

Equations defining the affine Grassmannian of SL_n

Joel Gibson

A solved problem: Standard monomials on the finite Grassmannian Let $V = \mathbb{k}^n$. The *Plücker embedding* realises the finite Grassmannian as a projective variety:

 $\mathrm{Gr}(r,n) = \{W \subseteq V \mid \dim W = r\} \stackrel{p}{\hookrightarrow} \mathbb{P}(\wedge^r V), \quad \mathrm{span}_{\Bbbk}\{v_1,\ldots,v_r\} \mapsto [v_1 \wedge \cdots \wedge v_r].$

Coordinates on $\mathbb{P}(\wedge^r V)$ are labelled by the set $C_{r,n} = \{I \subseteq \{1, \ldots, n\} \mid |I| = r\}$ of *r*-element subsets:

 $\Bbbk[\mathbb{P}(\wedge^r V)] = \Bbbk[x_I \mid I \in C_{r,n}], \quad \text{where } I = \{i_1 < \cdots < i_r\} \text{ and } x_I \text{ is dual to } e_{i_1} \wedge \cdots \wedge e_{i_r}.$

The purpose of *standard monomial theory* is to describe a k-basis of the homogeneous coordinate ring $\Bbbk[\operatorname{Gr}(r,n)] = \mathbb{K}[x_I \mid I \in C_{r,n}]/\mathcal{P}$, where $\mathcal{P} = \ker p^*$ is the Plücker ideal.

 \rightsquigarrow

The monomial $x_I x_J x_K \in \mathbb{k}[x_I \mid I \in C_{r,n}]$ is a *standard monomial* if $I \leq J \leq K$ entrywise, (as a tableau, this means weakly increasing down the columns). Of course there are non-standard monomials, say if $I = \{1, 3, 6, 7\}$ and $J = \{2, 3, 4, 8\}$:

The Lie algebra $\widehat{\mathfrak{sl}_n}$ is the Kac-Moody algebra associated to a cycle diagram on n nodes. For example, $\widehat{\mathfrak{sl}_3}$ is generated by the *Chevalley generators* E_{\bullet} , E_{\bullet} , E_{\bullet} , F_{\bullet} , F_{\bullet} , F_{\bullet} , and the *derivation* $d \in \mathfrak{h}$ satisfying $[d, E_i] = \delta_{i,\bullet} E_i$.

The action of $\widehat{\mathfrak{sl}_n}$ on the charged partition (c, λ) examines its *residues*:

Take a charged partition $(c,\lambda)=(1,(4,2,2,1))$

Assign each cell its *content*, shifted by the charge c

Reduce modulo *n* to find the residues

The Chevalley generators $E_{\bullet}, E_{\bullet}, E_{\bullet}$, E_{\bullet} ,

I and J are incomparable under \leq (the problem is highlighted pink in the diagram) and so cannot be part of a standard monomial $x_I x_J x_K$. We will *straighten* $x_I x_J$ by finding a quadratic relation $P_{I,J} \in \mathcal{P}$ that contains $x_I x_J$ and vanishes on the embedded Grassmannian Gr(r = 4, n).

Split (I, J) into A = (1, 3), B = (2, 3, 4, 6, 7) and C = (8) as above, and send $x_A \otimes x_B \otimes x_C$ through the map $\wedge^2 V \otimes \wedge^5 V \otimes \wedge^1 V \xrightarrow{1 \otimes \mathsf{comult}_{2,3} \otimes 1} \wedge^2 V \otimes \wedge^2 V \otimes \wedge^3 V \otimes \wedge^1 V \xrightarrow{\mathsf{mult}_{2,2} \otimes \mathsf{mult}_{3,1}} \wedge^4 V \otimes \wedge^4 V \twoheadrightarrow \mathrm{Sym}^2(\wedge^4 V)$

to get a quadratic relation $P_{I,J}$ which includes $x_I x_J$. (comult is the signed unshuffling of the sequence):

$$egin{aligned} x_{13} \otimes x_{23467} \otimes x_8 &\mapsto x_{13} \otimes (x_{23} \otimes x_{467} - x_{24} \otimes x_{367} + x_{26} \otimes x_{347} - \cdots + x_{67} \otimes x_{234}) \otimes x_8 \ &\mapsto 0 + x_{1234} x_{3678} - x_{1236} x_{3478} - \cdots + \underbrace{x_{1367} x_{2348}}_{x_I x_J} = P_{I,J} \end{aligned}$$

 $P_{I,J}$ vanishes on $\operatorname{Gr}(r,n)$ because of the \wedge^{r+1} term coming from x_A , hence $P_{I,J} \in \mathcal{P}$. A more detailed inductive argument shows that any monomial $x_{I_1}x_{I_2}\cdots x_{I_\ell}$ can be straightened to a linear combination of standard monomials, hence the *standard monomials span* the ring $k[x_I \mid I \in C_{r,n}]/\mathcal{P}$. A more careful argument shows they are linearly independent.

