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Introduction

Parabolic Hecke algebras H I arise naturally as algebras of P I bi-invariant functions on semisimple
Lie (or Kac–Moody) groups G defined over finite fields, where P I is a parabolic subgroup of type I .
As such they play an important role in the representation of these groups, in particular in studying
the representations which have a P I -fixed vector. If H I is commutative then (G, P I ) is a Gelfand pair.
In this case the representation theory of H I is considerably simplified, and this leads to powerful
results about representations of the group G . See, for example, [3,19,20] for the affine case. Thus it is
a natural question to ask when these algebras are commutative.

Hecke algebras can be defined more generally, without reference to Kac–Moody groups as follows.
Let (W , S) be a Coxeter system, and let (qs)s∈S be a family of commuting indeterminants with qs = qt
if and only if s and t are conjugate in W . The Hecke algebra is the associative Z[qs]s∈S algebra H
with free basis {T w | w ∈ W } and relations given by Eqs. (1.1) in Section 1.2. Suppose that I ⊆ S is
such that the parabolic subgroup W I = 〈{s | s ∈ I}〉 is finite. The I-parabolic Hecke algebra H I is

H I = 1IH 1I , where 1I =
∑

w∈W I

T w .
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It is these algebras (and their specialisations with qs ! 1) that we study here. We give a complete
classification of the pairs (W , I) with W irreducible such that H I is commutative.

Let us put this result into perspective by surveying known results on the commutativity of
parabolic Hecke algebras. Assume throughout that W is irreducible. Consider the spherical case (that
is, |W | < ∞). The case |S\I| = 1 (that is, W I is a maximal parabolic subgroup of W ) is classical, dat-
ing back to Iwahori [13] with proofs appearing in [8] (see also [6, Theorem 10.4.11]). It turns out that
the statement is very neat in this case: H I is commutative if and only if each minimal length W I
double coset representative is an involution. This statement does not hold in general (however we
obtain a similar equivalence in Theorem 2.2). The proof in [8] uses elegant representation theory of
the Coxeter group W , along with counting arguments, semisimplicity of the Hecke algebra, and Tits’
Deformation Theorem. These techniques do not readily generalise to the infinite case, as we lose the
counting arguments, semisimplicity, and the Deformation Theorem.

The spherical case with |S\I| = 1 is also analysed in [17] via incidence structures and permutation
representations. In particular [17, Section 4] gives a thorough analysis of the classical types, and in
[17, Section 6] the question of studying the spherical case with |S\I| > 1 is raised. It is shown in
[14, Lemma III.3.5] that if W is of type An and |S\I| > 1 then H I is noncommutative. The main
result in [2] extends this to show that if W is spherical and |S\I| > 1 then H I is noncommutative.
We give a very short proof of this fact across all Coxeter types in Section 3 (it appears to have
been previously known only for the spherical types via a case by case argument involving computer
calculations for the exceptional types).

Now suppose that W is affine (see Section 1.1). If I = S\{i} with i a special vertex then it is well
known that H I is commutative. This result is important in the representation theory of semisimple
Lie groups defined over local fields such as the p-adics (see [19,20]). The question of whether com-
mutative parabolic Hecke algebras exist in the affine case with i not a special vertex is natural, yet to
our knowledge has not been treated in the literature. It follows from our classification that there are
in fact no such commutative parabolic Hecke algebras.

Now consider the case that W is non-affine and infinite. In [16, Theorem 3.5] it is shown that
maximal parabolic Hecke algebras arising from group actions on locally finite thick buildings of
type W are noncommutative. (However there is a mistake in the proof which needs to be fixed.
Lécureux’s Lemma 3.4 only holds for simple reflections, but is used for general reflections in the
proof of his Theorem 3.5.) Such buildings can only exist if mst ∈ {2,3,4,6,8,∞} for each s, t ∈ S be-
cause the Feit–Higman Theorem restricts the possible rank 2 residues. If W is crystallographic (that
is, mst ∈ {2,3,4,6,∞}, cf. [15, p. 25]) then existence of such a building is guaranteed via Kac–Moody
theory.

In summary, it appears that the following cases are not treated in the literature: (i) |S\I| > 1
(for general Coxeter types), (ii) the affine case with I = S\{i} and i non-special, and (iii) the non-
crystallographic non-affine infinite cases. It also appears that the existing techniques do not readily
generalise to treat these cases. In this paper we give a systematic and complete classification of com-
mutative parabolic Hecke algebras. Our proof uses a uniform technique to cover all cases (including
the known cases). As a consequence it turns out that the three cases listed above give noncommuta-
tive parabolic Hecke algebras.

Let us briefly outline the structure of this paper. Section 1 gives standard definitions and back-
ground on Coxeter groups and Hecke algebras, and in Section 2 we state our classification theorem
(Theorem 2.1). We also develop some elementary tests for commutativity and noncommutativity that
will be used in Section 3, where we give the proof of the classification theorem. The proof has two
parts. First we prove that those cases listed in Theorem 2.1 give rise to commutative parabolic Hecke
algebras. This is achieved using Lemma 2.5, which is inspired by the statement of [8, Theorem 3.1].
Next we show that all remaining cases are noncommutative. This involves some Coxeter graph combi-
natorics to reduce the analysis to a finite number of cases. In each of these cases a word in the Coxeter
group is exhibited, which when fed into our noncommutativity test (Proposition 2.8) proves that the
parabolic Hecke algebra is noncommutative. We note that in order to apply our word arguments and
diagram combinatorics to the general infinite cases, it is in fact necessary to give our elementary
proof of the known noncommutative spherical cases. In Appendix A we make some comments on the
structure of double cosets, and list the words we used to deduce noncommutativity.
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1. Definitions

This section recalls some standard definitions and results on Coxeter groups, Hecke algebras, and
specialisations of Hecke algebras. Standard references include [1,4,12,18].

1.1. Coxeter groups

A Coxeter system (W , S) is a group W generated by a set S with relations

(st)mst = 1 for all s, t ∈ S,

where mss = 1 and mst ∈ Z!2 ∪ {∞} for all s (= t . If mst = ∞ then it is understood that there is no
relation between s and t . We will always assume that |S| is finite. The Coxeter matrix of (W , S) is
M = (mst). Let M ′ = (cst) be the matrix with cst = − cos(π/mst).

The length "(w) of w ∈ W is

"(w) = min{n ∈ N | w = s1 · · · sn with s1, . . . , sn ∈ S}.

An expression w = s1 · · · sn with n = "(w) is called a reduced expression for w .
The Coxeter graph (or Coxeter diagram) of (W , S) is the graph with vertex set S and with s, t ∈ S

joined by an edge if and only if mst ! 3. If mst ! 4 then the corresponding edge is labelled by mst .
A Coxeter system (W , S) is irreducible if its Coxeter graph is connected.

Finite Coxeter groups are called spherical Coxeter groups. These are precisely the Coxeter groups
whose matrix M ′ is positive definite. The irreducible spherical Coxeter groups are classified (see
[7,4,12]).

Coxeter groups which are not finite but contain a normal abelian subgroup such that the cor-
responding quotient group is finite are called affine Coxeter groups. These are precisely the Coxeter
groups whose matrix M ′ is positive semidefinite but not positive definite. The irreducible affine Cox-
eter groups are classified (see [4,12]). In each case the Coxeter graph of an irreducible affine Coxeter
group is obtained from the Coxeter matrix of an irreducible spherical Coxeter graph by adding one
extra vertex (usually labelled 0). The vertices of the affine Coxeter graph which are in the orbit of 0
under the action of the group of diagram automorphisms are called the special vertices.

