A solved problem: Standard monomials on the finite Grassmannian

Let $V=\mathbb{k}^{n}$. The Plücker embedding realises the finite Grassmannian as a projective variety:

$$
\operatorname{Gr}(r, n)=\{W \subseteq V \mid \operatorname{dim} W=r\} \stackrel{p}{\hookrightarrow} \mathbb{P}\left(\wedge \wedge^{r} V\right), \quad \operatorname{span}_{k}\left\{v_{1}, \ldots, v_{r}\right\} \mapsto\left[v_{1} \wedge \cdots \wedge v_{r}\right] .
$$

Coordinates on $\mathbb{P}\left(\wedge^{r} V\right)$ are labelled by the set $C_{r, n}=\{I \subseteq\{1, \ldots, n\}| | I \mid=r\}$ of r-element subsets:

$$
\mathbb{k}\left[\mathbb{P}\left(\wedge^{r} V\right)\right]=\mathbb{k}\left[x_{I} \mid I \in C_{r, n}\right], \quad \text { where } I=\left\{i_{1}<\cdots<i_{r}\right\} \text { and } x_{I} \text { is dual to } e_{i_{1}} \wedge \cdots \wedge e_{i_{r}} .
$$

The purpose of standard monomial theory is to describe $\mathrm{a} k$-basis of the homogeneous coordinate ring $\mathbb{k}[\operatorname{Gr}(r, n)]=\mathbb{K}\left[x_{I} \mid I \in C_{r, n}\right] / \mathcal{P}$, where $\mathcal{P}=\operatorname{ker} p^{*}$ is the Plücker ideal.
The monomial $x_{I} x_{J} x_{K} \in \mathbb{k}\left[x_{I} \mid I \in C_{r, n]}\right]$ is a standard monomial if $I \leq J \leq K$ entrywise, (as a tableau, this means weakly increasing down the columns). Of course there are non-standard monomials, say if $I=\{1,3,6,7\}$ and $J=\{2,3,4,8\}$:

1	3	6	7
2	3	4	8

$\left[\frac{6}{6}\right.$ | 2 | 3 | 4 |
| :--- | :--- | :--- | 8

I and J are incomparable under \leq (the problem is highlighted pink in the diagram) and so cannot be part of a standard monomial $x_{I} x_{J} x_{K}$. We will straighten $x_{I} x_{J}$ by finding a quadratic relation $P_{I, J} \in \mathcal{P}$ that contains $x_{I} x_{J}$ and vanishes on the embedded Grassmannian $\operatorname{Gr}(r=4, n)$.

Split (I, J) into $A=(1,3), B=(2,3,4,6,7)$ and $C=(8)$ as above, and send $x_{A} \otimes x_{B} \otimes x_{C}$ through the map $\wedge^{2} V \otimes \wedge^{5} V \otimes \wedge^{1} V \xrightarrow{1 \otimes \text { comult }_{2,3} \otimes 1} \wedge^{2} V \otimes \wedge^{2} V \otimes \wedge^{3} V \otimes \wedge^{1} V \xrightarrow{\text { mult }_{2,2} \otimes \text { mult }_{3,1}} \wedge^{4} V \otimes \wedge^{4} V \rightarrow \operatorname{Sym}^{2}\left(\wedge^{4} V\right)$ to get a quadratic relation $P_{I, J}$ which includes $x_{I} x_{J}$. (comult is the signed unshuffing of the sequence):

$$
\begin{aligned}
x_{13} \otimes x_{23467} \otimes x_{8} & \mapsto x_{13} \otimes\left(x_{23} \otimes x_{467}-x_{24} \otimes x_{367}+x_{26} \otimes x_{347}-\cdots+x_{67} \otimes x_{234}\right) \otimes x_{8} \\
& \mapsto 0+x_{1234} x_{3678}-x_{1236} x_{3478}-\cdots+\underbrace{x_{1367} x_{2348}}_{x_{I x_{J}}}=P_{I, J}
\end{aligned}
$$

$P_{I, J}$ vanishes on $\operatorname{Gr}(r, n)$ because of the \wedge^{r+1} term coming from x_{A}, hence $P_{I, J} \in \mathcal{P}$. A more detailed inductive argument shows that any monomial $x_{I_{1}} x_{I_{2}} \cdots x_{I_{\ell}}$ can be straightened to a linear combination of standard monomials, hence the standard monomials span the ring $\mathbb{k}\left[x_{I} \mid I \in C_{r, n}\right] / \mathcal{P}$. A more careful argument shows they are linearly independent.

