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Abstract

The product monomial crystal was defined by Kamnitzer, Tingley, Webster, Weekes, and Yacobi for any semisim-
ple simply-laced Lie algebra and a multiset of parameters. The crystal is closely related to the representation
theory of truncated shifted Yangians, a family of algebras quantising transversal slices to Schubert varieties in
the affine Grassmannian. In this thesis we give a systematic study of the product monomial crystal using the
novel tool of truncations, resulting in a Demazure-type character formula which is valid in any symmetric bi-
partite Kac-Moody type. We establish results on stability of the crystal, and use these and the character formula
to show that in type A the product monomial crystal is the crystal of a generalised Schur module associated to a
column-convex diagram, as defined by Magyar, Reiner, and Shimozono.
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1 Introduction

Let 𝐺 be a simply-laced reductive group over the complex numbers ℂ, with Repℂ 𝐺 the category of its finite-
dimensional algebraic representations. This category is semisimple with simple objects 𝐿(𝜆) indexed by domi-
nant weights 𝜆, and an interesting problem is to define ‘natural’ constructions of these representations for any
dominant weight. This problem has been very fruitful, with three such constructions realising 𝐿(𝜆) as:

1. The space of sections Γ(𝐺/𝐵,ℒ𝜆) of a line bundleℒ𝜆 on the flag variety 𝐺/𝐵,
2. The cohomology of a Nakajima quiver variety associated to the pair (𝐺, 𝜆), generalising a previous con-

struction of Ginzburg using Springer fibres in the case of 𝐺 = GL𝑛, and
3. The intersection homology 𝐼𝐻(Gr𝜆) inside the dual affine Grassmannian Gr = 𝐺∨((𝑧))/𝐺∨[[𝑧]] of the spher-

ical orbit Gr𝜆 .

The fact that these three realisations all give rise to 𝐿(𝜆) might be surprising, since the underlying geometric
spaces are rather different, and consequently there has been some progress made to state relationships between
these spaces. Throughout the papers [Kam+14; Kam+19a; Kam+19b] the authors investigate the relationship
between the second and third realisations, establishing the fact that transverse slices in the dual affine Grass-
mannian are symplectic dual to Nakajima quiver varieties. Throughout their study they investigate a family of
non-commutative deformations 𝑌 𝜆𝜇 (R) of the coordinate ring of the transverse slice Gr𝜆𝜇 depending on an integral
set of parameters R, and define a category 𝒪(𝑌 𝜆𝜇 (R)) of their representations. The sum𝒱 (𝜆,R) = ⨁𝜇≤𝜆 𝒪(𝑌 𝜆𝜇 (R))
carries a categorical (Lie𝐺)-action (in the sense of Chuang and Rouquier [CR04; Rou08]), making the complexi-
fied Grothendieck group 𝑉 (𝜆,R) = 𝐾ℂ(𝒱 (𝜆,R)) a representation of 𝐺.
This thesis concerns the representation 𝑉 (𝜆,R) and its crystal ℳ(𝜆,R), called the product monomial crystal af-
ter its embedding into Nakajima’s crystal of monomials. We give a novel new method of analysing the crystal
ℳ(𝜆,R) by certain global truncations, which we use to give aDemazure-type character formula for the crystal, our
first main result. Our second main result is specific to type A, where we show that the product monomial crystal
is in fact the crystal of a previously-studied family of modules called the generalised Schur modules for column-
convex diagrams, and give a bijection between the parameters R defining the crystal and the column-convex
diagrams defining the modules.

The column-convex diagrams include skew shapes as a special case, and so a corollary of our result is that for
any skew Schur module there is a weight 𝜆 and a parameter multiset R such that 𝒱 (𝜆,R) is a categorification of
the skew Schur module. This is the first such categorification of a skew-Schur module known to the author.

Although the original setting started with a simply-laced reductive group 𝐺, the product monomial crystal makes
sense for any symmetric bipartite Cartan type, and we prove all results in this generality. The only obstruction to
our results being valid in arbitrary symmetrisable bipartite types is Theorem 6.3.5, which is proved via the theory
of Nakajima quiver varieties. If there were some alternative proof of this theorem valid in arbitrary symmetrisable
bipartite type (and various computer experiments suggest it is true), the results within would automatically hold
in that generality.
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1 Introduction

1.1 Structure

This thesis is divided into three parts. The first part (Chapters 2 to 5) is concerned with setting up notation
and reviewing the theory of Cartan and root data, Kac-Moody algebras, quantum groups, crystals, characters,
Demazure modules, and Demazure crystals. The second part (Chapters 6 to 8) examines the product monomial
crystal in-depth, developing the novel concept of truncations of the crystal and proving our first main result:
the character formula. The third part (Chapters 9 and 10) relates the product monomial crystal in Type A to the
generalised Schur modules, proves our second main result: the crystal of a column-convex generalised Schur
module is given by the product monomial crystal. A more detailed reader’s guide is given below.

The first part begins with Chapter 2, a very brief overview of the notation used throughout to which the reader
can refer. In Chapter 3 we review the notion of a Cartan datum (𝐼 , ⋅) and a root datum Φ so as to put the repre-
sentation theory of semisimple groups and reductive groups on equal footing with that of Kac-Moody algebras
and their quantum analogues. We review the theory of crystals in Chapter 4, first reminding the reader of the
original definition of a crystal base in terms of integrable modules over the quantum group, and then connect-
ing it with that of an abstract crystal, which is much more common in the combinatorial-oriented literature. In
Chapter 5 we define both Demazure modules and Demazure crystals, and state the main theorems concerning
their characters.

In Chapter 6 we introduce Nakajima’s crystal of monomials, and define the product monomial crystal as a par-
ticular subset of the monomial crystal. After establishing some basic notation and results about this crystal we
move on to Chapter 7 where we introduce our truncations and give a character formula for each (Theorem 7.2.3),
show that each truncation is a Demazure crystal (Theorem 7.3.7), and deduce a complete character formula for
the product monomial crystal in finite type (Corollary 7.3.9). With this main result out of the way, we take a step
backwards and introduce Nakajima quiver varieties in Chapter 8 so as to give proof of the fact that the product
monomial subset is indeed a crystal (Theorem 6.3.5).

In the third part we focus mainly on type A phenomena. Chapter 9 reviews the definition of a Schur functor
and Schur module for any arrangement of boxes on a grid (a straightforward generalisation of the well-known
definition in the case when the arrangement is a Young diagram), along with the the less well-known notion of
a flagged Schur module. We show that the character of the product monomial crystal and the generalised Schur
module agree when the 𝑛 in GL𝑛 is taken to be ‘large enough’. In Chapter 10 we prove some stability results
about the product monomial crystal, showing that when the data R is held fixed and the underlying Cartan type
increases in size the decomposition into highest weight crystals stabilises. Using this we can leverage the previous
result to show that the product monomial crystal is the crystal of a generalised Schur module for all 𝑛, and as a
consequence that 𝒱 (𝜆,R) categorifies a skew Schur module.
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2 Notation

The blackboard bold letters ℤ, ℚ, ℝ, and ℂ denote (as usual) the integers, rationals, reals, and complex numbers
respectively. We further define the natural numbers ℕ = {0, 1, 2, …}, the positive integers ℙ = {1, 2, 3, …}, and for
any natural number 𝑛 ∈ ℕwe set [𝑛] = {1, 2, … , 𝑛}. The symmetric group of permutations of the set [𝑛] is denoted
by 𝔖𝑛, and composition is written as composition of functions, so we have (using cycle notation) the equation
(12)(23) = (123) inside 𝔖3.

A monoid is the same thing as a group which may not have inverses, for instance (ℕ, +) is a monoid, but (ℙ, +)
is not as it lacks an identity element. When 𝑅 is a commutative ring (always assumed to be unital) and 𝑀 is a
monoid, we denote the unitalmonoid algebra by 𝑅[𝑀], also called the group algebra when𝑀 is a group. When𝑀
is commutative the algebra 𝑅[𝑀]will often be written in exponential notation, where 𝑅[𝑀] is free as an 𝑅-module
on the basis {𝑒𝑚 ∣ 𝑚 ∈ 𝑀}, with multiplication on the basis given by 𝑒𝑚 ⋅ 𝑒𝑛 = 𝑒𝑚+𝑛. For example if 𝑀 = (ℕ, +)
then the monoid algebra 𝑅[𝑀] is isomorphic to the polynomial ring 𝑅[𝑥] under the map 𝑒1 ↦ 𝑥 .
Just as a subset 𝑌 ⊆ 𝑋 may be regarded as an indicator function 𝑌 ∶ 𝑋 → {0, 1}, we define a multiset based in
𝑋 to be a function R∶ 𝑋 → ℕ. We will always denote multisets by boldface type, like R, S,T,Q. The value of
R at the element 𝑥 ∈ 𝑋 is called the multiplicity of 𝑥 in R, written R[𝑥]. The support of a multiset is the subset
SuppR = {𝑥 ∈ 𝑋 ∣ R[𝑥] > 0} ⊆ 𝑋 . A multiset with finite support is called a finite multiset. If 𝑋 = {𝑥, 𝑦 , 𝑧} then
the notation R = {𝑥2, 𝑦} means that R is a multiset based in 𝑋 , where 𝑥 has multiplicity 2, 𝑦 has multiplicity 1,
and 𝑧 has multiplicity 0.
If both R and S are multisets based in 𝑋 , then theirmultiset union is the function R+ S. We say S is a sub-multiset
of R, denoted S ⊆ R, if S[𝑥] ≤ R[𝑥] for all 𝑥 ∈ 𝑋 , and in this case we define their multiset difference to be the
function R−S. When taking sums or products over multisets, they should be taken with multiplicity. For instance,
if 𝑓 ∶ 𝑋 → 𝐺 is a function from 𝑋 into an abelian group 𝐺 (written multiplicatively), and R is a finite multiset
based in 𝑋 , then the expression∏𝑥∈R 𝑓 (𝑥) means∏𝑥∈𝑋 𝑓 (𝑥)R[𝑥].
A partial function 𝑓 ∶ 𝑋 99K 𝑌 between the sets 𝑋 and 𝑌 is a function 𝑓 ∶ 𝑋 → 𝑌 ⊔ {⊥} where ⊥ is a special
element not belonging to 𝑌 . Alternatively a partial function may be viewed as a function which is only defined
on a subset of its domain. If 𝑓 (𝑥) = ⊥ we say that 𝑓 is undefined at 𝑥 , and the set {𝑥 ∈ 𝑋 ∣ 𝑓 (𝑥) ∈ 𝑌 } is called the
domain of definition of 𝑓 .
The remainder of the notation here is set up in Chapter 3, but we leave it here as a quick reference guide.

The letter 𝐼 will always refer to a Cartan datum, which is the data of a symmetrisable generalised Cartan matrix
𝐴𝐼 = [𝑎𝑖𝑗]𝑖,𝑗∈𝐼 together with a particular integral choice of symmetrisingmatrix 𝐵𝐼 = [𝑖⋅𝑗]𝑖,𝑗∈𝐼 . This data determines
the abstractWeyl group (𝑊𝐼 , 𝑆𝐼 ), a Coxeter system with generators (𝑠𝑖)𝑖∈𝐼 , and when 𝑊 = 𝑊𝐼 is finite we denote
the longest word by 𝑤𝐼 . The vertices 𝑖, 𝑗 are adjacent, written 𝑖 ∼ 𝑗, if and only if 𝑎𝑖𝑗 < 0.
The letter Φ will always refer to a root datum of type 𝐼 , which for us means a choice of weight lattice 𝑋(Φ) and
coweight lattice 𝑋 ∨(Φ) in a perfect pairing ⟨−, −⟩, along with simple roots (𝛼𝑖)𝑖∈𝐼 and simple coroots (𝛼∨𝑖 )𝑖∈𝐼 . The
additive monoid of dominant weights is denoted 𝑋(Φ)+. We will use sans-serif font to denote common root data,
for example GL𝑛 refers to an algebraic group, while GL𝑛 refers to a particular root datum of type A𝑛−1.

A root datum determines a Kac-Moody algebra 𝔤(Φ), its universal enveloping algebra 𝑈 (Φ), an associated quantum
group 𝑈𝑞(Φ), and also a combinatorial category ofΦ-crystals. To each dominant weight 𝜆we associate the highest-
weight integrable representation 𝐿(𝜆) of the Kac-Moody algebra, 𝐿𝑞(𝜆) of the quantum group, and the crystal base
ℬ(𝜆) of 𝐿𝑞(𝜆). The modules 𝐿(𝜆) (resp 𝐿𝑞(𝜆)) are the simple objects of the semisimple category 𝒪 int(Φ) (resp.
𝒪 int𝑞 (Φ)), and we only ever use the notation 𝐿(𝜆), 𝐿𝑞(𝜆), and ℬ(𝜆) when 𝜆 is dominant.
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3 Lie Theory

Working with representations of semisimple groups, reductive groups, Kac-Moody algebras, or quantum groups
combinatorially requires the introduction of a lot of notation — the Cartan matrix and Dynkin diagram, Weyl
group, roots, coroots, and fundamental weights just to name a few. Since we need to introduce all of this notation
anyway, we choose here to do it in a way which treats all of these cases uniformly, by introducing a Cartan datum
and a root datum separately, from which we can build out a Kac-Moody algebra or quantum group (or Chevalley
group scheme, although we do not cover that here). We briefly recall how the theory develops in the finite type
case.

The finite-dimensional semisimple Lie algebras over ℂ (with fixed choice of splitting Cartan subalgebra) are
classified up to isomorphism by their associated reduced root systems, in the sense of Bourbaki [BB02]. The
classification of split reductive algebraic groups is more complicated, requiring not only the data of the underlying
root system but also a root datum, an embedding of the root system into a pair of dualℤ-modules. We can further
choose to base these data by choosing a Borel subgroup containing the split torus, in which case we need to only
remember the dual ℤ-modules along with the simple roots and simple coroots.

The combinatorial data we have chosen to go with is more or less an extension of the notion of a based root datum
to arbitrary symmetrisable type, a synthesis of the definitions given in Part I of [Lus10] and Chapter 7 of [Mar18].
Such a datum is made of two parts: the ‘core’ comprises a Cartan datum (playing the role of a root system), a
symmetrisable generalised Cartan matrix together with a choice of symmetrisation which makes the square
length of each simple root a multiple of 2. The ‘realisation’ part of the datum is analogous to a based root datum
in the reductive group sense: a pair of dual ℤ-modules of finite rank, with a choice of simple roots and coroots
whose pairing matrix is the generalised Cartan matrix, hence we call it a root datum. The ‘core’ determines the
abstract Weyl group as well as the positive and negative parts of the associated Kac-Moody algebra and quantum
group, wheras the ‘realisation’ part determines the maximal torus or Cartan subalgebra, as well as the full set of
possible weights and coweights.

Many authors only treat Kac-Moody algebras or quantum groups using a specific realisation, rather than allowing
it to vary. This does not affect much about the resulting representation theory, which mostly depends only on
the underlying Cartan datum, but is often more convenient to permit more realisations. For example, while 𝔰𝔩𝑛
is a Kac-Moody algebra in the sense of [Kac90], the often-more-convenient 𝔤𝔩𝑛 is not. Another place we see the
utility of allowing more general realisations is in Chapter 10 where we use arguments involving restriction to
Levi subcrystals, since being able to have a Levi subgroup share the same set of weights as the larger subalgebra
simplifies notation and arguments considerably.

These degree-zero modifications of Kac-Moody algebras are undoubtedly well-known to experts, but it is quite
difficult for a non-expert to check what parts of the theory they actually affect. We assure the reader that as
long as they make the assumption that the simple roots and coroots of a root datum are taken to be linearly
independent, virtually all of the well-known theory of Kac-Moody algebras and quantum groups goes through
without a hitch (and in finite type this is automatic). Conversely, if either of those sets is dependent the theory has
to be modified significantly, for example by replacing weight spaces as simultaneous eigenspaces with weight
spaces as abstract gradings on a vector space, and forgetting the partial order on weights (which is no longer
defined). At points of this chapter we will remark on where these theories diverge, but after this chapter we will
always take the linear independence, or regularity, assumption.
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3 Lie Theory

3.1 Cartan data

We begin by defining the ‘core’ of our Lie-theoretic data, a Cartan datum. Such a datum is equivalent to a sym-
metrisable generalised Cartan matrix, together with a choice of symmetrisation making the square length of each
simple root a positive multiple of 2 (see Remark 3.1.6).

3.1.1 Definition (Cartan data)
A Cartan datum is a pair (𝐼 , ⋅) of a finite set 𝐼 together with a symmetric bilinear form (− ⋅−) ∶ ℤ[𝐼 ]×ℤ[𝐼 ] →
ℤ, satisfying the two conditions

𝑖 ⋅ 𝑖 ∈ {2, 4, 6, …} for all 𝑖 ∈ 𝐼 , and
2 𝑖 ⋅ 𝑗𝑖 ⋅ 𝑖 ∈ {0, −1, −2, …} for all 𝑖 ≠ 𝑗. (3.1.2)

The 𝐼 × 𝐼 matrix 𝐴𝐼 = [𝑎𝑖𝑗] defined by 𝑎𝑖𝑗 = 2 𝑖⋅𝑗𝑖⋅𝑖 is called the Cartan matrix associated to (𝐼 , ⋅). For each subset
𝐽 ⊆ 𝐼 , the restricted datum is (𝐽 , ⋅) with (− ⋅ −) restricted to ℤ[𝐽 ] × ℤ[𝐽 ].

The simplest example of a Cartan datum is the empty datum A0 = ∅, with the next simplest being the A1 datum
𝐼 = {𝑖}with the bilinear form 𝑖 ⋅ 𝑖 = 2. A familiar example to most readers will be the type A𝑛 Cartan datum, where
𝐼 = {1, … , 𝑛} and the bilinear form is given by

𝑖 ⋅ 𝑗 =
⎧
⎨
⎩

2 if 𝑖 = 𝑗,
−1 if |𝑖 − 𝑗| = 1,
0 otherwise.

(3.1.3)

Since 𝑖 ⋅ 𝑖 = 2 for all 𝑖 ∈ 𝐼 , the Cartan matrix 𝐴𝐼 is identical to the pairing matrix [𝑖 ⋅ 𝑗]. For instance, if (𝐼 , ⋅) is the
A4 Cartan datum we have

[𝑖 ⋅ 𝑗] = [𝑎𝑖𝑗] =
⎛
⎜⎜
⎝

2 −1
−1 2 −1

−1 2 −1
−1 2

⎞
⎟⎟
⎠
. (3.1.4)

Define a binary relation on 𝐼 by declaring 𝑖 ∼ 𝑗 if and only if 𝑖 ⋅ 𝑗 < 0, in which case we say that 𝑖 is adjacent to 𝑗.
This defines an undirected simple graph with vertex set 𝐼 , which we will later upgrade to a Coxeter graph and a
Dynkin diagram. In the case of A4, the undirected graph is a path with four vertices:

Using the associated graph to a Cartan datum we can define the following adjectives.

3.1.5 Definition (Properties of Cartan data)
Let (𝐼 , ⋅) be a Cartan datum. We say that the Cartan datum is:

1. Symmetric if 𝑖 ⋅ 𝑖 = 2 for all 𝑖 ∈ 𝐼 . (Equivalently, 𝑖 ⋅ 𝑗 = 𝑎𝑖𝑗 for all 𝑖, 𝑗 ∈ 𝐼 ).
2. Simply-laced if it is symmetric, and 𝑖 ⋅ 𝑗 ∈ {0, −1} for all 𝑖 ≠ 𝑗.
3. Irreducible if its associated graph is connected.
4. Bipartite if its associated graph is bipartite.
5. Finite type if the symmetric bilinear form (− ⋅ −) is positive-definite over ℝ.
6. Infinite type if it is not finite type.
7. Affine type if it is irreducible, not of finite type, and the symmetric bilinear form (− ⋅ −) is positive-

semidefinite over ℝ.
It is easy to see that the A𝑛 Cartan datum satisfies the first four properties above. In addition, some computations
with determinants show that the bilinear form of A𝑛 is positive-definite, and hence A𝑛 is finite type.
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3.2 The Coxeter graph

If (Δ ⊆ 𝑉 ) is a reduced root system in the sense of Bourbaki [BB02], then we can associate to it a Cartan datum
(𝐼Δ, ⋅Δ) in the following way. If Δ is irreducible then there exists a unique inner product (−, −) on 𝑉 which is
Weyl-invariant, and such that the square length (𝛼, 𝛼) of the shortest root is 2. By classification of irreducible
root systems there are at most two lengths of roots. In the simply-laced cases A𝑛, D𝑛, E6, E7, and E8 every root
is short, while in the cases B𝑛, C𝑛, and F4 the long roots have square length 4, and for G2 the long roots have
square length 6. We may then choose a simple system {𝛼𝑖 ∣ 𝑖 ∈ 𝐼Δ} of roots, and define the associated Cartan datum
(𝐼Δ, ⋅Δ)with 𝑖 ⋅Δ 𝑗 = (𝛼𝑖, 𝛼𝑗). If Δ is reducible, then (𝐼Δ, ⋅Δ) is defined by performing this process on each irreducible
component.

In fact, by the classification of affine Cartan matrices (given in Chapter 4 of [Kac90]), we can see that all inde-
composable finite type or affine type generalised Cartan matrices have only two square lengths, one of which
can be taken to be 2, and the other will be 4, 6, or 8, with 8 occuring only in the case of A(2)

2 .

3.1.6 Remark (Symmetrisability)
In the usual definition of a Kac-Moody algebra (for example given in [Kac90]), a generalised Cartan matrix
is an integral matrix 𝐴 ∈ Mat𝐼 (ℤ) satisfying the three conditions

1. 𝑎𝑖𝑖 = 2 for all 𝑖,
2. 𝑎𝑖𝑗 ≤ 0 for all 𝑖 ≠ 𝑗, and
3. 𝑎𝑖𝑗 = 0 ⟺ 𝑎𝑗𝑖 = 0 for all 𝑖 ≠ 𝑗.

One then says that 𝐴 is symmetrisable if there exists an invertible diagonal matrix 𝐷 ∈ Mat𝐼 (ℚ) and a
symmetric matrix 𝐵 ∈ Mat𝐼 (ℚ) such that 𝐴 = 𝐷𝐵.
When (𝐼 , ⋅) is a Cartan datum its associated Cartan matrix 𝐴𝐼 is always symmetrisable, with 𝐷𝐼 having
entries 𝑑𝑖𝑖 = 2

𝑖⋅𝑖 , and 𝐵𝐼 the matrix of the bilinear form (𝑖 ⋅ 𝑗). Conversely, when a generalised Cartan matrix
𝐴 is symmetrisable in the sense of Kac where 𝐴 = 𝐷𝐵, it is possible to simultaneously re-scale 𝐷 and 𝐵 such
that all diagonal entries of 𝐵 are nonzero even integers, and by considering indecomposable components of
𝐴 we may furthermore take those entries to be positive.

So a Cartan datum is precisely a symmetrisable generalised Cartan matrix 𝐴𝐼 with a particular choice of
integral 𝐵𝐼 .

To conclude we remark that most definitions in this chapter rely only on the Cartan matrix 𝐴𝐼 of a Cartan datum
(𝐼 , ⋅), with the only exception being the definition of the quantum enveloping algebra (which requires the integers
𝑖 ⋅ 𝑖 rather than just the ratios 𝑎𝑖𝑗 ).

3.2 The Coxeter graph

Given a Cartan datum (𝐼 , ⋅) we can label each edge 𝑖 ∼ 𝑗 of the associated graph by a number 𝑚𝑖𝑗 ∈ {2, 3, 4, 6, ∞},
producing what is called a Coxeter graph.

3.2.1 Definition (Coxeter matrix and graph)
The Coxeter matrix associated to the Cartan datum (𝐼 , ⋅) is the symmetric matrix (𝑚𝑖𝑗)𝑖,𝑗∈𝐼 with diagonal
entries 𝑚𝑖𝑖 = 1, and off-diagonal entries 𝑚𝑖𝑗 ∈ {2, 3, 4, 6, ∞} determined by the value of 𝑎𝑖𝑗𝑎𝑗𝑖 as given in the
following table:

𝑎𝑖𝑗𝑎𝑗𝑖 = 4(𝑖⋅𝑗)2
(𝑖⋅𝑖)(𝑗⋅𝑗) ≥ 4 3 2 1 0

𝑚𝑖𝑗 ∞ 6 4 3 2
(3.2.2)

The Coxeter graph associated to the Cartan datum (𝐼 , ⋅) is the same undirected graph defined before with
𝑖 ∼ 𝑗 iff 𝑎𝑖𝑗 < 0, where we also label the edge between 𝑖 and 𝑗 by 𝑚𝑖𝑗 . (Note that for 𝑖 ≠ 𝑗 we have 𝑖 ≁ 𝑗 ⟺
𝑚𝑖𝑗 = 2).

The table above can be remembered by the ‘equation’ cos2 (− 𝜋
𝑚𝑖𝑗

) = (𝑖⋅𝑗)2
(𝑖⋅𝑖)(𝑗⋅𝑗) .
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3 Lie Theory

The irreducible finite type and affine type Cartan data follow the same classification of indecomposable gener-
alised Cartan matrices (see Chapter 4 of [Kac90]), as each such Cartan matrix is symmetrisable, and proportional
Cartan data determine identical Cartan matrices. If |𝐼 | = 0 or |𝐼 | = 1, then the Cartan datum is necessarily finite
type. If |𝐼 | = 2, then a Cartan datum is of the form

( 𝑛 −𝑘
−𝑘 𝑚 ) where 𝑛, 𝑚 ∈ {2, 4, …} , 𝑘 ∈ ℕ, and both 𝑛, 𝑚 divide 2𝑘. (3.2.3)

Since 𝑛, 𝑚 > 0, this matrix is positive-definite if and only if its determinant 𝑛𝑚−𝑘2 is positive, which is equivalent
to 4 𝑘2

𝑛𝑚 = 𝑎𝑖𝑗𝑎𝑗𝑖 < 4, hence the following result.
3.2.4 Lemma
Let (𝐼 , ⋅) be a Cartan datum with Coxeter matrix (𝑚𝑖𝑗)𝑖,𝑗∈𝐼 . For each pair 𝑖 ≠ 𝑗, the Coxeter entry 𝑚𝑖𝑗 is finite
if and only if the restricted rank-two Cartan datum ({𝑖, 𝑗} , ⋅) is finite type.

Interestingly, out of all the finite and affine indecomposable Cartan matrices, the only occurrences of 𝑚𝑖𝑗 = ∞ is

for the untwisted affinisation A(1)
1 and twisted affinisation A(2)

1 of A1.

3.2.5 Example (The B4 Cartan datum)
Taking the B4 type root system and performing the process outlined in the previous chapter, we get the B4
Cartan datum 𝐼 = {1, 2, 3, 4} with the symmetric bilinear form and Cartan matrices

[𝑖 ⋅ 𝑗] =
⎛
⎜⎜
⎝

2 −2
−2 4 −2

−2 4 −2
−2 4

⎞
⎟⎟
⎠
, [𝑎𝑖𝑗] =

⎛
⎜⎜
⎝

2 −2
−1 2 −1

−1 2 −1
−1 2

⎞
⎟⎟
⎠
. (3.2.6)

The associated Coxeter matrix is

[𝑚𝑖𝑗] =
⎛
⎜⎜
⎝

2 4
4 2 3

3 2 3
3 2

⎞
⎟⎟
⎠
, (3.2.7)

which makes the associated Coxeter graph the labelled path on four vertices:
4

(When an edge has a weight 𝑚𝑖𝑗 = 3, it is typical to leave that edge unlabelled).

3.3 The Braid, Weyl, and Cactus groups

The Weyl group can be presented by generators-and-relations, independent of any realisation as a linear trans-
formation on the weight or coweight lattice, hence the name abstract Weyl group.

3.3.1 Definition (Abstract Weyl group)
The abstract Weyl group 𝑊𝐼 corresponding to a Cartan datum (𝐼 , ⋅) is the group generated by the elements
𝑆𝐼 = {𝑠𝑖, 𝑖 ∈ 𝐼 } subject to the relations

𝑠2𝑖 = 1 for all 𝑖 ∈ 𝐼 ,
𝑠𝑖𝑠𝑗 𝑠𝑖⋯⏟⏟⏟⏟⏟⏟⏟
𝑚𝑖𝑗 letters

= 𝑠𝑗 𝑠𝑖𝑠𝑗 ⋯⏟⏟⏟⏟⏟⏟⏟
𝑚𝑖𝑗 letters

for all 𝑖 ≠ 𝑗 with 𝑚𝑖𝑗 < ∞. (3.3.2)

The second set of relations are called the braid relations. Note that both sets of relations can be compactly
written as (𝑠𝑖𝑠𝑗)𝑚𝑖𝑗 = 1 for all 𝑖, 𝑗 ∈ 𝐼 satisfying 𝑚𝑖𝑗 < ∞, presenting (𝑊𝐼 , 𝑆𝐼 ) as a Coxeter system.
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3.3 The Braid, Weyl, and Cactus groups

We recall some properties of the Coxeter system (𝑊𝐼 , 𝑆𝐼 ), referring the reader to [Hum90] for further details:

1. A reduced expression for 𝑤 ∈ 𝑊𝐼 is a word (𝑖1, … , 𝑖𝑘)with letters in 𝐼 such that 𝑤 = 𝑠𝑖1 ⋯ 𝑠𝑖𝑘 , and 𝑘 is as small
as possible.

2. The length 𝑙(𝑤) is the length of any reduced expression for 𝑤 .
3. The Bruhat ordering on 𝑊𝐼 is 𝑢 ≤ 𝑤 whenever 𝑢 ∈ 𝑊 can be obtained as a subexpression of a reduced

expression of 𝑤 .
4. The Bruhat ordering is compatible with the length function: 𝑢 ≤ 𝑤 implies 𝑙(𝑢) ≤ 𝑙(𝑤).
5. The group 𝑊𝐼 is finite if and only if (𝐼 , ⋅) is finite type.
6. If 𝐽 ⊆ 𝐼 is of finite type, then 𝑊𝐽 ⊆ 𝑊𝐼 is a finite group and contains a unique element 𝑤𝐽 of maximum

length, called the longest word. If 𝐼 itself is finite type, we write 𝑤𝐼 (rather than 𝑤∘ as is sometimes done)
for the longest word.

7. If 𝐽 ⊆ 𝐼 is of finite type, then the automorphism 𝜔𝐽 ∶ 𝑊𝐽 → 𝑊𝐽 defined by 𝑥 ↦ 𝑤𝐽 𝑥𝑤𝐽 induces a bijection
on the set {𝑠𝑗 ∣ 𝑗 ∈ 𝐽 } of generators. (This can be seen since 𝑙(𝑤𝐽 𝑥) = 𝑙(𝑤𝐽 ) − 𝑙(𝑥) for any 𝑥 ∈ 𝑊𝐽 ). We also
write 𝜔𝐽 ∶ 𝐽 → 𝐽 for the induced bijection on the set 𝐽 .

It can be shown that the Weyl group (or rather a finite covering on it) acts on any integrable representation of a
Kac-Moody algebra. This fails in the case of quantum groups, and one has to look to the braid group instead to
find an action on integrable representations.

3.3.3 Definition (Braid group)
The Braid group 𝐵𝐼 corresponding to a Cartan datum (𝐼 , ⋅) the group generated by the elements 𝜎𝑖, 𝑖 ∈ 𝐼
subject to the relations

𝜎𝑖𝜎𝑗𝜎𝑖⋯⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚𝑖𝑗 letters

= 𝜎𝑗𝜎𝑖𝜎𝑗 ⋯⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚𝑖𝑗 letters

for all 𝑖 ≠ 𝑗 with 𝑚𝑖𝑗 < ∞. (3.3.4)

There is a natural surjection 𝐵𝐼 ↠ 𝑊𝐼 of the braid group onto the Weyl group, defined on generators by
𝜎𝑖 ↦ 𝑠𝑖.

The map 𝜔𝐽 ∶ 𝐽 → 𝐽 acts as an automorphism of the induced Coxeter subgraph of 𝐽 , since conjugation preserves
the order of a pair of simple generators. This automorphism can be used to define the cactus group. Here we follow
the definition from Section 5 of [Bon16].

3.3.5 Definition (Cactus group)
The cactus group 𝐶𝐼 corresponding to a Cartan datum (𝐼 , ⋅) is defined as the group generated by 𝜏𝐽 , where
𝐽 ⊆ 𝐼 is a connected subgraph of finite type, modulo the relations

1. 𝜏2𝐽 = 1,
2. 𝜏𝐽 𝜏𝐾 = 𝜏𝐾 𝜏𝐽 if there are no edges between the induced subgraphs 𝐽 and 𝐾 , and
3. 𝜏𝐾 𝜏𝐽 = 𝜏𝐽 𝜏𝜔𝐽 (𝐾), whenever 𝐾 ⊆ 𝐽 .