When it is necessary to fix a labelling of the generators of a spherical or affine Coxeter group we
will adopt the conventions from [4]. The Bruhat partial order " on a Coxeter system (W , S) can be
described as follows. If v, w ∈ W then v " w if and only if there is a reduced expression w = s1 · · · sn
such that v is equal to a subexpression of s1 · · · sn (that is, an expression obtained by deleting factors).
If v " w then v is equal to a subexpression of every reduced expression of w . The deletion condition
says that if w = s1 · · · sn with n > "(w) then there exist indices i < j such that w = s1 · · · ŝi · · · ŝ j · · · sn ,
where ŝ indicates that the factor s is omitted. The deletion condition holds for Coxeter groups (in fact
it characterises them).

For I ⊆ S let W I be the subgroup of W generated by I . Each double coset W I wW I has a unique
minimal length representative [1, Proposition 2.23]. This representative is called I-reduced, and we let

R I = {w ∈ W | w is I-reduced}.

Thus R I indexes the decomposition of W into W I wW I double cosets. It is useful to note that a
reduced expression for w ∈ R I cannot start or end with a letter in I . In particular, if S\I = {s} then
every reduced expression for w ∈ R I must start and end with s.

A subset I ⊆ S is spherical if the group W I is finite. Coxeter systems (W , S) such that there exists a
spherical subset I = S\{i} are called nearly finite Coxeter groups in [10]. This class includes the spherical
and irreducible affine groups, but also many more Coxeter groups.
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1.2. Hecke algebras

Let (W , S) be a Coxeter system, and let qs , s ∈ S , be commuting indeterminants such that qs = qt
if and only if s and t are conjugate in W . Let R = Z[qs]s∈S be the polynomial ring in qs , s ∈ S , with
integer coefficients. The condition on the parameters implies that the expression qw = qs1 · · ·qs" ∈ R
does not depend on the particular choice of reduced expression w = s1 · · · s" .

The Hecke algebra H = H (W , S) is the associative R-algebra with free basis {T w | w ∈ W } (as
an R-module) and multiplication laws

T w Ts =
{

T ws if "(ws) = "(w) + 1,

qs T ws + (qs − 1)T w if "(ws) = "(w) − 1.
(1.1)

If I is a spherical subset of S then the element

1I =
∑

w∈W I

T w

is in H (since the sum is finite). This element has the following attractive properties, where for finite
subsets X ⊆ W the Poincaré polynomial of X is X(q) = ∑

w∈X qw .

Lemma 1.1. The element 1I satisfies T w 1I = 1I T w = qw 1I for all w ∈ W I , and 12
I = W I (q)1I .

Proof. By induction it suffices to show that Ts1I = 1I T s = qs1I for each s ∈ I . We have

1I T s =
∑

w∈W I

T w Ts.

Split the sum into two parts, over the sets W ±
I = {w ∈ W I | "(ws) = "(w) ± 1}. Using the defining

relations (1.1) and the fact that W +
I s = W −

I shows that 1I T s = qs1I . The Ts1I case is similar, using
the formula Ts T w = qs Tsw + (qs − 1)T w if "(sw) = "(w) − 1 (which follows from (1.1)). The fact that
12

I = W I (q)1I follows immediately. !

The structure constants cu,v;w ∈ Z[qs]s∈S of H relative to the basis {T w | w ∈ W } are defined by
the equations

Tu T v =
∑

w∈W

cu,v;w T w for all u, v ∈ W . (1.2)

Lemma 1.2. The structure constants cu,v;w are polynomials in {qs − 1 | s ∈ S} with nonnegative integer coef-
ficients.

Proof. Induction on "(v), with "(v) = 0 trivial. If "(vs) = "(v) + 1 then Tu T vs = (Tu T v )Ts . Expanding
the left-hand side of this equation using (1.2) and the right-hand side using (1.2) and (1.1) gives

cu,vs;w =
{

cu,v;wsqs if "(ws) = "(w) + 1,

cu,v;ws + cu,v;w(qs − 1) if "(ws) = "(w) − 1.

By the induction hypothesis cu,v;w and cu,v;ws are polynomials in {qs − 1 | s ∈ S} with nonnegative
integer coefficients, and so cu,vs;w is too (since qs = 1 + (qs − 1)). !
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1.3. Parabolic Hecke algebras

Let H be the Hecke algebra with Coxeter system (W , S) and let I ⊆ S be spherical. The I-parabolic
Hecke algebra is

H I = 1IH 1I .

We note that in general H I is not unital (as W I (q) is not an invertible element of Z[qs]s∈S ).
Let I be spherical and let w ∈ R I be I-reduced. We define

T I
w = W I (q)

W I∩w I w−1(q)
1I T w 1I .

The Poincaré polynomial W I (q) is divisible by W I∩w I w−1 (q) (this follows from Eq. (1.3) below and
statement (a) immediately following (1.3)), and so the quotient is really an element of the coefficient
ring R = Z[qs]s∈S .

The set {T I
w | w ∈ R I } is a linear basis for H I (Proposition 1.3). Let cI

u,v;w , u, v, w ∈ R I , be the
structure constants of H I relative to this basis, defined by the equations

T I
u T I

v =
∑

w∈R I

cI
u,v;w T I

w for u, v ∈ R I .

If I = ∅ then 1I = 1 (the identity in H ), and so T I
w = T w and H I = H . Thus c∅

u,v;w = cu,v;w are
the structure constants appearing in (1.2). Part (ii) of the following proposition relates the structure
constants cI

u,v;w to the more elementary structure constants cu,v;w .

Proposition 1.3. Let I ⊆ S be spherical.

(i) For w ∈ R I we have

T I
w = W I (q)

∑

z∈W I wW I

T z,

and {T I
w | w ∈ R I } is a linear basis for H I .

(ii) Let u, v, w ∈ R I . For any z ∈ W I wW I we have

cI
u,v;w = W I (q)

∑

x∈W I uW I
y∈W I vW I

cx,y;z.

Proof. Let W I,w be the subgroup of W I stabilising wW I under left multiplication, and let MI,w be
a fixed set of minimal length representatives of cosets in W I/W I,w . Notice that s ∈ S ∩ W I,w if and
only if s ∈ W I and s ∈ wW I w−1, and hence (see [1, Lemma 2.25])

W I,w = W I ∩ wW I w−1 = W I∩w I w−1 . (1.3)

If w ∈ R I then (see [1, §2.3.2]):

(a) Each u ∈ W I can be written in exactly one way as u = xy with x ∈ MI,w and y ∈ W I,w . Moreover
"(u) = "(x) + "(y) for any such expression.
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(b) Each v ∈ W I wW I can be written in exactly one way as v = xwy with x ∈ MI,w and y ∈ W I .
Moreover "(v) = "(x) + "(w) + "(y) for any such expression.

Using (a) we have

1I T w 1I =
∑

u∈W I

Tu T w 1I =
∑

x∈MI,w

∑

y∈W I,w

TxT y T w 1I .

Since w is I-reduced we have "(yw) = "(y) + "(w) for each y ∈ W I,w , and yw = wy′ for some
y′ ∈ W I with "(wy′) = "(w) + "(y′). This implies that qy′ = qy , and (1.1) and Lemma 1.1 give

T y T w 1I = T yw 1I = T wy′1I = T w T y′ 1I = qy T w 1I .

Thus by (1.3) we have
∑

y∈W I,w
TxT y T w 1I = W I∩w I w−1 (q)TxT w 1I , and hence by (b) we compute

T I
w = W I (q)

∑

x∈MI,w

TxT w 1I = W I (q)
∑

x∈MI,w

∑

y∈W I

TxT w T y = W I (q)
∑

z∈W I wW I

T z.