Our problem: Standard monomials on the affine Grassmannian $\operatorname{Gr}_{\mathrm{SL}_{n}}$

The affine Grassmannaian $\operatorname{Gr}_{\text {s } L_{n}}$ admits an embedding i_{n} into the infinite $\operatorname{Grassmannian} \operatorname{Gr}(\infty)$, which in turn embeds via the Plücker embedding p into the projectivisation $\mathbb{P}(\mathcal{F})$ of Fock space. Drawing analogies from above, $\operatorname{Gr}(\infty)$ is like $\operatorname{Gr}(r, n)$ and \mathcal{F} is like $\wedge^{r} V$, however GrsLL_{n} is quite a different object.

$$
\operatorname{Gr}_{\mathrm{LL}_{n}} \stackrel{i_{n}}{\longrightarrow} \operatorname{Gr}(\infty) \stackrel{p}{\longrightarrow} \mathbb{P}(\mathcal{F})
$$

The ideal \mathcal{P} cutting out $\operatorname{Gr}(\infty)$ inside $\mathbb{P}(\mathcal{F})$ is an infinite analogue of the Plücker relations. By a conjecture of Kreiman, Lakshmibai, Magyar, and Weyman [KLMW07] recently proven by Muthiah, Weekes, and Yacobi [MWY18], the set \mathcal{S}_{n} of linear functions on \mathcal{F} vanishing on GrsL_{n} are given by the shufle equations.

Problem: Confirm that \mathcal{S}_{n} is the defining ideal of $\operatorname{Gr}_{\mathrm{SL}_{n}}$ inside $\operatorname{Gr}(\infty)$.

Approach: Develop a standard monomial theory for $\mathbb{k}[\operatorname{Gr}(\infty)] / \mathcal{S}_{n}$, and compare with a known basis for $\mathbb{k}\left[\mathrm{Gr}_{\mathrm{SL}_{n}}\right]$ given by FLOTW multpartitions.

Maya diagrams, semi-infinite wedges, and charged partitions

A Maya diagram $\mathrm{m}: \mathbb{Z} \rightarrow\{0, \bullet\}$ is a 2 -colouring that is eventually white to the left and black to the right.

It can be recorded by the location of its white beads $\mathrm{m}^{\circ}: \mathbb{Z}_{<0} \rightarrow \mathbb{Z}$, or its black beads $\mathrm{m}^{\bullet}: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}$.

$$
\mathrm{m}^{\circ}=(\ldots,-6,-5,-4,-2,-1,2,4) \mid(-3,0,1,3,5,6,7, \ldots)=\mathrm{m}^{\bullet}
$$

The union $\mathrm{m}^{\odot}: \mathbb{Z} \rightarrow \mathbb{Z}$ is a bijection, where $\mathrm{m}^{\ominus}(i)-i$ stabilises to the charge $c(\mathrm{~m})($ here $c(\mathrm{~m})=1)$.

i	\cdots	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
\cdots	\cdots													
$\mathrm{~m}^{\odot}(i)$	\cdots	-5	-4	-2	-1	2	4	-3	0	1	3	5	6	7
$\mathrm{~m}^{\odot}(i)-i$	\cdots	1	1	2	2	4	5	-3	-1	-1	0	1	1	1
$\mathrm{~m}^{\odot}(i)-i-c(\mathrm{~m})$	\cdots	0	0	1	1	3	4	-4	-2	-2	-1	0	0	0

The sequence $-\left(\mathrm{m}^{\odot}(i)-i-c(\mathrm{~m})\right)$ defines a partition $(4,2,2,1,0,0,0, \ldots)$. The following are in bijection:

1. The Maya diagram $\mathrm{m}: \mathbb{Z} \rightarrow\{\circ, \bullet\}$ shown above, 2-colouring the integers.
2. The semi-infinite wedge $e_{-3} \wedge e_{0} \wedge e_{1} \wedge e_{3} \wedge e_{5} \wedge e_{6} \wedge \cdots$ giving the sequence m^{\bullet}.
3. The charged partition $(c, \lambda)=(1,(4,2,2,1))$.