There is a natural surjection 𝐶𝐼 ↠ 𝑊𝐼 , defined on the generators by 𝜏𝐽 ↦ 𝑤𝐽 .
Of course for each disjoint 𝐽 , 𝐾 of finite type we have 𝑤2𝐽 = 1 and 𝑤𝐽𝑤𝐾 = 𝑤𝐾𝑤𝐽 , and if 𝐾 ⊆ 𝐽 then the longest
word of 𝜔𝐽 (𝐾) is 𝑤𝐽𝑤𝐾𝑤𝐽 . Hence 𝐶𝐼 ↠ 𝑊𝐼 is indeed a well-defined map of groups, surjective since the 𝜏{𝑖} are
mapped to the simple generators 𝑠𝑖.
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3 Lie Theory

3.4 Kac-Moody root data

We now proceed to the second part of our Lie-theoretic data, the ‘realisation’ of the Cartan datum inside a pair
of dual ℤ-modules.

3.4.1 Definition (Kac-Moody root data)
A root datum of Cartan type (𝐼 , ⋅) is a quintuple

Φ = (𝑋(Φ), 𝑋 ∨(Φ), ⟨−, −⟩, (𝛼𝑖)𝑖∈𝐼 , (𝛼∨𝑖 )𝑖∈𝐼 ), where (3.4.2)

1. 𝑋(Φ) and 𝑋 ∨(Φ) are free abelian groups of finite rank called the weight lattice and coweight lattice,
2. ⟨−, −⟩∶ 𝑋(Φ) × 𝑋 ∨(Φ) → ℤ is a perfect pairing,
3. The simple roots 𝛼𝑖 ∈ 𝑋(Φ) and simple coroots 𝛼∨𝑖 ∈ 𝑋 ∨(Φ) are some pairwise distinct elements indexed

by 𝐼 such that for all 𝑖, 𝑗 ∈ 𝐼 we have ⟨𝛼𝑗 , 𝛼∨𝑖 ⟩ = 2 𝑖⋅𝑗𝑖⋅𝑖 = 𝑎𝑖𝑗 for all 𝑖, 𝑗 ∈ 𝐼 .

We will assume in every chapter except this one that a root datum is regular , meaning that both the simple
roots and the simple coroots are linearly independent. This is always the case if 𝐼 is finite type (Corol-
lary 3.4.5).

For each 𝐽 ⊆ 𝐼 we can form the restricted root datum Φ𝐽 of Cartan type (𝐽 , ⋅), by keeping the same weight
lattice 𝑋(Φ𝐽 ) = 𝑋(Φ) and coweight lattice 𝑋 ∨(Φ𝐽 ) = 𝑋 ∨(Φ), but remembering only those simple roots and
coroots indexed by the set 𝐽 . In the special case 𝐽 = {𝑖} for some 𝑖 ∈ 𝐼 , we will write Φ𝑖 = Φ{𝑖} for this
restriction.

A weight 𝜆 ∈ 𝑋(Φ) is a dominant weight if ⟨𝜆, 𝛼∨𝑖 ⟩ ≥ 0 for all 𝑖 ∈ 𝐼 . The set 𝑋(Φ)+ ⊆ 𝑋(Φ) of dominant
weights form a monoid under addition. Provided the simple roots are linearly independent there is a partial
order defined on 𝑋(Φ) by 𝜇 ≤ 𝜆 ⟺ 𝜆 − 𝜇 ∈ ∑𝑖∈𝐼 ℕ𝛼𝑖.

All definitions in this chapter can be made without the regularity assumption on Φ, although the properties of
the definitions are sometimes undesirable — for example, ≤ would only be a preorder (lacking the partial order
axiom that if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎, then 𝑎 = 𝑏), the action of the Weyl group on the weight and coweight lattices
may not be faithful, and the set of dominant weights turns out to be rather useless unless the coroots are linearly
independent. The reason we do not rule these out completely from consideration is that they occasionally arise,
for example by taking the derived subalgebra of an affine Kac-Moody algebra one arrives at a root datum which
is not regular.

We remark that our definition of root datum differs from the term used in the literature on reductive algebraic
groups. The two key differences are that our definition is only fixing a choice of simple roots and coroots (and
is more similar to a based root datum for an algebraic group), and the second difference is that our definition
permits infinite type root data. Both kinds of root data are used for the same purpose, as some combinatorial data
identifying a group scheme, or Kac-Moody algebra, or quantum group. However, ours also builds in a choice of
simple/positive system.

We assure the reader that in the familiar cases of semisimple or reductive algebraic groups, they need not worry
about regularity.

3.4.3 Lemma
If the bilinear form (𝐼 , ⋅) is nondegenerate, then any root datum Φ of type (𝐼 , ⋅) is regular.
3.4.4 Proof
Since (𝐼 , ⋅) is invertible as a matrix overℚ, then so is the Cartan matrix𝐴𝐼 . Thinking of the roots and coroots
as linear maps 𝛼∨ ∶ ℤ[𝐼 ] → 𝑋 ∨(Φ) and 𝛼 ∶ ℤ[𝐼 ] → 𝑋(Φ), we see that the Cartan matrix is the matrix of the
bilinear form 𝐴(−, −) ∶ ℤ[𝐼 ] × ℤ[𝐼 ] → ℤ defined by 𝐴(𝑖, 𝑗) = ⟨𝛼𝑗 , 𝛼∨𝑖 ⟩. Since the Cartan matrix is invertible,
the bilinear form 𝐴 is nondegenerate, and hence both of 𝛼∨ and 𝛼 must be injective.

In finite type the bilinear form is positive-definite (by definition) hence the Cartan matrix is invertible.
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3.4 Kac-Moody root data

3.4.5 Corollary (Finite-type root data are regular)
If Φ is a root datum for the finite-type Cartan datum (𝐼 , ⋅), then Φ is regular.

There is a category associated to a Cartan datum (𝐼 , ⋅), where the objects are root data of type 𝐼 and themorphisms
are defined as follows:

3.4.6 Definition (Morphism of root data)
Let Φ and Ψ both be root data of Cartan type (𝐼 , ⋅). A morphism (𝑓 , 𝑔)∶ Φ → Ψ is a pair of adjoint maps

𝑋 ∨(Φ) 𝑓−→ 𝑋 ∨(Ψ), 𝑋(Φ) 𝑔←− 𝑋(Ψ), (3.4.7)

such that ⟨𝜆, 𝑓 (𝜇)⟩Ψ = ⟨𝑔(𝜆), 𝜇⟩Φ for all 𝜇 ∈ 𝑋 ∨(Φ) and 𝜆 ∈ 𝑋(Ψ), and such that 𝑓 (𝛼∨𝑖 ) = 𝛼∨𝑖 and 𝑔(𝛼𝑖) = 𝛼𝑖
for all 𝑖 ∈ 𝐼 . As adjoints under the perfect pairings, each of 𝑓 and 𝑔 uniquely determines the other.

The directions of these maps can be remembered by the fact that a morphism Φ → Ψ should induce morphisms
𝔤(Φ) → 𝔤(Ψ) of Kac-Moody algebras, or 𝑈𝑞(Φ) → 𝑈𝑞(Ψ) of quantum enveloping algebras, therefore it is the map
on coweights which should go in the same direction as the map of root data, as the coweights become the Cartan
subalgebra 𝔥(Φ) = 𝑋 ∨(Φ) ⊗ ℂ or the group algebra 𝑈 0𝑞 (Φ) = ℚ(𝑞)[𝑋 ∨(Φ)] respectively.
The category of root data has initial and final objects, which we call simply-connected and adjoint root data
respectively.

3.4.8 Example (Simply-connected and adjoint root data.)
Fix a Cartan datum (𝐼 , ⋅). The simply-connected root datum of type (𝐼 , ⋅) is the root datumΦwhere𝑋 ∨(Φ) is the
free ℤ-module with basis (𝛼∨𝑖 )𝑖∈𝐼 , and 𝑋(Φ) = Homℤ(𝑋 ∨(Φ), ℤ) its dual, and the simple roots 𝛼𝑖 determined
by the condition ⟨𝛼𝑗 , 𝛼∨𝑖 ⟩ = 𝑎𝑖𝑗 . The simply-connected root datum is cofree, coadjoint, cotorsion-free, and
initial in the category of (𝐼 , ⋅)-root data.
The adjoint root datum of type (𝐼 , ⋅) is defined by interchanging the roles of simple roots and simple coroots
in the above definition. The adjoint root datum is free, adjoint, torsion-free, and is final in the category of
(𝐼 , ⋅)-root data.

For example, in the category of A𝑛−1 root data, the root datum of SL𝑛 is simply-connected and the root datum
of PGL𝑛 is adjoint. Simply-connected root data are particularly convenient to deal with, since the weight lattice
𝑋(Φ) admits a basis of fundamental weights (𝜛𝑖)𝑖∈𝐼 dual to the coroots: ⟨𝜛𝑖, 𝛼∨𝑗 ⟩ = 𝛿𝑖𝑗 . This is useful in finite type,
but if (𝐼 , ⋅) is not finite type then the simply-connected root datum (and the adjoint datum) may not be regular, a
fact which we will now demonstrate.

The Cartan datum for the affine typeA(1)
1 (also called 𝔰𝔩2) is 𝐼 = {0, 1}with the bilinear form given by thematrix

( 2 −2
−2 2 ) , (3.4.9)

hence the simply-connected root datum Φ has 𝑋(Φ) = ℤ2 = 𝑋 ∨(Φ) with the linearly independent coroots
𝛼∨0 = (1, 0) and 𝛼∨1 = (0, 1), but the linearly dependent roots 𝛼0 = (2, −2) and 𝛼1 = (−2, 2) = −𝛼0. In order to get a
regular root datum, the rank of 𝑋(Φ) has to be taken to be 3 or more. In general, the rank of a regular root datum
must always satisfy rank𝑋(Φ) ≥ |𝐼 | + corank𝐴𝐼 .

The last piece of theory we will discuss is the action of the abstract Weyl group 𝑊𝐼 on the weight and coweight
lattices.

3.4.10 Lemma (Weyl group action on weights and coweights)
Let Φ be a root datum of type (𝐼 , ⋅). Then the simple reflections 𝑟𝑖 and 𝑟∨𝑖 defined by

𝑟𝑖 ∶ 𝑋(Φ) → 𝑋(Φ), 𝑟∨𝑖 ∶ 𝑋 ∨(Φ) → 𝑋 ∨(Φ),
𝑟𝑖(𝜆) = 𝜆 − ⟨𝜆, 𝛼∨𝑖 ⟩𝛼𝑖, 𝑟∨𝑖 (𝜇) = 𝜇 − ⟨𝛼𝑖, 𝜇⟩𝛼∨𝑖 ,

(3.4.11)

satisfy the relations 𝑟2𝑖 = 1 and (𝑟𝑖𝑟𝑗)𝑚𝑖𝑗 = 1, and hence define an action of the Weyl group 𝑊𝐼 (Φ) on 𝑋(Φ)
and 𝑋 ∨(Φ). The pairing is 𝑊𝐼 -invariant under this action, meaning ⟨𝑤𝜆, 𝑤𝜈⟩ = ⟨𝜆, 𝜈⟩ for all 𝑤 ∈ 𝑊𝐼 .
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3.4.12 Proof
The property 𝑟2𝑖 = 1 follows easily from the definition together with the fact that ⟨𝛼𝑖, 𝛼∨𝑖 ⟩ = 2. It is also
straightforward to check that ⟨𝑟𝑖𝜆, 𝑟∨𝑖 𝜈⟩ = ⟨𝜆, 𝜈⟩ for each 𝑖 ∈ 𝐼 , and so it remains to check that the 𝑟𝑖 satisfy
the braid relation (𝑟𝑖𝑟𝑗)𝑚𝑖𝑗 = 1 for 𝑖 ≠ 𝑗 and 𝑚𝑖𝑗 ≠ ∞.

Define subspaces 𝐾𝑖𝑗 , 𝑅𝑖𝑗 ⊆ 𝑋ℝ(Φ) by
𝐾𝑖𝑗 = ker⟨−, 𝛼∨𝑖 ⟩ ∩ ker⟨−, 𝛼∨𝑗 ⟩, 𝑅𝑖𝑗 = ℝ𝛼𝑖 + ℝ𝛼𝑗 , (3.4.13)

so that 𝑋ℝ(Φ) = 𝐾𝑖𝑗 ⊕ 𝑅𝑖𝑗 . If 𝛼𝑖 and 𝛼𝑗 are linearly dependent with 𝑘𝑖𝛼𝑖 = 𝑘𝑗𝛼𝑗 for some nonzero integers
𝑘𝑖, 𝑘𝑗 , then taking the pairing with 𝛼∨𝑖 gives that 2𝑘𝑖 = 𝑘𝑗𝑎𝑖𝑗 , and the pairing with 𝛼∨𝑗 gives that 𝑘𝑖𝑎𝑗𝑖 = 2𝑘𝑗 .
Multiplying through shows that 𝑎𝑖𝑗𝑎𝑗𝑖 = 4 and hence 𝑚𝑖𝑗 = ∞, so there is nothing further to check in this
case.

Assume now that 𝛼𝑖 and 𝛼𝑗 are linearly independent. Both 𝑟𝑖 and 𝑟𝑗 act by the identity on the vector space
𝐾𝑖𝑗 , and by the matrices

𝑟𝑖|𝐾𝑖𝑗 = (−1 −𝑎𝑖𝑗
0 1 ) , 𝑟𝑗 |𝐾𝑖𝑗 = ( 1 0

−𝑎𝑗𝑖 −1) (3.4.14)

in the (𝛼𝑖, 𝛼𝑗) basis. The product 𝑟𝑖𝑟𝑗 acts on 𝐾𝑖𝑗 by the matrix

𝑟𝑖𝑟𝑗 |𝐾𝑖𝑗 = (𝑎𝑖𝑗𝑎𝑗𝑖 − 1 𝑎𝑖𝑗
−𝑎𝑗𝑖 −1) , (3.4.15)

which has characteristic polynomial 𝜒(𝑡) = 𝑡2 + (2 − 𝑎𝑖𝑗𝑎𝑗𝑖)𝑡 + 1. Since 𝑎𝑖𝑗𝑎𝑗𝑖 ≤ 4, the polynomial has two
(perhaps equal) complex conjugate roots 𝜂, 𝜂 on the unit circle, whose real part is

𝑎𝑖𝑗𝑎𝑗𝑖
2 − 1. Therefore:

1. If 𝑎𝑖𝑗𝑎𝑗𝑖 = 0 then 𝜂 = 𝜂 = −1 and 𝑟𝑖𝑟𝑗 |𝐾𝑖𝑗 is the scalar matrix −1, hence (𝑟𝑖𝑟𝑗)2 = 1.
2. If 𝑎𝑖𝑗𝑎𝑗𝑖 = 1 then 𝜂, 𝜂 are rotations by ± 2𝜋

3 , hence (𝑟𝑖𝑟𝑗)3 = 1.
3. If 𝑎𝑖𝑗𝑎𝑗𝑖 = 2 then 𝜂, 𝜂 are rotations by ±𝜋

2 , hence (𝑟𝑖𝑟𝑗)4 = 1.
4. If 𝑎𝑖𝑗𝑎𝑗𝑖 = 3 then 𝜂, 𝜂 are rotations by ±𝜋

3 , hence (𝑟𝑖𝑟𝑗)6 = 1.
5. If 𝑎𝑖𝑗𝑎𝑗𝑖 = 4 then 𝜂 = 𝜂 = 1, but 𝑟𝑖𝑟𝑗 |𝐾𝑖𝑗 is not a scalar matrix so 𝑟𝑖𝑟𝑗 is not diagonalisable and hence has

infinite order.

Checking this table with the one appearing in Definition 3.2.1, we that the map 𝑠𝑖 ↦ 𝑟𝑖 is indeed a group
homomorphism 𝑊𝐼 → Autℤ(𝑋(Φ)). The same argument with roots and coroots swapped works to show
that 𝑠𝑖 ↦ 𝑟∨𝑖 is a group homomorphism 𝑊𝐼 → Autℤ(𝑋 ∨(Φ)).

The representation 𝑊𝐼 → Autℤ(𝑋(Φ)) is faithful if and only if 𝑊𝐼 → Autℤ(𝑋 ∨(Φ)) is faithful, since they are
dual representations. If the root datum Φ is regular, then in fact both of these maps are isomorphisms. The proof
above shows that if all simple roots are linearly independent, then the relations between 𝑟𝑖 and 𝑟𝑗 are precisely
given by the Coxeter matrix, and in Chapter 1.3 of [Kum02] or 3.13 of [Kac90] it is further shown that when Φ
is regular the 𝑟𝑖 satisfy the exchange condition, making them the generators of a Coxeter system. For example,
when Φ is the simply-connected root datum of affine type A(1)

1 , the representation 𝑊𝐼 → Autℤ(𝑋(Φ)) is faithful
despite Φ not being regular, due to the fact that the coroots are linearly independent.

However, without the assumption of regularity the representation 𝑊𝐼 → Autℤ(𝑋(Φ)) may not be faithful. For
example, there is a type A(1)

1 root datum of rank 1, defined by taking any two elements satisfying ⟨𝛼0, 𝛼∨0 ⟩ = 2
and defining 𝛼1 = −𝛼0 and 𝛼∨1 = −𝛼∨0 . In that case, both 𝑟1 and 𝑟2 act as multiplication by −1 and hence we have
𝑟1𝑟2 = 1.

We conclude this section by giving a concrete example of the finite-type root datum SL3.
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3.4.16 Example (The root datum SL3)
The SL3 root datum is the simply-connected root datum associated to the Cartan type A2. The standard way
to construct this root datum is to take the weight lattice to be the quotient space 𝑋(SL3) = ℤ3/(1, 1, 1), and
the coweight lattice as the subspace 𝑋 ∨(SL3) = {(𝑎, 𝑏, 𝑐) ∈ ℤ3 ∣ 𝑎 + 𝑏 + 𝑐 = 0}, with the roots and coroots
being given by

𝛼1 = (1, −1, 0) , 𝛼∨1 = (1, −1, 0)
𝛼2 = (0, 1, −1) , 𝛼∨2 = (0, 1, −1).

(3.4.17)

Writing 𝜖𝑖 for the image of the 𝑖th coordinate vector in 𝑋(SL3), we can picture the realified weight lattice
𝑋ℝ(SL3) as follows. ℝ𝜖1 = ker⟨−, 𝛼∨2 ⟩

ℝ𝜖3 = ker⟨−, 𝛼∨1 ⟩

ℝ𝜖2

𝜖1

𝜖2
𝜖3

𝛼1 𝛼2

The heavy black lines are the reflecting hyperplanes ker⟨−, 𝛼⟩ for some coroot 𝛼∨, and the thin grey lines
show the shifted hyperplanes {𝑥 ∈ 𝑋ℝ(SL3) ∣ ⟨𝑥, 𝛼∨⟩ ∈ ℤ} for some coroot 𝛼∨. The points where the grey lines
meet are the integral points 𝑋(SL3), the ℤ-span of the 𝜖𝑖 .
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3.5 Kac-Moody algebras

A root datum Φ should define three related objects: a group scheme 𝐺(Φ), its Lie algebra 𝔤(Φ), and a quantum
group 𝑈𝑞(Φ). For 𝐼 of finite type, 𝐺(Φ) would be the usual split reductive group scheme associated to the based
root data Φ, but attempting to define 𝐺(Φ) for Φ not of finite type would take us too far afield (in general it is
an ind-scheme rather than a scheme), and we instead refer the interested reader to Chapters 7 and 8 of [Mar18].
Since we are working in characteristic zero however, the representation theory of the group 𝐺(Φ) is reflected
closely by its Lie algebra, which we can define in a straightforward way.

These algebras are called Kac-Moody algebras after their independent discoverers Victor Kac and Robert Moody.
We don’t intend to develop their theory here, instead we state definitions and results which can be found in
[Kac90; Mar18; Kum02].

3.5.1 Definition (Kac-Moody algebra)
Let Φ be a root datum of Cartan type (𝐼 , ⋅). The Kac-Moody algebra 𝔤(Φ) is the Lie algebra over ℂ generated
by theCartan subalgebra 𝔥 ∶= 𝑋 ∨(Φ)⊗ℂ and theChevalley generators 𝑒𝑖, 𝑓𝑖 for 𝑖 ∈ 𝐼 , subject to the relations

[𝔥, 𝔥] = 0,
[ℎ, 𝑒𝑖] = ⟨𝛼𝑖, ℎ⟩𝑒𝑖 for ℎ ∈ 𝔥,
[ℎ, 𝑓𝑖] = −⟨𝛼𝑖, ℎ⟩𝑓𝑖 for ℎ ∈ 𝔥,
[𝑒𝑖, 𝑓𝑗] = 𝛿𝑖𝑗𝛼∨𝑖 ,

(ad 𝑒𝑖)1+|𝑎𝑗𝑖|𝑒𝑗 = 0, for 𝑖 ≠ 𝑗,
(ad 𝑓𝑖)1+|𝑎𝑗𝑖|𝑓𝑗 = 0, for 𝑖 ≠ 𝑗.

(3.5.2)

The last two relations are called the Serre relations.

The Chevalley involution is the map of Lie algebras 𝜔∶ 𝔤(Φ) → 𝔤(Φ) defined on generators by 𝜔(𝑒𝑖) = −𝑓𝑖,
𝜔(𝑓𝑖) = −𝑒𝑖 and 𝜔(ℎ) = −ℎ. Let 𝔫+(Φ) (resp. 𝔫−(Φ)) be the subalgebra generated by the 𝑒𝑖 (resp. 𝑓𝑖), then the
direct sum of vector spaces 𝔤(Φ) = 𝔫−(Φ) ⊕ 𝔥(Φ) ⊕ 𝔫+(Φ) is called the triangular decomposition.

The universal enveloping algebra is denoted 𝑈 (Φ), and inherits a triangular decomposition 𝑈 (Φ) = 𝑈−(Φ) ⊗
𝑈 0(Φ) ⊗ 𝑈+(Φ) by the PBW theorem.

Our definition differs slightly from that of Kac [Kac90]. Firstly we permit an arbitrary realisation Φ of the Cartan
matrix, rather than taking one of smallest possible dimension |𝐼 | + corank𝐴𝐼 . As we have remarked previously,
provided that we always work with regular root data then all the theory remains virtually the same. Secondly
our definition of Cartan datum forces𝐴𝐼 to be symmetrisable, so we are always working with symmetrisable Kac-
Moody algebras. Thirdly we have defined the algebra by the Serre relations, rather than a quotient of the algebra
generated by the first four relations by a certain maximal ideal containing the Serre relations. The Gabber-Kac
theorem (Theorem 9.11 of [Kac90]) states that when𝐴𝐼 is symmetrisable the Serre relations generate this ideal, so
we have preferred to go with the explicit relations for our presentation. One should also note that the subalgebras
𝔫+(Φ) and 𝔫−(Φ) depend only on the underlying Cartan datum (𝐼 , ⋅) rather than on Φ.
We define representations and their weights as usual, with one exception: since 𝑋(Φ) is a ℤ-module of finite
rank, our definition of weight is what is usually called an integral weight. This is not a problem for us as we wish
to restrict to integrable representations, whose weights pair integrally with the coroots automatically anyway.

3.5.3 Definition (Representations of a Kac-Moody algebra)
A representation of 𝔤(Φ) is a vector space 𝑉 equipped with a Lie algebra homomorphism 𝜌𝑉 ∶ 𝔤(Φ) → 𝔤𝔩(𝑉 ),
or equivalently a left 𝑈 (Φ)-module. For each weight 𝜆 ∈ 𝑋(Φ) the corresponding weight space of the repre-
sentation 𝑉 is 𝑉𝜆 = {𝑣 ∈ 𝑉 ∣ ℎ𝑣 = ⟨𝜆, ℎ⟩𝑣 for all ℎ ∈ 𝔥(Φ)}. A weight vector is a nonzero vector in a weight
space. Weight spaces for distinct weights intersect trivially, and when 𝑉 = ⨁𝜆∈𝑋(Φ) 𝑉𝜆 then 𝑉 is called a
weight module. When a weight space 𝑉𝜆 is nonzero, we say that 𝜆 is a weight of 𝑉 .
The category of weight representations is a monoidal category, with the monoidal structure and unit coming
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from the usual bialgebra structure on 𝑈 (Φ).
The category of weight module of 𝔤(Φ) is far too large for our purposes, so we will narrow the set of objects we
are considering in two separate ways. The first narrowing is to only consider modules in category 𝒪 , meaning
weight modules with finite-dimensional weight spaces, whose weights are ‘finitely bounded above’ in a precise
sense written below. The second narrowing is to the integrable modules, which have good symmetry properties
with respect to the Weyl group, and can be ‘integrated’ (in a precise sense) to a representation of a Kac-Moody
group. Whenwe take the intersection of these we get the category𝒪 int(Φ), which is a remarkably similar category
to the finite-dimensional representations of a semisimple Lie algebra, and is the category we will primarily use
for the rest of the thesis.

3.5.4 Definition (Category 𝒪 )
Let the category 𝒪(Φ) be the full subcategory of 𝔤(Φ) modules 𝑉 for which:

1. 𝑉 is a weight module with finite-dimensional weight spaces, and
2. There exist finitely many weights 𝜆1, … , 𝜆𝑠 (depending on 𝑉 ) such that if 𝜇 is a weight of 𝑉 then 𝜇 ≤ 𝜆𝑘

for some 1 ≤ 𝑘 ≤ 𝑠.
The first condition on Category 𝒪 means that we can equip it with a reflexive dual: let the graded dual of 𝑉 be
𝑉 𝜔 = ⨁𝜆∈𝑋(Φ) 𝑉 ∗𝜆 , with the action (𝑥 ⋅ 𝑓 )(𝑣) = −𝑓 (𝜔(𝑥)𝑣) where 𝜔 is the Chevalley involution. This duality is
reflexive (meaning (𝑉 𝜔)𝜔 ≅ 𝑉 ) by the finite-dimensionality of weight spaces, and the fact that 𝜔 is an involution.
Composing with the Chevalley involution means we preserve the second property of 𝒪 : without it, the graded
dual would have weights bounded below rather than above.

The second condition on Category 𝒪 means that the category is closed under taking tensor products. The tensor
product of two arbitrary modules with finite-dimensional weight spaces may not have finite-dimensional weight
spaces, since there could be infinitely many pairs of weights summing to the same weight in the product. The
‘bounded above’ condition on weights in 𝒪(Φ) implies that each sum must be finite, since for any two weights
𝜇, 𝜆 ∈ 𝑋(Φ) the set {𝜈 ∣ 𝜇 ≤ 𝜈 ≤ 𝜆} is finite. One could compare this condition to the algebraist’s definition of
formal Laurent series, being a sum of the form ∑𝑖∈ℤ 𝑎𝑖𝑡 𝑖 where 𝑎𝑖 is eventually zero for 𝑖 ≪ 0: this boundedness
condition means the product of two such series is defined.

3.5.5 Warning

When 𝔤(Φ) is a finite-dimensional semisimple Lie algebra, there is the similarly named “BGG Category 𝒪”,
which we will write as 𝒪BGG(Φ). It is defined as all finitely generated weight modules which are locally
𝔫+(Φ)-finite, meaning that 𝑈+(Φ)𝑣 is finite-dimensional for all 𝑣 ∈ 𝑉 (Chapter 1.1 of [Hum08]). It is a
consequence of these axioms that 𝒪BGG(Φ) is a full subcategory of 𝒪(Φ), but in general the containment is
strict.

One way to see this strict containment is to notice that our category𝒪(Φ) is closed under taking tensor prod-
ucts, while the BGG category is not. This can be seen even for 𝔤(Φ) = 𝔰𝔩2 by tensoring two Verma modules
(objects of 𝒪BGG(Φ)) and noticing that the resulting module has weight spaces of unbounded dimension,
and hence cannot be finitely generated.

One reason for introducing the category 𝒪(Φ) is to have a category of 𝔤(Φ)-modules which is not ‘too large’, and
still includes the highest-weight modules.

3.5.6 Definition (Highest-weight modules)
Let 𝑉 be a weight module. A primitive vector is a weight vector 𝑣𝜆 ∈ 𝑉𝜆 such that 𝑒𝑖𝑣𝜆 = 0 for all 𝑖 ∈ 𝐼 . If 𝑉 is
generated by a primitive vector 𝑣𝜆 , it is called a highest-weight module with highest-weight 𝜆.
Amongst the highest-weight modules of highest weight 𝜆, there is a universal such module 𝑀(𝜆) such that
𝑀(𝜆) surjects onto any other highest-weight module of highest weight 𝜆. The module𝑀(𝜆) is called a Verma
module.

One can easily argue using the triangular decomposition of 𝑈 (Φ) that every highest-weight module is a member
of 𝒪(Φ). Conversely, every module in 𝒪(Φ) has a (possibly infinite) filtration by submodules such that successive
quotients are highest-weight modules. We should remark at this point that the category 𝒪(Φ) is far from being
semisimple.
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We now briefly discuss our other narrowing of the category of weight modules.

3.5.7 Definition (Integrable module)
A 𝔤(Φ)-module 𝑉 is integrable if it is a weight module, and 𝑒𝑖 and 𝑓𝑖 act locally nilpotently for all 𝑖 ∈ 𝐼 ,
meaning that for any 𝑣 ∈ 𝑉 there exists an 𝑁 ≥ 0 such that 𝑒𝑁𝑖 𝑣 = 0 = 𝑓 𝑁𝑖 𝑣 for all 𝑖 ∈ 𝐼 .

The weight module condition and local nilpotency of the 𝑒𝑖 and 𝑓𝑖 is equivalent to 𝑉 being a locally finite 𝔤(Φ𝑖)
weight module for each 𝑖 ∈ 𝐼 , meaning 𝑉 is a union of finite-dimensional 𝔤(Φ𝑖) weight modules. Each subalgebra
𝔤(Φ𝑖) ⊆ 𝔤(Φ) is essentially an 𝔰𝔩2 with an enlarged toral subalgebra, and hence we can apply the theory of
finite-dimensional 𝔰𝔩2 representations to 𝑉 . For example, the symmetry of weight spaces of finite-dimensional
𝔰𝔩2 representations implies that dim 𝑉𝜆 = dim 𝑉𝑠𝑖𝜆 for each 𝑖 ∈ 𝐼 . Since this works for all 𝑖, we get that dim 𝑉𝜆 =
dim 𝑉𝑤𝜆 for all 𝑤 ∈ 𝑊𝐼 .

The fact that 𝑉 is locally finite as a 𝔤(Φ𝑖)-module means that we can even define exponentials of the Chevalley
generators. For each weight vector 𝑣 ∈ 𝑉𝜆 , we have that exp(ℎ) ⋅ 𝑣 = exp(⟨𝜆, ℎ⟩)𝑣 for all ℎ ∈ 𝔥(Φ), and the local
nilpotency means that exp(𝑒𝑖) ⋅ 𝑣 = ∑𝑛≥0 𝑒𝑛𝑖 𝑣/𝑛! is a finite sum (and similarly for exp(𝑓𝑖)), hence each generator
of 𝔤(Φ) can be exponentiated, leading to an action of the associated Kac-Moody group on 𝑉 . We won’t have use
for Kac-Moody groups here, but this explains the terminology ‘integrable’.

The category of integrable modules is not semisimple, and is distinct from 𝒪(Φ). For example, the adjoint repre-
sentation is always an integrable module, but not a member of 𝒪(Φ) unless (𝐼 , ⋅) is finite type. On the other hand
the Verma module𝑀(0) = 𝑈−(Φ) is not integrable, but clearly a highest-weight module generated by 1 ∈ 𝑈−(Φ).
Remarkably, when we intersect category 𝒪(Φ)with the integrable modules, we get a semisimple category which
behaves very much like the category of finite-dimensional representations of a semisimple Lie algebra.

3.5.8 Theorem (Integrable highest weight modules and complete reducibility)
The Verma module 𝑀(𝜆) admits a unique simple quotient 𝐿(𝜆), which is integrable if and only if 𝜆 is a
dominant1weight.

Let 𝒪 int(Φ) be the full subcategory of 𝒪(Φ) consisting of integrable modules. Then 𝒪 int(Φ) is semisimple,
and the set {𝐿(𝜆) ∣ 𝜆 ∈ 𝑋(Φ)+} is a complete irredundant set of simple objects.