This formula shows that {T I
w | w ∈ R I } is a linearly independent set (since double cosets are either

equal or disjoint, and {T w | w ∈ W } is a basis for H ). It also spans H I , for if z ∈ W then z ∈ W I wW I
for some w ∈ R I , and since w is I-reduced we have z = xwy with x ∈ W I , y ∈ W I , and "(z) =
"(x) + "(w) + "(y). Then using (1.1) and Lemma 1.1 we have 1I T z1I = 1I TxT w T y1I = qxqy1I T w 1I .
This completes the proof of (i).

To prove (ii) we use (i) and the expansion TxT y = ∑
z cx,y;z T z to write

T I
u T I

v = W I (q)2
∑

x∈W I uW I
y∈W I vW I

TxT y = W I (q)2
∑

z∈W

( ∑

x∈W I uW I
y∈W I vW I

cx,y;z

)
T z.

On the other hand we have

T I
u T I

v =
∑

w∈R I

cI
u,v;w T I

w = W I (q)
∑

w∈R I

(
cI

u,v;w

∑

z∈W I wW I

T z

)
.

The result follows by comparing coefficients of T z in these expressions. !

Remark 1.4. The structure constants cI
u,v;w in the spherical case are studied in [5] and [11]. In the

affine case formulae are available using positively folded alcove walks (see [22]).

1.4. Specialisations of the Hecke algebra

One is often interested in specialisations of the Hecke algebra, where the parameters qs , s ∈ S , are
chosen to be specific complex numbers. Let us briefly describe this construction. Let τ = (τs)s∈S be a
sequence of complex numbers with τs = τt whenever s and t are conjugate in W . Let ψ : R → C be
the ring homomorphism given by ψ(qs) = τs for each s ∈ S . Then C becomes a (C,R)-bimodule via
(λ,µ, x) .→ λµψ(x) for all λ,µ ∈ C and x ∈ R. The specialised Hecke algebra is Hτ = C ⊗R H . This
is an algebra over C with basis {1 ⊗ T w | w ∈ W }. Note that the specialisation of H with τs = 1 for
all s ∈ S is equal to the group algebra of W .

Let H I
τ be the specialisation of H I with parameters τ = (τs). Our classification of commuta-

tive parabolic Hecke algebras applies to the ‘generic’ parabolic Hecke algebras H I (defined over
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Z[qs]s∈S ) and to the specialisations H I
τ with τs ∈ R and τs ! 1 for all s ∈ S . Potential problems

arise for other values of τs , since our argument in Corollary 2.7, which relies on Corollary 1.5 below,
breaks down.

The structure constants of the specialised algebra H I
τ are obtained by applying the evaluation ho-

momorphism ψ : Z[qs]s∈S → C with ψ(qs) = τs to the structure constants of the generic algebra H I .

Corollary 1.5. If τs ! 1 for all s ∈ S then ψ(cI
u,v;w) ! 0, and if the constant term of cu,v;w when written as a

polynomial in the variables qs − 1 is nonzero then ψ(cI
u,v;w) > 0.

Proof. By Lemma 1.2 the claim is true for I = ∅ (where cI
u,v;w = cu,v;w ), and by Proposition 1.3 we

see that the claim holds for general (spherical) I , since W I (τ ) > 0 if τs ! 1 for all s ∈ S . !

Remark 1.6. If τs = pn for all s ∈ S with p a prime then Hτ ∼= Cc(B\G/B). Here G is a Kac–Moody
group of type W over the finite field Fpn (see [23]), B is the standard Borel subgroup of G , and
Cc(B\G/B) is the convolution algebra of B bi-invariant functions f : G → C supported on finitely
many B double cosets. For such a Kac–Moody group to exist it is necessary and sufficient that mst ∈
{2,3,4,6,∞} for each s, t ∈ S (see [15, Proposition 1.3.21]). Similarly H I

τ
∼= Cc(P I\G/P I ) where P I is

the standard I-parabolic subgroup P I = ⊔
w∈W I

B w B .

Remark 1.7. Suppose that τs = τ for all s ∈ S . If W is spherical then Hτ is isomorphic to the group
algebra of W for all values of τ ∈ C× except for roots of the Poincaré polynomial W (τ ) [9, §68A].
This statement is usually not true for infinite Coxeter groups W (see [24, §11.7]).

2. Commutativity of HHH I

2.1. Statement of results

The following classification theorem is the main result of this paper. The proof is given in the next
section after giving some preliminary observations in this section. We use Bourbaki [4] conventions
for the labelling of the nodes of spherical and affine Coxeter systems. In the H3 and H4 cases (where
there is no explicit labelling given in [4]) we take m12 = 3 and m23 = 5 in the H3 case, and m12 =
m23 = 3 and m34 = 5 in the H4 case.

If Xn is a spherical Coxeter diagram and if i is a vertex of Xn then we write Xn,i to denote the
case where (W , S) has type Xn and I = S\{i}. Similarly if X̃n is an affine diagram then the notation
X̃n,i means that (W , S) has type X̃n and I = S\{i}.

Theorem 2.1. Let (W , S) be irreducible, let I ⊆ S be spherical, and let τ = (τs) with τs ! 1 for each s ∈ S. The
I-parabolic Hecke algebras H I and H I

τ are noncommutative if |S\I| > 1. If I = S\{i} then H I and H I
τ are

commutative in the cases

• An,i (1 " i " n), Bn,i (1 " i " n), Dn,i (1 " i " n/2 or i = n − 1,n), E6,1 , E6,2 , E6,6 , E7,1 , E7,2 , E7,7 ,
E8,1 , E8,8 , F4,1 , F4,4 , H3,1 , H3,3 , H4,1 , I2(p)i (i = 1,2), and

• all affine cases X̃n,i with i a special type,

and noncommutative otherwise.

As a consequence of this classification it turns out that we have the following uniform statement
which has the same flavour as [8, Theorem 3.1]. The proof of Theorem 2.2 is given at the end of
Section 3.

Theorem 2.2. With the hypothesis of Theorem 2.1, the algebras H I and H I
τ are commutative if and only if

there is an automorphism π of the Coxeter diagram such that
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(a) π(I) = I ,
(b) π(w) = w−1 for all w ∈ R I , and
(c) qπ(s) = qs for all s ∈ S.

Remark 2.3. Suppose that the Coxeter system (W , S) is not irreducible. Let S = S1 ∪ · · · ∪ Sn be the
decomposition of the nodes of the Coxeter graph into connected components, and let W j = 〈S j〉 for
each j = 1, . . . ,n. It is elementary that

H (W , S) ∼= H (W1, S1) ⊕ · · · ⊕ H (Wn, Sn).

Let I ⊆ S be spherical, and let I j = I ∩ S j . Then 1I = 1I1 · · ·1In , and it follows that

H I (W , S) ∼= H I1(W1, S1) ⊕ · · · ⊕ H In (Wn, Sn).

Thus H I (W , S) is commutative if and only if each H I j (W j, S j) is commutative. Thus we will hence-
forth assume that the (W , S) is irreducible.

Remark 2.4. In the spherical case (except for H3 and H4) commutativity of Xn,i is dealt with in
[8, Theorem 3.1] (see also [6, Theorem 10.4.11]). We give a different elementary proof here. In fact
our proof technique for the general case makes it crucial for us to give our proof of the spherical
case.

2.2. Initial observations

By induction on "(y) we see that cx,y;z = c y−1,x−1;z−1 , and so by Proposition 1.3 we see that

cI
v−1,u−1;w−1 = W I (q)

∑

x∈W I vW I
y∈W I uW I

cx−1,y−1;z−1 = W I (q)
∑

y∈W I uW I
x∈W I vW I

c y,x;z = cI
u,v;w , (2.1)

where z is any element of the double coset W I w−1W I . Thus if each w ∈ R I is an involution then
cI

u,v;w = cI
v,u;w , and so the algebra H I is commutative. It turns out that in the spherical case this

is an equivalence: H I is commutative if and only if each element of R I is an involution (see [8,
Theorem 3.1] and Claim 1 in Section 3 below). However it is not an equivalence in arbitrary type (as
the affine cases with special vertices show).