These three combinatorial objects all label the same basis of Fock space \mathcal{F}.

Fermionic Fock space

The Fermionic Fock space \mathcal{F} is the vector space with basis given by Maya diagrams (or semi-infinite wedges, or charged partitions). It is graded by charge:

$$
\mathcal{F}=\bigoplus_{c \in \mathbb{Z}} \mathcal{F}^{(c)}, \quad \text { where } \mathcal{F}^{(c)}=\operatorname{span}_{\mathbb{k}}\{(c, \lambda) \mid \lambda \in \text { Partitions }\}
$$

The homogeneous coordinate ring is a polynomial ring in infinite variables: $\mathbb{k}[\mathbb{P}(\mathcal{F})]=\mathbb{k}\left[x_{\mathrm{m}} \mid \mathrm{m} \in\right.$ Mayas $]$. Similarly to the finite case, we say that $x_{\mathrm{m}_{1}} \cdots x_{\mathrm{m}_{\ell}}$ is a standard monomial if $\mathrm{m}_{1} \leq \cdots \leq \mathrm{m}_{\ell}$, where the ordering \leq is by containment of charged partitions.

The standard monomials form a \mathbb{k}-basis of $\mathbb{k}[\operatorname{Gr}(\infty)]$, however they do not appear to play nicely when the shuffle relations \mathcal{S}_{n} are also introduced.

The action of $\widehat{\mathfrak{s I}_{n}}$ on Fock space, the representation $V\left(\Lambda_{0}\right)$

The Lie algebra $\widehat{\mathfrak{s l}_{n}}$ is the Kac-Moody algebra associated to a cycle diagram on n nodes. For example, $\widehat{\mathfrak{s r}}_{3}$ is generated by the Chevalley generators $E_{0}, E_{0}, E_{0}, F_{0}, F_{0}, F_{0}$, and the derivation $d \in \mathfrak{h}$ satisfying $\left[d, E_{i}\right]=\delta_{i, \bullet} E_{i}$.

The action of $\widehat{\mathfrak{s l}_{n}}$ on the charged partition (c, λ) examines its residues:

The Chevalley generators $E_{\circ}, E_{\circ}, E_{\circ}$ remove boxes of the their colour, without modifying the charge:

The Chevalley generators $F_{\bullet}, F_{0}, F_{\bullet}$ add boxes their colour, without modifying the charge:

The derivation d acts on (c, λ) by counting boxes of its colour (purple), so d scales our example by 2 .
The basic representation $V\left(\Lambda_{0}\right)$ of $\widehat{\mathfrak{s l}}_{n}$ is the submodule of \mathcal{F} generated by the charge zero empty partition:

$$
V\left(\Lambda_{0}\right)=U\left(\widehat{\mathfrak{s l}}_{n}\right) \cdot(0, \varnothing) \subseteq \mathcal{F}^{(0)}
$$

The shuffle relations \mathcal{S}_{n} cut out $V\left(\Lambda_{0}\right)$ inside \mathcal{F}.