The category 𝒪 int(Φ) looks quite similar to the representations of a finite-dimensional semisimple algebra: it
is semisimple, with simple objects indexed by dominant weights. Indeed if (𝐼 , ⋅) is finite type, then 𝒪 int(Φ) is
almost equivalent to the category of finite-dimensional 𝔤(Φ) representations, the difference being that a module
in 𝒪 int(Φ) might be an infinite direct sum of finite-dimensional modules.

3.6 Quantum groups

The ‘quantum group’ is a mythical object 𝔔(Φ) associated to a root datum Φ, to which one can nevertheless
associate a Hopf algebra 𝑈𝑞(Φ) over the field ℚ(𝑞) of rational functions called a quantum enveloping algebra.
Although as far as the author knows there is no agreement upon this mythical object, there is a fair amount of
agreement on 𝑈𝑞(Φ), and the fact that a 𝑈𝑞(Φ)-module is called a ‘representation of a quantum group’.

There is a similar definition of a category 𝒪 int𝑞 (Φ) of 𝑈𝑞(Φ)-modules, which recovers the category 𝒪 int(Φ) in
the 𝑞 → 1 limit. The most remarkable thing we get from representations of quantum groups is the existence of
a crystal base for each integrable highest-weight module 𝐿𝑞(𝜆), an amazing combinatorial basis behaving well
under tensor products, a phenomenon which is not possible when just using the Kac-Moody algebra. As before,
we do not develop the theory here but merely state definitions and results, referring the reader to [Jos95; Lus10;
HK12].

1In the classic treatment one would usually say that 𝐿(𝜆) is integrable if and only if 𝜆 is a dominant integral weight, but since all
weights for us are integral we have omitted this adjective.
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We need to first introduce the quantum analogues of integers, factorials, and binomial coefficients. For any 𝑛 ∈ ℤ,
define the quantum integer

[𝑛] = 𝑞𝑛 − 𝑞−𝑛
𝑞 − 𝑞−1 ∈ ℚ(𝑞). (3.6.1)

A convenient way of remembering these numbers is that [0] = 0, [1] = 1, [2] = 𝑞 + 𝑞−1, and in general we have
that for 𝑛 ≥ 1 the quantum integer [𝑛] is the character of the 𝑛-dimensional 𝔰𝔩2 representation. Together with
[−𝑛] = − [𝑛] this completely defines the quantum integers, for example

[3] = 𝑞−2 + 1 + 𝑞2 and [−4] = −(𝑞3 + 𝑞 + 𝑞−1 + 𝑞−3). (3.6.2)

We define the quantum factorial for 𝑛 ∈ ℕ as a product of quantum integers:

[𝑛]! =
𝑛

∏
𝑚=1

[𝑚] , (3.6.3)

and the quantum binomial coefficient for all 𝑛 ∈ ℤ and 𝑟 ∈ ℕ:

[𝑛𝑟 ] =
[𝑛]!

[𝑟]! [𝑛 − 𝑟]!
. (3.6.4)

The quantum integers, factorials, and binomial coefficients are all members of the subring ℤ[𝑞, 𝑞−1] ⊆ ℚ(𝑞) of
Laurent polynomials with integer coefficients.

When dealing with Cartan data which is not simply-laced (meaning that 𝑖 ⋅ 𝑖 > 2 for some 𝑖 ∈ 𝐼 ), we need to
introduce some scaled versions of these quantum numbers. Let 𝑞𝑖 = 𝑞(𝑖⋅𝑖)/2 ∈ ℚ(𝑞), and let [𝑛]𝑖 be the quantum
integer [𝑛] composed with the substitution 𝑞 ↦ 𝑞𝑖. For example, when 𝑖 ⋅ 𝑖 = 4, we have [2]𝑖 = 𝑞2 + 𝑞−2. We can
now introduce the quantum enveloping algebra associated to a root datum Φ.

3.6.5 Definition (Quantum enveloping algebra)
The quantum enveloping algebra associated to Φ is the unital associative algebra 𝑈𝑞(Φ) over ℚ(𝑞) generated
by the symbols 𝐸𝑖, 𝐹𝑖 for 𝑖 ∈ 𝐼 and 𝐾𝜇 for 𝜇 ∈ 𝑋 ∨(Φ), subject to the following relations:

𝐾0 is the unit,
𝐾𝜇𝐾𝛾 = 𝐾𝜇+𝛾 ,
𝐾𝜇𝐸𝑖 = 𝑞⟨𝛼𝑖,𝜇⟩𝐸𝑖𝐾𝜇 ,
𝐾𝜇𝐹𝑖 = 𝑞−⟨𝛼𝑖,𝜇⟩𝐹𝑖𝐾𝜇 ,

𝐸𝑖𝐹𝑗 − 𝐹𝑗𝐸𝑖 = 𝛿𝑖𝑗
𝐾𝑖 − 𝐾−𝑖
𝑞𝑖 − 𝑞−1𝑖

,

∑
𝑎+𝑏=1+|𝑎𝑗𝑖|

(−1)𝑎𝐸[𝑎]𝑖 𝐸𝑗𝐸[𝑏]𝑖 = 0 for all 𝑖 ≠ 𝑗,

∑
𝑎+𝑏=1+|𝑎𝑗𝑖|

(−1)𝑎𝐹 [𝑎]𝑖 𝐹𝑗𝐹 [𝑏]𝑖 = 0 for all 𝑖 ≠ 𝑗.

(3.6.6)

The notation 𝐸[𝑛]𝑖 means the quantum divided power 𝐸𝑛𝑖 / [𝑛]𝑖 for any 𝑛 ≥ 0. As above, the symbol 𝑞𝑖 means
𝑞(𝑖⋅𝑖)/2, and we set 𝐾𝑖 = 𝐾(𝑖⋅𝑖/2)𝛼∨𝑖 . When 𝐼 is symmetric, 𝑞𝑖 = 𝑞 and 𝐾𝑖 = 𝐾𝛼∨𝑖 , and each [𝑛]𝑖 is just the usual
quantum integer [𝑛].

Our notation for 𝑈𝑞(Φ) follows [Lus10], however our definition is slightly different. Rather than presenting 𝑈𝑞(Φ)
with the Serre relations, Lusztig instead defines a certain bilinear form on the free ℚ(𝑞)-algebra generated by the
𝐸𝑖, and takes the quotient by the radical of the bilinear form (and similarly for the 𝐹𝑖). As in the case of Kac-Moody
algebras, it is clear that the Serre relations vanish in this quotient, but it requires further careful work to show
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that the Serre relations generate the radical. The statement that these two definitions are equivalent is Corollary
33.1.5 in [Lus10].

The scaled terms 𝐾𝑖 are the correct analogue of the coroots 𝛼∨𝑖 ∈ 𝔥(Φ) in the Kac-Moody case, including the
quantum scaling 𝑞𝑖 = 𝑞𝑖⋅𝑖/2. They obey the relations

𝐾𝑖𝐸𝑗 = 𝑞𝑎𝑖𝑗𝑖 𝐸𝑖𝐾𝑖 and 𝐾𝑖𝐹𝑗 = 𝑞−𝑎𝑖𝑗𝑖 𝐹𝑖𝐾𝑖, (3.6.7)

and in particular we have the ‘quantum 𝔰𝔩2 relations’ 𝐾𝑖𝐸𝑖 = 𝑞2𝑖 𝐸𝑖𝐾𝑖 and 𝐾𝑖𝐹𝑖 = 𝑞−2𝑖 𝐹𝑖𝐾𝑖. The action of 𝐾𝑖 on
a weight vector 𝑣𝜆 ∈ 𝑉𝜆 is 𝐾𝑖𝑣𝜆 = 𝑞⟨𝜆,𝛼∨𝑖 ⟩𝑖 𝑣𝜆 , and hence the fourth relation above gives that (𝐸𝑖𝐹𝑖 − 𝐹𝑖𝐸𝑖)𝑣𝜆 =
[⟨𝜆, 𝛼∨𝑖 ⟩]𝑖 𝑣𝜆 , which is perhaps how the fourth relation should really be remembered.

In order to define trivial representations, tensor products, and duals, we give a Hopf algebra structure on 𝑈𝑞(Φ),
following [Lus10].

3.6.8 Definition (Hopf algebra structure on 𝑈𝑞(Φ))
The comultiplication on 𝑈𝑞(Φ) is the unique extension of

Δ(𝐾𝜇) = 𝐾𝜇 ⊗ 𝐾𝜇 ,
Δ(𝐸𝑖) = 𝐸𝑖 ⊗ 1 + 𝐾𝑖 ⊗ 𝐸𝑖,
Δ(𝐹𝑖) = 𝐹𝑖 ⊗ 𝐾−𝑖 + 1 ⊗ 𝐹𝑖

(3.6.9)

making Δ∶ 𝑈𝑞(Φ) → 𝑈𝑞(Φ) ⊗ 𝑈𝑞(Φ) a map of algebras, where the tensor product on the right is given the
usual algebra structure (𝑎1⊗𝑏1) ⋅(𝑎2⊗𝑏2) = 𝑎1𝑎2⊗𝑏1𝑏2. Notably, this comultiplication is not commutative.

The counit 𝜖 ∶ 𝑈𝑞(Φ) → ℚ(𝑞) is the unique map of algebras taking 𝐸𝑖, 𝐹𝑖 to 0 and each 𝐾𝜇 to 1.
The antipode 𝑆 ∶ 𝑈𝑞(Φ) → 𝑈𝑞(Φ) is the unique anti-homomorphism of algebras such that

𝑆(𝐸𝑖) = −𝐾−𝑖𝐸𝑖, 𝑆(𝐹𝑖) = −𝐹𝑖𝐾𝑖, 𝑆(𝐾𝜇) = 𝐾−𝜇 . (3.6.10)

In direct analogy with the representations of a Kac-Moody algebra, we make the following definitions.

3.6.11 Definition (Representations of a quantum group)
A representation of 𝑈𝑞(Φ) is a ℚ(𝑞)-vector space 𝑀 equipped with an action making it a left 𝑈𝑞(Φ)-module.
The 𝜆 weight space of 𝑀 is 𝑀𝜆 = {𝑣 ∈ 𝑀 ∣ 𝐾𝜇𝑣 = 𝑞⟨𝜆,𝜇⟩𝑣 for all 𝜇 ∈ 𝑋 ∨(Φ)}, and when 𝑀 = ⨁𝜆∈𝑋(Φ)𝑀𝜆 we
say that 𝑀 is a weight module.

The category 𝒪𝑞(Φ) consists of weight modules with finite-dimensional weight spaces, such that the set of
weights is bounded above by some finite set 𝜆1, … , 𝜆𝑠 ∈ 𝑋(Φ) depending on𝑀 . A weight module is integrable
if 𝑈𝑞(Φ𝑖) acts locally finitely, and the full subcategory of 𝒪𝑞(Φ) of integrable objects is denoted by 𝒪 int𝑞 (Φ).

We define primitive vectors, highest-weight modules, quantum Vermamodules𝑀𝑞(𝜆), and their simple quotients
𝐿𝑞(𝜆) in direct analogy with the Kac-Moody case. The same complete reducibility theorem applies to 𝒪 int𝑞 (Φ),
namely that every object is isomorphic to a possibly infinite direct sum of 𝐿𝑞(𝜆) for 𝜆 ∈ 𝑋(Φ)+.

3.6.12 Remark
Sometimes a more general notion of a weight is used, parametrised by a group homomorphism 𝜎 ∶ 𝑋 ∨(Φ) →
{±1} together with a weight 𝜆: a vector 𝑣 ∈ 𝑀 is of weight (𝜎 , 𝜆) if 𝐾𝜇𝑣 = 𝜎(𝜇)𝑞⟨𝜆,𝜇⟩𝑣 for all 𝜇 ∈ 𝑋 ∨(Φ). These
weights naturally arise in the study of finite-dimensional representations of 𝑈𝑞(Φ). The weight representa-
tions of a fixed type 𝜎 ∈ Hom(𝑋 ∨(Φ), {±1}) form an abelian subcategory, and all 2rankΦ such subcategories
are equivalent.We have chosen the subcategory corresponding to the trivial type 𝜎(𝜇) = 1 (sometimes called
type (1, … , 1) in the literature), which is also closed under taking tensor products and duals.

There is another class of integrable modules which we will come across in passing. The extremal weight modules
were first defined by Kashiwara in Section 8 of [Kas94], and generalise highest-weight modules. They are used to
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study integrable modules for example in [Kas02a], where it is shown that ifΦ is affine and 𝜛𝑖 ∈ 𝑋(Φ) is a level-zero
fundamental weight, the extremal weight module 𝑉𝑞(𝜛𝑖) is the affinisation of a finite-dimensional representation
𝐿𝑞(𝜛𝑖).

3.6.13 Definition (Extremal weight modules)
A weight vector 𝑣 ∈ 𝑉𝜆 of an integrable 𝑈𝑞(Φ)-module 𝑉 is called 𝑖-extremal if 𝑒𝑖𝑣 = 0 or 𝑓𝑖𝑣 = 0. In this case,

define 𝑆𝑖𝑣 = 𝐹 [⟨𝜆,𝛼∨𝑖 ⟩]𝑖 𝑣 or 𝑆𝑖𝑣 = 𝐸[−⟨𝜆,𝛼∨𝑖 ⟩]𝑖 𝑣 respectively (“the” element at the opposite end of the 𝑖-string). The
weight vector 𝑣 is further called extremal if 𝑆𝑖1 ⋯𝑆𝑖𝑟 𝑣 is 𝑖-extremal for all 𝑖 ∈ 𝐼 , for all words (𝑖1, … , 𝑖𝑟 ).
An integrable 𝑈𝑞(Φ)-module 𝑉 is called extremal of weight 𝜆 if it contains a vector 𝑣 ∈ 𝑉𝜆 and there exist
vectors (𝑣𝑤 )𝑤∈𝑊 such that 𝑣 = 𝑣𝑒 and

if ⟨𝑤𝜆, 𝛼∨𝑖 ⟩ ≥ 0, then 𝐸𝑖𝑣𝑤 = 0 and 𝐹 [⟨𝑤𝜆,𝛼∨𝑖 ⟩]𝑖 𝑣𝑤 = 𝑣𝑠𝑖𝑤 ,
if ⟨𝑤𝜆, 𝛼∨𝑖 ⟩ ≤ 0, then 𝐹𝑖𝑣𝑤 = 0 and 𝐸[−⟨𝑤𝜆,𝛼∨𝑖 ⟩]𝑖 𝑣𝑤 = 𝑣𝑠𝑖𝑤 .

(3.6.14)

If such vectors (𝑣𝑤 )𝑤∈𝑊 exist then they are unique, and furthermore 𝑣𝑤 ∈ 𝑉𝑤𝜆 .
For each weight 𝜆 ∈ 𝑋(Φ), the extremal weight module 𝑉𝑞(𝜆) is the 𝑈𝑞(Φ)-module generated by 𝑣𝜆 with
the defining relation that 𝑣𝜆 is extremal of weight 𝜆. For each 𝑤 ∈ 𝑊 , the map 𝑣𝜆 ↦ 𝑆𝑤−1𝑣𝑤𝜆 gives an

isomorphism 𝑉 (𝜆) ∼−→ 𝑉(𝑤𝜆) of 𝑈𝑞(Φ)-modules.

When 𝜆 is a dominant weight, 𝑉𝑞(𝜆) ≅ 𝐿𝑞(𝜆) is the irreducible highest-weight module of highest-weight 𝜆, and
similarly if 𝜆 is antidominant, then 𝑉𝑞(𝜆) is the irreducible lowest-weight module of lowest-weight 𝜆. When (𝐼 , ⋅)
is finite-type, the extremal-weight modules 𝑉𝑞(𝜆) are finite-dimensional and irreducible. However, if (𝐼 , ⋅) is not
finite-type, then not all extremal weight modules are members of 𝒪 int𝑞 (Φ).
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4 Crystals

It was first shown by Kashiwara [Kas91] that each integrable highest-weight representation 𝐿𝑞(𝜆) ∈ 𝒪 int𝑞 (Φ)
admits a crystal base ℬ(𝜆), which can be thought of (almost) as a certain weight basis of 𝐿𝑞(𝜆) enjoying very
special properties. The setℬ(𝜆) can be equipped with directed labelled edges coming from the ‘crystallisation’ of
the quantum 𝐸𝑖 and 𝐹𝑖 operators (the Kashiwara operators), making ℬ(𝜆) into a connected graph with a unique
highest-weight element 𝑏𝜆 . Remarkably, there is a purely combinatorial rule (stated purely in terms of just the
directed graph structure) for forming the tensor product of two crystal bases, thus the theory of crystals allows
us to reduce some linear algebraic problems into combinatorial problems. For example, the number of times
𝐿𝑞(𝜈) appears in the tensor product 𝐿𝑞(𝜆)⊗𝐿𝑞(𝜇) is equal to the number of times the connected componentℬ(𝜈)
appears inside the graph ℬ(𝜆) ⊗ℬ(𝜇).
There are many more 𝑈𝑞(Φ)-modules which admit crystal bases, for example the Verma modules (which are not
integrable), and the extremal weight modules (which are integrable but not in general highest-weight). While
the definition of crystal base (or at least of Kashiwara operators) needs to be modified slightly to include these
different cases, there is a combinatorial category of Φ-crystals into which all of the resulting crystal bases can be
placed. These abstract crystals do not remember the original 𝑈𝑞(Φ) representation but instead have some extra
data attached: the raising and lowering statistics 𝜀𝑖 and 𝜑𝑖 which (very roughly) allow a Φ-crystal to capture some
non-semisimple behaviour, as one would expect from (say) the crystal of a Verma module.

The combinatorial Φ-crystals are very convenient for working with crystals, as all of the data needed to compute
tensor products, restrictions, morphisms and so on are right at our fingertips. However, theΦ-crystals also include
many objects which do not arise from any 𝑈𝑞(Φ)-module, which is both a blessing and a curse: on one hand this
flexibility allows the crystal base associated to a Demazure module (which is only a 𝑈+𝑞 (Φ)-module) to be an
honest Φ-crystal, while on the other hand one has to work very hard to show that a given Φ-crystal actually
came from a 𝑈𝑞(Φ)-module and is not some ‘virtual’ crystal. So while the combinatorial axioms are convenient
for working with crystals, they are not so suited to producing useful crystals in the first place.

We begin this chapter by grounding ourselves in the theory of crystal bases of integrable highest-weight modules.
Despite the fact we will really only use abstract crystals for the rest of the thesis, the author feels that without
this grounding it is hard to see the explicit connection between bases of 𝑈𝑞(Φ)-modules and crystals. Next we
spend some time discussing the category of Φ-crystals, giving many examples of crystals both coming and not
coming from integrable 𝑈𝑞(Φ)-representations. We then come to the recognition theorems, which are the methods
by which we can show an abstract Φ-crystal does indeed come from the category 𝒪 int𝑞 (Φ). Finally we describe
some interesting actions of the Weyl group and cactus group on these crystals.

4.1 Crystal bases of integrable modules

In this section we will give Kashiwara’s original [Kas91] definition of the crystal base of an integrable 𝑈𝑞(Φ)-
module 𝑉 . A crystal base 𝐵 is not quite a ℚ(𝑞)-basis of 𝑉 , but a ℚ-basis of a module obtained from a crystal lattice
𝐿 ⊆ 𝑉 . In order to define what properties 𝐿 and 𝐵 should satisfy, we first introduce the Kashiwara operators,
which are ℚ(𝑞)-linear endomorphisms of 𝑉 .
For any root datum Φ of Cartan type 𝐼 and a choice of vertex 𝑖 ∈ 𝐼 , we can consider the restricted root datum
Φ{𝑖} = Φ𝑖 having the same weight and coweight lattices as Φ, but where we have forgotten all simple roots and
coroots except for 𝛼𝑖, 𝛼∨𝑖 . The representation theory of 𝑈𝑞(Φ𝑖) looks very similar to the representation theory
of 𝑈𝑞(SL2), just with a larger set of weights 𝑋(Φ𝑖) = 𝑋(Φ). The finite-dimensional weight representations of
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𝑈𝑞(Φ𝑖) are semisimple, each isomorphic to an integrable highest-weight module 𝐿𝑞(𝜇) for some 𝑖-dominant weight
𝜇 ∈ 𝑋(Φ𝑖)+ = {𝜇 ∈ 𝑋(Φ) ∣ ⟨𝜇, 𝛼∨𝑖 ⟩ ≥ 0}. The irreducible 𝑈𝑞(Φ𝑖)-module 𝐿𝑞(𝜇) is generated by a highest-weight

vector 𝑣𝜇 of weight 𝜇, and has a string basis (𝑣𝜇 , 𝐹 [1]𝑖 𝑣𝜇 , … , 𝐹 [𝑛]𝑖 𝑣𝜇) where 𝑛 = ⟨𝜇, 𝛼∨𝑖 ⟩ and 𝐹 [𝑘]𝑖 are the quantum

divided powers 𝐹 [𝑘]𝑖 = 𝐹 𝑘𝑖 / [𝑘]!𝑖 . Take for example any 𝜇 ∈ 𝑋(Φ) satisfying ⟨𝜇, 𝛼∨𝑖 ⟩ = 5, then we can picture the
actions of 𝐸𝑖 and 𝐹𝑖 on the string basis as a diagram:

𝑣𝜇 𝐹 [5]𝑖 𝑣𝜇
[1]𝑖

[5]𝑖

[2]𝑖

[4]𝑖

[3]𝑖

[3]𝑖

[4]𝑖

[2]𝑖

[5]𝑖

[1]𝑖

𝐹𝑖

𝐸𝑖

The Kashiwara operators ̃𝑒𝑖 and 𝑓𝑖 are defined to be the ℚ(𝑞)-linear right and left-shift operators on this basis:

𝑣𝜇 𝐹 [5]𝑖 𝑣𝜇
1

1

1

1

1

1

1

1

1

1

𝑓𝑖

̃𝑒𝑖

For example, we would have

𝑓𝑖 (𝐹 [2]𝑖 𝑣𝜇 + 𝐹 [5]𝑖 𝑣𝜇) = 𝐹 [3]𝑖 𝑣𝜇 + 0 and ̃𝑒𝑖 (𝐹 [2]𝑖 𝑣𝜇 + 𝐹 [5]𝑖 𝑣𝜇) = 𝐹 [1]𝑖 𝑣𝜇 + 𝐹 [4]𝑖 𝑣𝜇 . (4.1.1)

Suppose that 𝑉 is an isotypic 𝑈𝑞(Φ𝑖)module, having direct summands isomorphic to 𝐿𝑞(𝜇). We can define Kashi-

wara operators in a more coordinate-free way by restricting the operators 𝐹 [1]𝑖 , … , 𝐹 [𝑛]𝑖 to the highest-weight
subspace 𝑉𝜇 , yielding isomorphisms 𝑉𝜇 → 𝑉𝜇−𝛼𝑖 , …, 𝑉𝜇 → 𝑉𝜇−𝑛𝛼𝑖 . These chosen isomorphisms may be inverted
and composed to get a chain of isomorphisms 𝑉𝜇 → 𝑉𝜇−𝛼𝑖 → ⋯ → 𝑉𝜇−𝑛𝛼𝑖 , and along with the condition that

𝑓𝑖(𝑉𝜇−𝑛𝛼𝑖) = 0 this chain is precisely the graded decomposition of the Kashiwara operator 𝑓𝑖. The operator ̃𝑒𝑖 may
be defined by inverting the chain of isomorphisms and adding the condition that ̃𝑒𝑖(𝑉𝜇) = 0.
Now, suppose that 𝑉 is an integrable 𝑈𝑞(Φ)-module. Then for any 𝑖 ∈ 𝐼 the module 𝑉 becomes a 𝑈𝑞(Φ𝑖)-module
by restriction, and the integrability condition gives that it decomposes into a direct sum of finite-dimensional
𝑈𝑞(Φ𝑖)-modules. For each 𝑖-dominant 𝜇 ∈ 𝑋(Φ𝑖)+, let 𝑉 (𝑖, 𝜇) be the 𝜇-isotypic component: the sum of all subrep-

resentations of 𝑉 isomorphic to 𝐿𝑞(𝜇) as 𝑈𝑞(Φ𝑖)-modules. The Kashiwara operators ̃𝑒𝑖(𝑣) and 𝑓𝑖(𝑣) are defined on
this isotypic component, hence we get the 𝑖-Kashiwara operators defined on the whole of 𝑉 by taking the sum
over the 𝑈𝑞(Φ𝑖)-isotypic components1of 𝑉 .
Let 𝐴 ⊆ ℚ(𝑞) be the subring consisting of rational functions without a pole at 𝑞 = 0. This is a discrete valuation
ring: a principal ideal domain with unique nonzero maximal ideal 𝑞𝐴. Its field of fractions is ℚ(𝑞), and its residue
field is 𝐴/𝑞𝐴 ≅ ℚ via the isomorphism 𝑓 + 𝑞𝐴 ↦ 𝑓 (0). Recall that an 𝐴-lattice in a ℚ(𝑞)-vector space 𝑉 is
a free 𝐴-submodule 𝐿 ⊆ 𝑉 such that 𝐿 ⊗𝐴 ℚ(𝑞) ≅ 𝑉 , and that we have an isomorphism of ℚ-vector spaces
𝐿 ⊗𝐴 ℚ ≅ 𝐿/𝑞𝐿.
Let 𝑉 be an integrable 𝑈𝑞(Φ)-module. An 𝐴-lattice 𝐿 ⊆ 𝑉 is called a crystal lattice if 𝐿 is graded, meaning that

𝐿 = ⨁𝜆∈𝑋(Φ) 𝐿 ∩ 𝑉𝜆 , and lattice 𝐿 is invariant under the Kashiwara operators ̃𝑒𝑖, 𝑓𝑖. This ensures that the ℚ-vector
space is still graded into weight spaces, and that the Kashiwara operators descend to ℚ-linear operators on the
ℚ-vector space 𝐿/𝑞𝐿. A pair (𝐿, 𝐵) is called a crystal basis of 𝑉 if:

1. 𝐿 is a crystal lattice of 𝑉 ,
2. 𝐵 is a weight basis of 𝐿/𝑞𝐿,

1If we were defining crystals of 𝒪(Φ)-modules rather than integrable modules, the definition of the Kashiwara operators would have
to change slightly (but everything following this point would remain the same). We cannot quite use 𝑖-isotypic components in this
case, since 𝑉 may not be semisimple as a 𝑈𝑞(Φ𝑖)-module, but one can nevertheless define an appropriate direct sum decomposition
by ‘pulling down’ 𝑖-highest weight vectors. See Section 3.5 of [Kas91] for details.
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3. ̃𝑒𝑖𝐵 ⊆ 𝐵 ∪ {0} and 𝑓𝑖𝐵 ⊆ 𝐵 ∪ {0} for all 𝑖 ∈ 𝐼 , and
4. For any 𝑏, 𝑏′ ∈ 𝐵 and 𝑖 ∈ 𝐼 we have ̃𝑒𝑖(𝑏) = 𝑏′ if and only if 𝑏 = 𝑓𝑖(𝑏′).

It is a priori unclear whether crystal bases exist for integrable highest-weight modules when |𝐼 | > 1. However,
some properties of crystal bases are already visible, for example if (𝐿1, 𝐵1) and (𝐿2, 𝐵2) are crystal bases of 𝑉1 and
𝑉2 respectively then (𝐿1 ⊕ 𝐿2, 𝐵1 ⊔ 𝐵2) is a crystal basis of 𝑉1 ⊕ 𝑉2. Remarkably, something similar works for the
tensor product: (𝐿1⊗𝐴𝐿2, 𝐵1×𝐵2) is a crystal base for 𝑉1⊗𝑉2. Furthermore, the action of the Kashiwara operators
on 𝐵1 × 𝐵2 is given purely in terms of their actions on 𝐵1 and 𝐵2 individually, with a simple rule for which side to
act on (see Definition 4.3.1 below). We could have attempted to formulate crystal bases for 𝔤(Φ)-modules rather
than 𝑈𝑞(Φ)-modules, but we would have fallen flat attempting to get any nice behaviour out of the tensor product:
something interesting is happening in the quantum world which makes this work. It is worth noting that just as
the tensor product of 𝑈𝑞(Φ)-modules is asymmetric, so is the tensor product of crystals.

The existence of crystal bases was shown by Kashiwara.

4.1.2 Theorem (Existence of crystal bases in 𝒪 int𝑞 (Φ))
(Theorem 2, [Kas91]). Let Φ be a root datum of type (𝐼 , ⋅) and let 𝜆 ∈ 𝑋(Φ)+ be a dominant weight. Then
the integrable highest-weight module 𝐿𝑞(𝜆) admits a crystal base, constructed as follows. Let 𝑣𝜆 ∈ 𝐿𝑞(𝜆) be
a highest-weight vector, and let ℱ 𝑣𝜆 be the set of vectors of the form 𝑓𝑖1 ⋯𝑓𝑖𝑙 𝑣𝜆 . Define the lattice ℒ(𝜆) to
be the 𝐴-span of the set ℱ 𝑣𝜆 , and ℬ(𝜆) to be the image of ℱ 𝑣𝜆 in ℒ(𝜆)/𝑞ℒ(𝜆) with zero removed. Then
(ℒ(𝜆),ℬ(𝜆)) is a crystal base of 𝐿𝑞(𝜆).

There is a little more discussion of the theory of crystal bases at the end of this chapter, but from now on we will
largely focus on the more combinatorial aspects of crystals.
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4.2 The category of crystals

The combinatorial nature of crystal bases suggests that they are governed by a combinatorially defined category.
To the author’s knowledge, the first appearance of this category was in [Kas93].

4.2.1 Definition (Abstract crystal)
Let Φ be a root datum of Cartan type (𝐼 , ⋅). An abstract crystal of type Φ, or Φ-crystal, is the data of

(𝐵,wt, (𝜀𝑖)𝑖∈𝐼 , (𝜑𝑖)𝑖∈𝐼 , (𝑒𝑖)𝑖∈𝐼 , (𝑓𝑖)𝑖∈𝐼 ), (4.2.2)

where 𝐵 is a set, wt ∶ 𝐵 → 𝑋(Φ) and 𝜀𝑖, 𝜑𝑖 ∶ 𝐵 → ℤ ⊔ {−∞} are functions which we call the raising and
lowering statistics, and 𝑒𝑖, 𝑓𝑖 ∶ 𝐵 99K 𝐵 are partial functions called the crystal operators, such that for all
𝑏, 𝑏′ ∈ 𝐵 and 𝑖 ∈ 𝐼 the following axioms hold:

1. Balanced-strings: 𝜑𝑖(𝑏) = 𝜀𝑖(𝑏) + ⟨wt(𝑏), 𝛼∨𝑖 ⟩,
2. Raising: If 𝑒𝑖(𝑏) ≠ ⊥, then

wt(𝑒𝑖(𝑏)) = wt(𝑏) + 𝛼𝑖, 𝜀𝑖(𝑒𝑖(𝑏)) = 𝜀𝑖(𝑏) − 1, 𝜑𝑖(𝑒𝑖(𝑏)) = 𝜑𝑖(𝑏) + 1, (4.2.3)

3. Lowering: If 𝑓𝑖(𝑏) ≠ ⊥, then
wt(𝑓𝑖(𝑏)) = wt(𝑏) − 𝛼𝑖, 𝜀𝑖(𝑓𝑖(𝑏)) = 𝜀𝑖(𝑏) + 1, 𝜑𝑖(𝑓𝑖(𝑏)) = 𝜑𝑖(𝑏) − 1, (4.2.4)

4. Partial inverse: 𝑒𝑖(𝑏) = 𝑏′ if and only if 𝑏 = 𝑓𝑖(𝑏′), and
5. Infinity: If 𝜑𝑖(𝑏) = −∞, then 𝑒𝑖(𝑏) = 𝑓𝑖(𝑏) = ⊥.

In this definition, ℤ ⊔ {−∞} is understood to have the additive structure where 𝑥 + −∞ = −∞.

If (𝐿, 𝐵) is the crystal base of an integrable 𝑈𝑞(Φ)-module 𝑉 as defined above, then we can put an abstract Φ-
crystal structure on the set 𝐵 by taking the crystal 𝑒𝑖 and 𝑓𝑖 operators to be the Kashiwara operators ̃𝑒𝑖 and 𝑓𝑖, and
the raising and lowering statistics to be 𝜀𝑖(𝑏) = max{𝑛 ≥ 0 ∣ 𝑒𝑛𝑖 (𝑏) ≠ ⊥} and 𝜑𝑖(𝑏) = max{𝑛 ≥ 0 ∣ 𝑓 𝑛𝑖 (𝑏) ≠ ⊥}. In this
way we get an abstract crystalℬ(𝜆) for each integrable highest-weight module 𝐿𝑞(𝜆) ∈ 𝒪 int𝑞 (Φ).