The following lemma is modelled on [21, Theorem 5.21 and Theorem 5.24].

Lemma 2.5. Suppose that there is an automorphism π of the Coxeter graph satisfying conditions (a), (b) and
(c) of Theorem 2.2. Then the algebras H I and H I

τ (for any specialisation τs ∈ C) are commutative.

Proof. We claim that the property qπ(s) = qs implies that

cx,y;z = cπ(x),π(y);π(z) for all x, y, z ∈ W . (2.2)

We argue by induction on "(y), with "(y) = 0 trivial. If "(sy) > "(y), then expanding TxTsy =
(Tx Ts)T y in two ways using (1.1) gives

cx,sy;z =
{

cxs,y;z if "(xs) > "(x),

qscxs,y;z + (qs − 1)cx,y;z if "(xs) < "(x).

By the induction hypothesis and property (c) we have cx,sy;z = cπ(x),π(sy);π(z), hence (2.2).
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By properties (a) and (b) if w is I-reduced then π(W I wW I ) = W I w−1W I = (W I wW I )
−1. Using

this observation, by Proposition 1.3 and (2.2) we have cI
π(u),π(v);π(w) = cI

u,v;w .
On the other hand, by (b) and (2.1) we have cI

π(u),π(v);π(w) = cI
u−1,v−1;w−1 = cI

v,u;w . Thus cI
u,v;w =

cI
v,u;w . So H I is commutative, and hence H I

τ is commutative for each specialisation. !

Lemma 2.6. Let u, v, w ∈ R I . If cI
u,v;w (= 0 then there exist u′ " u, v ′ " v, and y ∈ W I such that w = u′ yv ′

and "(w) = "(u′) + "(y) + "(v ′).

Proof. Recall that T I
u is a scalar times 1I Tu1I . Thus T I

u T I
v = ∑

cI
u,v;w T I

w is a scalar times

1I Tu1I · 1I T v 1I = W I (q)1I Tu1I T v 1I = W I (q)
∑

z∈W I

1I Tu T z T v 1I . (2.3)

Since v ∈ R I we have T z T v = T zv for each z ∈ W I . An induction on "(u) using (1.1) shows that Tu T zv
is a linear combination of terms Tu′zv with u′ " u. Therefore the right-hand side of (2.3) is a linear
combination of terms {1I Tx1I | x ∈ u′W I v, u′ " u}. It follows from Lemma 1.1 that for each x ∈ W ,
1I Tx1I is a nonzero scalar multiple of 1I Tx′ 1I , where x′ is the unique I-reduced element of W I xW I
(see the proof of Proposition 1.3). Therefore the right-hand side of (2.3) is a linear combination of
terms 1I Tx′ 1I with x′ being the I-reduced element of a double coset of the form W I u′W I vW I with
u′ " u.

Hence if cI
u,v;w (= 0 then w ∈ W I u′W I vW I for some u′ " u, and so w = w1u′w2 v w3 with

w1, w2, w3 ∈ W I . By repeated applications of the deletion condition we obtain a reduced word
w = w ′

1u′′w ′
2 v ′w ′

3 with w ′
1, w ′

2, w ′
3 ∈ W I and u′′ " u and v ′ " v . But every reduced expression for

an I-reduced word starts and ends with elements from S\I . Thus w ′
1 = w ′

3 = 1, and so w = u′′w ′
2 v ′

with "(w) = "(u′′) + "(w ′
2) + "(v ′), completing the proof. !

Thus we obtain the following general test for noncommutativity.

Corollary 2.7. Let u, v, w ∈ R I . Suppose that w = uzv with "(w) = "(u) + "(z) + "(v) and z ∈ W I . If there
do not exist u′, v ′, z′ with u′ " u, v ′ " v, and z′ ∈ W I such that w = v ′z′u′ and "(w) = "(v ′)+ "(z′)+ "(u′),
then H I and H I

τ (with τs ! 1) are noncommutative.

Proof. Let ψ : Z[qs]s∈S → C be the evaluation homomorphism with ψ(qs) = τs ! 1 for each s ∈ S . We
claim that if w = uzv with z ∈ W I and "(w) = "(u) + "(z) + "(v) then cI

u,v;w (= 0 and ψ(cI
u,v;w) > 0.

To see this, note that by Proposition 1.3 and the defining relations (1.1) we have

cI
u,v;uzv = W I (q)(cuz,v;uzv + positive linear combination of other cx,x′;x′′ terms)

= W I (q)(1 + positive linear combination of other cx,x′;x′′ terms),

from which the result follows (see Lemma 1.2 and Corollary 1.5).
On the other hand, by Lemma 2.6 and the assumptions of the corollary we have cI

v,u;w = 0 (and
hence ψ(cI

u,v;w) = 0 too), and so the algebras H I and H I
τ are noncommutative. !

The following more specific test for noncommutativity will be used frequently.

Proposition 2.8. Let I = S\{i}. Suppose that there is an element w ∈ R I such that w = uw I i with u ∈ R I ,
w I ∈ W I , and "(w) = "(u) + "(w I ) + 1. Fix reduced expressions for u and w I , and suppose that:

(1) the induced decomposition w = uw I i has the minimal number of i factors amongst all possible reduced
expressions for w, and
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(2) there is a generator k ∈ I that appears in w I but not in u, and that in every reduced expression for w
with the minimal number of i factors no occurrence of this k generator appears between the first two i
generators of the expression.

Then H I and H I
τ (with τs ! 1) are noncommutative.

Proof. By Corollary 2.7 it is sufficient to show that w cannot be written as w = i′z′u′ with i′ ∈ {id, i},
u′ " u, z′ ∈ W I , and "(w) = "(i′) + "(z′) + "(u′). Suppose we have such an expression. By (1) we see
that i′ = i, and that u′ has the same number of i factors as u does. In particular, u′ starts and ends
with an i. Since u′ contains no k factors we see that z′ must contain some k factors. Then these
factors are between the first two i generators, contradicting (2). !

3. Proof of Theorem 2.1

We use the following notation. If Xn is a spherical Coxeter type with nodes 1,2, . . . ,n then Xi
n is

the Coxeter graph obtained by attaching a new node (labelled 0) to the i node of Xn by a single bond.
Similarly, Xij

n with i (= j indicates that this new node is connected to i and j by single bonds, and
Xii

n indicates that 0 is joined to i by a double bond. This notation naturally extends, and, for example,
F 1,1

4 × E2,5,6
7 indicates that a new node 0 is connected to the 1 node of an F4 diagram by a double

bond, and to the 2, 5 and 6 nodes of an E7 diagram by single bonds. Also, recall the notation Xn,i

and X̃n,i from the beginning of Section 2.1.
Recall that we assume throughout that (W , S) is irreducible. The proof of Theorem 2.1 is achieved

via the following 6 claims. The first claim shows that if |S\I| > 1 then H I is noncommutative, allow-
ing us to focus on the maximal parabolic case I = S\{i}. The second and third claims deal with the
commutative spherical and affine cases. In Claim 4 we produce a list of noncommutative cases. This
library of noncommutative cases is used in Claims 5 and 6 to show that all cases other than those
listed in Theorem 2.1 are noncommutative.

Claim 1. If |S\I| > 1 then H I and H I
τ (with τs ! 1) are noncommutative.