Clifford operators on Fock space

The Clifford operators $\psi_{i}, \psi_{i}^{*}: \mathcal{F} \rightarrow \mathcal{F}$ form the wedge or interior product with e_{i}

$$
\psi_{i}(\omega)=e_{i} \wedge \omega, \quad \psi_{i}^{*}(\omega)=\iota_{e_{i}}(\omega)
$$

In terms of Maya diagrams, $\psi_{i} \mathrm{~m}$ turns the i th bead of m black $\left(\psi_{i} \mathrm{~m}=0\right.$ if it is already black) and multiply by a sign depending on the number of black beads to the left of i. With the m shown above, $\psi_{1} \mathrm{~m}=0$ while $\psi_{2} \mathrm{~m}$ is the negative of the following diagram:
ψ_{i}^{*} acts similarly after swapping white with black. The Clifford operators are graded:

$$
\ldots \underset{\psi_{i}^{*}}{\stackrel{\psi_{i}}{\leftrightarrows}} \mathcal{F}^{(-1)} \underset{\psi_{i}^{*}}{\stackrel{\psi_{i}}{\leftrightarrows}} \mathcal{F}^{(0)} \underset{\psi_{i}^{*}}{\stackrel{\psi_{i}}{\leftrightarrows}} \mathcal{F}^{(1)} \underset{\psi_{i}^{*}}{\stackrel{\psi_{i}}{\rightleftarrows}} \cdots
$$

The shuffle equations

For $I \subseteq \mathbb{Z}$ and $n \in \mathbb{Z}$, set $I+n=\{i+n \mid i \in I\}$. For $d \geq 1$, define the linear map

$$
\operatorname{sh}_{d}^{n}: \mathcal{F} \rightarrow \mathcal{F}, \quad \operatorname{sh}_{d}^{n}=\sum_{I \subseteq \mathbb{Z},|I|=d} \psi_{I+n} \circ \psi_{I}^{*}
$$

The shuffle ideal $\mathcal{S}_{n} \subseteq \mathbb{k}\left[\mathbb{P}\left(\mathcal{F}^{(0)}\right]\right.$ cutting out the $\widehat{\mathfrak{s l}}_{n}$ representation $V\left(\Lambda_{0}\right) \subseteq \mathcal{F}^{(0)}$ is $\mathcal{S}_{n}=\sum_{d \geq 1} \operatorname{im~}_{\operatorname{sh}}^{d}$.

FLOTW multipartitions and standard monomials

By a theorem of Kostant, $\mathbb{k}\left[\operatorname{Gr}_{\mathrm{sL}_{n}}\right] \cong \bigoplus_{r \geq 0} V\left(r \Lambda_{0}\right)^{*}$, with the Cartan product as the algebra structure on the right. The work of [FLOTW99] describes a basis for $V\left(r \Lambda_{0}\right)$ in terms of FLOTW multipartitions, an r-tuple of partitions satisfying containment and n-cylindricity:

Above is an $(r=4)$-multipartition $\boldsymbol{\lambda}$ satisfying containment and ($n=3$)-cylindricity. To be FLOTW, the union of residues $\operatorname{Res}(\ell, \boldsymbol{\lambda})$ for each length ℓ row needs to be incomplete, for all $\ell>1$. For $\boldsymbol{\lambda}$ above:

$$
\begin{array}{c|cccccc}
\ell & 6 & 5 & 4 & 3 & 2 & 1 \\
\hline \operatorname{Res}(\ell, \boldsymbol{\lambda}) & \{\bullet\} & \{\bullet\} & \{\bullet, \bullet\} & \{\bullet\} & \{\bullet, \bullet, \bullet\} & \{\bullet, \bullet, \bullet\}
\end{array}
$$

and hence $\boldsymbol{\lambda}$ is not a FLOTW multipartition, as both $\operatorname{Res}(2, \boldsymbol{\lambda})$ and $\operatorname{Res}(1, \boldsymbol{\lambda})$ are complete.

References

[KLMW07] V. Kreiman, V. Lakshmibai, P. Magyar, and J. Weyman, "On ideal generators for affine Schubert varieties", Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math. 19 (2007), 353-388.
[MWY18] D. Muthiah, A. Weekes, and O. Yacobi, "The equations defining affine Grassmannians in type A, arXiv:1708.07076v2.
[FLOTW99] O. Foda, B. Leclerc, M. Okado, J. Thibon, and T Welsh, "Branching functions of $A_{n-1}^{(1)}$ and Jantzen-Seitz problem for Ariki-Koike algebras", .Adv. Math., 141:322-365, 1999.