4.2.5 Example (Root strings)
Let Φ be the root datum SL2 with 𝐼 = {𝑖}, and 𝑋(Φ) = ℤ be the weight lattice, so that ⟨1, 𝛼∨𝑖 ⟩ = 1. Fix
a dominant weight 𝑛 ≥ 0, and define the crystal ℬ(𝑛) = {𝑏𝑛, 𝑏𝑛−2, … , 𝑏−𝑛+2, 𝑏−𝑛} as a set, with crystal
operators

𝑒𝑖(𝑏𝑛) = ⊥, 𝑓𝑖(𝑏−𝑛) = ⊥, 𝜀𝑖(𝑏𝑘) = 1
2(𝑛 − 𝑘), wt(𝑏𝑘) = 𝑘.

𝑒𝑖(𝑏𝑘) = 𝑏𝑘+2, 𝑓𝑖(𝑏𝑘) = 𝑏𝑘−2, 𝜑𝑖(𝑏𝑘) = 1
2(𝑛 + 𝑘).

(4.2.6)

Then ℬ(𝑛) is a Φ-crystal, and it is obvious from the definition of crystal bases that it is the crystal arising
from the integrable highest-weight module 𝐿𝑞(𝑛). It can be pictured by its crystal graph, shown below for
ℬ(5):

𝑏5 𝑏3 𝑏1 𝑏−1 𝑏−3 𝑏−5

𝜀𝑖(𝑏1) = 2

𝜑𝑖(𝑏1) = 3

The raising statistic 𝜀𝑖(𝑏1) = 2 counts the number of edges above 𝑏1, and 𝜑𝑖(𝑏1) = 3 is counting the number
of edges below 𝑏1.
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If an abstract crystal comes from a crystal base of some integrable 𝑈𝑞(Φ)-module, then (by definition) the raising
and lowering statistics behave in the simple way shown in Example 4.2.5, counting the number of arrows above
and below an element on a root string. This is called seminormality, sometimes called normality or regularity in
the literature.

4.2.7 Definition (Seminormality of crystals)
A crystal is called

1. Upper seminormal if 𝜀𝑖(𝑏) = max{𝑘 ≥ 0 ∣ 𝑒𝑘𝑖 (𝑏) ≠ ⊥} for all 𝑏 ∈ 𝐵,
2. Lower seminormal if 𝜑𝑖(𝑏) = max{𝑘 ≥ 0 ∣ 𝑓 𝑘𝑖 (𝑏) ≠ ⊥} for all 𝑏 ∈ 𝐵, and
3. Seminormal if it is both upper and lower seminormal.

The balanced-strings axiom implies that if 𝐵 is lower or upper seminormal then the statistics 𝜀𝑖 and 𝜑𝑖 take
only integer values. Furthermore, together with the partial inverse axiom it means that the data of an upper-
seminormal crystal 𝐵 is completely determined by (𝐵,wt, (𝑒𝑖)𝑖∈𝐼 ), and similarly the data of a lower-seminormal
crystal is completely determined by (𝐵,wt, (𝑓𝑖)𝑖∈𝐼 ). (One still needs to remember whether the crystal was upper
or lower-seminormal).

We remark that there aremany examples of abstract crystals which are not seminormal, for example those coming
from Verma modules such as the crystal ℬ(∞) shown in Example 4.2.12, or those that do not come from 𝑈𝑞(Φ)-
modules as all, such as the crystal 𝑇𝜆 of Example 4.2.11.

The ad-hoc illustration of the crystalℬ(5) in Example 4.2.5 can be formalised into the notion of a crystal graph.

4.2.8 Definition (Crystal graph)
Let 𝐵 be an abstract Φ-crystal. The crystal graph associated to 𝐵 is the directed edge-labelled graph with

vertex set 𝐵, with an edge 𝑏 𝑖−→ 𝑏′ labelled 𝑖 if and only if 𝑓𝑖(𝑏) = 𝑏′, or equivalently if and only if 𝑏 = 𝑒𝑖(𝑏′).
If the underlying undirected graph of 𝐵 is connected, we say that 𝐵 is a connected crystal. A vertex with no
incoming edges is called a primitive element. If a primitive element 𝑏𝜆 ∈ 𝐵𝜆 generates 𝐵 under the 𝑓𝑖, then
we say that 𝐵 is a highest-weight crystal of weight 𝜆.

The crystal operator 𝑒𝑖, the crystal operator 𝑓𝑖, and the crystal graph are all equivalent data. If the crystal is known
to be upper or lower-seminormal, then the statistics 𝜀𝑖 and 𝜑𝑖 can also be inferred from the graph.

As an example for the reader to keep in mind, we present some SL𝑛-crystals.

4.2.9 Example (Some SL𝑛 crystals)
The quantum group 𝑈𝑞(GL𝑛) has a representation on the ℚ(𝑞)-vector space 𝑉 with basis 𝑣1, … , 𝑣𝑛 where 𝐸𝑖
acts as the coordinate matrix 𝑣𝑖+1 ↦ 𝑣𝑖, 𝐹𝑖 acts as the coordinate matrix 𝑣𝑖 ↦ 𝑣𝑖+1, and the action of the
𝐾𝜈 is determined by requiring that 𝑣𝑖 is a weight vector of weight 𝜖𝑖. We call 𝑉 the natural representation
of 𝑈𝑞(GL𝑛), and in this special case the Kashiwara operators ̃𝑒𝑖 and 𝑓𝑖 on 𝑉 are equal to 𝐸𝑖 and 𝐹𝑖, therefore
setting 𝐵 = {𝑣1, … , 𝑣𝑛} and 𝐿 = 𝐴𝐵 makes (𝐿, 𝐵) into a crystal base for 𝑉 . For example, when Φ = GL3 we
can draw the crystal 𝐵 as follows:

𝑣1 𝑣2 𝑣31 2

where the vector 𝑣𝑖 is in weight 𝜖𝑖. What we have drawn is exactly a crystal graph in the sense of Defini-
tion 4.2.8: we are saying that 𝑓1(𝑣1) = 𝑣2 and 𝑓2(𝑣2) = 𝑣3, and 𝑓𝑖(𝑣𝑗) = ⊥ everywhere else. In order to grasp
the shape of more complicated graphs, we will often colour the set 𝐼 , and then use those colours to label the
edges. For example, if we let 𝐼 = {1, 2} so that 1 is coloured blue and 2 is coloured orange, then we can draw
the diagram more simply:

𝑣1 𝑣2 𝑣3

There is a morphism of A2-root data SL3 → GL3, and hence each GL3-crystal becomes an SL3-crystal by
this restriction. Conveniently SL3 has a two-dimensional weight lattice (shown in Example 3.4.16), allowing
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us to draw crystals on top of it and picture the weights of a crystal element by its position on the drawing.
Below are examples of two 𝔰𝔩3 representations, the one on the left corresponding to the dominant weight
(2, 0, 0) , and the one on the right to 𝜃 = (2, 1, 0) , the highest root, making ℬ(𝜃) the crystal of the adjoint
representation.

ℬ(2, 0, 0) ℬ(2, 1, 0)

The diagrams above show the crystal graph explicitly, and the weights of elements by their position on the
weight space. This is almost enough information to specify the crystal completely, and once we declare both
of these crystals to be seminormal then the 𝜀𝑖 and 𝜑𝑖 statistics can also be inferred from the graph. We remark
that in the crystal for the adjoint representation, the two vertices in the zero weight space are far apart in
terms of the crystal graph, despite having equal weight.

The vertex set of the crystals in the previous example are not explicitly given (merely shown in the graph). It is
often the case in Lie theory that we are able to find bases of the modules 𝐿(𝜆) indexed by a set of combinatorial
objects depending on 𝜆. Perhaps the most famous example of this is of Young tableaux. When 𝜆 is a partition
with at most 𝑛 rows, it may be interpreted as a dominant weight of GL𝑛, and there is a basis of 𝐿(𝜆) made of
semistandard Young tableaux: fillings of the Young diagram 𝜆 using the letters 1, … , 𝑛 such that the filling strictly
increases down columns and weakly increases to the right. A lovely account of this can be found in [Ful96].

We might then expect the existence of a crystalℬ(𝜆) with vertices indexed by such semistandard tableaux, and
moreover we should be able to interpret the crystal operators 𝑒𝑖, 𝑓𝑖 as partial functions from this set to itself. This
is in fact the case, and furthermore we will see later on that one could use the theory of crystals to work the other
way: starting only with a crystal structure on semistandard tableaux, it is possible to prove that the semistandard
tableaux of shape 𝜆 must be a basis of 𝐿(𝜆), using the tensor product of crystals and the notion of a closed family
of crystals. But we are getting ahead of ourselves, let’s see some more examples of crystals.

4.2.10 Example (Crystals of tableaux)
The dominant polynomial weights of GL𝑛 are in bijection with the set of partitions of length at most 𝑛,
and for a partition 𝜆 there exists a crystal basis ℬ(𝜆) of 𝐿𝑞(𝜆) in bijection with the set of semi-standard
tableaux of shape 𝑛 on the letters 1, … , 𝑛. The crystal operators 𝑒𝑖 and 𝑓𝑖 can be given on tableaux explicitly
by relatively simple rules (see Chapter 7 of [HK12], or [BS17]). The weight of a semistandard tableau is
determined by its entries, with a number 𝑖 contributing 𝜖𝑖 to the weight of the tableau.

Some examples for GL3 are shown below, in left-to-right order we have the trivial crystal, the crystal of
the natural representation 𝑉 , the crystal of the representation Λ2(𝑉 ), and the crystal of the determinant
representation Λ3(𝑉 ).

ℬ(0, 0, 0)
1
2
3

ℬ(1, 1, 1)ℬ(1, 0, 0)

1 2 3

ℬ(1, 1, 0)

1
2

1
3

2
3

The crystalsℬ(0, 0, 0) andℬ(1, 1, 1) are identical except for their weights. Here are three more interesting
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GL3-crystals for the reader to gaze upon.

1 1
2

1 2
2

1 1
3

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

ℬ(2, 1, 0)

1 1 1

1 1 2

1 2 2

2 2 2

1 1 3

1 2 3

2 2 3

1 3 3

2 3 3 3 3 3

ℬ(3, 0, 0)

1 1
2 2

1 3
1 2 2 3 3 3

ℬ(2, 0, 0)

We have a morphism of A2 root data SL3 → GL3, and so we may view each of the crystals above as SL3
crystals by restriction.While all the above crystals are non-isomorphic asGL3 crystals, the crystalsℬ(0, 0, 0)
and ℬ(1, 1, 1) are isomorphic as SL3 crystals, due to the restricted weights (0, 0, 0) and (1, 1, 1) being equal
in 𝑋(SL3). The SL3 restrictions ofℬ(2, 0, 0) andℬ(2, 1, 0) both appeared in the previous Example 4.2.9.

The crystals we have seen so far have all come from 𝒪 int𝑞 (Φ) representations, however there are many Φ-crystals
which do not come from any representation of 𝑈𝑞(Φ), let alone integrable representations. For example, this next
crystal could be thought of as a one-dimensional representation of 𝑈 0𝑞 (Φ) rather than 𝑈𝑞(Φ).

4.2.11 Example (Character crystal)
Given a weight 𝜆 ∈ 𝑋(Φ), let 𝑇𝜆 = {𝑡𝜆} with wt(𝑡𝜆) = 𝜆 ∈ 𝑋(Φ), the raising and lowering statistics 𝜑𝑖(𝑡𝜆) =
𝜀𝑖(𝑡𝜆) = −∞, and the crystal operators 𝑒𝑖(𝑏0) = ⊥ and 𝑓𝑖(𝑏0) = ⊥.

We could complain that the character crystal is a silly example of a crystal not coming from an 𝒪 int𝑞 (Φ) module,
since the raising and lowering statistics take the special value −∞. However, even if they take integer values,
we may have a crystal of a non-integrable module such as the ℬ(∞) crystal coming from the Verma module
𝑀𝑞(0).

4.2.12 Example (The rank-one infinity crystal)
Let Φ be the root datum of SL2. Define the set ℬ(∞) = {𝑥0, 𝑥1, 𝑥2, …} with the operators

𝑒𝑖(𝑥0) = ⊥, 𝑓𝑖(𝑥𝑘) = 𝑏𝑥+1, 𝜀𝑖(𝑥𝑘) = 𝑘, wt(𝑥𝑘) = −2𝑘,
𝑒𝑖(𝑥𝑘) = 𝑥𝑘−1, 𝜑𝑖(𝑥𝑘) = −𝑘. (4.2.13)

Thenℬ(∞) is aΦ-crystal. Its crystal graph looks as follows, with the 𝜀𝑖 and 𝜑𝑖 statistics drawn underneath:
𝑥0 𝑥1 𝑥2 𝑥3 𝑥4

𝜀𝑖(𝑥𝑘)
𝜑𝑖(𝑥𝑘)

0
0

1
−1

2 3
−4−2
4

−3
The example of theℬ(∞) crystal brings us to the definition of morphisms in the category of abstract Φ-crystals,
which are slightly tricky to define.
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4.2.14 Definition (Morphisms of crystals)
A morphism 𝐵1 → 𝐵2 of Φ-crystals is a partial function 𝜓 ∶ 𝐵1 99K 𝐵2 such that

1. 𝜓 commutes with wt, 𝜀𝑖, and 𝜑𝑖 on its domain of definition.
2. If both 𝑏, 𝑒𝑖(𝑏) ∈ 𝐵1 are in the domain of definition of 𝜓 , then 𝜓(𝑒𝑖(𝑏)) = 𝑒𝑖(𝜓 (𝑏)).
3. If both 𝑏, 𝑓𝑖(𝑏) ∈ 𝐵1 are in the domain of definition of 𝜓 , then 𝜓(𝑓𝑖(𝑏)) = 𝑓𝑖(𝜓 (𝑏)).

A crystal morphism is called strict if it commutes with all the 𝑒𝑖 and 𝑓𝑖. It is called an embedding if it is defined
on the whole of 𝐵1 and is an injective function. It is called an isomorphism if it is defined on the whole of 𝐵1
and is a bijective function.

A non-strict crystal morphism need not quite commute with the 𝑒𝑖 and 𝑓𝑖 crystal operators. For example, there is a
crystal morphism 𝜓 ∶ ℬ(0) → ℬ(∞) by taking the unique element 𝑏0 ∈ ℬ(0) of the trivial crystal to the element
𝑥0 ∈ ℬ(∞) of the same weight, which is an example of a non-strict embedding. However, if 𝜓 is an isomorphism,
or both 𝐵1 and 𝐵2 are seminormal, then 𝜓 is automatically strict.

We will leave one final example here of a crystal coming from a 𝑈𝑞(Φ) module which is neither highest-weight
nor integrable, but is nevertheless occasionally used in abstract arguments.

4.2.15 Example (The elementary crystal)
Let Φ be a root datum of type (𝐼 , ⋅). Fix a fixed vertex 𝑖 ∈ 𝐼 , define the elementary crystalℬ𝑖 = {𝑏𝑖(𝑛) ∣ 𝑛 ∈ ℤ},
with structure

wt(𝑏𝑖(𝑛)) = 𝑛𝛼𝑖 𝑓𝑖(𝑏𝑖(𝑛)) = 𝑏𝑖(𝑛 − 1)
𝜀𝑖(𝑏𝑖(𝑛)) = −𝑛 𝜑𝑖(𝑏𝑖(𝑛)) = 𝑛, (4.2.16)

with 𝜀𝑗 = 𝜑𝑗 = −∞ and 𝑒𝑗 = 𝑓𝑗 = ⊥ for 𝑗 ≠ 𝑖. The crystal graph is the following:

𝑏𝑖(2) 𝑏𝑖(1) 𝑏𝑖(0) 𝑏𝑖(−1) 𝑏𝑖(−2)
𝜀𝑖(𝑏𝑖(𝑛))
𝜑𝑖(𝑏𝑖(𝑛))

−2
2

−1
1

0 1
−20
2

−1
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4.3 Tensor product of crystals

4.3 Tensor product of crystals

The category of abstract Φ-crystals is equipped with a monoidal structure, the tensor product of crystals. There are
two different definitions of the tensor product, each the reverse of the other. Here we use the “combinatorialist’s
convention”, which plays the nicest with existing combinatorics such as the RSK algorithm.

4.3.1 Definition (Tensor product of crystals)
Let 𝐵 and 𝐶 be two abstract Φ-crystals. The tensor product 𝐵 ⊗ 𝐶 has underlying set the Cartesian product
𝐵 × 𝐶 , with elements denoted by 𝑏 ⊗ 𝑐 rather than (𝑏, 𝑐). We use the convention that 𝑏 ⊗ ⊥ = ⊥ = ⊥⊗ 𝑐, and
equip the tensor product with the following crystal structure:

wt(𝑏 ⊗ 𝑐) = wt(𝑏) +wt(𝑐)
𝜀𝑖(𝑏 ⊗ 𝑐) = max {𝜀𝑖(𝑐), 𝜀𝑖(𝑏) − ⟨wt(𝑐), 𝛼∨𝑖 ⟩}
𝜑𝑖(𝑏 ⊗ 𝑐) = max {𝜑𝑖(𝑏), 𝜑𝑖(𝑐) + ⟨wt(𝑏), 𝛼∨𝑖 ⟩}

𝑒𝑖(𝑏 ⊗ 𝑐) = {𝑒𝑖(𝑏) ⊗ 𝑐 if 𝜀𝑖(𝑏) > 𝜑𝑖(𝑐)
𝑏 ⊗ 𝑒𝑖(𝑐) if 𝜀𝑖(𝑏) ≤ 𝜑𝑖(𝑐)

𝑓𝑖(𝑏 ⊗ 𝑐) = {𝑓𝑖(𝑏) ⊗ 𝑐 if 𝜀𝑖(𝑏) ≥ 𝜑𝑖(𝑐)
𝑏 ⊗ 𝑓𝑖(𝑐) if 𝜀𝑖(𝑏) < 𝜑𝑖(𝑐)

(4.3.2)

It is routine to verify that this defines the structure of an abstract Φ-crystal on 𝐵 ⊗ 𝐶 , and furthermore that
if both 𝐵 and 𝐶 are both upper seminormal, then so is 𝐵 ⊗ 𝐶 (and similarly for lower seminormal).

The remarkable thing about the crystal tensor product is if ℬ(𝜆) and ℬ(𝜇) are the crystals of 𝐿𝑞(𝜆) and 𝐿𝑞(𝜇)
respectively, thenℬ(𝜆)⊗ℬ(𝜇) is the crystal of 𝐿𝑞(𝜆)⊗𝐿𝑞(𝜇). This means that if we can find combinatorial models
forℬ(𝜆) andℬ(𝜇) (such as the tableaux hinted at in Example 4.2.10), then we can compute the decomposition of
𝐿𝑞(𝜆)⊗𝐿𝑞(𝜇) by just finding the connected components (or highest-weight vertices) of the graphℬ(𝜆)⊗ℬ(𝜇).

We defined the crystal ℬ(∞) when |𝐼 | = 1 in Example 4.2.12. For general Φ, the crystal ℬ(∞) is a kind of limit
of theℬ(𝜆), which again plays the role of the Verma module𝑀(0). The tensor product 𝑇𝜆 ⊗ℬ(∞) plays the role
of the Verma module 𝑀(𝜆) in the setting of crystals.

4.3.3 Example (Shadows of Verma modules)
Let Φ = SL2. Taking the tensor product of 𝑇𝜆 with ℬ(∞) gives an interesting crystal: the tensor product
structure in Definition 4.3.1 simplifies to give the following crystal structure on 𝑇𝜆 ⊗ℬ(∞):

wt(𝑡𝜆 ⊗ 𝑥𝑛) = 𝜆 − 𝑛𝛼𝑖 𝑒𝑖(𝑡𝜆 ⊗ 𝑥𝑛) = 𝑡𝜆 ⊗ 𝑒𝑖(𝑥𝑛) 𝜀𝑖(𝑡𝜆 ⊗ 𝑥𝑛) = 𝑛
𝑓𝑖(𝑡𝜆 ⊗ 𝑥𝑛) = 𝑡𝜆 ⊗ 𝑥𝑛+1 𝜑𝑖(𝑡𝜆 ⊗ 𝑥𝑛) = ⟨𝛼∨𝑖 , 𝜆⟩ − 𝑛. (4.3.4)

For example, if we suppose that 𝜆 = 3 then we have the following picture of 𝑇𝜆 ⊗ℬ(∞):

𝑡3 ⊗ 𝑥0 𝑡3 ⊗ 𝑥1 𝑡3 ⊗ 𝑥2 𝑡3 ⊗ 𝑥3 𝑡3 ⊗ 𝑥4
𝜀𝑖(𝑡3 ⊗ 𝑥𝑘)
𝜑𝑖(𝑡3 ⊗ 𝑥𝑘)

0
3

1
2

2 3
−11
4

0

Here we can see there is a non-strict crystal morphism ℬ(3) ↪ 𝑇3 ⊗ℬ(∞) (recall that crystal morphisms
must commute with wt, 𝜀𝑖, and 𝜑𝑖, but only need to commute with the 𝑒𝑖 and 𝑓𝑖 operators on their domain of
definition).
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4.4 Recognition theorems

We know by now that the category of Φ-crystals is far more general than just those corresponding to crystals of
𝒪 int𝑞 (Φ) modules, which form a full monoidal subcategory. Some abstract Φ-crystals we have seen so far which
are not crystals of 𝒪 int𝑞 (Φ)-modules are:

• The ‘Verma crystal’ℬ(∞), a Φ-crystal coming from the category 𝒪𝑞(Φ), but not from 𝒪 int𝑞 (Φ).
• The ‘principal series’ crystals ℬ𝑖, which come from a representation of 𝑈𝑞(SL2) which is neither highest-
weight nor integrable.

• The ‘character crystal’ 𝑇𝜆 , which does not come from a 𝑈𝑞(Φ)-representation at all.

The next counterexample in particular shows that the problem of classifying those abstract Φ-crystals coming
from 𝒪 int𝑞 (Φ) is quite subtle.

4.4.1 Example

The following are both abstract seminormal SL3-crystals, but only the one on the left comes from a 𝑈𝑞(Φ)-
module.

ℬ(2, 1, 0) 𝐵
The question is: given an abstract Φ-crystal 𝐵, how can one check that it is the crystal of a module from 𝒪 int𝑞 (Φ)?
If the crystal is connected, one could hope to find a dominant weight 𝜆 and an existing model for ℬ(𝜆) and
give a crystal isomorphism 𝐵 ∼−→ ℬ(𝜆). However this does not help to ‘bootstrap’ the theory, since one needs
to start with an existing model for ℬ(𝜆), and furthermore specifying an isomorphism is impossible if the exact
decomposition of 𝐵 into highest weights is unknown.

Fortunately, there are a number of recognition theorems available to us which we can use to check whether a Φ-
crystal 𝐵 really does come from 𝒪 int𝑞 (Φ). The first of these is due to Kashiwara, allowing us to reduce the problem
to Cartan data of rank 2. As with 𝔤(Φ)-modules and 𝑈𝑞(Φ)-modules, an element 𝑏 of a crystal is called primitive
if 𝑒𝑖(𝑏) = ⊥ for all 𝑖 ∈ 𝐼 , and a primitive element is called highest weight if it generates 𝐵.

4.4.2 Theorem (Recognition by rank-2 restriction)
(Proposition 2.4.4 of [Kan+92]). Let 𝐵 be a Φ-crystal such that, for any subset 𝐽 ⊆ 𝐼 with at most two
elements, any connected component of the restricted crystal 𝐵𝐽 containing a 𝐽 -primitive element is a crystal
isomorphic toℬ(Φ𝐽 , 𝜆) for some 𝐽 -dominant 𝜆. Then any connected component of 𝐵 containing a primitive
element generates a subcrystal isomorphic toℬ(𝜆), for some dominant 𝜆.

The above condition on subsets 𝐽 ⊆ 𝐼 with one element is simply checking that 𝐵 is seminormal, so checking
the rank-2 restrictions is where all the work is. This theorem is very frequently used, and the other recognition
theorems below rely on this one. We remark that if 𝐵 satisfies the above condition then only the connected
components containing primitive vectors come from𝒪 int𝑞 (Φ)-modules, theremay be other connected components
which are not highest-weight.
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4.5 Weyl group action

Joseph [Jos95] has given a purely combinatorial method of checking whether a collection𝒞 = {𝐶(𝜆) ∣ 𝜆 ∈ 𝑋(Φ)+}
of candidate Φ-crystals coincide with theℬ(𝜆). Clearly, each 𝐶(𝜆) should be a seminormal highest weight crystal
of highest weight 𝜆. We need only onemore condition on𝒞 , ensuring that it behaves well with tensor products.

4.4.3 Definition (Closed families of crystals)
Let 𝒞 = {𝐶(𝜆) ∣ 𝜆 ∈ 𝑋(Φ)+} be a family of highest-weight seminormal crystals, where 𝑐𝜆 ∈ 𝐶(𝜆) is the
highest-weight element of weight 𝜆. We say that 𝒞 is a closed family if the element 𝑐𝜆 ⊗ 𝑐𝜇 ∈ 𝐶(𝜆) ⊗ 𝐶(𝜇)
generates a strict subcrystal of highest weight 𝜆 + 𝜇 isomorphic to 𝐶(𝜆 + 𝜇).

It is immediate from the definition of the tensor product that 𝑐𝜆 ⊗ 𝑐𝜇 will be a primitive element of 𝐶(𝜆) ⊗ 𝐶(𝜇)
of the correct weight, but it is far from clear that the subset generated by 𝑐𝜆 ⊗ 𝑐𝜇 under the 𝑓𝑖 operators is a strict
subcrystal of 𝐶(𝜆) ⊗ 𝐶(𝜇), or even that it is stable under the 𝑒𝑖 operators.

4.4.4 Theorem
(6.4.21 of [Jos95]). Let 𝒞 = {𝐶(𝜆) ∣ 𝜆 ∈ 𝑋(Φ)+} be a closed family of highest-weight seminormal crystals.
Then 𝐶(𝜆) ≅ ℬ(𝜆) for all 𝜆 ∈ 𝑋(Φ)+.

It is very easy to show that the {ℬ(𝑛) ∣ 𝑛 ≥ 0} constructed in Example 4.2.5 is a closed family of SL2-crystals, and
with somework (and proper definitions of the 𝑒𝑖 and 𝑓𝑖 operators) it can be shown that the crystals of semistandard
tableaux hinted at in Example 4.2.10 form a closed family of GL𝑛 crystals. Given a closed family of Φ-crystals, we
have a way to work with the crystals of 𝒪 int𝑞 (Φ)-modules without the need to introduce the quantum enveloping
algebra and the theory of crystal bases.

It can be shown that the Lakshmibai-Seshadri paths, with the Littelmann root operators, form a closed family
and hence give an explicit model for all theℬ(𝜆) in any type [Lit94]. In type A, these paths are in bijection with
Young tableaux, making the LS paths a generalisation of Young tableaux to any type.

There is another kind of recognition theorem due to Stembridge, when (𝐼 , ⋅) is simply-laced. In [Ste03], Stembridge
gives necessary and sufficient conditions for a directed graph with edges coloured by 𝐼 to be the crystal graph of a
crystal from 𝒪 int𝑞 (Φ). After showing that the Stembridge axioms are necessary and permit at most one connected
graph per highest weight, it is shown that these connected graphs are isomorphic to the corresponding crystal
graphs given by the Littelmann paths, and hence must be the crystals of highest-weight integrable modules. This
description only works for simply-laced type, since the uniqueness of the graphs only holds in simply-laced type,
but crystals in other types can be obtained through a standard technique known as diagram folding. The recent
text [BS17] defines crystals this way, as either Stembridge crystals or folded Stembridge crystals, without recourse
to quantum groups.

4.5 Weyl group action

Weoften talk about crystals which come from crystal bases of integrable 𝑈𝑞(Φ)-modules. Throughout this section,
we can use a slightly weaker property which appears in [Kas94].

4.5.1 Definition
A Φ-crystal 𝐵 is called finite-normal if for any 𝐽 ⊆ 𝐼 of finite type, the restriction of 𝐵 to Φ𝐽 is isomorphic
(as Φ𝐽 -crystals) to the crystal base of an integrable 𝑈𝑞(Φ𝐽 )-module.

A finite-normal Φ-crystal is automatically seminormal, and furthermore if (𝐼 , ⋅) is finite type then the finite-
normality property is equivalent to being the crystal of a 𝒪 int𝑞 (Φ)-module.

For each 𝐽 ⊆ 𝐼 of finite type, a finite-normal crystal 𝐵 decomposes into a disjoint union of finite Φ𝐽 crystals, each
of the form ℬ(Φ𝐽 , 𝜆) for some 𝜆 ∈ 𝑋(Φ𝐽 )+. It was first shown by Kashiwara that one can exploit this finiteness
to obtain an action of the Weyl group 𝑊𝐼 on the whole crystal 𝐵.
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4.5.2 Theorem (Weyl action on finite-normal crystals)
(Section 7 of [Kas94]). Let 𝐵 be a finite-normal Φ-crystal, and define for each 𝑖 ∈ 𝐼 a map 𝑐𝑖 ∶ 𝐵 → 𝐵 by

𝑐𝑖(𝑏) = {𝑓
⟨wt(𝑏),𝛼∨𝑖 ⟩(𝑏) if ⟨wt(𝑏), 𝛼∨𝑖 ⟩ ≥ 0

𝑒−⟨wt(𝑏),𝛼∨𝑖 ⟩(𝑏) if ⟨wt(𝑏), 𝛼∨𝑖 ⟩ ≤ 0 (4.5.3)

Then:
1. Each 𝑐𝑖 is an involution: 𝑐2𝑖 = id𝐵 .
2. Each 𝑐𝑖 acts by the reflection 𝑠𝑖 ∶ 𝑋(Φ) → 𝑋(Φ) on the weight of an element: wt(𝑐𝑖(𝑏)) = 𝑠𝑖(wt(𝑏)).
3. The 𝑐𝑖 satisfy the braid relation (𝑐𝑖𝑐𝑗)𝑚𝑖𝑗 = 1.

Hence the Weyl group 𝑊𝐼 acts on 𝐵 via the map 𝑠𝑖 ⋅ 𝑏 = 𝑐𝑖(𝑏).
Since 𝐵 is a seminormal Φ-crystal, its restriction to Φ𝑖 breaks up into a disjoint union of balanced 𝑖-strings of
finite length, and the operator 𝑐𝑖 acts by reversal on these strings.

4.5.4 Example

The following diagram shows theGL3 crystal ofℬ(2, 0, 0) fromExample 4.2.10 on the left, with the computed
actions of 𝑐1 and 𝑐2 on the right.

1 1
2 2

1 3
1 2 2 3 3 3 1 1

2 2

1 3
1 2 2 3 3 3

𝑓1 𝑓2 𝑐1 𝑐2

This makes the first two properties of Theorem 4.5.2 easy to verify: reversal is clearly an involution, and the
balanced-strings axiom ensures that the reversal is taking place around zero. The third property is proved by
reducing to the case where 𝐽 ⊆ 𝐼 is finite-type and has two elements, we refer the reader to Section 7 of [Kas94]
for the full proof.

4.6 Cactus group action

The Weyl group action in Theorem 4.5.2 may be extended to an action of the cactus group on a finite-normal
crystal, via some involutions 𝑐𝐽 where 𝑐{𝑖} = 𝑐𝑖 from before.

4.6.1 Theorem
Let 𝐵 be a finite-normal Φ-crystal, and let 𝐽 ⊆ 𝐼 be finite type and irreducible. Define a map 𝑐𝐽 ∶ 𝐵 → 𝐵 to
be the unique map preserving the connected components of the restricted crystal 𝐵𝐽 , and satisfying

(1) wt(𝑐𝐽 (𝑏)) = 𝑤𝐽 ⋅wt(𝑏),
(2) 𝑒𝑗(𝑐𝐽 (𝑏)) = 𝑐𝐽 (𝑓𝜔𝐽 (𝑗)(𝑏)) for all 𝑗 ∈ 𝐽 ,
(3) 𝑓𝑗(𝑐𝐽 (𝑏)) = 𝑐𝐽 (𝑒𝜔𝐽 (𝑗)(𝑏)) for all 𝑗 ∈ 𝐽 .

(4.6.2)

Then the maps 𝑐𝐽 ∶ 𝐵 → 𝐵 satisfy the cactus relations:

1. 𝑐2𝐽 = id𝐵 ,
2. 𝑐𝐽 𝑐𝐾 = 𝑐𝐾 𝑐𝐽 if there are no edges between the vertices of 𝐽 and 𝐾 , and
3. 𝑐𝐽 𝑐𝐾 = 𝑐𝐾 𝑐𝜔𝐾 (𝐽 ) if 𝐽 ⊆ 𝐾 .