Proof. Choose vertices s, t ∈ S\I with s (= t at minimal length in the (connected) Coxeter graph
of W . Then s, t ∈ R I , and if s, s1, . . . , sn, t is a minimal length path in the Coxeter diagram then
s1, . . . , sn ∈ W I . The I-reduced element w = ss1 · · · snt satisfies "(w) = "(s) + "(s1 · · · sn) + "(t). But w
cannot be written as w = t′z′s′ with t′ " t , s′ " s, z′ ∈ W I , and "(w) = "(t′) + "(z′) + "(s′), for there
is exactly one reduced expression for w , and this reduced expression has one s, and one t , and the t
is to the right of the s. Thus by Corollary 2.7 the algebra H I (and its specialisations with τs ! 1) is
noncommutative. (Compare with [2].) !

Claim 2. The spherical cases listed in Theorem 2.1 are commutative.

Proof. It is well known that in each case listed the minimal length double coset representatives are
involutions (see Proposition A.1 for the E8,1 example). Thus Lemma 2.5 applies (with π being trivial),
and so the algebras are commutative. !

Claim 3. If I = S\{i} with i a special node of an affine diagram then H I is commutative.

Proof. Let (W , S) be an irreducible Coxeter system of affine type, and let I = S\{i}, where i is a
special type. Then H I (and hence Hτ for all specialisations) is commutative by Lemma 2.5 with the
diagram automorphism π from that lemma being opposition in the spherical residue. In more detail:
We may assume that i = 0. Let Q be the coroot lattice of the associated root system, and let P be the
coweight lattice, with dominant cone P+ . Let W0 = W S\{0} . Then W ∼= Q ! W0, and {tλ | λ ∈ Q ∩ P+}
is a set of W0\W /W0 representatives, where tλ is the translation by λ. So the double cosets satisfy
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(W0tλW0)
−1 = W0t−1

λ W0 = W0t−λW0 = W0tλ∗ W0, where λ∗ = −w0λ, with w0 being the longest
element of W0. It follows that the minimal length element mλ of W0tλW0 satisfies m−1

λ = mλ∗ . Hence
the automorphism π of the Coxeter diagram given by π(0) = 0 and απ( j) = −w0α j for j = 1, . . . ,n
satisfies π(mλ) = m−1

λ for all λ ∈ Q ∩ P+ . By construction we have π(I) = I , and considering the
connected affine diagrams we have qπ(s) = qs for all s ∈ S . Thus by Lemma 2.5 H I is commutative
(and hence H I

τ is too). !

Claim 4. All of the cases listed in Tables 1, 2 and 3 in Appendix A.2 are noncommutative.

Proof. We say that an element w ∈ W has an essentially unique expression if every reduced expression
for w is obtained from a given reduced expression of w by a sequence of ‘commutations’ (that is,
Coxeter moves of the form st = ts). It is routine to check that all of the words in Tables 1, 2 and 3 in
Appendix A.2 have essentially unique expressions, except for the H4,4, F̃4,4, Ẽ8,1 and H1

4 words. These
words will be dealt with below. For those words with essentially unique expressions it is easy to check
that the triple (u, w I ,k) provided in the table satisfies the hypothesis of Proposition 2.8, except for
the B1,2

2 , B3
4, E1

8, H1,1
3 , I2(5)1,1 and I2(7)1 words, and so the associated algebras are noncommutative.

For example, consider the D3
5 word w = uw I 0 with u = 03243120, w I = 3543 and k = 5. To see

that there are no 131 .→ 313 Coxeter moves available one considers each triple (1,3,1) in the given
reduced decomposition for w and verifies that there is no sequence of commutations that make
these three generators adjacent. One such triple is w = 03 1 24 3 1 2035430, and it is clear that it is
impossible to make the first 1 adjacent to the 3 using commutations. Continuing in this fashion one
verifies that this word has an essentially unique expression. It is now clear that the word is reduced
and I-reduced, and that every reduced expression for w has the property that the k = 5 generator
does not appear between the first two 0 generators. Thus Proposition 2.8 applies, and so the algebra
is noncommutative.

It remains to deal with the H4,4, F̃4,4, Ẽ8,1, H1
4, B1,2

2 , B3
4, H1,1

3 , I2(5)1,1 and I2(7)1 words (these
are marked with a ∗ in Appendix A.2). The H4,4 word w = uw I 4 with u = 434323434 and w I = 123
has only one possible Coxeter move (323 .→ 232). The only Coxeter move available in the resulting
expression w = 4342324341234 is the move 232 .→ 323 taking us back to the original expression.
Therefore every reduced expression for w is obtained from one of

4343234341234,

4342324341234

by using only commutations. Hence it is clear that the k = 1 generator can never appear in between
the first two 4 generators of a reduced expression for w , and so Proposition 2.8 applies.

The F̃4,4 word w = uw I 4 with u = 43231234 and w I = 3231230123 has exactly one possible
Coxeter move (343 .→ 434). The only Coxeter move in the resulting expression is the one returning us
to the original expression. Thus, as in the H4,4 case, we readily see that Proposition 2.8 (with k = 0)
applies.

Consider the Ẽ8,1 word w = 1345624534132456768054324567813456724563452431. The only
Coxeter move possible initially is the 676 .→ 767 move. After making this move we get w =
1345624534132457678054324567813456724563452431. The only new Coxeter move available is the
565 .→ 656 move, giving w = 1345624534132476567804324567813456724563452431. There are now
no new Coxeter moves, and so every reduced expression for w is obtained from one of

1345624534132456768054324567813456724563452431,

1345624534132457678054324567813456724563452431,

1345624534132476567804324567813456724563452431
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using commutations alone. Thus it is clear that the 0 generator can never be between the first two 1
generators, and so Proposition 2.8 applies.

The details for the H1
4 word w = uw I 0 with u = 012343210 and w I = 43423412324341234321

are as follows. Arguing as above one sees that every reduced expression for w is obtained from one
of the following three expressions by commuting generators:

012343210434234123243412343210,

012343210434234132343412343210,

012343210434234321234342343210.

It follows that every reduced expression for w has at least three 4s between the last two 0 generators.
Thus there is no reduced expression w = 0zu′ with u′ " u and z ∈ W I because such an expression
has at most one 4 between the last two 0s. Thus Corollary 2.7 proves noncommutativity.

Consider the B1,2
2 word w = uw I 0 with u = 01210 and w I = 212. This word has exactly one re-

duced expression, and this expression has exactly two 2s in between the last two 0 generators. Hence
there is no reduced expression of the form w = 0zu′ with z ∈ W I and u′ " u, for each such expression
has at most one 2 between the last two 0s. Thus Corollary 2.7 proves noncommutativity.

Consider the B3
4 word w = uw I 0 with u = 03430 and w I = 234123. It is clear that every reduced

expression for w has at least one 2 in between the last two 0 generators. Thus there is no reduced
expression of the form w = 0zu′ with z ∈ W I and u′ " u (since such expressions have no 2s in
between the last two 0 generators) and so Corollary 2.7 proves noncommutativity.

Consider the E1
8 word w = uw I 0 with u = 0134254310, w I = 654234567813425436542765431.

This word has an essentially unique expression, and so it is clear that every reduced expression for w
has at least two 2s in between the last two 0 generators. Hence there is no reduced expression of the
form w = 0zu′ with z ∈ W I and u′ " u, for each such expression has either zero or one 2s between
the last two 0s.

Consider the H1,1
3 word w = uw I 0 with u = 010 and w I = 232132321. Every reduced expression

for w has at least two 2s in between the last two 0 generators. Thus there is no reduced expres-
sion of the form w = 0zu′ with z ∈ W I and u′ " u, and so Corollary 2.7 proves noncommutativity.
Similarly, for the I2(5)1,1 word w = uw I 0 with u = 010 and w I = 2121 every reduced expression
for this word has at least one 2 in between the last two 0 generators. So Corollary 2.7 proves non-
commutativity. Finally, every reduced expression for the I2(7)1 word w = uw I 0 with u = 012120 and
w I = 12121 has exactly three 1s in between the last two 0 generators, and as above, Corollary 2.7
proves noncommutativity. !

