
A solved problem: Standard monomials on the finite Grassmannian
Let . The Plücker embedding realises the finite Grassmannian as a projective variety:

Coordinates on  are labelled by the set  of -element subsets:

The purpose of standard monomial theory is to describe a -basis of the homogeneous coordinate ring 
, where  is the Plücker ideal.

The monomial  is a standard monomial if  entrywise, (as a tableau, this
means weakly increasing down the columns). Of course there are non-standard monomials, say if 

 and :

 and  are incomparable under  (the problem is highlighted pink in the diagram) and so cannot be part
of a standard monomial . We will straighten  by finding a quadratic relation  that
contains  and vanishes on the embedded Grassmannian .

Split  into ,  and  as above, and send  through the map

to get a quadratic relation  which includes . (  is the signed unshuffling of the sequence):

 vanishes on  because of the  term coming from , hence . A more detailed
inductive argument shows that any monomial  can be straightened to a linear combination of
standard monomials, hence the standard monomials span the ring . A more careful
argument shows they are linearly independent.

Our problem: Standard monomials on the affine Grassmannian 
The affine Grassmannaian  admits an embedding  into the infinite Grassmannian , which in
turn embeds via the Plücker embedding  into the projectivisation  of Fock space. Drawing analogies
from above,  is like  and  is like , however  is quite a different object.

The ideal  cutting out  inside  is an infinite analogue of the Plücker relations. By a conjecture
of Kreiman, Lakshmibai, Magyar, and Weyman [KLMW07] recently proven by Muthiah, Weekes, and Yacobi
[MWY18], the set  of linear functions on  vanishing on  are given by the shuffle equations.

Problem: Confirm that  is the defining ideal of  inside .

Approach: Develop a standard monomial theory for , and compare with a known basis
for  given by FLOTW multpartitions.

Maya diagrams, semi-infinite wedges, and charged partitions
A Maya diagram  is a 2-colouring that is eventually white to the le� and black to the right.

It can be recorded by the location of its white beads , or its black beads .

The union  is a bijection, where  stabilises to the charge  (here ).

The sequence  defines a partition . The following are in bijection:

1. The Maya diagram  shown above, 2-colouring the integers.
2. The semi-infinite wedge  giving the sequence .
3. The charged partition .

These three combinatorial objects all label the same basis of Fock space .

Fermionic Fock space
The Fermionic Fock space  is the vector space with basis given by Maya diagrams (or semi-infinite wedges,
or charged partitions). It is graded by charge:

The homogeneous coordinate ring is a polynomial ring in infinite variables: .
Similarly to the finite case, we say that  is a standard monomial if , where the
ordering  is by containment of charged partitions.

The standard monomials form a -basis of , however they do not appear to play nicely when the
shuffle relations  are also introduced.

The action of  on Fock space, the representation 
The Lie algebra  is the Kac-Moody algebra associated to a cycle diagram on  nodes. For
example,  is generated by the Chevalley generators , , , , , , and the derivation 

 satisfying .

The action of  on the charged partition  examines its residues:

Take a charged partition Assign each cell its content,
shi�ed by the charge 

Reduce modulo  to
find the residues

The Chevalley generators  remove boxes of the their colour, without modifying the charge:

The Chevalley generators  add boxes their colour, without modifying the charge:

The derivation  acts on  by counting boxes of its colour (purple), so  scales our example by 2.

The basic representation  of  is the submodule of  generated by the charge zero empty partition:

The shuffle relations  cut out  inside .

Clifford operators on Fock space
The Clifford operators  form the wedge or interior product with .

In terms of Maya diagrams,  turns the th bead of  black (  if it is already black) and multiply
by a sign depending on the number of black beads to the le� of . With the  shown above,  while 

 is the negative of the following diagram:

 acts similarly a�er swapping white with black. The Clifford operators are graded:

The shuffle equations
For  and , set . For , define the linear map

The shuffle ideal  cutting out the  representation  is .

FLOTW multipartitions and standard monomials
By a theorem of Kostant, , with the Cartan product as the algebra structure on the
right. The work of [FLOTW99] describes a basis for  in terms of FLOTW multipartitions, an -tuple of
partitions satisfying containment and -cylindricity:

Above is an -multipartition  satisfying containment and -cylindricity. To be FLOTW, the
union of residues  for each length  row needs to be incomplete, for all . For  above:

and hence  is not a FLOTW multipartition, as both  and  are complete.
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Equations defining the affine Grassmannian of 
Joel Gibson
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