Furthermore, the definition of 𝑐{𝑖} agrees with the one given in Theorem 4.5.2. Hence there is an action of
the cactus group 𝐶𝐼 on 𝐵 via the operators 𝑐𝐽 , additionally satisfying the braid relations (𝑐𝑖𝑐𝑗)𝑚𝑖𝑗 = 1.

42



4.7 Addendum

The quotient of the cactus group 𝐶𝐼 by the braid relations (𝜏𝑖𝜏𝑗)𝑚𝑖𝑗 has been called the reduced cactus group (3.4 of
[Hal20]).

We remark that it is straightforward to compute the involution 𝑐𝐽 if one knows both the involution 𝜔𝐽 ∶ 𝐽 → 𝐽
and the whole crystal graph 𝐵𝐽 . Each element 𝑏 of a connected component of 𝐵𝐽 can be written (non-uniquely)
as 𝑏 = 𝑓𝑗1 ⋯𝑓𝑗𝑘 𝑏high, where 𝑏high is the highest-weight element of the connected component and 𝑗1, … , 𝑗𝑘 ∈ 𝐽 . The
equality 𝑐𝐽 (𝑏high) = 𝑏low follows from (1), and applying condition (2) we get

𝑐𝐽 (𝑏) = 𝑐𝐽 (𝑓𝑗1 ⋯𝑓𝑗𝑘 𝑏high)
= 𝑒𝜔𝐽 (𝑗1)⋯ 𝑒𝜔𝐽 (𝑗𝑘)𝑏low.

(4.6.3)

So if we get from the highest-weight element to 𝑏 by following some arrows forwards, we get from the lowest-
weight element to 𝑐𝐽 (𝑏) by following the opposite arrows (as defined by 𝜔𝐽 ) backwards. Consider the GL3-crystal
ℬ(2, 1, 0) from earlier, which we show here:

1 1
2

1 2
2

1 1
3

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

ℬ(2, 1, 0)

In this case (𝐼 , ⋅) = A2, and the involution 𝜔𝐼 ∶ 𝐼 → 𝐼 swaps the blue and orange vertices 1 and 2 of the Dynkin
diagram. So opposite arrow means the oppositely coloured arrow. Viewing ℬ(2, 1, 0) as a hexagon, the cactus
involution 𝑐𝐼 swaps opposite vertices. In particular, the two tableaux of weight (1, 1, 1) are swapped.
Ifℬ(𝜆) is the GL𝑛-crystal of semistandard tableaux of shape 𝜆, then the involution 𝑐{1,…,𝑖} acts as the well-known
Schützenberger involution on the sub-tableaux containing only entries {1, … , 𝑖 + 1}.

4.7 Addendum

Something that initially confused the author was the relationship between crystal bases and other bases of 𝑈𝑞(Φ),
such as Lusztig’s canonical basis. Some people like to say (informally) that they are ‘the same’, which doesn’t
make sense because they are not even objects of the same kind: the crystal basis of a representation 𝑉 is a ℚ-
basis of a quotient lattice of 𝑉 , while Luztig’s canonical basis is an honest ℚ(𝑞)-basis of the whole algebra 𝑈𝑞(Φ).
Something that was also unclear was the connection between Littelmann’s work on path models and Kashiwara’s
on crystals. We have written this short section to hopefully be a small guide to the early literature explaining
these things.

The story of crystal bases of 𝑈𝑞(Φ)-modules is due to Kashiwara. In [Kas90], he defined the notion of what we
now call an upper crystal base of a 𝑈𝑞(Φ)-module 𝑉 to be a pair (𝐿, 𝐵) of an 𝐴-lattice2𝐿 ⊆ 𝑉 together with a basis
𝐵 of the ℚ-vector space 𝐿/𝑞𝐿, satisfying some axioms. He proved the existence and uniqueness of these crystal
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bases in the classical types A𝑛, B𝑛, C𝑛, and D𝑛. In [Kas91], he further defined a lower crystal base and showed the
existence and uniqueness of these bases for the 𝐿(𝜆) and the negative half 𝑈−𝑞 (Φ) of the quantised enveloping
algebra using a huge inductive argument called the grand loop. He also defined a global lower base, defined on
an integral form 𝑉ℤ over the integral algebra 𝑈ℤ(Φ), to be an integral basis B which descends to a lower crystal
basis in both the 𝑞 → 0 and 𝑞 → ∞ limits: for example, setting ℒ = ⨁𝑏∈B ℚ[𝑞]𝑏 and 𝐵 = {𝑏 mod 𝑞ℒ ∣ 𝑏 ∈ B}
should make (ℒ , 𝐵) a lower crystal base. A good self-contained account of globalisation can be found in Chapter
6.2 of [Jos95].

In [Lit95a], Littelmann applied Kashiwara’s theory of crystal bases together with the theory of generalised Young
tableaux (special cases of Lakshmibai-Seshadri paths) to give a combinatorial definition of the crystal graphs
ℬ(𝜆) in the classical types A𝑛, B𝑛, C𝑛, D𝑛, E6, and G2. He then used these graphs together with the crystal tensor
product rule to give a short proof of the generalised Littlewood-Richardson rule for computing the decomposition
multiplicities ofℬ(𝜆)⊗ℬ(𝜇). He also conjectured that the extension-of-strings operators on crystal graphs could
be used to construct crystal bases for Demazure modules. In [Kas93], Kashiwara proved Littelmann’s conjecture,
giving a new proof of the Demazure character formula for symmetrisable Kac-Moody algebras. In this paper he
also introduced the notion of an abstract Φ-crystal, so that ℬ(𝜆) and ℬ(∞) could be put on equal footing from
a combinatorial point of view.

Around the same time that Kashiwara defined crystal bases, Lusztig defined canonical bases [Lus90]. Lusztig’s
canonical basis of 𝑈−(Φ) may be defined purely algebraically however its existence is shown using geometric
methods, namely realising the multiplication in the quantum group 𝑈𝑞(Φ) as a kind of convolution product on
a Lusztig quiver variety. The canonical basis of Lusztig can be compared to the global (not crystal) basis of
Kashiwara, and in fact the two have been shown to be equivalent [GL93].

2Recall that 𝐴 ⊆ ℚ(𝑞) is the subring of rational functions without a pole at 𝑞 = 0, as in Section 4.1.
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5 Demazure modules and crystals

Demazuremodules are finite-dimensional subspaces of highest-weight representations: for each dominantweight
𝜆 ∈ 𝑋(Φ)+ and Weyl group element 𝑤 ∈ 𝑊𝐼 , the Demazure module 𝐿𝑤 (𝜆) is a certain 𝑈+(Φ)-stable subspace
of the integrable highest-weight module 𝐿(𝜆). The Demazure modules give an inductive method to study the
𝐿(𝜆), by analysing the successive embeddings 𝐿𝑤 (𝜆) ⊆ 𝐿𝑠𝑖𝑤 (𝜆) for the simple reflections 𝑠𝑖. In the case that 𝐼 is
finite type, a classic result due to Demazure is that the characters of these modules are related by the Demazure
operators 𝜋𝑖, with the inductive step being 𝜋𝑖(ch 𝐿𝑤 (𝜆)) = ch 𝐿𝑠𝑖𝑤 (𝜆), leading to the Demazure character formula
ch 𝐿𝑤 (𝜆) = 𝜋𝑤 (𝑒𝜆).
There have been many proofs of the Demazure character formula when (𝐼 , ⋅) is not finite type, the most relevant
to our work being the perspective of Demazure crystals. The theory of Demazure crystals was developed by
Kashiwara and Littelmann, formalising the notion of a Demazure subcrystal ℬ𝑤 (𝜆) ⊆ ℬ(𝜆) as the analogue of
a Demazure module 𝐿𝑤 (𝜆) ⊆ 𝐿(𝜆), and showing that the Demazure operators 𝜋𝑖 have combinatorial analogues
on the level of crystals, the extension of strings operators 𝔇𝑖. Our analysis of the product monomial crystal in
Chapter 7 follows along the same lines, breaking the crystal up into small pieces related by the extension of
strings operators.

We start this chapter with a digression into formal characters of representations and crystals, a topic we have not
yet covered. The main point we want the reader to take away from this section is that the formal character gives
a complete invariant of 𝒪 int(Φ)-modules: two representations in this category with the same formal character
are isomorphic. After this, we give the definition of Demazure modules and Demazure crystals, along with their
formal characters calledDemazure characters.We followKashiwara’s approach [Kas93] to the theory of Demazure
crystals, the string property, and the extension-of-strings operators. Finally, we collect some history of Demazure
modules and the Demazure character formula for the reader’s interest.

5.1 Formal Characters

Suppose that Φ is a root datum of finite type (𝐼 , ⋅), and we are working in the category of finite-dimensional
weight representations of 𝔤(Φ). To every finite-dimensional weight representation 𝑉 we can associate its formal
character recording the multiplicities of weight spaces:

ch 𝑉 = ∑
𝜆∈𝑋(Φ)

(dim 𝑉𝜆)𝑒𝜆 ∈ ℤ[𝑋(Φ)]. (5.1.1)

Here ℤ[𝑋(Φ)] is the group algebra of the free abelian group 𝑋(Φ), written multiplicatively so that 𝑒𝜆𝑒𝜇 = 𝑒𝜆+𝜇 .
It is simple to verify that the characters of a direct sum add and the characters of a tensor product multiply, so
we have ch(𝑈 ⊕ 𝑉 ) = ch 𝑈 + ch 𝑉 and ch(𝑈 ⊗ 𝑉 ) = (ch 𝑈 )(ch 𝑉 ). Furthermore, for any short exact sequence
0 → 𝑉 ′ → 𝑉 → 𝑉″ → 0 of 𝔤(Φ)-modules, we have ch(𝑉 ) = ch(𝑉 ′) + ch(𝑉″), and therefore the characters of
isomorphic modules are equal.

Characters give us useful invariants of modules, and in fact in the setting we are in (finite-dimensional represen-
tions over a field of characteristic zero) they give us complete invariants: a finite-dimensional weight representa-
tion 𝑉 is determined up to isomorphism by its character ch 𝑉 . We will explain why this is the case.

The Weyl group 𝑊 = 𝑊𝐼 acts on the space ℤ[𝑋(Φ)] of formal characters by permuting the standard basis:
𝑤 ⋅ 𝑒𝜆 = 𝑒𝑤𝜆 , where 𝑤𝜆 is the usual action of the Weyl group on the weight lattice (Lemma 3.4.10). By considering
the restriction of 𝑉 to each rank-one algebra 𝔤(Φ𝑖) and considering the classification of finite-dimensional 𝔰𝔩2
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5 Demazure modules and crystals

modules, we see that 𝑉𝜆 and 𝑉𝑠𝑖𝜆 are isomorphic vector spaces. Since this works for all 𝑖 ∈ 𝐼 , we have that
dim 𝑉𝜆 = dim 𝑉𝑤𝜆 for all 𝑤 ∈ 𝑊 , hence the character of a finite-dimensional representation 𝑉 is a member of the
subring ℤ[𝑋(Φ)]𝑊 of Weyl-invariant characters. In fact, the characters of the 𝐿(𝜆) for dominant 𝜆 form a basis
for the subring of Weyl-invariant characters.

5.1.2 Lemma (A basis of the Weyl-invariant character ring)
Let Φ be a root datum of finite type (𝐼 , ⋅). Then the characters {ch 𝐿(𝜆) ∣ 𝜆 ∈ 𝑋(Φ)+} of the highest-weight
modules 𝐿(𝜆) form a basis of the invariant ring ℤ[𝑋(Φ)]𝑊 .

5.1.3 Proof
Since the Weyl orbit of a weight 𝜆 ∈ 𝑋(Φ) intersects the dominant weights 𝑋(Φ)+ exactly once, Weyl
orbits can be parameterised by dominant weights. For each dominant weight 𝜆 define the orbit sum 𝑚𝜆 =
∑𝜇∈𝑊 ⋅𝜆 𝑒𝜇 , then the set {𝑚𝜆 ∣ 𝜆 ∈ 𝑋(Φ)+} forms a basis of ℤ[𝑋(Φ)]𝑊 . Since the highest-weight space of 𝐿(𝜆)
has dimension 1 and all other weights of 𝐿(𝜆) are lower than 𝜆 in the partial ordering, we have

ch 𝐿(𝜆) = 𝑚𝜆 + ∑
𝜇<𝜆

𝑘𝜆,𝜇𝑚𝜇 for some 𝑘𝜆,𝜇 ∈ ℕ, (5.1.4)

showing that {ch 𝐿(𝜆) ∣ 𝜆 ∈ 𝑋(Φ)+} is an alternative basis of the invariant character ring1.

The category of finite-dimensional weight modules of 𝔤(Φ) is semisimple because we are working over ℂ, hence
the isomorphim class of 𝑉 is determined by the decomposition multiplicities [𝐿(𝜆) ∶ 𝑉 ], which are given exactly
by the expression of the character of 𝑉 in the basis of irreducible characters ch 𝑉 = ∑𝜆∈𝑋(Φ)+[𝐿(𝜆) ∶ 𝑉 ] ch 𝐿(𝜆).
Hence the character gives a complete invariant.

We now consider the case when (𝐼 , ⋅) is of arbitrary type. For a module 𝑉 ∈ 𝒪(Φ) the formal character Eq. (5.1.1)
makes sense as a sum taking values in the completed group algebra ℤ[[𝑋(Φ)]], whose elements are infinite linear
combinations of the 𝑒𝜆 . This completion is no longer an algebra since the product of two elements may result
in each coefficient being given by an infinite, rather than finite, sum. However, if 𝑈 , 𝑉 ∈ 𝒪(Φ) then the product
(ch 𝑈 )(ch 𝑉 ) makes sense by the ‘weights bounded above’ condition on Category 𝒪(Φ) (Definition 3.5.3), and is
equal to ch(𝑈 ⊗ 𝑉 ). The Weyl group still acts on the completed algebra, and the characters of integrable modules
are Weyl-invariant, but we can no longer parametrise Weyl orbits in 𝑋(Φ) by dominant weights since not every
orbit meets the dominant chamber. However, the characters of the integrable highest-weight modules 𝐿(𝜆) are
linearly independent, since if we have a sum ∑𝜆∈𝑋(Φ)+ 𝑎𝜆 ch 𝐿(𝜆) = 0 we must have 𝑎𝜆 = 0 for any maximal
𝜆. Therefore the characters of modules in category 𝒪 int(Φ) still give a complete invariant by semisimplicity,
however we cannot package this up quite as nicely as in the finite case.

Modules over quantum groups and abstractΦ-crystals also have formal characters. In the case of abstract crystals,
provided that the ‘weight spaces’ 𝐵𝜆 = {𝑏 ∈ 𝐵 ∣ wt(𝑏) = 𝜆} are finite we can define

ch𝐵 = ∑
𝜆∈𝑋(Φ)

|𝐵𝜆 |𝑒𝜆 ∈ ℤ[𝑋(Φ)], (5.1.5)

in exact analogy with Eq. (5.1.1). (Again, if (𝐼 , ⋅) is not finite type then ch𝐵 may be valued in the completed group
algebra rather than the group algebra). The discussion above shows that if 𝐵 is the crystal of a module from
𝒪 int𝑞 (Φ), then 𝐵 is determined up to isomorphism by ch𝐵, and hence characters also give a complete invariant of
such crystals.

1This fact would be immediate if (𝑋(Φ)+, ≤) were a finite partially ordered set, since Eq. (5.1.4) would show that the endomorphism
𝑚𝜆 ↦ ch 𝐿(𝜆) is an upper-triangular matrix (in any total order refining ≤) with 1s along the diagonal, and hence has determinant
1. The analogous statement for infinite posets is not actually true in general, as one can see by considering the ℤ-module ℤ[ℤ] =
spanℤ {… , 𝑒−1, 𝑒0, 𝑒1, …} and the linear map 𝑒𝑖 ↦ 𝑒𝑖 − 𝑒𝑖−1. This satisfies the unitriangularity condition and is injective, but is not
surjective since every element of the image has its sum of coefficients equal to zero. The technical condition needed here is that
the poset (𝑋(Φ)+, ≤) satisfies the property: every non-empty subset contains a minimal element (as in VI.3.4, Lemma 4 of [BB02]).
Alternatively, and perhaps more intuitively, one could take some filtration of 𝑋(Φ)+ with finite pieces and realise that if the map is
an isomorphism in each piece, so must it be in the limit.
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5.2 Demazure modules and the character formula

The integrable highest-weight module 𝐿(𝜆) is irreducible, and hence has no nontrivial 𝑈 (Φ)-submodules. How-
ever, it may also be viewed as a 𝑈+(Φ)-module, in which case it has many submodules. A particularly nice family
of these submodules are the Demazure modules, each a finite-dimensional subspace of 𝐿(𝜆) parameterised by the
Weyl group 𝑊 .

5.2.1 Definition (Demazure module)

Fix an irreducible integrable highest-weight module 𝐿(𝜆) ∈ 𝒪 int(Φ). The elements of the Weyl orbit 𝑊 ⋅ 𝜆
are called the extremal weights of 𝐿(𝜆). The Demazure module 𝐿𝑤 (𝜆) ⊆ 𝐿(𝜆) is defined as the 𝑈+(Φ)-orbit of
the one-dimensional space 𝐿(𝜆)𝑤𝜆 inside 𝐿(𝜆). We say that 𝐿𝑤 (𝜆) has Demazure lowest weight 𝑤𝜆.

For any dominant 𝜆, the Demazuremodule 𝐿𝑒(𝜆) associated to the identity element 𝑒 ∈ 𝑊 is 𝑈+(Φ)⋅𝑉 (𝜆)𝜆 = 𝑉 (𝜆)𝜆 ,
the one-dimensional highest-weight space. At the other extreme, when 𝐼 is finite-type and 𝑤𝐼 ∈ 𝑊 is the longest
element, 𝐿(𝜆)𝑤𝐼 𝜆 is the lowest-weight space and hence the Demazure module 𝐿𝑤𝐼 (𝜆) is equal to the whole module
𝐿(𝜆). If 𝐼 is not finite-type then there is no longest element of the Weyl group, but we can still realise the full
representation 𝐿(𝜆) as a limit of the finite-dimensional 𝐿𝑤 (𝜆), since whenever 𝑥 ≤ 𝑦 in the Bruhat order we have
𝐿𝑥 (𝜆) ⊆ 𝐿𝑦 (𝜆).
For each 𝑖 ∈ 𝐼 define the ℤ-linear Demazure operator 𝜋𝑖 ∶ ℤ[𝑋] → ℤ[𝑋] by the formula

𝜋𝑖(𝑓 ) =
𝑓 − 𝑒−𝛼𝑖(𝑠𝑖 ⋅ 𝑓 )

1 − 𝑒−𝛼𝑖 . (5.2.2)

This formula can be demystified a little by writing it out explicitly as a geometric series:

𝜋𝑖(𝑒𝜆) =
⎧
⎨
⎩

𝑒𝜆 + 𝑒𝜆−𝛼𝑖 + ⋯ + 𝑒𝑠𝑖(𝜆) if ⟨𝜆, 𝛼∨𝑖 ⟩ ≥ 0,
0 if ⟨𝜆, 𝛼∨𝑖 ⟩ = −1,
−(𝑒𝜆+𝛼 + 𝑒𝜆+2𝛼 + ⋯ + 𝑒𝑠𝑖(𝜆)−𝛼 ) if ⟨𝜆, 𝛼∨𝑖 ⟩ ≤ −2.

(5.2.3)

It is straightforward to verify that if 𝑓 ∈ ℤ[𝑋(Φ)] is symmetric in 𝑠𝑖, meaning 𝑠𝑖𝑓 = 𝑠𝑖, then 𝜋𝑖(𝑓 ) = 𝑓 . Together
with the property 𝑠𝑖 ∘ 𝜋𝑖 = 𝜋𝑖, this implies that 𝜋2𝑖 = 𝜋𝑖 is a projector to the subspace ℤ[𝑋]𝑠𝑖 of 𝑠𝑖-symmetric
characters. It takes considerably more work (a case-by-case analysis of the cases 𝑚𝑖𝑗 ∈ {2, 3, 4, 6}) to verify that
the Demazure operators satisfy the braid relations (Eq. (3.3.2)), i.e. we have

𝜋𝑖𝜋𝑗𝜋𝑖⋯⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚𝑖𝑗 letters

= 𝜋𝑗𝜋𝑖𝜋𝑗 ⋯⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚𝑖𝑗 letters

, (5.2.4)

a fact we state but will not prove here. Since they do satisfy the braid relations, by Matsumoto’s theorem 𝜋𝑤 is
well-defined for any 𝑤 ∈ 𝑊 by setting 𝜋𝑤 = 𝜋𝑠1 ⋯𝜋𝑠𝑘 where (𝑠1, … , 𝑠𝑘) is any reduced expression for 𝑤 (see Re-
mark 5.2.10 for an interpretation of this in terms of zero-Hecke representations). We can now state the Demazure
character formula, originally due to Demazure [Dem74] in finite type and numerous others (see Section 5.4) in
arbitrary type.

5.2.5 Theorem (Demazure character formula)
Let Φ be a root datum of type (𝐼 , ⋅), 𝜆 ∈ 𝑋(Φ)+ a dominant weight, and 𝑤 ∈ 𝑊 an element of the Weyl group.
Then the character of the Demazure module 𝐿𝑤 (𝜆) is

ch 𝐿𝑤 (𝜆) = 𝜋𝑤 (𝑒𝜆). (5.2.6)

Furthermore, if (𝐼 , ⋅) is finite type then ch 𝐿(𝜆) = ch 𝐿𝑤𝐼 (𝜆) = 𝜋𝑤𝐼 (𝑒𝜆).
Each Demazure module is parametrised by a pair (𝜆, 𝑤) of a dominant weight 𝜆 ∈ 𝑋(Φ)+ and a Weyl element 𝑤 ∈
𝑊 , but this parametrisation has some redundancy. If 𝜆 is not a regular weight, then the stabiliser𝑊𝜆 = Stab𝑊 (𝜆)
is nontrivial, and the Demazure submodules 𝐿𝑥 (𝜆) and 𝐿𝑦 (𝜆) are equal whenever 𝑥 = 𝑦 in the quotient𝑊/𝑊𝜆 .

When (𝐼 , ⋅) is finite type and we are working in the category of finite-dimensional 𝔤(Φ)-modules, we can remove
this redundancy by parametrising Demazure modules instead by their Demazure lowest weights.
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5.2.7 Lemma (The Demazure basis of the character ring)
Let Φ be a root datum of finite type (𝐼 , ⋅), and let 𝐷(𝜇) be the Demazure module of Demazure lowest weight
𝜇 ∈ 𝑋(Φ). Then the formal characters {ch𝐷(𝜇) ∣ 𝜇 ∈ 𝑋(Φ)} form a basis of the character ring ℤ[𝑋(Φ)].
5.2.8 Proof
The definition of 𝐷(𝜇) is not ambiguous, since if we take any two Demazure modules of the same Demazure
lowest weight 𝜇, they must be submodules of 𝐿(𝜆)where 𝜆 is that unique dominant weight in the orbit𝑊 ⋅𝜇.
We have ch𝐷(𝜇) = 𝑒𝜇 + ∑𝜈>𝜇 𝑑𝜇,𝜈 𝑒𝜈 for some 𝑑𝜇,𝜈 ∈ ℕ, and therefore the Demazure characters are linearly
independent inside ℤ[𝑋(Φ)] via a triangularity argument. The fact that they form a basis can be seen by
taking a filtration of ℤ[𝑋(Φ)] by suitable finite-rank spaces, such as sums supported only over the convex
hull of the Weyl orbit of finitely many weights.

In the case that (𝐼 , ⋅) is not finite type, we need to be a little more careful about which weights we permit in the
definition of 𝐷(𝜇) as the ‘Demazure module of Demazure lowest weight 𝜇’. Since we only want to be capturing
Demazure submodules of the 𝐿(𝜆) for dominant 𝜆, we need to ensure that 𝜇 is in theWeyl orbit of some dominant
weight. Define the Tits cone as the Weyl orbit of the dominant chamber: 𝐾(Φ) = ⋃𝑤∈𝑊 𝑤𝑋(Φ)+ ⊆ 𝑋(Φ). Then
𝐾(Φ) is the whole of the weight lattice if and only if (𝐼 , ⋅) is finite type (Proposition 1.4.2 of [Kum02]), and so
indeed outside of finite type there are weights 𝜇 which are not in the Weyl orbit of any dominant weight. The
dominant chamber 𝑋ℝ(Φ)+ is a fundamental domain for the action of 𝑊 on 𝐾ℝ(Φ) however, and so for any 𝜇
in 𝐾(Φ) there is a unique dominant weight in its Weyl orbit. So we can speak of the Demazure module with
Demazure lowest weight 𝜇 provided that we limit ourselves to those weights 𝜇 in the Tits cone.

5.2.9 Lemma (Demazure characters of highest-weight modules are linearly independent)
Let Φ be a root datum of arbitrary type (𝐼 , ⋅), and for any weight 𝜇 in the Tits cone 𝐾(Φ), let 𝐷(𝜇) be the
Demazure module with lowest weight 𝜇. Then the formal characters {ch𝐷(𝜇) ∣ 𝜇 ∈ 𝐾(Φ)} are linearly inde-
pendent in the completed algebra ℤ[[𝑋(Φ)]].

We conclude this section with a discussion of the relations 𝜋2𝑖 = 𝜋𝑖 and the braid relations into a broader frame-
work, that of Hecke algebras.

5.2.10 Remark (Zero-Hecke actions)
Let (𝑊 , 𝑆) be the Coxeter system associated to the Cartan datum (𝐼 , ⋅), as defined in Definition 3.3.1. Given
a commutative ring 𝑅 and two parameters 𝜆, 𝜇 ∈ 𝑅, we may define the Hecke algebra ℋ(𝜆, 𝜇) to be the
associative 𝑅-algebra generated by {𝑇𝑖 ∣ 𝑖 ∈ 𝐼 }, with the two relations

Quadratic relation: 𝑇 2𝑖 = 𝜆𝑇𝑖 + 𝜇,
Braid relation: 𝑇𝑖𝑇𝑗𝑇𝑖⋯⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚𝑖𝑗

= 𝑇𝑗𝑇𝑖𝑇𝑗 ⋯⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚𝑖𝑗

. (5.2.11)

For each 𝑤 ∈ 𝑊 , define 𝑇𝑤 = 𝑇𝑖1 ⋯𝑇𝑖𝑟 for some reduced expression (𝑖1, … , 𝑖𝑟 ) of 𝑤 . Since the 𝑇𝑖 satisfy the braid
relations, Matsumoto’s theorem implies that the 𝑇𝑤 are independent of the choice of reduced expression.
After much work (See Chapter 7 of [Hum90] for a full proof, or Exercise 2.23 in Chapter IV of [BB02] if you
don’t want the fun spoiled), it turns out thatℋ(𝜆, 𝜇) is free as an 𝑅-module on the basis {𝑇𝑤 ∣ 𝑤 ∈ 𝑊 }, with
left multiplication by a generator 𝑇𝑖 given by the rule

𝑇𝑖𝑇𝑤 = {𝑇𝑠𝑖𝑤 if ℓ(𝑠𝑖𝑤) > ℓ(𝑤)
𝜆𝑇𝑤 + 𝜇𝑇𝑠𝑖𝑤 if ℓ(𝑠𝑖𝑤) < ℓ(𝑤). (5.2.12)

The choice of 𝜆 and 𝜇 (the choice of quadratic relation) gives different algebras:

1. The quadratic relation 𝑇 2𝑖 = 1 makesℋ(0, 1) isomorphic to the group algebra 𝑅𝑊 .
2. The quadratic relation 𝑇 2𝑖 = 0 makes ℋ(0, 0) an algebra called the nil-Hecke ring. The cell ordering

on this ring with respect to the standard basis {𝑇𝑤 ∣ 𝑤 ∈ 𝑊 } is precisely the Bruhat ordering.
3. The quadratic relation 𝑇 2𝑖 = 𝑇𝑖 makesℋ(1, 0) an algebra called the zero-Hecke ring.
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The Demazure operators we have just defined satisfy the braid relation and the quadratic relation 𝜋2𝑖 = 𝜋𝑖,
and hence they define an action of the zero-Hecke ring (defined over 𝑅 = ℤ) on the spaceℤ[𝑋(Φ)] of formal
characters by sending 𝑇𝑖 to 𝜋𝑖. This is useful to know, since we re-use the multiplication rule above to see
that

𝜋𝑖𝜋𝑤 = {𝜋𝑠𝑖𝑤 if ℓ(𝑠𝑖𝑤) > ℓ(𝑤)
𝜋𝑤 if ℓ(𝑠𝑖𝑤) < ℓ(𝑤). (5.2.13)

We will eventually make use of this to argue that our character formula for truncations of the product
monomial crystal gives a formula for the whole crystal in the case that (𝐼 , ⋅) is finite type.
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5 Demazure modules and crystals

5.3 Demazure crystals

When working with modules over the quantum group 𝑈𝑞(Φ) we can define Demazure modules in the same way
as Definition 5.2.1: for any dominant 𝜆 ∈ 𝑋(Φ)+ and Weyl group element 𝑤 ∈ 𝑊𝐼 , let 𝐿𝑞,𝑤 (𝜆) = 𝑈+𝑞 (Φ) ⋅ 𝐿𝑞(𝜆)𝑤𝜆
be the orbit of the one-dimensional extremal weight space 𝐿𝑞(𝜆)𝑤𝜆 under the positive half 𝑈+𝑞 (Φ) of the quantum
group. It was shown in [Kas93] that the quantum Demazure module admits a crystal base, which can be taken
to be a subset of the crystal base ℬ(𝜆) of 𝐿𝑞(𝜆). In order to specify this subset, we introduce the following
operators.

5.3.1 Definition (Extension of strings)
Let 𝐵 be a Φ-crystal. For each 𝑖 ∈ 𝐼 , define the extension of 𝑖-strings operator 𝔇𝑖, which takes a subset 𝑍 ⊆ 𝐵
to the set

𝔇𝑖𝑍 = ⋃
𝑛≥0

{𝑓 𝑛𝑖 (𝑥) ∣ 𝑧 ∈ 𝑍} = {𝑏 ∈ 𝐵 ∣ 𝑒𝑛𝑖 (𝑏) ∈ 𝑍 for some 𝑛 ∈ ℕ}. (5.3.2)

These operators satisfy 𝑍 ⊆ 𝔇𝑖𝑍 ⊆ 𝐵, and𝔇𝑖𝔇𝑖𝑍 = 𝔇𝑖𝑍 . It is unclear to the author whether they satisfy the braid
relations on arbitrary subsets of the crystal, however they do braid when 𝑍 = {𝑏𝜆} the highest-weight element.

5.3.3 Example

The picture below is the GL3 crystal ℬ(2, 0, 0), previously seen in Examples 4.2.10 and 4.5.4. If the subset
𝑍 ⊆ ℬ(2, 0, 0) is the two middle elements 𝑍 = {(2, 2), (1, 3)}, then 𝔇1(𝑍) = 𝑍 ∪ {(2, 3)} and 𝔇2(𝑍) =
𝑍 ∪ {(2, 3), (3, 3)}.

1 1
2 2

1 3
1 2 2 3 3 3

𝑓1 𝑓2

We can now give the definition of the Demazure crystalℬ𝑤 (𝜆).
5.3.4 Definition (Demazure crystal)
Fix a dominant weight 𝜆 and a Weyl group element 𝑤 ∈ 𝑊 . Let (𝑖1, … , 𝑖𝑟 ) be a reduced expression for 𝑤 . The
Demazure crystal is the set

ℬ𝑤 (𝜆) = 𝔇𝑖1 ⋯𝔇𝑖𝑟 {𝑏𝜆}, (5.3.5)

equipped with the canonical upper-seminormal crystal structure restricted fromℬ(𝜆).
An interesting difference is that while the quantum Demazure module 𝐿𝑞,𝑤 (𝜆) is defined from the bottom up-
wards, by taking a lowerweight and orbiting it under the positive half 𝑈+𝑞 (Φ) of the quantum group, the Demazure
crystal is defined from the top down, starting with a highest weight and taking just enough extensions of strings
in the correct order. Something that might help the reader bridge this mental gap is Corollary 3.2.2 from [Kas93]:
if (𝑖1, … , 𝑖𝑟 ) is a reduced expression for 𝑤 , then

𝐿𝑞,𝑤 (𝜆) = ∑
𝑘1,…,𝑘𝑟≥0

ℚ(𝑞)𝐹 𝑘1𝑖1 ⋯𝐹 𝑘𝑟𝑖𝑟 𝑣𝜆 , (5.3.6)

where 𝑣𝜆 ∈ 𝐿𝑞(𝜆) is a highest-weight vector. This shows that the quantum Demazure module 𝐿𝑞,𝑤 (𝜆) can also be
generated from the top downwards by ‘extending root strings’.