Claim 5. All spherical and affine cases other than those listed in Theorem 2.1 are noncommutative.

Proof. Claim 4 above has provided us with a library of noncommutative examples. We use this library
to deal with the remaining cases via the following obvious fact: If I ⊆ S is spherical, and if S ′ is such
that I ⊆ S ′ ⊆ S , and if the parabolic Hecke algebra H I (W S ′ , S ′) is noncommutative, then H I (W , S)
is noncommutative too (and the same holds for specialisations with τs ! 1). This is clear, since the
former algebra is a subalgebra of the latter.

It is now straightforward to show that all remaining spherical and affine cases are noncommuta-
tive. For example E7,5 is noncommutative since the 5 node of E7 plays the role of the 5 node in an
E6 residue, and E6,5 is noncommutative by our library. Similarly Ẽ8,2 is noncommutative since the 2
node of Ẽ8 plays the role of the 2 node in an E8 residue, and E8,2 is noncommutative. !

Claim 6. All infinite non-affine cases are noncommutative.

Proof. The reduction arguments in this proof rely on the following fact. If Proposition 2.8 (or Corol-
lary 2.7) has been used to prove noncommutativity for an I-parabolic Hecke algebra with Coxeter
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data mst , then the I-parabolic Hecke algebras with Coxeter data mst ! mst for all s, t ∈ S are also
noncommutative. This fact is proved formally in the following lemma.

Lemma 3.1. Let (W , S) be a Coxeter system with Coxeter matrix M = (mst). Let I ⊆ S. Suppose there exist
w, u, v, z ∈ W such that w = uzv, u, v, w ∈ R I , z ∈ W I , and "(w) = "(u)+ "(z)+ "(v), and that there exist
no u′, v ′, z′ ∈ W with w = v ′z′u′ , u′ " u, v ′ " v, z′ ∈ W I , and "(w) = "(v ′) + "(z′) + "(u′).

Let (W , S) be a Coxeter system with Coxeter matrix M = (mst). Suppose that I ⊆ S is spherical (for W ),
and let H I = H I (W , S) be the associated I-parabolic Hecke algebra. If mst ! mst for all s, t ∈ S then the
algebras H I and H I

τ (with τs ! 1) are noncommutative.

Proof. Let w = uzv be a reduced expression in W with u, v, w ∈ R I , z ∈ W I , and "(w) = "(u)+"(z)+
"(v). We claim that the corresponding conditions hold when the expression for w is read in W . Since
uzv is reduced in W , it cannot contain a subword in two letters i, j of length larger than mij . Hence
any elementary transformation of uzv in W involves a subword in i, j of length mij = mij , and thus
can also be carried out in W . Since we cannot produce a subword of the form ss by carrying out
elementary transformations in W , uzv must also be reduced in W , and so the expression for w is
reduced when read in W . Since z is a word with letters in I , it is in W I when read in W . Next we
claim that the words u, v, w , when read in W , are still I-reduced: Suppose for instance that w is
not I-reduced when read in W . Then ws or sw is not reduced in W for some s ∈ I . By the exchange
condition, w can be rewritten (in W ) as a reduced word starting or ending in s. But as before, all the
elementary transformations which transform w into some w ′s (or sw ′) in W (with the word w ′ of
smaller length than w) can also be carried out in W , contradicting that w is I-reduced in W .

Now assume, by way of contradiction, that in W the word w = uzv can also be written as v ′z′u′

with v ′ " v , u′ " u, z′ ∈ W I , and "(w) = "(v ′)+ "(z′)+ "(u′). Note first that, with the same argument
as before, the transformation uzv .→ v ′z′u′ can be carried out in W as well (and the result v ′z′u′ is
of course still reduced in W ). The word z′ has all letters in I , and so represents an element of W I
when read in W . Finally we claim that if u′ " u in W then also u′ " u in W (and similarly for v
and v ′). Since u′ " u in W there exists a subword u′′ of u which, when read in W , is equal to u′ .
Applying the deletion condition if necessary, we may assume that u′′ is reduced in W . Hence there
exist elementary transformations u′ .→ u′′ in W . But u′ is reduced in W , and so all these elementary
transformations can be carried out in W as well, proving that u′ " u in W also. This completes
the proof that our assumptions on u, v, w, z in W are violated. So u′ , v ′ , z′ as described cannot
exist in W , which implies by Corollary 2.7 that the Hecke algebras H I and H I

τ (with τs ! 1) are
noncommutative. !

Suppose that W is neither spherical nor affine. Let I ⊆ S be spherical, and suppose that H I is
commutative and not in Tables 1, 2 and 3 in Appendix A.2. By Claim 1 we see that |S\I| = 1, and so
by relabelling nodes if necessary we may assume that I = S\{0}.

We will prove the following reductions based on the neighbourhood of 0 in the Coxeter graph:

• The valency of 0 is at most 2, and so the diagram I = S\{0} has 1 or 2 connected components.
• If 0 has valency 1 then the bond number p is either 3 or 4.
• If 0 has valency 2 then the bond numbers p " q are (p,q) = (3,3) or (3,4).

For the first claim, suppose that 0 has valency 4 with bond numbers 3 " p " q " r " s. If
(p,q, r, s) = (3,3,3,3) then 0 is noncommutative in a D̃4 residue, and if the bond numbers are dif-
ferent from (3,3,3,3) then we can use Lemma 3.1 to deduce noncommutativity. Thus 0 has valency
at most 3. Suppose that 0 has valency 3 with bond numbers 3 " p " q " r. If there is at least one
vertex not connected to 0 then 0 is noncommutative in either a D5 residue, or is noncommutative
by Lemma 3.1 and comparison to a D5 residue. Thus if 0 has valency 3 then S has exactly 4 vertices.
Suppose that there are nodes i, j (= 0 which are connected. The ‘minimal’ case is A1

1 × A1,2
2 (which is

in Tables 1, 2 and 3 in Appendix A.2), and all other bond number possibilities are noncommutative
by Lemma 3.1. So suppose that S has exactly 4 nodes, and that there are no other bonds other than
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those which involve the 0 node. If (p,q, r) = (3,3,3) then we have a D4 diagram (contradicting the
assumption that W is neither spherical nor affine). If (p,q, r) = (3,3,4) then the 0 node is noncom-
mutative in B̃3, and Lemma 3.1 shows that all higher bond numbers also lead to noncommutative
algebras. This completes the proof of the first statement.

To prove the second statement, if 0 has valency 1 with bond number at least 5, then we can com-
pare a suitable residue with either B̃3,0 (if 0 is not connected to an end vertex), or with B1,1,1

2 (if 0 is
connected with an end vertex and there are only three vertices), or with H4,4 (if 0 is connected with
an end vertex and there are at least four vertices) to deduce noncommutativity (applying Lemma 3.1).

To prove the third statement, suppose that the valency of 0 is 2 with bond numbers (3,n), n ! 5,
or (m,4), m ! 4. Then we can compare an appropriate residue with H3,2 or C̃2,1 to deduce noncom-
mutativity (applying Lemma 3.1).

The three bullet points above place severe restrictions on the Coxeter diagram S = I ∪ {0}. We now
eliminate each possibility using our noncommutative examples from the library in Appendix A. We
will give examples of the arguments used.

Case 1: The valency of 0 is 1 with p = 3. We consider each possible connected spherical diagram I =
S\{0} and each possible way of connecting 0 with a single bond to make S . For example, suppose that
I = Bn with n ! 2. The possible diagrams are Bi

n with i = 1, . . . ,n. If n = 2 then B1
2 and B2

2 both give
B3 diagrams, a contradiction, so assume that n ! 3. We have B1

n = Bn+1 and B2
n = B̃n (a contradiction).