Our problem: Standard monomials on the affine Grassmannian Gr_{SL_n}

The affine Grassmannaian $\operatorname{Gr}_{\mathsf{SL}_n}$ admits an embedding i_n into the infinite Grassmannian $\operatorname{Gr}(\infty)$, which in turn embeds via the Plücker embedding p into the projectivisation $\mathbb{P}(\mathcal{F})$ of Fock space. Drawing analogies from above, $Gr(\infty)$ is like Gr(r, n) and \mathcal{F} is like $\wedge^r V$, however Gr_{SL_n} is quite a different object.

$$\mathrm{Gr}_{\mathsf{SL}_n} \stackrel{i_n}{\hookrightarrow} \mathrm{Gr}(\infty) \stackrel{p}{\hookrightarrow} \mathbb{P}(\mathcal{F})$$

The ideal \mathcal{P} cutting out $Gr(\infty)$ inside $\mathbb{P}(\mathcal{F})$ is an infinite analogue of the Plücker relations. By a conjecture of Kreiman, Lakshmibai, Magyar, and Weyman [KLMW07] recently proven by Muthiah, Weekes, and Yacobi [MWY18], the set S_n of linear functions on \mathcal{F} vanishing on Gr_{SL_n} are given by the *shuffle equations*.

The Chevalley generators $F_{\bullet}, F_{\bullet}, F_{\bullet}$ add boxes their colour, without modifying the charge:

The derivation d acts on (c, λ) by counting boxes of its colour (purple), so d scales our example by 2.

The *basic representation* $V(\Lambda_0)$ of $\widehat{\mathfrak{sl}}_n$ is the submodule of \mathcal{F} generated by the charge zero empty partition:

$$V(\Lambda_0) = U(\widehat{\mathfrak{sl}}_n) \cdot (0, arnothing) \subseteq \mathcal{F}^{(0)}.$$

The shuffle relations S_n cut out $V(\Lambda_0)$ inside \mathcal{F} .

Clifford operators on Fock space

The *Clifford operators* $\psi_i, \psi_i^* \colon \mathcal{F} \to \mathcal{F}$ form the wedge or interior product with e_i .

 $\psi_i(\omega)=e_i\wedge\omega, \quad \psi_i^*(\omega)=\iota_{e_i}(\omega)$

In terms of Maya diagrams, ψ_i m turns the *i*th bead of m black (ψ_i m = 0 if it is already black) and multiply by a sign depending on the number of black beads to the left of *i*. With the m shown above, $\psi_1 m = 0$ while ψ_2 m is the negative of the following diagram:

Problem: Confirm that S_n is the defining ideal of Gr_{SL_n} inside $\operatorname{Gr}(\infty)$.

Approach: Develop a standard monomial theory for $\mathbb{k}[\operatorname{Gr}(\infty)]/\mathcal{S}_n$, and compare with a known basis for $\Bbbk[\operatorname{Gr}_{\mathsf{SL}_n}]$ given by FLOTW multpartitions.

Maya diagrams, semi-infinite wedges, and charged partitions A *Maya diagram* $m: \mathbb{Z} \to \{\circ, \bullet\}$ is a 2-colouring that is eventually white to the left and black to the right.

It can be recorded by the location of its white beads $m^{\circ} \colon \mathbb{Z}_{<0} \to \mathbb{Z}$, or its black beads $m^{\bullet} \colon \mathbb{Z}_{\geq 0} \to \mathbb{Z}$.

 $\mathsf{m}^{\circ} = (\ldots, -6, -5, -4, -2, -1, 2, 4) \ | \ (-3, 0, 1, 3, 5, 6, 7, \ldots) = \mathsf{m}^{\bullet}$

The union $m^{\odot} : \mathbb{Z} \to \mathbb{Z}$ is a bijection, where $m^{\odot}(i) - i$ stabilises to the *charge* c(m) (here c(m) = 1).

i	•••	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6 …
$m^{\odot}(i)$	•••	-5	-4	-2	-1	2	4	-3	0	1	3	5	6	$7 \cdots$
$m^{\odot}(i)-i$	•••	1	1	2	2	4	5	-3	-1	-1	0	1	1	1
$m^{\odot}(i) - i - \mathit{c}(m)$		0	0	1	1	3	4	-4	-2	-2	-1	0	0	0

The sequence $-(\mathsf{m}^{\odot}(i) - i - c(\mathsf{m}))$ defines a partition (4, 2, 2, 1, 0, 0, 0, ...). The following are in bijection:

1. The *Maya diagram* $m \colon \mathbb{Z} \to \{\circ, \bullet\}$ shown above, 2-colouring the integers. 2. The *semi-infinite wedge* $e_{-3} \wedge e_0 \wedge e_1 \wedge e_3 \wedge e_5 \wedge e_6 \wedge \cdots$ giving the sequence m[•]. 3. The charged partition $(c, \lambda) = (1, (4, 2, 2, 1)).$

 ψ_i^* acts similarly after swapping white with black. The Clifford operators are graded:

$$\cdots \xleftarrow{\psi_i}{\psi_i^*} \mathcal{F}^{(-1)} \xleftarrow{\psi_i}{\psi_i^*} \mathcal{F}^{(0)} \xleftarrow{\psi_i}{\psi_i^*} \mathcal{F}^{(1)} \xleftarrow{\psi_i}{\psi_i^*} \cdots$$

The shuffle equations

For $I \subseteq \mathbb{Z}$ and $n \in \mathbb{Z}$, set $I + n = \{i + n \mid i \in I\}$. For $d \ge 1$, define the linear map

 $\operatorname{sh}_d^n\colon \mathcal{F} o \mathcal{F}, \qquad \operatorname{sh}_d^n = \sum \quad \psi_{I+n} \circ \psi_I^*$ $I \subseteq \mathbb{Z}, |I| = d$

The shuffle ideal $S_n \subseteq \mathbb{k}[\mathbb{P}(\mathcal{F}^{(0)}]$ cutting out the $\widehat{\mathfrak{sl}}_n$ representation $V(\Lambda_0) \subseteq \mathcal{F}^{(0)}$ is $S_n = \sum_{d>1} \operatorname{im} \operatorname{sh}_d^n$.

FLOTW multipartitions and standard monomials

By a theorem of Kostant, $\Bbbk[\operatorname{Gr}_{\mathsf{SL}_n}] \cong \bigoplus_{r>0} V(r\Lambda_0)^*$, with the Cartan product as the algebra structure on the right. The work of [FLOTW99] describes a basis for $V(r\Lambda_0)$ in terms of *FLOTW multipartitions*, an *r*-tuple of partitions satisfying containment and *n*-cylindricity:

These three combinatorial objects all label the same basis of Fock space \mathcal{F} .

Fermionic Fock space

The *Fermionic Fock space* \mathcal{F} is the vector space with basis given by Maya diagrams (or semi-infinite wedges, or charged partitions). It is graded by charge:

 $\mathcal{F} = igoplus_{c \in \mathbb{Z}} \mathcal{F}^{(c)}, \quad ext{where } \mathcal{F}^{(c)} = ext{span}_{\Bbbk} \{ (c, \lambda) \mid \lambda \in ext{Partitions} \}.$

The homogeneous coordinate ring is a polynomial ring in infinite variables: $\Bbbk[\mathbb{P}(\mathcal{F})] = \Bbbk[x_{\mathsf{m}} \mid \mathsf{m} \in \mathsf{Mayas}]$. Similarly to the finite case, we say that $x_{m_1} \cdots x_{m_\ell}$ is a *standard monomial* if $m_1 \leq \cdots \leq m_\ell$, where the ordering \leq is by containment of charged partitions.

The standard monomials form a k-basis of $k[Gr(\infty)]$, however they do not appear to play nicely when the shuffle relations S_n are also introduced.

Above is an (r = 4)-multipartition λ satisfying containment and (n = 3)-cylindricity. To be *FLOTW*, the union of residues $\operatorname{Res}(\ell, \lambda)$ for each length ℓ row needs to be incomplete, for all $\ell > 1$. For λ above:

ℓ	6	5	4	3	2	1
$\operatorname{Res}(\ell, oldsymbol{\lambda})$	{• }	{• }	$\{ullet,ullet\}$	{• }	$\{ullet,ullet,ullet,ullet\}$	$\{\bullet, \bullet, \bullet\}$

and hence λ is not a FLOTW multipartition, as both $\text{Res}(2, \lambda)$ and $\text{Res}(1, \lambda)$ are complete.

References

- [KLMW07] V. Kreiman, V. Lakshmibai, P. Magyar, and J. Weyman, "On ideal generators for affine Schubert varieties", Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math. **19** (2007), 353-388.
- [MWY18] D. Muthiah, A. Weekes, and O. Yacobi, "The equations defining affine Grassmannians in type A, arXiv:1708.07076v2.
- [FLOTW99] O. Foda, B. Leclerc, M. Okado, J. Thibon, and T Welsh, "Branching functions of $A_{n-1}^{(1)}$ and Jantzen-Seitz problem for Ariki-Koike algebras", .Adv. Math., 141:322–365, 1999.