5.3.7 Example (An example of Demazure crystals)
Let Φ be the root datum of SL3, of Cartan type A2. The highest root is 𝜃 = 𝛼1 + 𝛼2 = 𝜛1 + 𝜛2, and 𝐿(𝜃) is the
adjoint representation of the semisimple Lie algebra 𝔤(Φ) = 𝔰𝔩3. TheWeyl group𝑊 = ⟨𝑠, 𝑡 ∣ 𝑠2 = 𝑡2 = 1, 𝑠𝑡𝑠 =
𝑡𝑠𝑡⟩ has six elements, and since 𝜃 is a regular weight there are six distinct Demazure subcrystals of ℬ(𝜃).
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5.3 Demazure crystals

Each of these Demazure subcrystalsℬ𝑤 (𝜃) are shown in the following diagram, with the Demazure lowest
weight element 𝑤 ⋅ 𝑏𝜃 marked with a double circle (recall the action of 𝑊 onℬ(𝜃) from Theorem 4.5.2).

𝔇1𝔇2

𝔇1 𝔇2

𝔇2 𝔇1

ℬid(𝜃) = {𝑏𝜃 }

ℬ2(𝜃) ℬ1(𝜃)

ℬ12(𝜃) ℬ21(𝜃)

ℬ𝑤𝐼 (𝜃) = ℬ(𝜃)

In the two crystals ℬ12(𝜃) and ℬ21(𝜃) there is an element which cannot be reached by following arrows
backwards from the Demazure lowest weight element. Hence Demazure crystals really do need to be defined
from the top down, rather than from the bottom up.

Kashiwara gave an alternative proof of the Demazure character formula, using an interesting equivariance prop-
erty of the extension-of-strings operator𝔇𝑖 and the Demazure operator 𝜋𝑖. Before we introduce this equivariance,
we need to state what we mean by the string property, a definition first introduced in [Kas93].
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5 Demazure modules and crystals

5.3.8 Definition (String property)
Let Φ be a root datum of type (𝐼 , ⋅), and let 𝐵 be a seminormal Φ-crystal. We say that a subset 𝑍 ⊆ 𝐵 has the
string property if for any 𝑖-string 𝑆 ⊆ 𝐵, either 𝑆 ∩ 𝑍 = 𝑆, 𝑆 ∩ 𝑍 = ∅, or 𝑆 ∩ 𝑍 = 𝑆top, where 𝑆top ∈ 𝑆 is that
unique element at the top of the 𝑖-string, satisfying 𝑒𝑖(𝑆top) = ⊥.

We have encountered 𝑖-strings before, when defining the action of the Weyl group on a crystal (Theorem 4.5.2).
Shown below is the SL3-crystal ℬ(2, 0, 0) , its 1-strings, its 2-strings, and a certain subset 𝑍 ⊆ ℬ(2, 0, 0) of
cardinality 5 indicated by the circled points. The subset 𝑍 does not satisfy the string property, since the 2-string
with 3 elements intersects 𝑍 in two elements.

ℬ(2, 0, 0) 1-strings 2-strings A ’bad’ subset 𝑍

On the other hand, all of the Demazure crystals shown in Example 5.3.7 satisfy the string property — this turns out
to be a general property of Demazure crystals, though is quite difficult to prove, and indeed is the ‘deepest’ result
in Kashiwara’s proof of the Demazure character formula. We will not reproduce this proof here as it requires
appealing to the theory of global bases and the crystal ℬ(∞) of the Verma module 𝑈−𝑞 (Φ), we merely state the
result.

5.3.9 Theorem (Demazure crystals satisfy the string property)
(Proposition 3.3.5 of [Kas93]). Let Φ be a root datum of type (𝐼 , ⋅), 𝜆 a dominant weight, and 𝑤 ∈ 𝑊 a Weyl
group element. The Demazure crystalℬ𝑤 (𝜆) satisfies the string property.

The last ingredient in Kashiwara’s proof is relating the extension of strings operator𝔇𝑖 to the Demazure operator
𝜋𝑖. Consider a seminormal Φ-crystal 𝐵 and any 𝑖-string 𝑆 ⊆ 𝐵. By seminormality the string 𝑆 is finite, having
some 𝑖-highest element 𝑆top and some 𝑖-lowest element 𝑆bot. The weight 𝜆 of the 𝑖-highest element 𝑆top must be
𝑖-dominant, meaning ⟨𝜆, 𝛼∨𝑖 ⟩ ≥ 0, and the balanced-strings axiom implies that the weight of the 𝑖-lowest element
𝑆bot is 𝑠𝑖𝜆 = 𝜆 − ⟨𝜆, 𝛼∨𝑖 ⟩𝛼𝑖. The situation is pictured below: the reader should imagine that this is plotted inside
the weight lattice 𝑋(Φ), with the reflecting hyperplane 𝐻𝑖 = ker⟨−, 𝛼∨𝑖 ⟩ straight down the centre.

𝜆 𝜆 − 𝛼𝑖 𝑠𝑖𝜆𝑠𝑖𝜆 + 𝛼𝑖
𝑆top 𝑆bot𝐻𝑖

Now we want to consider the action of the Demazure operator on the character ch 𝑆. Recall from Eq. (5.2.3) that
we can treat the Demazure operator as a geometric series. Since 𝜆 is 𝑖-dominant and 𝑠𝑖𝜆 is 𝑖-antidominant, we
have

𝜋𝑖(𝜆) = 𝑒𝜆 + 𝑒𝜆−𝛼𝑖 + ⋯ + 𝑒𝑠𝑖𝜆 = ch 𝑆
𝜋𝑖(𝑠𝑖𝜆) = − (𝑒𝜆−𝛼𝑖 + ⋯ + 𝑒𝑠𝑖𝜆+𝛼𝑖) = −𝜋𝑖(𝑒𝜆−𝛼𝑖).

(5.3.10)

These two series can be pictured as follows:

𝜆 𝜆 − 𝛼𝑖 𝑠𝑖𝜆𝑠𝑖𝜆 + 𝛼𝑖

𝜋𝑖(𝜆)

−𝜋𝑖(𝑠𝑖𝜆)
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5.4 History: The Demazure character formula

We can see now that 𝜋𝑖(ch 𝑆) = ch 𝑆, by noting that almost every weight contributed by 𝜋𝑖(𝑒𝜆) is later removed
by 𝜋𝑖(𝑒𝑠𝑖𝜆), leaving 𝜋𝑖(𝑒𝜆 + 𝑒𝑠𝑖𝜆) = 𝑒𝜆 + 𝑒𝑠𝑖𝜆 . Working inwards from there shows that 𝜋𝑖(ch 𝑆) = ch 𝑆, or we could
have appealed to the general fact that 𝜋𝑖 acts as the identity on 𝑠𝑖-invariant characters. The key observation is
that ch 𝑆 = 𝜋𝑖(𝑒𝜆). We are now ready to state and prove the equivariance property.

5.3.11 Lemma
Let Φ be a root datum of type (𝐼 , ⋅), and 𝐵 a seminormal Φ-crystal. If 𝑍 ⊆ 𝐵 is a subset with the string
property, then ch𝔇𝑖(𝑍) = 𝜋𝑖(ch𝑍) for all 𝑖 ∈ 𝐼 .
5.3.12 Proof
Fix an 𝑖 ∈ 𝐼 . By the additivity of characters on one hand, and the fact that 𝔇𝑖 only depends on the 𝑖-strings
on the other, it suffices to show that the theorem holds on each intersection 𝑍 ∩ 𝑆 with the 𝑖-strings 𝑆 ⊆ 𝐵.
Since 𝑍 satisfies the string property, for each 𝑖-string 𝑆 ⊆ 𝐵 there are only three cases to check:

1. If 𝑆 ∩ 𝑍 = ∅, then the theorem holds since 0 = 0.
2. If 𝑆 ∩ 𝑍 = {𝑆top}, let 𝜆 = wt 𝑆top. Then 𝔇𝑖(𝑆 ∩ 𝑍) = 𝑆, and by the above discussion we have ch 𝑆 =

𝜋𝑖(𝑒𝜆) = 𝜋𝑖(ch 𝑆top), so the theorem holds.
3. If 𝑆 ∩ 𝑆 = 𝑆, then 𝔇𝑖(𝑆) = 𝑆 and hence the theorem holds.

It seems that this theorem would immediately imply the Demazure character formula, but one really does need
to prove Theorem 5.3.9 somehow. It is not true in general that if 𝑍 satisfies the string property then 𝔇𝑖(𝑍) does
also — see Section 13 of [BS17] for a counterexample. However, it is now clear to see that the Demazure character
formula is a direct consequence of Theorem 5.3.9 and Lemma 5.3.11, and the fact that ℬ𝑤 (𝜆) is a crystal base of
𝐿𝑞,𝑤 (𝜆).

5.4 History: The Demazure character formula

Demazure modules were historically considered in a different way to how they have been presented above. A root
datum Φ of finite type (𝐼 , ⋅) determines a reductive group scheme 𝐺 = 𝐺(Φ) equipped with a pinning 𝑇 ⊆ 𝐵 ⊆ 𝐺,
defined as a scheme over ℤ and hence over any field 𝑘 via base change. The quotient of the group 𝐺 by its Borel
subgroup 𝐵 is called the flag variety, a projective scheme. The category of 𝐺-equivariant line bundles on 𝐺/𝐵
is equivalent to the one-dimensional representations of 𝐵, which are seen (via a factorisation 𝐵 = 𝑇𝑈 into a
product of the torus 𝑇 , and the unipotent group 𝑈 which must act trivially) to simply be the weights 𝑋(Φ). For
each weight 𝜆 ∈ 𝑋(Φ) there is a line bundleℒ𝜆 over 𝐺/𝐵, whose vector space of sections Γ(𝐺/𝐵,ℒ𝜆) is nonzero
precisely when 𝜆 is dominant.

When the base field 𝑘 = ℂ and 𝜆 ∈ 𝑋(Φ)+ is dominant, the vector space Γ(𝐺/𝐵,ℒ𝜆) of sections is precisely
the highest-weight module 𝐿(𝜆) we have been considering thus far, with the 𝐺-action canonically given by 𝐺-
equivariance of ℒ𝜆 . Where the Demazure modules enter the picture is by considering the restriction of the line
bundle ℒ𝜆 to the Schubert variety 𝑋(𝑤) = 𝐵�̇�𝐵 , the closure of the Bruhat cell 𝐵�̇�𝐵. (In the setting of reductive
group schemes, the Weyl group may be realised as the quotient𝑊 ∶= 𝑁𝐺(𝑇 )/𝑇 of the normaliser of the maximal
torus 𝑇 inside 𝐺. We use the notation �̇� ∈ 𝐺 to denote any lift of the Weyl group element 𝑤 ∈ 𝑊 back to 𝐺). The
space of sections Γ(𝑋(𝑤),ℒ𝜆) is the Demazure module 𝐿𝑤 (𝜆), which is a 𝐵-module, but not a 𝐺-module unless
𝑋(𝑤) = 𝐺, i.e. 𝑤 = 𝑤𝐼 the longest element.

A formula for the characters of the Demazure modules (in the setting above, with 𝐺 semisimple and 𝑘 = ℂ)
was first given by Demazure [Dem74]. Later on in 1983, Victor Kac was attempting to generalise this formula
to infinite root systems and found that the proof contained a gap, in an argument due to Verma. This created a
‘spate’ of correct proofs in the following few years [Jos95], in which many new techniques were developed.

Mehta and Ramanathan [MR85] introduced the notion of a Frobenius split variety, for which the higher coho-
mologies of ample line bundles vanish, and showed that the Schubert varieties are Frobenius split. Ramanan and
Ramanathan [RR85] and Seshadri proved the projective normality of Schubert varieties, and improved the result
of Mehta and Ramanathan to include effective line bundles. This work culminated with Andersen [And85] also
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5 Demazure modules and crystals

contributing a proof of the Demazure character formula, valid over reductive algebraic groups in any character-
istic.

This problem also kicked off the systematic study of 𝐵-modules, a good survey of which is [KI93]. Joseph [Jos85;
Jos86] defined functors (now called Joseph functors) 𝐻𝑤 ∶ Rep𝐵 → Rep𝐵 taking a 𝐵-module 𝑀 to the space
of sections Γ(𝑋(𝑤),ℒ(𝑀)) of the vector bundle ℒ(𝑀) over the Schubert variety 𝑋(𝑤) ⊆ 𝐺/𝐵, and was able
to prove Demazure’s original result for 𝜆 sufficiently large. Later, both Kumar [Kum87] and Mathieu [Mat88]
independently proved the Demazure character formula, this time in the setting of an arbitrary Kac-Moody algebra
and an integrable highest-weight module.

Our passage through this chapter has been following the much later work of both Littelmann and Kashiwara,
from the perspective of crystals. Littelmann was involved in the development of path models for representations,
bases indexed by certain piecewise-linear paths through the weight lattice, with root operators (crystal operators)
given by operations on paths, and a positive combinatorial rule for the tensor product multiplicities given in
terms of paths [Lit95b; Lit90]. It became clear that these paths could in fact index crystal bases, with the tensor
product rule immediately following from the crystal tensor product, a fact which was shown in [Lit95a]. In this
paper, Littelmann conjectured the Demazure character formula for Demazure crystals, which was later proven
by Kashiwara in [Kas93].
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6 Monomial crystals

In this chapter we introduce themonomial crystalℳ(Φ) associated to a root datum Φ, first defined by Nakajima.
The monomial crystal is very large, and inside of it we can find infintely many copies ofℬ(𝜆) for any dominant
weight 𝜆, as well as more exotic crystals in the case where (𝐼 , ⋅) is not finite type. The monomial crystal has
been used to study extremal weight crystals of affine algebras, each connected component being isomorphic to
a subcrystal of such an extremal weight crystal.

As the underlying set of themonomial crystalℳ(Φ) is an abelian group, the group operation beingmultiplication
of monomials, it is possible to form a monomial-wise product (rather than crystal tensor product) of subcrystals.
If we are careful about the kind of subcrystals we start with, the resulting set of products is again a subcrystal of
ℳ(Φ) called the product monomial crystal. The proof we know of this fact is quite involved and only works when
(𝐼 , ⋅) is simply-laced, as it goes via the geometry of Nakajima quiver varieties. We defer this proof to Chapter 8.

In this chapter we first state the definition of the monomial crystal and give a feel for how it works, before moving
on to define the product monomial crystal and start introducing terminology which will help us analyse it.

6.1 Nakajima’s Monomial Crystal

The monomial crystal is originally due to Nakajima, first appearing in Section 3 of [Nak02] and Section 3 of
[Kas02b]. A later definition appearing in [HN06] is a straightforward modification of the original to make the
crystalmake sense for an arbitrary root datumΦ rather than a simply connected one.We adopt this later definition
since it will make the arguments in Chapter 10 a lot more pleasant, allowing us to work with weights of GL𝑛
rather than SL𝑛, but we will point out the simplification in simply-connected type. The other thing to notice
about this definition is that we require the Cartan datum (𝐼 , ⋅) to be bipartite: the crystal structure does not work
otherwise (see Example 6.1.10 for a counterexample).

6.1.1 Definition (The monomial crystal)
Let (𝐼 , ⋅) be a bipartite Cartan datumwith a fixed two-colouring 𝜁 ∶ 𝐼 → ℤ/2ℤ. For a Kac-Moody root datum
Φ of type (𝐼 , ⋅), let 𝐴(Φ) be the product 𝑋(Φ) × ℤ[𝐼 × ℤ] of abelian groups, each written multiplicatively so
that a typical element 𝑝 ∈ 𝐴(Φ) is of the form

𝑝 = 𝑒𝜔(𝑝) ⋅ ∏
(𝑖,𝑐)∈𝐼×ℤ

𝑦𝑝[𝑖,𝑐]𝑖,𝑐 for some 𝜔(𝑝) ∈ 𝑋 and 𝑝[𝑖, 𝑐] ∈ ℤ, (6.1.2)

where 𝑝[𝑖, 𝑐] ≠ 0 for only finitely many (𝑖, 𝑐) ∈ 𝐼 ×ℤ. For each (𝑖, 𝑘) ∈ 𝐼 ×ℤ, define the auxiliary monomial

𝑧𝑖,𝑘 = 𝑒𝛼𝑖 ⋅ 𝑦𝑖,𝑘 ⋅ 𝑦𝑖,𝑘+2 ⋅∏
𝑗≠𝑖

𝑦𝑎𝑗𝑖𝑗,𝑘+1. (6.1.3)

Letℳ(Φ) ⊆ 𝐴(Φ) be the subgroup defined by the two conditions

⟨𝜔(𝑝), 𝛼∨𝑖 ⟩ = ∑
𝑙∈ℤ

𝑝[𝑖, 𝑙] for all 𝑖 ∈ 𝐼 , (6.1.4)

𝑝[𝑖, 𝑐] = 0 if 𝑐 ≢ 𝜁 (𝑖) (mod 2). (6.1.5)

For each monomial 𝑝 ∈ ℳ(Φ), define
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6 Monomial crystals

1. 𝜑𝑘𝑖 (𝑝) = ∑𝑙≥𝑘 𝑝[𝑖, 𝑙], the upper column sum.
2. 𝜑𝑖(𝑝) = max𝑘 𝜑𝑘𝑖 (𝑝), the largest upper column sum.
3. 𝜀𝑘𝑖 (𝑝) = −∑𝑙≤𝑘 𝑝[𝑖, 𝑙], the negated lower column sum.
4. 𝜀𝑖(𝑝) = max𝑘 𝜀𝑘𝑖 (𝑝), the largest negated lower column sum.
5. 𝑛𝑓 ,𝑖(𝑝) = max{𝑘 ∈ ℤ ∣ 𝜑𝑘𝑖 (𝑝) = 𝜑𝑖(𝑝)}, the largest 𝑘 maximising the upper column sum 𝜑𝑘𝑖 (𝑝).
6. 𝑛𝑒,𝑖(𝑝) = min{𝑘 ∈ ℤ ∣ 𝜀𝑘𝑖 (𝑝) = 𝜀𝑖(𝑝)}, the smallest 𝑘 maximising the negated lower column sum 𝜀𝑘𝑖 (𝑝).

Note that 𝑛𝑓 ,𝑖(𝑝) is undefined if 𝜑𝑖(𝑝) = 0, and 𝑛𝑒,𝑖(𝑝) is undefined if 𝜀𝑖(𝑝) = 0. We set wt(𝑝) = 𝜔(𝑝), and
define the crystal operators

𝑒𝑖(𝑝) = {0 if 𝜀𝑖(𝑝) = 0
𝑝𝑧𝑖,𝑛𝑒,𝑖(𝑝) otherwise, (6.1.6)

𝑓𝑖(𝑝) = {0 if 𝜑𝑖(𝑝) = 0
𝑝𝑧−1𝑖,𝑛𝑓 ,𝑖(𝑝)−2 otherwise. (6.1.7)

The monomial crystal is the setℳ(Φ), equipped with the crystal structure (wt, 𝑒𝑖, 𝑓𝑖, 𝜀𝑖, 𝜑𝑖) given above.

The definition can be simplified a little in the case that Φ is simply-connected and of finite type, by erasing the 𝑒𝜆
term in each monomial and taking wt(𝑦𝑖,𝑘) to be the fundamental weight 𝜛𝑖. When allowing arbitrary root data,
we instead enforce the condition that in any monomial 𝑒𝜆 ⋅ 𝑧, the number of 𝑦𝑖,• appearing in 𝑧 must be equal
to ⟨𝜆, 𝛼∨𝑖 ⟩ — this is condition (1) above. The parity condition (2) is required in order to satisfy the partial inverse
axiom of a crystal, and relies on the existence of a two-colouring 𝜁 ∶ 𝐼 → ℤ/2ℤ.
The definition ofℳ(Φ) can be understood pictorially. Let 𝐼 ×̇ℤ ⊆ 𝐼 ×ℤ denote the set of parity-respecting pairs1

𝐼 ×̇ ℤ = {(𝑖, 𝑐) ∈ 𝐼 × ℤ ∣ 𝜁 (𝑖) = 𝑐 in ℤ/2ℤ} . (6.1.8)

Forgetting the ‘tag’ 𝑒𝜆 for a moment, a monomial 𝑝 ∈ ℳ(Φ) can be thought of as a finitely-supported function
𝑝∶ 𝐼 ×̇ 𝑍 → ℤ. We can draw the set 𝐼 ×̇ ℤ in the plane and label it with the values 𝑝[𝑖, 𝑐]. The monomial

𝑝 = 𝑒𝜆 ⋅ 𝑦82,−2 ⋅ 𝑦−82,0 ⋅ 𝑦82,2 ⋅ 𝑦53,1 ⋅ 𝑦64,−2 ⋅ 𝑦−44,2 ⋅ 𝑦75,−1 (6.1.9)

in Cartan type A5 = {1, 2, 3, 4, 5} is pictured below, with example computations of the upper column sum 𝜑−22 (𝑝)
and the negated lower column sum 𝜀04 (𝑝), and the largest integer 𝑛𝑓 ,2(𝑝) maximising the upper column sum
𝜑•2(𝑝).

𝐼 = A5

ℤ

−3
−2
−1
0
1
2
3

8

−8

8
5

−4

6
7

1 2 3 4 5

𝜑−22 (𝑝) = 8

𝜀04 (𝑝) = −6

𝑛𝑓 ,2(𝑝) = 2

1The definition of 𝐼 ×̇ ℤ really depends on the choice of 2-colouring 𝜁 .
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6.1 Nakajima’s Monomial Crystal

This monomial diagram captures the 𝑦𝑖,𝑐 terms but not 𝜆, but due to the weight constraint Eq. (6.1.4) all of the
inner products ⟨𝜆, 𝛼∨𝑖 ⟩ are determined by the 𝑦𝑖,𝑐 . Even though we have not yet specified a root datum Φ we can
be sure that 𝜆 must satisfy ⟨𝜆, 𝛼∨4 ⟩ = 6 − 4 = 2. If Φ is the simply-connected datum Φ = SL6 then we must have
𝜆 = 8𝜛2 + 5𝜛3 + 2𝜛4 + 7𝜛5 as a sum of fundamental weights.

Next, we look at the action of the crystal operator 𝑓2 on our monomial 𝑝. The maximum value of the upper
column sum 𝜑𝑘2(𝑝) in column 2 is achieved at 𝜑−22 (𝑝) = 𝜑22(𝑝) = 8, hence 𝑛𝑓 ,2(𝑝) = max {2, −2} = 2 as indicated
on the diagram. By Eq. (6.2.4) the action of the crystal operator 𝑓2 on the monomial 𝑝 is multiplication by 𝑧−12,0 ,
so we have 𝑓2(𝑝) = 𝑝 ⋅ 𝑧−12,0 . Recalling the definition of the auxiliary monomial 𝑧𝑖,𝑘 from Eq. (6.1.3), we can picture
this multiplication as follows:

ℤ

−3
−2
−1
0
1
2
3

8

−8

8
5

−4

6
7

𝑝

−1

−1
1

𝑧−12,0

1

8

−9

7
6

−4

6
7

𝑝 ⋅ 𝑧−12,0

1

𝑓2

The reader could now check that the 𝑒𝑖 operator will act at the correct spot, so that we have 𝑒𝑖(𝑓𝑖(𝑝)) = 𝑝. Also
remember that we have excluded the weight wt(𝑝) = 𝜆 from our diagrams, but one can simply imagine that each
monomial is a pair consisting of a compatible weight 𝜆 and a diagram determined by the 𝑦𝑖,𝑘 , and remember that
𝑧𝑖,𝑘 has weight 𝛼𝑖.
We present a few more examles of the 𝑧𝑖,𝑘 monomials in types A3, B3, and D4. In each picture the auxiliary
monomial 𝑧𝑖,𝑘 is shownwith the point (𝑖, 𝑘) circled in green. It is clear that 𝑧𝑖,𝑘 has a straightforward interpretation
in terms of the Dynkin diagram.

−1
1

1

A3

1
−1

1
−1

A3 B3

−1
1

1

B3

1

1
−2 −1

D4

−1
1

1
−1 −1

We now resume our formal discussion of the monomial crystal. We first point out that without the parity con-
dition Eq. (6.1.5), the set ℳ(Φ) would not be a Φ-crystal as it would fail the partial inverse axiom. Therefore we
really do need to have the Cartan datum (𝐼 , ⋅) bipartite.
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6 Monomial crystals

6.1.10 Example (Necessity of parity condition)
This counterexample appears in Example 3.3 of [Kas02b]. Let Φ a root datum of Cartan type (𝐼 , ⋅) = A1.
Here 𝐼 = {𝑖} is a single vertex, and the monomial 𝑧𝑖,𝑘 takes the simple form 𝑧𝑖,𝑘 = 𝑒𝛼𝑖𝑧𝑖,𝑘𝑧𝑖,𝑘+1. Consider the
monomial 𝑝 = 𝑒0 ⋅ 𝑦𝑖,2 ⋅ 𝑦−1𝑖,1 acted on first by 𝑓𝑖 and then by 𝑒𝑖:

𝑝 = 𝑒0 ⋅ 𝑦𝑖,2 ⋅ 𝑦−1𝑖,1
𝑓𝑖−→ 𝑒−𝛼𝑖 ⋅ 𝑦−1𝑖,1 ⋅ 𝑦−1𝑖,0

𝑒𝑖−→ 𝑒0 ⋅ 𝑦𝑖,3 ⋅ 𝑦−1𝑖,0 . (6.1.11)

We find that even though 𝑓𝑖 is defined on 𝑝, we have 𝑒𝑖(𝑓𝑖(𝑝)) ≠ 𝑝 which is a violation of the partial inverse
axiom of a crystal. In terms of a monomial diagram, the sequence above appears as:

−1

1

−1

−1 −1

1

0

1

2

3

𝑓𝑖 𝑒𝑖

(The above picture is not a crystal graph, since we would usually omit the 𝑒𝑖 from a crystal graph for the
very reason that 𝑒𝑖 and 𝑓𝑖 are inverse partial functions).

We now check directly that ℳ(Φ) is an abstract seminormal Φ-crystal, paying close attention to the partial
inverse axiom in light of the counterexample above.

6.1.12 Theorem
The set ℳ(Φ) together with the maps wt, 𝜀𝑖, 𝜑𝑖, 𝑒𝑖, 𝑓𝑖 for 𝑖 ∈ 𝐼 is an abstract seminormal Φ-crystal.
6.1.13 Proof
We first show thatℳ(Φ) is an abstract crystal, by checking the axioms.

1. Balanced-strings: we have the property that 𝜀𝑘𝑖 (𝑝) + ⟨wt(𝑝), 𝛼∨𝑖 ⟩ = 𝜑𝑘+1𝑖 (𝑝). Then
𝜀𝑖(𝑝) + ⟨wt(𝑝), 𝛼∨𝑖 ⟩ = max

𝑘∈ℤ (𝜀𝑘𝑖 (𝑝) + ⟨wt(𝑝), 𝛼∨𝑖 ⟩) = max
𝑘∈ℤ

𝜑𝑘+1𝑖 (𝑝) = 𝜑𝑖(𝑝). (6.1.14)

2. Raising operators: Suppose that 𝑒𝑖(𝑝) ≠ 0. Set 𝑣 = 𝑛𝑒,𝑖(𝑝), so by definition we have

𝜀𝑘𝑖 (𝑝) < 𝜀𝑣𝑖 (𝑝) ≥ 𝜀 𝑙𝑖 (𝑝) for all 𝑘 < 𝑣 < 𝑙. (6.1.15)

Since 𝑒𝑖(𝑝) = 𝑝 ⋅ 𝑧𝑖,𝑣 = 𝑝 ⋅ 𝑦𝑖,𝑣 ⋅ 𝑦𝑖,𝑣+2 ⋅ ∏𝑗≠𝑖 𝑦
𝑎𝑗𝑖
𝑗,𝑣+1, we have

𝜀𝑘𝑖 (𝑒𝑖(𝑝)) = 𝜀𝑘𝑖 (𝑝),
𝜀𝑣𝑖 (𝑒𝑖(𝑝)) = 𝜀𝑣𝑖 (𝑝) − 1,
𝜀 𝑙𝑖 (𝑒𝑖(𝑝)) = 𝜀 𝑙𝑖 (𝑝) − 2, for all 𝑘 < 𝑣 < 𝑙,

(6.1.16)

and hence
𝜀𝑘𝑖 (𝑒𝑖(𝑝)) ≤ 𝜀𝑣𝑖 (𝑒𝑖(𝑝)) > 𝜀 𝑙𝑖 (𝑒𝑖(𝑝)) for all 𝑘 < 𝑣 < 𝑙. (6.1.17)

Therefore
𝜀𝑖(𝑒𝑖(𝑝)) = max

𝑘
𝜀𝑘𝑖 (𝑒𝑖(𝑝)) = 𝜀𝑣𝑖 (𝑒𝑖(𝑝)) = 𝜀𝑖(𝑝) − 1.

The property 𝜑𝑖(𝑒𝑖(𝑝)) = 𝜑𝑖(𝑝) + 1 then follows from both this, the fact that wt(𝑒𝑖(𝑝)) = wt(𝑝) + 𝛼𝑖,
and the balanced-strings property. We will also check the partial inverse property now: applying the
identity 𝜀𝑘𝑖 (𝑝) + ⟨wt(𝑝), 𝛼∨𝑖 ⟩ = 𝜑𝑘+1𝑖 (𝑝) to the above equation gives

𝜑𝑘+1𝑖 (𝑒𝑖(𝑝)) ≤ 𝜑𝑣+1𝑖 (𝑒𝑖(𝑝)) > 𝜑𝑙+1𝑖 (𝑒𝑖(𝑝)) for all 𝑘 < 𝑣 < 𝑙. (6.1.18)
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6.1 Nakajima’s Monomial Crystal

Now we apply the parity condition, which implies that 𝜑𝑘𝑖 (𝑝) = 𝜑𝑘+1𝑖 (𝑝) for all 𝑝 ∈ ℳ(Φ) and integers
𝑘 ∈ ℤ. This implies

𝜑𝑘+2𝑖 (𝑒𝑖(𝑝)) ≤ 𝜑𝑣+2𝑖 (𝑒𝑖(𝑝)) > 𝜑𝑙+2𝑖 (𝑒𝑖(𝑝)) for all 𝑘 < 𝑣 < 𝑙. (6.1.19)

Hence 𝑛𝑓 ,𝑖(𝑒𝑖(𝑝)) = 𝑣 + 2, and 𝑓𝑖 acts on 𝑒𝑖(𝑝) = 𝑝 ⋅ 𝑧𝑖,𝑣 as multiplication by 𝑧−1𝑖,𝑣 .

The proof for the lowering operators 𝑓𝑖 is similar, and hence ℳ(Φ) is an abstract crystal. Seminormality
follows from the fact that the statistics 𝜀𝑖 and 𝜑𝑖 take values in ℕ, and that 𝑒𝑖(𝑝) = ⊥ if and only if 𝜀𝑖(𝑝) = 0
(and similarly for 𝑓𝑖(𝑝) and 𝜑𝑖(𝑝)).

We now know that ℳ(Φ) is a seminormal Φ-crystal, but we do not know if it is a disjoint union of 𝒪 int𝑞 (Φ)
crystals. The following theorem is due to Kashiwara.

6.1.20 Theorem
The monomial crystalℳ(Φ) is finite-normal.

6.1.21 Proof
The proof is given in Proposition 3.1 of [Kas02b]. There it is stated that we need to find a ‘good’ subset
ℳgood ⊆ ℳ satisfying certain properties: in our setup above, this is our subsetℳ(Φ) ⊆ 𝐴(Φ). Condition (i)
of a ‘good’ subset is that 𝑝[𝑖, 𝑐] > 0 should imply 𝑝[𝑖, 𝑐] ≥ 0, which is true because of the parity condition,
and condition (ii) of a ‘good’ subset is that it is stable under the 𝑒𝑖 and 𝑓𝑖 operators, which we have shown
in Theorem 6.1.12.

Hence if (𝐼 , ⋅) is finite type, then every connected component ofℳ(Φ) is isomorphic toℬ(𝜆) for some dominant
weight 𝜆. This is no longer the case if (𝐼 , ⋅) is not finite type: the subcrystal generated by a primitive element
𝑏𝜆 ∈ ℳ(Φ) of some dominant weight 𝜆 is still isomorphic to ℬ(𝜆), but there are other subcrystals of ℳ(Φ)
which are not of this form. A theorem of Hernandez and Nakajima classifies those remaining.

6.1.22 Theorem
(Due to [HN06], Theorem 2.2). Let 𝑝 ∈ ℳ(Φ) be any monomial. Then the subcrystal ofℳ(Φ) generated by
𝑝 is isomorphic to some connected component of an extremal weight module.