Each diagram Bi
n with 2 < i < n < i + 4 has 0 as a noncommutative node in a B3

n−i+3 (and these are
all in our table). If n ! i + 4, then we have a B3

7 residue, which is noncommutative by Lemma 3.1 and
comparison with E8,2. In Bn

n , n ! 4, the node 0 is noncommutative in an F̃4 residue. Thus I = Bn is
excluded.

Case 2: The valency of 0 is 1 with p = 4. Again we consider each diagram. For example, suppose that
I = H3. The diagram H1,1

3 is in our table, and H2,2
3 and H3,3

3 both have 0 as a noncommutative node
in an I2(5)1,1 residue.

Case 3: The valency of 0 is 2 with (p,q) = (3,3), and I has one connected component. For example
suppose that I = An with n ! 2. The possibilities are Ai, j

n with 1 " i < j " n. The case i = 1 and
j = n is excluded, for it gives an Ãn diagram. By looking in a residue it suffices to show that the
0 node is noncommutative in A1,k−1

k for each k ! 3. The diagrams A1,2
3 and A1,3

4 are in Table 3 in
Appendix A.2. The diagram A1,4

5 is excluded by comparing it to an E6 diagram and using Lemma 3.1.
Specifically, if we decrease the bond m12 = 3 in A1,4

5 to m12 = 2 then we get an E6 diagram with 0
playing the role of the (noncommutative) 3 node. The diagram A1,5

6 is excluded since it has 0 as a

noncommutative node in an E6 residue, and for k ! 7 the A1,k−1
k diagram is excluded since it has 0

as the noncommutative k − 3 node in a Dk residue.
Case 4: The valency of 0 is 2 with (p,q) = (3,4), and I has one connected component. Suppose that 0

is connected to i ∈ I by a single bond, and to j ∈ I by a double bond (with i (= j). The case where i
and j are connected is excluded by Lemma 3.1 and the fact that 0 is noncommutative in A1,1,2

2 . So
suppose that i and j are not connected. Since I is connected, j is connected to some k ∈ I with k (= i.
Then 0 is noncommutative in an F4 residue (incorporating i,0, j and k) or by comparison to an F4
diagram (using Lemma 3.1).

Case 5: The valency of 0 is 2 with (p,q) = (3,3), and I has two connected components. Let the connected
components be I1 and I2. Suppose that 0 is connected to i1 ∈ I1 and i2 ∈ I2. If there are nodes
j1,k1 ∈ I1 connected to i1 and j2,k2 ∈ I2 connected to i2 then 0 is a noncommutative node in a
D̃6 residue, or can be compared to such a vertex by Lemma 3.1. Therefore either i1 or i2 is an end
node.

Suppose that i1 is an end node of I1, and that i1 is connected to j1 ∈ I1. Assume that there exist
neighbours j2,k2 ∈ I2 of i2. Then the 0 node is noncommutative by comparison with a D7,4 diagram,
using Lemma 3.1.

Suppose that there exist j2,k2 ∈ I2 distinct neighbours of i2, and that j2 has a neighbour m2 (= k2.
Then the 0 node is noncommutative by comparison with an E6,3 diagram.

There are now 2 possibilities remaining: (i) I1 = {i1} = A1 and I2 is a ‘star’ with 0 connected to
the central node, or (ii) i1 is an end node of I1 and i2 is an end node of I2. (By a ‘star’ we mean a
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central node with other nodes hanging off it. None of these outer nodes are connected to other outer
nodes, because the diagram I2 cannot have a triangle since it is spherical.) Consider case (i). If any
bond number of I2 is ! 4 then we compare with an A1

1 × B2
3 diagram. So suppose that all bonds in I2

are 3-bonds. If I2 has at least four vertices then 0 is the noncommutative in an A1
1 × D2

4 diagram. If
I2 has exactly three vertices then we have D5, and if it has exactly 2 vertices then we have A4. Thus
case (i) is excluded.

We are left to consider the case when i1 is an end node of I1 and i2 is an end node of I2.
We consider these case by case. For example, suppose that I1 = An and I2 = Em for m = 6,7,8.
By symmetry we can suppose that 0 is connected to the node 1 of An , and 0 is not connected
to the node 6 of E6. So the possibilities are A1

n × Ek
m , with k = 1,2,m. In A1

n × E1
m , the 0 node is

noncommutative in an E8,2 residue. In A1
n × E2

m , the 0 node is noncommutative in an E7,6 residue.
Finally, in A1

n × Em
m , m = 7,8, the 0 node is noncommutative in an A1

1 × Em
m residue, which for both

values of m is in the table.
Suppose that I1 = An and I2 = E8. By symmetry we can suppose that 0 is connected to the 1 node

of An , and so the possibilities are A1
n × Ek

8 with k = 1,2,8. In A1
n × E1

8 the 0 node is noncommutative
in an E8 residue, and in A1

n × E2
8 the 0 node is noncommutative in an E7 residue. In A1

n × E8
8 the 0

node is noncommutative in an A1
1 × E8

8 residue.
Case 6: The valency of 0 is 2 with (p,q) = (3,4), and I has 2 connected components. Let I1 and I2 be

the connected components. Suppose that 0 is connected to i ∈ I1 by a single bond, and to j ∈ I2 by
a double bond. If |I2| > 1 then 0 is noncommutative in an F4,2 residue (or can be compared to such
a vertex using Lemma 3.1). Thus I2 = { j}. If i is not an end node of I1 then 0 is noncommutative in a
B̃4,2 residue (or can be compared to such a vertex). Thus I2 = { j} and i is an end node of I1. So we
need to consider each diagram A1,1

1 × Xk
n for each spherical type Xn and end vertex k of Xn .

If Xn contains a bond with bond number ! 4, then 0 is noncommutative in a C̃k residue (for
appropriate k). If Xn contains a vertex with degree ! 3, then 0 is noncommutative in a B̃k residue
(for appropriate k). Hence Xn = An and we get a Bn+2 diagram.

Thus all infinite non-affine cases are noncommutative, and the proof of Theorem 2.1 is com-
plete. !

Proof of Theorem 2.2. The ‘if’ part is Lemma 2.5, and the ‘only if’ part is because, as we have seen,
there are no other commutative cases other than the listed spherical cases (in which case π = id) and
the listed affine cases (in which case π is opposition in the spherical residue). !
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Appendix A

The appendix has 2 sections. The first section illustrates a technique that can be used to determine
if the minimal length double coset representatives of a spherical Coxeter group are involutions (this
was used in Claim 2 of the proof of Theorem 2.1). The second section gives the tables of words that
were used in the text to prove noncommutativity.

A.1. Involutions

There are various ways to determine whether the minimal length double coset representatives
of a spherical Coxeter group are involutions. For example [8, Theorem 3.1] gives a method using
the representation theory of the Coxeter group. It is also possible to determine if the double coset
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representatives are involutions by a direct, elementary argument. Let us outline this in the most
involved example E8,1.

Proposition A.1. Let (W , S) be the Coxeter system of type E8 and let I = S\{1}. Each element of R I is an
involution.

