear with y, then we consider the projection of x onto any line through
y not contained in a common plane with L.

Lemma 4.21. Suppose Ω is a polar space, L a line of Ω, x a point of Ω collinear with exactly
one point y of L, and K is a line of Ω not coplanar with x, not intersecting L and such that the
unique line M containing x and intersecting K in a point z is not coplanar with y. Then there
exists a point collinear with all points of K, collinear with y, and not coplanar with L.

Proof. The assumptions imply that M and L are Ω-opposite lines. Let z′ be the projection of
z onto L. Also, xy is Ω-opposite K. Let y′ be the projection of y onto K. If z′ is not collinear
to y′, then y′ satisfies our conditions. So we may assume that y′ is coplanar with L (and this in
particular implies that we may assume that the rank of Ω is at least 3). Note that the condition
that K and L are disjoint implies that y′ 6= z′.

Now there is a plane π through y Ω-opposite the plane 〈y, y′, z〉 in the residue of y. That
yields a line L′ in α coplanar with y′ but not with z′. No point of L′ \ {y} is coplanar with L
and since y and z are not collinear, there is a unique point u ∈ L′ \ {y} collinear with z, and
hence coplanar with K. The point u satisfies our requirements.

Now we can finish the proof of the {3, 7}-lemma for buildings of type E7.

Lemma 4.22. If U is a non-domestic 5-space of θ, then p is not collinear with any point of U .

Proof. Suppose p is collinear to some point z of U and set M := pz. Then by Lemma 4.19,
z is unique with this property. Hence all other points of U are symplectic to p. Considering
a line in U not through z, Corollary 4.17 combined with the third assertion of Fact 4.14 (dual
form) implies that there exists a symplecton Σ of the first kind through p and some line K
of U containing z. Let R be the projection of Σθ onto p (then R is a line of the first kind),
set y = Σθ ∩ R, and let L be the line containing y and yθ. Then Lemma 4.18 asserts that
Lθ = L. Hence, if K would intersect L, then some point of U is mapped onto a collinear one,
contradicting non-domesticity of U . So we may assume that K and L do not intersect.

If M and y were coplanar, then the first assertion of Fact 4.14 would imply that M is of
the first kind. Hence either zθ ⊥ z, contradicting U being non-domestic, or z is non-domestic
itself, contradicting the {3, 7}-domesticity assumption. So we may assume that M and y are
not coplanar.

Hence all assumptions of Lemma 4.21 are satisfied (where the current point p plays the role
of the point x in Lemma 4.21) and we conclude that there is a point u of Σ not coplanar with
L but collinear with y, and coplanar with K. Lemma 4.16 implies that u ∈ Σ and uθ ∈ Σθ are
opposite, hence u is non-domestic. But now u is collinear to all points of K ⊆ U , contradicting
Lemma 4.19, where we interchange the roles of u and p.

Lemma 4.23. Every 5-space is θ-domestic. That is, θ is {3}-domestic.
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Proof. Suppose for a contradiction that some 5-space U is non-domestic. By Lemmas 4.19
and 4.22, an in view of Fact 4.12, there is a unique 4-space W ⊆ U all of whose points are
symplectic to p, and such that all points of U \W are opposite p. Considering an arbitrary line
in W , Corollary 4.17 combined with the third assertion of Fact 4.14 (dual form) implies that
there exists a symplecton Σ of the first kind containing p and some point x of W . Let L = Σ∩Σθ

and let y be the projection of Σθ onto its projection onto p, just like in the proof of Lemma 4.22.
Note that, if x ∈ L, then U is domestic (since x is either fixed by θ, of mapped onto a collinear
point), a contradiction. Hence we may assume x /∈ L. Then we can apply Lemma 4.20 and
find a point u in Σ collinear with y, not coplanar with L and collinear with x. The point u is
non-domestic by Lemma 4.16 and the fact that y 6= yθ ∈ L. But u is collinear to the point x of
U , contradicting Lemma 4.22 by interchanging the roles of p and u.

This concludes the proof of the fact that {3, 7}-domesticity in any thick building of type E7

implies either 3-domesticity, or 7-domesticity. Hence the proof of Theorem 1 is complete.
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