As the product monomial crystal (our main crystal of study, introduced in Section 6.3) is assembled from sub-
crystals of ℳ(Φ) generated by highest-weight monomials of domainant weight, we will not concern ourselves
further with the study of extremal weight modules or extremal weight crystals.
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6 Monomial crystals

6.2 A variation on the monomial crystal

Kashiwara gives a different crystal structure ℳ𝑐(Φ) on a set of monomials in Section 4 of [Kas02b], defined for
all Cartan data (𝐼 , ⋅) rather than just for bipartite type. The definition depends on a choice 𝑐 = (𝑐𝑖𝑗)𝑖,𝑗∈𝐼 of integers
satisfying 𝑐𝑖𝑗 + 𝑐𝑗𝑖 = 1 for 𝑖 ≠ 𝑗. We introduce this crystal since it appears in the literature much more frequently
than ℳ(Φ). The main results of this thesis pertain to the product monomial crystal defined as a subcrystal
of ℳ(Φ), but in fact by Corollary 6.2.10 (an observation we believe to be novel) our results apply to similar
subcrystals of ℳ𝑐(Φ).

6.2.1 Definition (A variation on the monomial crystal)
Let Φ be a root datum of any type (𝐼 , ⋅), and let 𝐴(Φ) be the set of monomials defined in Definition 6.1.1.
Choose a set (𝑐𝑖𝑗)𝑖,𝑗∈𝐼 of integers satisfying 𝑐𝑖𝑗+𝑐𝑗𝑖 = 1 for all 𝑖 ≠ 𝑗 (this function need only be defined on those
pairs (𝑖, 𝑗) ∈ 𝐼 which are connected in the Dynkin diagram). Let ℳ𝑐(Φ) ⊆ 𝐴(Φ) be the subset of monomials
satisfying the compatible weight condition Eq. (6.1.4) (this subset does not depend on the choice of 𝑐). We
will now define an abstract Φ-crystal structure on the set ℳ𝑐(Φ).
Introduce the auxiliary monomial

𝑎𝑖,𝑘 = 𝑒𝛼𝑖 ⋅ 𝑦𝑖,𝑘 ⋅ 𝑦𝑖,𝑘+1 ⋅∏
𝑗≠𝑖

𝑦𝑎𝑗𝑖𝑗,𝑘+𝑐𝑗𝑖 . (6.2.2)

For each monomial 𝑝 ∈ ℳ𝑐(Φ), define

1. 𝜑𝑖 𝑘(𝑝) = ∑𝑙≤𝑘 𝑝[𝑖, 𝑙], the lower column sum.
2. 𝜑𝑖 (𝑝) = max𝑘 𝜑𝑖 𝑘(𝑝), the largest lower column sum.
3. 𝜀𝑖 𝑘(𝑝) = −∑𝑙>𝑘 𝑝[𝑖, 𝑙], the negated strict upper column sum.
4. 𝜀𝑖 (𝑝) = max𝑘 𝜀𝑖 𝑘(𝑝), the largest negated strict upper column sum.
5. 𝑛𝑓 ,𝑖 (𝑝) = min{𝑘 ∈ ℤ ∣ 𝜑𝑖 𝑘(𝑝) = 𝜑𝑖 (𝑝)}, the smallest 𝑘 maximising the lower column sum 𝜑𝑖 𝑘(𝑝).
6. 𝑛𝑒,𝑖 (𝑝) = max{𝑘 ∈ ℤ ∣ 𝜀𝑖 𝑘(𝑝) = 𝜀𝑖 (𝑝)}, the largest 𝑘 maximising the negated strict upper column sum

𝜀𝑖 𝑘(𝑝).

Note that 𝑛𝑓 ,𝑖 (𝑝) is undefined if 𝜑𝑖 (𝑝) = 0, and 𝑛𝑒,𝑖 (𝑝) is undefined if 𝜀𝑖 (𝑝) = 0. We set wt(𝑝) = 𝜔(𝑝), and
define the crystal operators

𝑒𝑖 (𝑝) = {0 if 𝜀𝑖 (𝑝) = 0
𝑝 ⋅ 𝑎𝑖,𝑛𝑒,𝑖 (𝑝) otherwise, (6.2.3)

𝑓𝑖 (𝑝) = {0 if 𝜑𝑖 (𝑝) = 0
𝑝 ⋅ 𝑎−1𝑖,𝑛𝑓 ,𝑖 (𝑝) otherwise. (6.2.4)

The varied monomial crystal is the set ℳ𝑐(Φ), equipped with the crystal structure (wt, 𝑒𝑖 , 𝑓𝑖 , 𝜀𝑖 , 𝜑𝑖 ) given
above.

The statistics 𝜑𝑖 𝑘 and 𝜀𝑖 𝑘 are essentially (modulo an off-by-one shift on the 𝜀) the composition of 𝑦𝑖,𝑘 ↦ 𝑦𝑖,−𝑘 with
the previous statistics 𝜑𝑘𝑖 and 𝜀𝑘𝑖 . However, the auxiliary monomial 𝑎𝑖,𝑘 is quite different to 𝑧𝑖,𝑘 , and furthermore
depends on the integers 𝑐𝑖𝑗 chosen. Nevertheless, one proves in a similar way to Theorem 6.1.12 that the varied
monomial crystal ℳ𝑐(Φ) is a seminormal abstract Φ-crystal, and furthermore by Corollary 4.4 of [Kas02b] it is
shown that ℳ𝑐(Φ) is a finite-normal crystal, regardless of the integers 𝑐𝑖𝑗 chosen.
There is an action of the abelian group ℤ𝐼 on the set of possible parameters (𝑐𝑖𝑗)𝑖∼𝑗 satisfying 𝑐𝑖𝑗 + 𝑐𝑗𝑖 = 1, where
𝑚 ∈ ℤ𝐼 acts by (𝑚 ⋅ 𝑐)𝑖𝑗 = 𝑐𝑖𝑗 + 𝑚𝑖 − 𝑚𝑗 , and the isomorphism of abelian groups defined by 𝑦𝑖,𝑘 ↦ 𝑦𝑖,𝑘+𝑚𝑖 gives

an isomorphim of crystals ℳ𝑐(Φ)
∼−→ ℳ𝑚⋅𝑐(Φ). When the graph 𝐼 is acyclic, the action of ℤ𝐼 on the parameters

is transitive, and therefore in this case the isomorphism class of ℳ𝑐(Φ) does not depend on 𝑐 (this is stated in
[Kas02b]).
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6.2 A variation on the monomial crystal

The next lemma shows that if (𝐼 , ⋅) is bipartite, then depending on the two-colouring 𝜁 ∶ 𝐼 → ℤ/2ℤ defining the

monomial crystalℳ(Φ), we may find 𝑐𝑖𝑗 such that there is an isomorphism of crystalsℳ𝑐(Φ)
∼−→ ℳ(Φ).

6.2.5 Lemma (Isomorphism of monomial and varied monomial crystals)
Let Φ be a root datum of bipartite Cartan type (𝐼 , ⋅), and let 𝜁 ∶ 𝐼 → {0, 1} be a 2-colouring defining the
monomial crystalℳ(Φ). Whenever 𝑖 and 𝑗 are connected in the Dynkin diagram set 𝑐𝑖𝑗 = 𝜁 (𝑖), then we have
𝑐𝑖𝑗 + 𝑐𝑗𝑖 = 𝜁 (𝑖) + 𝜁 (𝑗) = 1 by the fact that 𝜁 is a 2-colouring. Hence the choice of (𝑐𝑖𝑗)𝑖,𝑗∈𝐼 defines a varied
monomial crystal ℳ𝑐(Φ).
Define the map Γ∶ ℳ𝑐(Φ) → ℳ(Φ) of abelian groups by sending the generator 𝑦𝑖,𝑘 to the generator Γ(𝑦𝑖,𝑘) =
𝑦𝑖,−2𝑘+𝜁 (𝑖), and leaving Γ(𝑒𝜆) = 𝑒𝜆 . Then Γ is an isomorphism of crystals.

In fact, the proof of Lemma 6.2.5 will be valid in greater generality.

6.2.6 Remark
The function 𝜁 can be taken to be any map 𝜁 ∶ 𝐼 → ℤ such that |𝜁 (𝑖) − 𝜁 (𝑗)| = 1 for connected 𝑖, 𝑗 ∈ 𝐼 ,
in which case taking the parity of each 𝜁 (𝑖) makes 𝐼 𝜁−→ ℤ ↠ ℤ/2ℤ a 2-colouring defining the monomial
crystal ℳ(Φ). For such a 𝜁 we should set 𝑐𝑖𝑗 = 𝜁 (𝑖)−𝜁 (𝑗)+1

2 . Then for connected 𝑖, 𝑗 we have 𝑐𝑖𝑗 ∈ {0, 1} and
𝑐𝑖𝑗 + 𝑐𝑗𝑖 = 1, and if 𝜁 takes values in {0, 1} then this choice of 𝑐𝑖𝑗 agrees with the one defined above.

We remark that the proof is made a little hard to follow because of the reversal of theℤ-indices of the monomials,
along with the fact that the 𝜀𝑘𝑖 statistics are off-by-one between the crystals. However, we wanted to leave the
definition of ℳ(Φ) as close to its definition in [Kam+19a] as possible, and likewise for ℳ(Φ) and its definition
in [Kas02b] (this will also help up match up yet another crystal appearing in Chapter 8), deciding instead to
complicate the isomorphism a little. Before reading the proof, one might like to skip past it and see what this
map looks like in terms of the monomial diagrams.

6.2.7 Proof
Γ is an isomorphism of abelian groups, commutingwith theweight functions.We have that for the 𝜑 statistics
that 𝜑𝑖 𝑘(𝑝) = 𝜑−2𝑘+𝜁 (𝑖)𝑖 (Γ(𝑝)) and for the 𝜀 statistics that 𝜀𝑖 𝑘(𝑝) = 𝜀−2𝑘−2+𝜁 (𝑖)𝑖 (Γ(𝑝)), showing that Γ com-
mutes with the crystal raising and lowering statistics 𝜀𝑖 and 𝜑𝑖. Furthermore we have that −2𝑛𝑓 ,𝑖 (𝑝) + 𝜁 (𝑖) =
𝑛𝑓 ,𝑖(Γ(𝑝)) and −2𝑛𝑒,𝑖 (𝑝) − 2 + 𝜁 (𝑖) = 𝑛𝑒,𝑖(Γ(𝑝)) whenever 𝑛𝑓 ,𝑖 and 𝑛𝑒,𝑖 are defined.
We now perform straightforward comparisons of the auxiliary monomials:

Γ(𝑎𝑖,𝑘) = Γ (𝑒𝛼𝑖 ⋅ 𝑦𝑖,𝑘 ⋅ 𝑦𝑖,𝑘+1 ⋅∏
𝑖≠𝑗

𝑦𝑎𝑗𝑖𝑗,𝑘+𝑐𝑗𝑖)

= 𝑒𝛼𝑖 ⋅ 𝑦𝑖,−2𝑘+𝜁 (𝑖) ⋅ 𝑦𝑖,−2𝑘−2+𝜁 (𝑖) ⋅∏
𝑗≠𝑖

𝑦𝑎𝑗𝑖𝑗,−2𝑘−2𝑐𝑗𝑖+𝜁 (𝑗)

𝑧𝑖,−2𝑘−2+𝜁 (𝑖) = 𝑒𝛼𝑖 ⋅ 𝑦𝑖,−2𝑘−2+𝜁 (𝑖) ⋅ 𝑦𝑖,−2𝑘+𝜁 (𝑖) ⋅∏
𝑗≠𝑖

𝑦𝑎𝑗𝑖𝑗,−2𝑘−1+𝜁 (𝑖).

(6.2.8)

These two monomials are equal if and only if 𝜁 (𝑖) − 1 = 𝜁 (𝑗) − 2𝑐𝑗𝑖 for all connected pairs (𝑖, 𝑗), which is true
by our definition of 𝑐𝑖𝑗 . Hence we have Γ(𝑎𝑖,𝑘) = 𝑧𝑖,−2𝑘−2+𝜁 (𝑖).
Now examining the rules for the crystal operators inℳ𝑐(Φ) and ℳ(Φ), we have

𝑓𝑖 (𝑝) = 𝑝 ⋅ 𝑎−1𝑖,𝑛𝑓 ,𝑖 (𝑝) ⟺ 𝑓𝑖(Γ(𝑝)) = Γ(𝑝) ⋅ 𝑧−1𝑖,−2𝑛𝑓 ,𝑖 (𝑝)−2+𝜁 (𝑖) = Γ(𝑝) ⋅ Γ(𝑎−1𝑖,𝑛𝑓 ,𝑖 (𝑝)),
𝑒𝑖 (𝑝) = 𝑝 ⋅ 𝑎𝑖,𝑛𝑒,𝑖 (𝑝) ⟺ 𝑒𝑖(Γ(𝑝)) = Γ(𝑝) ⋅ 𝑧𝑖,−2𝑛𝑒,𝑖 (𝑝)−2+𝜁 (𝑖) = Γ(𝑝) ⋅ Γ(𝑎𝑖,𝑛𝑒,𝑖 (𝑝)+1).

(6.2.9)

Hence Γ commutes with the crystal operators 𝑒𝑖, 𝑓𝑖 on their domain of definition, and so we conclude that Γ
is an isomorphism ℳ𝑐(Φ) → ℳ(Φ) of crystals.

The integers 𝑐𝑖𝑗 defining the crystalℳ𝑐(Φ) in the statement of Lemma 6.2.5 are dependent on the function 𝜁 ∶ 𝐼 →
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6 Monomial crystals

ℤ chosen. However, we can combine Lemma 6.2.5 and Kashiwara’s action ofℤ𝐼 on the space of parameters (𝑐𝑖𝑗)𝑖∼𝑗
to get the following result, which does not appear in the literature as far as we can tell.

6.2.10 Corollary
LetΦ be a root datum of type (𝐼 , ⋅), where 𝐼 is both bipartite and acyclic. For any two-colouring 𝜁 ∶ 𝐼 → ℤ/2ℤ
and any choice of parameters (𝑐𝑖𝑗)𝑖∼𝑗 satisfying 𝑐𝑖𝑗 + 𝑐𝑗𝑖 = 1, the crystal ℳ(Φ) defined by 𝜁 and the crystal
ℳ𝑐(Φ) defined by 𝑐 are isomorphic, via an isomorphism ℳ𝑐(Φ) → ℳ(Φ) of the form 𝑦𝑖,𝑘 ↦ 𝑦𝑖,−2𝑘+𝑛𝑖 for
some integers (𝑛𝑖)𝑖∈𝐼 .

Here is an example of the crystal isomorphism Γ∶ ℳ𝑐(Φ) → ℳ(Φ) in type (𝐼 , ⋅) = A5, with the standard choice
of 𝜁 (𝑖) being 1 if 𝑖 is odd and 0 if 𝑖 is even. Note that we have drawn theℤ-coordinates of the monomials inℳ𝑐(Φ)
increasing down the page rather than up the page.

ℤ

−3
−2
−1
0
1
2
3

8

−8

8
5

−4

6
7

Γ(𝑝) 𝑝

𝜁 1 0 1 10

−48
5−8

768

ℤ
3
2
1
0
−1
−2
−3

Another example is shown below, this time in type D6 with a 𝜁 ∶ 𝐼 → ℤwhich has more general values than just
{0, 1}.

ℤ

−3
−2
−1
0
1
2
3

8

−8

8
5

−4

6
7

Γ(𝑝) 𝑝

𝜁 3 2 1 −10

−4
8 5
−8

7
6

8

ℤ
3
2
1
0
−1
−2
−3

3

3

3

We conclude this section with some remarks about various monomial crystals, how they are related, and how
each is related to this thesis. The first monomial crystalℳ(Φ)we introduced first appeared in [Nak02] in simply-
laced types A andD, and was later generalised to arbitrary bipartite types in Section 3 of [Kas02b]. The definition
we use comes from [HN06], which is a slight generalisation to permit arbitrary root data Φ rather than only
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6.3 The product monomial crystal

simply-connected root data. The product monomial crystal (the main object of study) is defined in [Kam+19a] as
a subcrystal of ℳ(Φ), and so this monomial crystal is the most important one for most of our work.

The varied monomial crystal ℳ𝑐(Φ) first appeared in Section 4 of [Kas02b], although one can see from the dis-
cussion in Section 8.5 that this crystal more-or-less already appeared in symmetric type in Section 8 of [Nak01b].
The varied monomial crystal is the one more commonly seen in the literature, thus Lemma 6.2.5 makes the work
appearing in the rest of this thesis applicable to a much wider class of crystals. The authors of [KS14] use mono-
mial multiplication in ℳ𝑐(Φ) in finite type as a model of the tensor product of crystals, where (similarly to our
product monomial crystal) as long as the subcrystals are taken far enough apart vertically, the monomial-wise
product is isomorphic to the tensor product of crystals. The authors of [AN18] focus on the crystal ℳ𝑐(Φ) in
type A𝑛, and show that the monomial-wise product of subcrystals is indeed a subcrystal, and give an explicit
decomposition theorem. Both of these results are implied (in symmetric type) by our work, and Lemma 6.2.5.

There is a third crystal appearing in the literature under the name modified Nakajima monomials in [KKS07]
which is commonly denoted by ℳ̂𝑐(Φ). This crystal is certainly different in nature to ℳ(Φ) and ℳ𝑐(Φ), as the
subcrystal generated by a primitive element of weight 𝜆 is isomorpic to the crystal 𝑇𝜆 ⊗ ℬ(∞), which is the
crystal of the Verma module 𝑀(𝜆) rather than being a crystal of an 𝒪 int𝑞 (Φ)-module. The techniques in our work
could probably be adapted to analyse this crystal, but there is nothing we can say about the relation between our
work and this crystal directly, and so we will not mention it further.

6.3 The product monomial crystal

In light of the isomorphism given in Lemma 6.2.5, we could define the product monomial crystal inside either
ℳ(Φ) or the variation ℳ𝑐(Φ). We choose to go with the first crystal ℳ(Φ), following its original definition in
[Kam+19a]. The product monomial crystal will be a monomial-wise product of various subcrystals ofℳ(Φ), with
each subcrystal generated by a certain dominant monomial. We introduce some necessary notation for this.

6.3.1 Definition (Dominant monomials and fundamental subcrystals)

For each multiset R based in 𝐼 ×̇ ℤ, let 𝑦R ∈ 𝐴(Φ) be the monomial 𝑦R = ∏(𝑖,𝑐)∈R 𝑦𝑖,𝑐 . A dominant pair is a
pair (𝜆,R) of a weight 𝜆 ∈ 𝑋(Φ) and a multiset R based in 𝐼 ×̇ ℤ such that 𝑒𝜆 ⋅ 𝑦R ∈ ℳ(Φ). This condition is
equivalent to ⟨𝜆, 𝛼∨𝑖 ⟩ = ∑𝑙∈ℤ R[𝑖, 𝑙] for all 𝑖 ∈ 𝐼 .
If (𝜆,R) is a dominant pair then the monomial 𝑒𝜆 ⋅ 𝑦R is primitive of highest weight 𝜆, and hence generates
a subcrystal of ℳ(Φ) isomorphic to ℬ(𝜆) by finite-normality of ℳ(Φ) and Theorem 4.4.2. Let ℳ(𝑒𝜆 , 𝑦R)
denote this subcrystal.

Suppose that R is concentrated in a single entry, so that R = {(𝑖, 𝑐)𝑛} for some 𝑛 > 0. In this case we call a
dominant pair (𝜆,R) a fundamental pair , and call the crystal generated by 𝑒𝜆 ⋅ 𝑦R = 𝑒𝜆 ⋅ 𝑦𝑛𝑖,𝑐 a fundamental
subcrystal ℳ(𝑒𝜆 ,R).

If Φ is simply-connected, then a fundamental pair is always of the form 𝜆 = 𝜛𝑛𝑖 and R = {(𝑖, 𝑐)𝑛}. We now define
the product monomial crystal as a monomial-wise product over fundamental subcrystals.

6.3.2 Definition (Product monomial crystal)
For a dominant pair (𝜆,R), fix a decomposition 𝜆 = ∑(𝑖,𝑐)∈R 𝜆𝑖,𝑐 such that ⟨𝛼∨𝑖 , 𝜆𝑖,𝑐⟩ = R[𝑖, 𝑐] for all (𝑖, 𝑐) ∈ R.
The product monomial crystal is the set defined as the monomial-wise product of the fundamental subcrys-
tals:

ℳ(𝜆,R) = ∏
(𝑖,𝑐)∈SuppR

ℳ(𝑒𝜆𝑖,𝑐 ⋅ 𝑦R[𝑖,𝑐]𝑖,𝑐 ). (6.3.3)

The product monomial crystal does not depend on the decomposition of 𝜆.
We remark that here we have chosen a definition where the product Eq. (6.3.3) has as few terms as possible.
We will later see that product of fundamental subcrystals concentrated over the same vertex (𝑖, 𝑐) is again a
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6 Monomial crystals

fundamental subcrystal:
ℳ(𝑒𝜆 ⋅ 𝑦𝑛𝑖,𝑐) ⋅ ℳ(𝑒𝜇 ⋅ 𝑦𝑚𝑖,𝑐) = ℳ(𝑒𝜆+𝜇 ⋅ 𝑦𝑛+𝑚𝑖,𝑐 ), (6.3.4)

reconciling our definition of the product monomial crystal with the definition of [Kam+19a] in the simply-
connected case. This fact will be implied by our character formula, and also by the proof of Theorem 6.3.5.

As defined, the product monomial crystalℳ(𝜆,R) is only a subset ofℳ(Φ), and it is unclear whether it is closed
under the crystal operators 𝑒𝑖 and 𝑓𝑖. The following theorem justifies the name crystal.

6.3.5 Theorem
When Φ is a root datum whose type (𝐼 , ⋅) is symmetric, bipartite, and without cycles, then ℳ(𝜆,R) is a sub-
crystal of ℳ(Φ).

The proof of this theorem is sketched in Section 7 of [Kam+19a], and the purpose of Chapter 8 will be to explain
this proof. The restriction on 𝐼 being bipartite comes from the fact that the monomial crystal ℳ(Φ) (Defini-
tion 6.1.1) is only defined in bipartite type. The restriction on 𝐼 being symmetric comes from the method of
proof, using Nakajima quiver varieties. Various computer experiments suggest that the product monomial crys-
talℳ(𝜆,R) is still a crystal even when 𝐼 is of arbitrary finite type.

6.3.6 Remark
Our notation for the product monomial crystal differs from its original definition in [Kam+19a] in three
ways. Firstly, we use the symbol ℳ(𝜆,R) for the crystal rather than ℬ(R). Secondly, they work only in
the simply-connected case making the weight term 𝑒𝜆 in the monomials unnecessary. Thirdly, they use a
collection of multisets (R𝑖)𝑖∈𝐼 , where R𝑖 is a multiset based in 2ℤ + 𝜁 (𝑖): to go between the two notations set
R[𝑖, 𝑘] = R𝑖[𝑘].

It was noted that in the simply-connected case, there exist embeddings of crystals (Theorem 2.2 of [Kam+19a])

ℬ(𝜆) ↪ ℳ(𝜆,R) ↪ ⨂
(𝑖,𝑐)∈R

ℬ(𝜛𝑖), (6.3.7)

and that furthermore by varying R while keeping 𝜆 fixed, both extremes ℳ(𝜆,R) ≅ ℬ(𝜆) and ℳ(𝜆,R) ≅
⨂(𝑖,𝑐)∈Rℬ(𝜛𝑖) can be achieved. The first embedding ℬ(𝜆) ↪ ℳ(𝜆,R) is clear to see: the monomial 𝑒𝜆 ⋅ R ∈
ℳ(𝜆,R) is highest weight and hence generates a subcrystal isomorphic toℬ(𝜆). The second embedding is much
more subtle, and we will explain it in Section 7.3.

6.3.8 Remark
There is a case where the isomorphism ℳ(𝜆,R) ≅ ⨂(𝑖,𝑐)ℬ(𝜛𝑖) is easy to see, which is when (𝐼 , ⋅) is finite
type, and the parameter R is sufficiently ‘generic’. By this we mean that the elements of R are spread out
enough in the ℤ-direction so that the fundamental subcrystalsℳ(𝑒𝜛𝑖 , (𝑖, 𝑐)) for (𝑖, 𝑐) ∈ R do not interact. For
example, suppose that R = {(𝑖1, 𝑐1), … , (𝑖𝑁 , 𝑐𝑁 )}with 𝑐1 > ⋯ > 𝑐𝑁 , and suppose further that a vertical line can
be drawn on the monomial diagram, separating any element of ℳ(𝑒𝜛𝑖𝑟 , (𝑖𝑟 , 𝑐𝑟 )) from ℳ(𝑒𝜛𝑖𝑟+1 , (𝑖𝑟+1, 𝑐𝑟+1)),
for all 𝑟 ∈ 1, … , 𝑁 − 1. (Since (𝐼 , ⋅) is finite type, each fundamental subcrystalℳ(𝑒𝜛𝑖 , (𝑖, 𝑐)) is finite, and hence
this can always be done by taking the 𝑐𝑟 to be far enough apart). It follows that the map of sets

ℳ(𝑒𝑖1 , (𝑐1, 𝑟1)) ⊗ ⋯ ⊗ℳ(𝑒𝑖𝑁 , (𝑐𝑁 , 𝑟𝑁 ))
mult−−−−→ ℳ(𝜆,R) (6.3.9)

from the Cartesian product to the product monomial crystal is a bijection (as each subcrystal is vertically
separated from the others, we can uniquely factorise the product), and it is straightforward to see that the
crystal structure inherited fromℳ(Φ) actually makes mult into a crystal isomorphism.

64



6.4 Labelling elements of the crystal

6.4 Labelling elements of the crystal

Let R and S be finite multisets based in 𝐼 ×̇ ℤ, and define the auxiliary monomials

𝑦R ∶= ∏
(𝑖,𝑐)∈R

𝑦𝑖,𝑐 , 𝑧S ∶= ∏
(𝑖,𝑘)∈S

𝑧𝑖,𝑘 = ∏
(𝑖,𝑘)∈S

𝑒𝛼𝑖 ⋅ 𝑦𝑖,𝑘 ⋅ 𝑦𝑖,𝑘+2 ⋅∏
𝑗≠𝑖

𝑦𝑎𝑗𝑖𝑗,𝑘+1, 𝑧−1S = (𝑧S)−1. (6.4.1)

The fundamental subcrystalℳ(𝑒𝜆 ⋅ 𝑦𝑖,𝑐) is generated by the highest-weight element 𝑒𝜆 ⋅ 𝑦𝑖,𝑐 , and so every element
of the crystal is of the form 𝑒𝜆 ⋅ 𝑦𝑖,𝑐 ⋅ 𝑧−1S for some finite multiset S based in 𝐼 ×̇ ℤ. It follows by definition that
every element of the product monomial crystal ℳ(𝜆,R) is of the form 𝑒𝜆 ⋅ 𝑦R ⋅ 𝑧−1S for some finite multiset S.
Since the set {𝑧𝑖,𝑘 ∣ (𝑖, 𝑘) ∈ 𝐼 ×̇ ℤ} of auxiliary monomials is linearly independent in ℳ(Φ) (which can be seen by
using a triangularity argument from the 𝑦𝑖,𝑘 ), a monomial 𝑝 ∈ ℳ(𝜆,R) is uniquely determined by the S-multiset
appearing in the expression 𝑝 = 𝑒𝜆 ⋅𝑦R ⋅𝑧−1S , and wewill call this the S-labelling of an element. Under this labelling,
the exponent 𝑝[𝑖, 𝑘] of a monomial 𝑝 ∈ ℳ(𝜆,R) may be expressed as

𝑝[𝑖, 𝑘] = R[𝑖, 𝑘] − S[𝑖, 𝑘 − 2] − S[𝑖, 𝑘] −∑
𝑗≠𝑖

𝑎𝑗𝑖S[𝑗, 𝑘 − 1]. (6.4.2)

In the type A case, this S labelling has a direct interpretation in terms of Young diagrams.

6.4.3 Remark
Consider the simply-connected root datum Φ = SL5 of Cartan type A4. The fundamental subcrystal gener-
ated by the monomialℳ(𝑒𝜛2 ⋅ 𝑦2,0) ≅ ℬ(𝜛2) has 10 elements, indexed by the Young diagrams fitting within
a 2×3 rectangle. The empty partition corresponds to the highest-weight element 𝑦2,0, and in general a mono-
mial 𝑦2,0𝑧−1S corresponds to a Young diagram drawn in ‘Russian’ style, where the box with bottom corner
(𝑗, 𝑘) is present if and only if (𝑗, 𝑘) ∈ S. Below the partition corresponding to the lowest-weight element of
ℳ(𝑒𝜛2 ⋅ 𝑦2,0) is shown on the left, with some of the crystalℳ(𝑒𝜛2 ⋅ 𝑦2,0) shown on the right. In each picture,
the point (2, 0) is indicated with a circle.

The crystal operators on the right are easy to remember: the operator 𝑓𝑖 adds a box in column 𝑖, if there is
an addable box in that position.

Now let 𝜆 = 𝜛2 + 𝜛3 + 2𝜛4, R = {(2, 0), (3, −1), (4, 0)2}, and consider the problem of deciding whether a
monomial 𝑒𝜆 ⋅ 𝑦R ⋅ 𝑧−1S is an element of ℳ(𝜆,R). We may picture the multiset R by circling points on the
monomial diagram, and the multiset S by placing multiplicities in their corresponding box positions. Below
is shown a potential S on the left, with the figure on the right showing a valid ‘covering’ of S by partitions
fitting within boxes. The partitions used are (2, 1) above the vertex 2, the partition (2, 1) above the vertex 3,
and the two partitions (1) and (1, 1, 1) above the vertex 4.
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1
1 3

2

2 1

1
1 3

2

2 1

Themonomial 𝑒𝜆 ⋅𝑦R ⋅𝑧−1S is an element ofℳ(𝜆,R) if and only if there exists a valid covering of S by partitions
hung from the pegs described by R. The diagram on the right is not the only way to resolve the multiset S
into overlapping partitions hung from the pegs R. Each resolution corresponds to some factorisation of a
monomial back into a product of monomials coming from the fundamental crystals making upℳ(𝜆,R).
This interpretation of the product monomial crystal in type A was originally described in Section 6 of
[Kam+19a], and Section 2.5.3 of [WWY17]. Although we will not use it further in the paper, we found this
observation invaluable in making the initial connection to generalised Schur modules, which eventually led
us to our general Demazure character formula forℳ(𝜆,R).

6.5 A partial order

Define a partial order ≤ on the set 𝐼 ×̇ ℤ as the transitive closure of

(𝑖, 𝑘) ≤ (𝑖, 𝑘 + 2) and (𝑖, 𝑘) ≤ (𝑗, 𝑘 + 1) for all 𝑗 ∼ 𝑖. (6.5.1)

(Recall that 𝑗 ∼ 𝑖means that the vertices 𝑖 and 𝑗 are connected in the Dynkin diagram, or equivalently that 𝑎𝑖𝑗 ≠ 0).
A subset 𝐽 ⊆ 𝐼 ×̇ ℤ is called upward-closed if whenever 𝑥 ∈ 𝐽 and 𝑦 ∈ 𝐼 ×̇ ℤ satisfy 𝑥 ≤ 𝑦 , then 𝑦 ∈ 𝐽 . (This
condition is sometimes called being an upper set). A minimal element in an upward closed set 𝐽 is an element
𝑥 ∈ 𝐽 such that for all 𝑦 ∈ 𝐽 , either 𝑥 ≤ 𝑦 , or 𝑥 and 𝑦 are incomparable.

When 𝐼 is connected, we will say that an upward-closed set 𝐽 ⊆ 𝐼 ×̇ ℤ is proper if it is a proper nonempty subset.
For general 𝐼 , we say an upward-closed set is proper if it its restriction to each connected component is proper.
For any subset 𝐽 ⊆ 𝐼 ×̇ ℤ, let up(𝐽 ) = {𝑦 ∈ 𝐼 ×̇ ℤ ∣ 𝑥 ≤ 𝑦 for some 𝑥 ∈ 𝐽 } be the upward-closed set generated by
𝐽 . Every proper upward-closed set is a union of the upward-closed sets generated by its finitely many minimal
elements. We define downward-closed sets and down(𝐽 ) similarly.

6.5.2 Example
The following diagram shows an example of a proper upward-closed set in type A5, and another in type D5
(or we could also view both diagrams as a single proper upward-closed set in type A5 × D5). The minimal
elements have been marked with a circle.