Proof. Let Σ be the Coxeter complex of (W , S) with usual W -distance function δ(u, v) = u−1 v . Let X
be the set of vertices of type 1 in Σ . If x ∈ X let C(x) denote the set of all chambers of Σ containing x.
For x, y ∈ X the set δ(C(x), C(y)) is a double coset W I zW I , and the W -distance δ(x, y) between x
and y is defined to be the minimal length representative of this double coset. If w ∈ R I then (see the
proof of Proposition 1.3)

#
{

y ∈ X
∣∣ δ(x, y) = w

}
= |W I wW I |

|W I |
= |MI,w ||W I |

|W I |
= |W I |

|W I∩w I w−1 | . (A.1)

It is known that there are exactly 10 double cosets W I wW I in E8 (see [6, Table 10.5]). Let
w0, w1, . . . , w9 be the minimal length double coset representatives. Fix the vertex x0 ∈ X of type 1
contained in the chamber of Σ corresponding to the identity element of W . Let i ∈ {0,1, . . . ,9}
be arbitrary. Put Si = I ∩ wi S w−1

i , and let W i = W Si = 〈Si〉. By (A.1) the number of vertices x ∈ X
with δ(x0, x) = wi is equal to the quotient |W I |/|W i |. The total number of vertices of type 1 is
equal to |X | = |W |/|W I | = 2160. Denote by Xi the set of vertices x ∈ X with δ(x0, x) = wi . Thus
|X0| + |X1| + · · · + |X9| = |X | = 2160.

Let w be the longest element in W . Since the opposition relation in Σ induces the trivial permu-
tation on S (and this permutation is given by conjugation with w), w is central in W . Hence if wi
is an involution, then so is w wi , and it interchanges x0 with the unique vertex x′

i opposite xi , where
xi = wi x0 is the image of x0 under wi . Consequently if wi is an involution and if δ(x0, x′

i) = w j then
w j is also an involution. In this case we say that w j is complementary to wi . Of course it could
happen that i = j. In this case, xi and x′

i are contained in opposite chambers, and so the longest ele-
ment w of W belongs to wi W I wi W I . Since the length of the longest element in W I is 42 and since
"(w) = 120 this implies that "(wi) ! 18.

We now apply the above to some specific values of wi . We take w0 = e, the identity, and w1 =
s1 = 1. Thus |X0| = 1 and |X1| = |W (D7)|/|W (A6)| = 64, and since "(w0),"(w1) < 18 we obtain
complementary involutions w9 and w8, respectively, with |X9| = 1 and |X8| = 64. Now put w2 =
13425431 (which is obtained by considering the residue of a vertex of type 6). The element w2
maps the generators (3,4,2,5,7,8) to (3,4,5,2,7,8), and so one calculates that |X2| = |W (D7)|/
|W (D4 × A2)| = 280. Since "(w2) = 8 < 18 we have a complementary involution w7 (= w2 with |X7| =
280. So far we have accounted for 2(1 + 64 + 280) = 690 of the total 2160 type 1 vertices.

In the residue of an element of type 8 (which is a Coxeter system of type E7) we find the involutive
minimal length double coset representative w3 = 13425463576452431, which maps the generators
(2,4,5,6,7) to (7,6,5,4,2). Consequently |X3| = |W (D7)|/|W (A5)| = 448. As "(w3) = 17 < 18 we
have another involution w6 with |X6| = 448, accounting for 690 + 2 × 448 = 1586 of the 2160
vertices. Finally we can consider, in each of the 14 residues of type E7 through x0, the element
of type 1 opposite x0. This gives rise to another involutive double coset representative w4, with
|X4| = |W (D7)|/|W (D6)| = 14. This one must be self-complementary, as otherwise the unique miss-
ing class X5 would also contain 14 elements and the total number of vertices does not add up to
2160. Indeed we calculate that |X5| = 560. Hence w5 is also self-complementary. But what is more
important, it must also be an involution as otherwise w−1

5 is a different minimal double coset repre-
sentative, contradicting the fact that we only have 10 of these. Hence all minimal coset representatives
are involutions. !

A.2. Tables of words to prove noncommutativity

Conventions: We use standard Bourbaki labelling for the spherical and affine types [4, Plates I–IX].
The cases H3 and H4 are not given an explicit labelling in Bourbaki. We adopt the labelling of H3
with m12 = 3 and m23 = 5, and of H4 with m12 = m23 = 3 and m34 = 5.
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Each word is of the form w = uw I si , where I = S\{i}. We also list the index k used in the ar-
gument of Proposition 2.8. The cases where a slight modification of Proposition 2.8 is required are
labelled by (∗). The precise details for these cases are given in Claim 4 of Section 3.

The Dn,i word (with n/2 < i < n − 1) is

u =
[
i(i − 1) · · · (2i − n + 1)

][
(i + 1)i · · · (2i − n + 2)

]
· · ·

[
(n − 1)(n − 2) · · · i

]
,

w I =
{ [n(n − 2)(n − 3) · · · (i + 1)][12 · · · (i − 1)] if i/2 < i < n − 2,

n12 · · · (n − 3) if i = n − 2.

Table 1
The spherical cases.

u w I k

Dn,i , n
2 < i < n − 1 see below see below n

E6,5 542345 1634 6
E7,6 65423456 17345 7
E8,7 7654234567 183456 8
E8,2 245678345672 456345134 1
F4,2 232 431 1
H3,2 232 31 1
H4,2 23432 431 1
H4,4 434323434 123 1(∗)

Table 2
The affine cases.

u w I k

B̃n,i , 1 < i < n − 1 i · · · 320123 · · · i (i + 1) · · ·n(n − 1) · · · (i + 1) i + 1

B̃n,n [n · · · 1][n · · · 2] · · · [n(n − 1)][n] 023 · · · (n − 2)(n − 1) 0

C̃n,i , 1 " i < n i · · · 3210123 · · · i (i + 1) · · ·n(n − 1) · · · (i + 1) i + 1

D̃n,i , 1 < i < n − 1 i · · · 320123 · · · i (i + 1) · · ·n(n − 2) · · · (i + 1) i + 1

Ẽ7,2 245341031245342 65764534 7

Ẽ8,1 134562453413245676805432456781 345672456345243 0(∗)

Ẽ8,8 876542345678 1034567 0

F̃4,1 12321 4320 0

F̃4,4 43231234 3231230123 0(∗)

G̃2,1 212 01 0

G̃2,2 12121 02 0

Table 3
The infinite non-affine cases.

u w I k

A1,1,2
2 010 21 2

A1,2
3 0210 2312 3

A1,3
4 032430 123 1

B1,2
2 01210 212 2(∗)

B1,1,1
2 010 121 2

B1,3
3 03230 12321 1

B3,3
3 0323032303230 1323 1

B3
4 03430 234123 1(∗)

(continued on next page)
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Table 3 (continued)

u w I k

B3
5 032430 1234543 5

B3
6 032430 123456543 5

D1,4
4 01240 123421 3

D3
5 03243120 3543 5

D1,5
5 05342350 12345321 1

D3
6 03243120 346543 6

D1,6
6 06453460 1234564321 1

D3
7 03243120 34576543 7

E3
6 0345243013452430 61345243 6

E2
7 02435420 65431243524654376542 7

E6
7 06543245607654324560 1765432456 1

E1
8 0134254310 654234567813425436542765431 2(∗)

E7
8 076543245670876543245670 187654324567 1

F 2
4 02320 1234232 4

F 1,1
4 0123210123210 412321 4

F 1,4
4 0432340 12321 1

H2
3 02320 32132 1

H3
3 03230 2321323 1

H1,1
3 010 232132321 2(∗)

H1
4 012343210 43423412324341234321 4(∗)

H2
4 0234320 4342312 1

I2(5)1,1 010 2121 2(∗)

I2(7)1 012120 12121 1(∗)

A1
1 × A1,2

2 0120 11′ 1′

A1
1 × F 1

4 0123210 1′4321 1′

A1
1 × H1

3 0123210 1′321 1′

A1
1 × B2

3 02320 121′ 1′

A1
1 × D2

4 023420 1′12 1′

A1
1 × E7

7 076542345670 11′34567 1′

A1
1 × E8

8 08765423456780 11′345678 1′

The node of the A1 component in the final 7 composite cases is labelled by 1′ .
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