D5A5
Define the boundary of the upward-closed set 𝐽 to be

𝜕𝐽 = {(𝑖, 𝑘) ∈ 𝐽 ∣ (𝑖, 𝑘 − 2) ∉ 𝐽 }. (6.5.3)
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An upward-closed set 𝐽 is proper if and only if |𝜕𝐽 | = |𝐼 |. The figure in Example 6.5.2 contains 10 boundary points
in total, but only 4 minimal points: a minimal point is always a boundary point, but not conversely.

The reason we have introduced this partial order on 𝐼 ×̇ ℤ is that the fundamental crystals ℳ(𝑒𝜆 ⋅ 𝑦𝑛𝑖,𝑐 ) ‘grow
downwards’ with respect to the order.

6.5.4 Lemma (Fundamental subcrystals grow downwards)

Let (𝜆, 𝑦𝑛𝑖,𝑐) be a fundamental pair. Then if 𝑒𝜆 ⋅ 𝑦𝑛𝑖,𝑐 ⋅ 𝑧−1S ∈ ℳ(𝑒𝜆 ⋅ 𝑦𝑛𝑖,𝑐), then 𝑥 ≤ (𝑖, 𝑐 − 2) for all 𝑥 ∈ Supp S.

6.5.5 Proof
The claim is vacuous for the highest-weight element 𝑒𝜆 ⋅ 𝑦𝑛𝑖,𝑐 , since its associated S-multiset is empty. As the
fundamental subcrystalℳ(𝑒𝜆 ⋅ 𝑦𝑛𝑖,𝑐) is connected, it suffices to show that the crystal 𝑓𝑖 operators preserve the
above property.

Suppose that 𝑝 = 𝑒𝜆 ⋅ 𝑦𝑛𝑖,𝑐 ⋅ 𝑧−1S ∈ ℳ(𝑒𝜆𝑦𝑖,𝑐) satisfies Supp S ≤ (𝑖, 𝑐 − 2), meaning that 𝑥 ≤ (𝑖, 𝑐 − 2) for
all 𝑥 ∈ Supp S. Fix a vertex 𝑗 ∈ 𝐼 . If 𝑓𝑗(𝑝) = ⊥ then there is nothing to prove, so assume instead that
𝑓𝑗(𝑝) = 𝑝 ⋅ 𝑧−1𝑗,𝑘−2 (we seek to prove that (𝑗, 𝑘 − 2) ≤ (𝑖, 𝑐 − 2)). In particular, this means that the largest upper
column sum 𝜑𝑗(𝑝) > 0 was maximised at (𝑖, 𝑘), and hence 𝑝[𝑗, 𝑘] > 0. Applying this inequality to Eq. (6.4.2)
gives

R[𝑗, 𝑘] +∑
𝑘≠𝑗

|𝑎𝑗𝑘 |S[𝑗, 𝑘 − 1] > S[𝑗, 𝑘] + S[𝑗, 𝑘 − 2] ≥ 0 (6.5.6)

where R is the multiset {(𝑖, 𝑐)𝑛}.
If R[𝑗, 𝑘] = 𝑛, then (𝑗, 𝑘) = (𝑖, 𝑐) and so (𝑗, 𝑘 − 2) = (𝑖, 𝑐 − 2). Otherwise, we must have R[𝑗, 𝑘] = 0 since R
is concentrated in a single element. This means that ∑𝑘≠𝑗 |𝑎𝑗𝑘 |S[𝑗, 𝑘 − 1] is strictly positive, and hence there
exists an 𝑙 ∼ 𝑗 such that (𝑙, 𝑘 − 1) ∈ S, so we have found an upward neighbour of (𝑗, 𝑘 − 2) already contained
in Supp S. So the claim follows by the inductive assumption and the transitivity of ≤.

We give two illustrations of Lemma 6.5.4 in types A5 and D5. In each picture, the point (𝑖, 𝑐) has been circled, and
the set {(𝑗, 𝑘) ∣ (𝑗, 𝑘) ≤ (𝑖, 𝑐 − 2)} has been shaded.

D5A5

6.6 Supports of monomials

In light of Lemma 6.5.4 we will define the based support of a monomial, a certain “shadow” it makes on the
underlying set 𝐼 ×̇ ℤ. For a monomial 𝑝 = 𝑒𝜆 ⋅ 𝑦R ⋅ 𝑧−1S ∈ ℳ(𝜆,R), define its based support to be SuppR 𝑝 =
SuppR ∪ Supp S. Note that the based support of a monomial 𝑝 relies in a fundamental way on R, since the
multiset R determines the factorisation 𝑝 = 𝑒𝜆 ⋅ 𝑦R ⋅ 𝑧−1S and hence determines S. The based support of a monomial
can be quite large compared to its support in terms of the 𝑦𝑖,𝑐 .
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6 Monomial crystals

6.6.1 Example

Let Φ = SL4, 𝜆 = 𝜛1+𝜛3, R = {(1, 1), (3, 5)}, S = {(1, 1), (2, 2), (3, 3)}, and 𝑝 = 𝑒𝜆 ⋅ 𝑦R ⋅ 𝑧−1S . Then as a monomial,
𝑝 = 1, and hence SuppR(1) = {(1, 1), (2, 2), (3, 3), (3, 5)}.

The based support is additive, in the sense that if we have two different monomials from two different product
monomial crystals 𝑝 ∈ ℳ(𝜆,R) and 𝑞 ∈ ℳ(𝜇,Q), then we have SuppR+Q(𝑝 ⋅ 𝑞) = SuppR(𝑝) + SuppQ(𝑞), which
follows from the identity of monomials

(𝑒𝜆 ⋅ 𝑦R ⋅ 𝑧−1S ) ⋅ (𝑒𝜇 ⋅ 𝑦Q ⋅ 𝑧−1T ) = 𝑒𝜆+𝜇 ⋅ 𝑦R+Q ⋅ 𝑧−1S+T. (6.6.2)

Applying this additivity property to the definition of the product monomial crystal in terms of fundamental
subcrystals, together with Lemma 6.5.4, we find that for all 𝑝 ∈ ℳ(𝜆,R) the based support SuppR(𝑝) is contained
in the downward-closed set generated by SuppR. Examining Eq. (6.4.1) shows that if 𝑝[𝑖, 𝑘] ≠ 0, then (𝑖, 𝑘) ≥ 𝑥
for some point 𝑥 ∈ SuppR(𝑝).
The next lemma shows that a monomial whose based support extends below up(R) cannot be highest weight.

6.6.3 Lemma (Raising)

Let 𝑝 = 𝑒𝜆 ⋅ 𝑦R ⋅ 𝑧−1S ∈ ℳ(𝜆,R) and suppose that (𝑖, 𝑘) is a minimal point of SuppR(𝑝). Let 𝑞 = 𝑒𝑛𝑖 (𝑝) be the
element at the top of 𝑝‘s 𝑖-string, so 𝑛 = 𝜀𝑖(𝑝). If (𝑖, 𝑘) ∉ R then 𝑛 > 0 and SuppR(𝑞) ⊆ SuppR(𝑝) ⧵ (𝑖, 𝑘).
6.6.4 Proof
Let 𝑝 = 𝑒𝜆 ⋅𝑦R ⋅𝑧−1S and 𝑞 = 𝑒𝜆 ⋅𝑦R ⋅𝑧−1T . We have T ⊆ S by definition of the crystal raising operator 𝑒𝑖, and hence
SuppR(𝑞) ⊆ SuppR(𝑝). By theminimality of (𝑖, 𝑘)we have 𝑝[𝑖, 𝑟] = 𝑞[𝑖, 𝑟] = 0 for 𝑟 < 𝑘, and by the assumption
that R[𝑖, 𝑘] = 0 we have for the lower negated column sums 𝜀𝑘𝑖 (𝑝) = −S[𝑖, 𝑘] and 𝜀𝑘𝑖 (𝑞) = −T[𝑖, 𝑘]. However,
𝑛 = 𝜀𝑖(𝑝) ≥ 𝜀𝑘𝑖 (𝑝) = S[𝑖, 𝑘] > 0 shows that 𝑛 > 0, and 0 = 𝜀𝑖(𝑞) ≥ 𝜀𝑘𝑖 (𝑞) = T[𝑖, 𝑘] shows that (𝑖, 𝑘) ∉ SuppR 𝑞.

Hence we get a useful necessary condition for highest-weight monomials in the product monomial crystal.

6.6.5 Corollary
If 𝑝 ∈ ℳ(𝜆,R) is highest-weight, then SuppR(𝑝) ⊆ up(R).
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7 Truncations and the character formula

The product monomial crystal ℳ(𝜆,R) is bounded between two extremes: on one hand it can be isomorphic to
the irreducible highest-weight crystalℬ(𝜆), and on the other hand it can be isomorphic to a large tensor product
ℬ(𝜆1) ⊗ ⋯ ⊗ℬ(𝜆𝑛) where 𝜆 = 𝜆1 + ⋯ + 𝜆𝑛. We can see the product monomial crystal as interpolating between
these two extremes (we make this precise in type A in Chapter 10, where we show that the product monomial
crystal is the crystal of a generalised Schur module). The question remains: what can we say about the other
cases?

In this chapterwe define truncations, a family of subsets of the productmonomial crystal parametrised by upward-
closed sets. These truncations are somewhat like Demazure crystals as they are finite, closed under the crystal
raising operators 𝑒𝑖, have containment compatible with containment of upward-closed sets, and in their limit we
recover the whole product monomial crystal. In fact it turns out that these truncations are disjoint unions of
Demazure crystals, but this is not obvious from their definition.

By relating ‘nearby’ truncations to each other in purely crystal-theoretic terms, we give an inductive character
formula (Theorem 7.2.3) for any of the truncations, specialising in the finite type case to a character formula for
the whole product monomial crystal (Corollary 7.3.9). Since ℳ(𝜆,R) is the crystal associated to the categorical
𝔤(Φ)-representation𝒱 (𝜆,R) introduced in Chapter 1, our formula has implications for the study of the truncated
shifted Yangian algebras 𝑌 𝜆𝜇 (R).

7.1 Truncations defined by upward sets

We saw in Corollary 6.6.5 at the end of the last section that a highest-weight monomial 𝑝 ∈ ℳ(𝜆,R) satisfies
SuppR(𝑝) ⊆ up(R). Consider the subset ℳ(𝜆,R, up(R)) of the product monomial crystal ℳ(𝜆,R) consisting of
those monomials whose based support is contained within the upward-closed set up(R). This subset is closed
under the crystal raising operators, because each such operator will only ever remove elements from the based
support of a monomial. Furthermore, this subset contains every highest-weight element of ℳ(R). It is the pro-
totypical example of one of our truncations.

7.1.1 Definition
Let 𝐽 ⊆ 𝐼 ×̇ ℤ be an upward-closed set containing1R. The truncation ofℳ(𝜆,R) by 𝐽 is the subset

ℳ(𝜆,R, 𝐽 ) = {𝑝 ∈ ℳ(𝜆,R) ∣ SuppR(𝑝) ⊆ 𝐽 }. (7.1.2)

The subset ℳ(𝜆,R, 𝐽 ) is closed under the crystal raising operators, and hence we may equip it with its
unique upper-seminormal crystal structure coming from the restriction of the (𝑒𝑖)𝑖∈𝐼 and wt functions on
the original crystal. (This agrees with the crystal operators defined onℳ(𝜆,R, 𝐽 ) coming from themonomial
crystal ℳ(Φ)).

Each of our truncations ℳ(𝜆,R, 𝐽 ) satisfies up(R) ⊆ 𝐽 by definition, and therefore by Corollary 6.6.5 contains
every highest-weight element of the product monomial crystal ℳ(𝜆,R). As the product monomial crystal de-
composes into highest-weight crystals, this means that knowing its highest-weight elements determines it up to
isomorphism. Therefore in order to determine the isomorphism class of the product monomial crystal ℳ(𝜆,R),
it is enough to determine the highest-weight elements of any truncation ℳ(𝜆,R, 𝐽 ).
1We use the terminology “𝐽 contains R” to mean that SuppR ⊆ 𝐽 . In particular, elements of R may still have multiplicity greater than
one.
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7 Truncations and the character formula

However, only knowing the character chℳ(𝜆,R, 𝐽 ) of a truncation is not enough information to recover its
highest-weight elements, unless the character satisfies some special properties. We will eventually end up show-
ing that each truncation is a disjoint union of Demazure crystals, hence by the linear independence of Demazure
characters (Lemma 5.2.9) the character of any truncation will determine the isomorphism class of the product
monomial crystal.

An observation we will use repeatedly is that if 𝑝 ∈ ℳ(𝜆,R, 𝐽 ) then 𝑝[𝑖, 𝑐] = 0 for all (𝑖, 𝑐) ∉ 𝐽 . For instance,
it plays a part in the next lemma which shows that using a single crystal lowering operator on a monomial
repeatedly can only push it outside the truncation by a single element.

7.1.3 Lemma (Lowering)
Let 𝑝 ∈ ℳ(𝜆,R, 𝐽 ) be an element of a truncation, 𝑖 ∈ 𝐼 , and (𝑖, 𝑘) ∈ 𝜕𝐽 . Then SuppR(𝑓 𝑛𝑖 (𝑝)) ⊆ 𝐽 ∪ {(𝑖, 𝑘 − 2)}
for all 0 < 𝑛 ≤ 𝜑𝑖(𝑝).
7.1.4 Proof
By definition of the monomial crystal we have that 𝑛𝑓 ,𝑖(𝑓𝑖(𝑞)) ≥ 𝑛𝑓 ,𝑖(𝑞) for all 𝑞 ∈ ℳ(Φ). Since the monomial
𝑝 lies in the truncationℳ(𝜆,R, 𝐽 )we have 𝑝[𝑖, 𝑟] = 0 for all 𝑟 ≤ 𝑘 −2, and hence 𝑛𝑓 ,𝑖(𝑝) ≥ 𝑘. This means that
when applying 𝑓𝑖 repeatedly, themonomial 𝑝will bemultiplied by 𝑧𝑖,𝑟 for 𝑟 ≥ 𝑘−2. Therefore SuppR(𝑓 𝑛𝑖 (𝑝)) ⊆
𝐽 ∪ {(𝑖, 𝑘 − 2)} for all 0 < 𝑛 ≤ 𝜑𝑖(𝑝).

The next lemma shows that when 𝐽 and 𝐽 ′ are upward-closed sets which differ by a single minimal element, then
the associated truncations are related in purely crystal-theoretic terms: the larger truncation will be an extension
of strings of the smaller truncation.

7.1.5 Lemma (Minimal points and extensions of strings)
Suppose that 𝐽 are 𝐽 ′ are two upward-closed sets containing R, which differ in a single element 𝐽 ′ = 𝐽 +
{(𝑖, 𝑘)}. Thenℳ(𝜆,R, 𝐽 ′) = 𝔇𝑖ℳ(𝜆,R, 𝐽 ), where𝔇𝑖 is the extension of 𝑖-strings (Definition 5.3.1) operator.

7.1.6 Proof
Since both 𝐽 and 𝐽 ′ are upward-closed and contain R, the point (𝑖, 𝑘) is minimal in 𝐽 ′ and (𝑖, 𝑘) ∉ R. (If
it were not minimal, its removal from 𝐽 ′ would result in a non-upward-closed set). Hence if a monomial
𝑞 ∈ ℳ(𝜆,R, 𝐽 ′) satisfies (𝑖, 𝑘) ∈ SuppR(𝑞), the conditions of Lemma 6.6.3 are met and so there exists a 𝑝 ∈
ℳ(𝜆,R, 𝐽 ) and 𝑛 > 0 with 𝑞 = 𝑓 𝑛𝑖 (𝑝). If (𝑖, 𝑘) ∉ SuppR(𝑞) then 𝑞 ∈ ℳ(𝜆,R, 𝐽 ) already. Hence ℳ(𝜆,R, 𝐽 ′) ⊆
𝔇𝑖(𝜆,R, 𝐽 ).
Conversely, applying Lemma 7.1.3 to this special case givesℳ(𝜆,R, 𝐽 ′) ⊇ 𝔇𝑖(𝜆,R, 𝐽 ).

Lemma 7.1.5 is one of the two key pieces we need for the character formula, which will give is the ‘Demazure’
part of our ‘Demazure character formula’. It allows us to relate any two trunctions defined by nested upward-
closed sets 𝐽 ⊆ 𝐽 ′, for a fixed choice of (𝜆,R). The second piece of our character formula will be a fact which
allows us to relate truncations defined by the same upward-closed set, where (𝜆,R) is varied along the boundary
of that set.

7.1.7 Lemma (Factorisation along a boundary)
Suppose (𝜆,R) and (𝜇,Q) are two dominant pairs, and that 𝐽 is an upward-closed set containing both R and
Q, and further thatQ is supported only along the boundary of 𝐽 , i.e. SuppQ ⊆ 𝜕𝐽 . Thenℳ(𝜆+𝜇,R+Q, 𝐽 ) =
𝑒𝜇 ⋅ 𝑦Q ⋅ ℳ(𝜆,R, 𝐽 ), where ⋅ denotes a product of monomials.

7.1.8 Proof
By the definition of the product monomial crystal and the additivity of based support, we have that

ℳ(𝜆,R, 𝐽 ) ⋅ ℳ(𝜇,Q, 𝐽 ) = ℳ(𝜆 + 𝜇,R + Q, 𝐽 ). (7.1.9)

Since Q is concentrated along the boundary 𝜕𝐽 , Lemma 6.5.4 gives thatℳ(𝜇,Q, 𝐽 ) = {𝑒𝜇 ⋅ 𝑦Q}.
Using only Lemma 7.1.5 and Lemma 7.1.7, we may already compute decompositions of small product monomial
crystals quite quickly, as we will show in the following example.
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7.2 A Demazure character formula

7.1.10 Example

Consider the Φ = SL4 crystal ℳ(𝜆,R) defined by 𝜆 = 𝜛1 + 2𝜛3 and R = {(1, 3), (3, 1), (3, 3)}. Since Φ is
simply-connected, we may omit the 𝑒𝜆 terms from the monomial crystal, instead declaring that wt(𝑦𝑖,𝑐) = 𝜛𝑖,
the 𝑖th fundamental weight. We will determine the isomorphism class of ℳ(𝜆,R) by calculating a suitable
truncation ℳ(𝜆,R, 𝐽3).

1. Begin with 𝐽0 = up((2, 2)) and R0 = ∅. By definition, ℳ(R0, 𝐽0) = {1}.
2. Let 𝐽1 = 𝐽0 and R1 = {(1, 3), (3, 3)}. Since R1 − R0 is concentrated along 𝜕𝐽1, Lemma 7.1.7 applies and

we get ℳ(R1, 𝐽1) = 𝑦1,3 ⋅ 𝑦3,3 ⋅ ℳ(R0, 𝐽0) = {𝑦1,3 ⋅ 𝑦3,3}.
3. Let R2 = R1 and 𝐽2 = up((3, 1)). Since 𝐽2 differs from 𝐽1 by adding the minimal element (3, 1),

Lemma 7.1.5 applies and we get ℳ(R2, 𝐽2) = 𝔇3ℳ(R1, 𝐽1). Computing this extension of 3-strings
is easy since 𝑦1,3 ⋅ 𝑦3,3 is the highest-weight element of a crystal isomorphic toℬ(𝜛1+𝜛3), so we get a
3-string with two elements: 𝑦1,3 ⋅𝑦3,3

𝑓3−−→ 𝑦1,3 ⋅𝑦3,3 ⋅𝑧−13,1 . We find thatℳ(R2, 𝐽2) = {𝑦1,3 ⋅𝑦3,3, 𝑦1,3 ⋅𝑦3,3 ⋅𝑧−13,1}.
4. Let R3 = R2 ∪ {(3, 1)} and 𝐽3 = 𝐽2. Since (3, 1) ∈ 𝜕𝐽3, we apply Lemma 7.1.7 again to find that

ℳ(R3, 𝐽3) = 𝑦3,1 ⋅ ℳ(R2, 𝐽2) = {𝑦1,3 ⋅ 𝑦3,3 ⋅ 𝑦3,1, 𝑦1,3 ⋅ 𝑦3,3 ⋅ 𝑦3,1 ⋅ 𝑧−13,1}.

We can represent this process graphically by drawing a monomial diagram, with each truncating set 𝐽𝑖
overlaid, with the elements of the multiset R𝑖 shown by circling points. Beneath each diagram, we draw the
elements of the subset ℳ(R𝑖, 𝐽𝑖).

1

⋅𝑦1,3 ⋅ 𝑦3,3 𝔇3 ⋅𝑦3,1

𝑦1,3 ⋅ 𝑦3,3 𝑦1,3 ⋅ 𝑦3,3

𝑦1,3 ⋅ 𝑦3,3 ⋅ 𝑧−13,1

𝑓3
𝑦1,3 ⋅ 𝑦3,3 ⋅ 𝑦3,1

𝑦1,3 ⋅ 𝑦3,3 ⋅ 𝑦3,1 ⋅ 𝑧−13,1

The two elements of ℳ(R3, 𝐽3) = ℳ(R, 𝐽3) are both highest-weight, of weights 𝜛1 + 2𝜛3 and 𝜛1 + 𝜛2
respectively. Since the truncationℳ(R, 𝐽3) contains all highest-weight elements of ℳ(R, 𝐽 ), we have

ℳ(𝜆,R) ≅ ℬ(𝜛1 + 2𝜛3) ⊕ℬ(𝜛1 + 𝜛2). (7.1.11)

7.2 A Demazure character formula

At this point the reader should re-familiarise themselves with the content of Section 5.3, specifically the string
property (Definition 5.3.1) and what it means for the equivariance of the extension-of-strings operator 𝔇𝑖 with
the Demazure operator 𝜋𝑖 (Lemma 5.3.11). As should be clear from Example 7.1.10 above, we can build characters
of truncations by starting from the subset 𝑍 = {1} containing the trivial monomial, and repeatedly applying steps
of the form

1. 𝑍 ↦ 𝑝 ⋅ 𝑍 , for some dominant monomial 𝑝 = 𝑒𝜆 ⋅ 𝑦R, or
2. 𝑍 ↦ 𝔇𝑖(𝑍), where 𝔇𝑖 is the extension-of-strings operator.
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7 Truncations and the character formula

The first of these operations is straightforward on the level of characters, we have ch(𝑒𝜆 ⋅ 𝑦R ⋅ 𝑍 ) = 𝑒𝜆 ch𝑍 . For
the second operation we would like to have the equivariance ch𝔇𝑖(𝑍) = 𝜋𝑖(ch𝑍) where 𝜋𝑖 is the Demazure
operator, but in order for this to be true the subset 𝑍 must satisfy the string property. As we have remarked
previously, 𝑍 satisfying the string property does not imply that 𝔇𝑖(𝑍) does. Furthermore, even if 𝑍 satisfies the
string property, the product 𝑝⋅𝑍 may not. (For a counterxample, letℳ(𝑦1,1) ≅ ℬ(𝜛1) be the SL2-crystal generated
by the monomial 𝑦1,1. Then 𝑦1,1 ⋅ ℳ(𝑦1,1) is a string with two elements inside ℳ(𝑦21,1) ≅ ℬ(2𝜛1), a violation of
the string property).

We get around this problem by using the fact that all of our subsets 𝑍 have a specific form: they are truncations
ℳ(𝜆,R, 𝐽 ). (The surprising fact here is Lemma 7.1.5, showing that the abstract extension-of-strings operation
takes a truncation to another truncation, rather than some arbitrary subset of the product monomial crystal). We
can show directly that each of our truncations has the string property.

7.2.1 Lemma (Truncations have the string property)
If 𝐽 is an upward-closed set containing R, then ℳ(𝜆,R, 𝐽 ) has the string property.

7.2.2 Proof
Sinceℳ(R, 𝐽 ) is closed under the crystal raising operators 𝑒𝑖, it suffices to show that for any 𝑝 ∈ ℳ(R, 𝐽 ) such
that 𝑓𝑖(𝑝) ∉ ℳ(R, 𝐽 )⊔{⊥} that 𝑒𝑖(𝑝) = ⊥. Suppose we have such a 𝑝 = 𝑒𝜆 ⋅𝑦R ⋅𝑧−1S with 𝑓𝑖(𝑝) = 𝑒𝜆 ⋅𝑦R ⋅𝑧−1S+{(𝑖,𝑘−2)},
then by Lemma 7.1.5 we must have (𝑖, 𝑘) ∈ 𝜕𝐽 . By the definition of 𝜑𝑖 we know that 𝑘 is largest such that
𝜑𝑘𝑖 (𝑝) = 𝜑𝑖(𝑝) and hence 𝜑𝑙+2𝑖 (𝑝) < 𝜑𝑘𝑖 (𝑝) for all 𝑙 ≥ 𝑘. But since 𝑝[𝑖, 𝑟] = 0 for all 𝑟 < 𝑘 we have that
𝜀 𝑙𝑖 (𝑝) = 𝜑𝑙+2𝑖 (𝑝) − 𝜑𝑘𝑖 (𝑝) < 0 for all 𝑙 ≥ 𝑘, and hence 𝜀𝑖(𝑝) = 0 and so 𝑒𝑖(𝑝) = ⊥.

We arrive at our first main result, an inductive character formula for any truncation ℳ(𝜆,R, 𝐽 ) by interpreting
Lemmas 7.1.5 and 7.1.7 in terms of characters.

7.2.3 Theorem (A character formula for truncations)
The following rules give an inductive character formula for any truncationℳ(𝜆,R, 𝐽 ):

1. If (𝜆, ∅) is a dominant pair, then chℳ(𝜆, ∅, 𝐽 ) = 𝑒𝜆 for any upward-closed set 𝐽 .
2. If (𝜆,R) and (𝜇,Q) are dominant pairs, 𝐽 an upward-closed set containing R, and Q is contained in the

boundary 𝜕𝐽 , then chℳ(𝜆 + 𝜇,R + Q, 𝐽 ) = 𝑒𝜇 chℳ(𝜆,R, 𝐽 ).
3. If (𝜆,R) is a dominant pair, 𝐽 an upward-closed set containing R, and (𝑖, 𝑘) ∉ 𝐽 an element such that

𝐽 ∪ {(𝑖, 𝑘)} is upward-closed, then chℳ(𝜆,R, 𝐽 ∪ {(𝑖, 𝑘)}) = 𝜋𝑖 chℳ(R, 𝐽 ).

An algorithm for applying the above rules to the data (𝜆,R, 𝐽 ) defining a truncation is the following:

1. If R = ∅ then terminate with the result 𝑒𝜆 .
2. Otherwise, if there is an element ofR along the boundary 𝜕𝐽 then defineQ to be themultiset supported

along 𝜕𝐽 with multiplicities Q[𝑖, 𝑐] = R[𝑖, 𝑐] for (𝑖, 𝑐) ∈ 𝜕𝐽 , and choose a weight 𝜆 such that (𝜆,Q) is a
dominant pair. Recursively compute 𝑒𝜇ℳ(𝜆 − 𝜇,R − Q, 𝐽 ).

3. Otherwise, choose a minimal element (𝑖, 𝑘) ∈ 𝐽 − up(R) satisfying (𝑖, 𝑘) ∈ down(R) and recursively
compute 𝜋𝑖 chℳ(𝜆,R, 𝐽 − {(𝑖, 𝑘)}).

If the Dynkin diagram 𝐼 is connected, the third step of the algorithm can be simplified a little: any minimal point
of 𝐽 − up(R) will do.
We need to prove that each inductive rule is valid, and that the algorithm given terminates after finitely many
steps without ‘getting stuck’ somewhere.

7.2.4 Proof
Each inductive step is true:

1. If (𝜆, ∅) is a dominant pair, then ℳ(𝜆, ∅) = {𝑒𝜆} which has character 𝑒𝜆 . Since Supp∅ 𝑒𝜆 = ∅, every
upward-closed set 𝐽 is a valid truncation, with chℳ(𝜆, ∅, 𝐽 ) = ch {𝑒𝜆} = 𝑒𝜆 .

2. From Lemma 7.1.7 we have that chℳ(𝜆 + 𝜇,R + Q, 𝐽 ) = ch(𝑒𝜇 ⋅ 𝑧−1Q ⋅ ℳ(𝜆,R, 𝐽 )) = 𝑒𝜇 chℳ(𝜆,R, 𝐽 ).
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3. From Lemma 7.1.5 we have that chℳ(𝜆,R, 𝐽 ∪ {(𝑖, 𝑘)}) = ch𝔇𝑖(ℳ(𝜆,R, 𝐽 )), which by the fact that
each truncation satisfies the string property (Lemma 7.2.1) and the equivariance property of 𝔇𝑖 and
𝜋𝑖 (Lemma 5.3.11) gives that chℳ(𝜆,R, 𝐽 ∪ {(𝑖, 𝑘)}) = 𝜋𝑖(ℳ(𝜆,R, 𝐽 )).

It remains to be seen that the given algorithm terminates, which amounts to proving that step 3 can always
progress to a point where step 2 can be applied, since we decrease the size of the finite multiset R on each
application of step 2.
Fix the parameters (𝜆,R, 𝐽 ), and suppose we have reached step 3 of the algorithm. Since we did not stop
at step 1, the multiset R is nonempty, and since we did nothing at step 2, we have SuppR ∩ 𝜕𝐽 = ∅. The
upward-closed set 𝐽 is proper, therefore there exists a minimial point (𝑖, 𝑐) ∈ 𝐽 such that (𝑖, 𝑐) ∈ down(R).
This minimal point must be a boundary point, and hence lies outside of SuppR so it may be removed. This
decreases the size of the finite set down(R) ∩ 𝐽 , completing the proof.

To make the theorem more concrete, we will return to a previous example and use the theorem to compute its
character.

7.2.5 Example
We will use Theorem 7.2.3 to determine the character of the truncated crystal we computed previously in
Example 7.1.10. The crystal we ended upwith was obtained through applyingmultiplications and extension-
of-strings operators:

ℳ(R3, 𝐽3) = 𝑦3,1 ⋅ 𝔇3(𝑦1,3 ⋅ 𝑦3,3 ⋅ 1). (7.2.6)

Now that we know that each intermediate result satisfies the string property, we can take characters by
replacing all the monomials by their weights, and all of the string extension operators by Demazure opera-
tors:

chℳ(R3, 𝐽3) = 𝑒𝜛3𝜋3(𝑒𝜛1+𝜛3). (7.2.7)

As explained in Example 3.4.16, the weight lattice 𝑋(SL3) is isomorphic to ℤ3/(1, 1, 1), and hence we have
an isomorphism of algebras ℤ[𝑋(SL3)] ≅ ℤ[𝑥1, 𝑥2, 𝑥3]/(𝑥1𝑥2𝑥3 − 1) taking the weight 𝜆 = (𝑎, 𝑏, 𝑐) to the
element 𝑥𝑎1𝑥𝑏2𝑥 𝑐3. Together with 𝜛1 = (1, 0, 0) and 𝜛2 = (1, 1, 0), the character formula becomes

chℳ(R3, 𝐽3) = 𝑥1𝑥2𝑥3𝜋3(𝑥21𝑥2𝑥3)
= 𝑥31𝑥22𝑥3𝜋3(𝑥3)
= 𝑥31𝑥22𝑥3(𝑥3 + 𝑥4)
= 𝑥31𝑥22𝑥23 + 𝑥21𝑥2.

(7.2.8)

We cannot yet say for sure what the isomorphism class of the truncation ℳ(R3, 𝐽3) is from this character,
since truncations are not necessarily a highest-weight crystal (and indeed this one is not). If we did know
that the truncation was a Demazure crystal however, a fact we will later prove, we could decompose the
character above in the basis of Demazure characters and find that it is ch𝐷(𝜛1 + 2𝜛3) + ch𝐷(𝜛1 + 𝜛2), as
expected from the crystal computed in Example 7.1.10.

7.3 Truncations are Demazure crystals

As we have now pointed out several times, knowing the character of an abstract Φ-crystal 𝐵 is not very useful. If
we happened to know that 𝐵 was a crystal coming from the category 𝒪 int𝑞 (Φ), then its isomorphism class would
be determined by the expression of ch𝐵 into the basis {chℬ(𝜆) ∣ 𝜆 ∈ 𝑋(Φ)+}, as discussed in Section 5.1. If we
knew that 𝐵 was a disjoint union of Demazure subcrystals coming from crystals of 𝒪 int𝑞 (Φ), then its isomorphism
class would be determined by decomposing its character into the basis of Demazure characters.

In this section we will show that every truncationℳ(𝜆,R, 𝐽 ) is a disjoint union of Demazure crystals. The prop-
erty of being a Demazure crystal is preserved by the extension-of-strings operations𝔇𝑖, more or less by definition
of a Demazure crystal (Definition 5.3.4). In light of our character formula (or rather the implicit computation of
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the truncation which lies behind it), it suffices to show that the ‘multiplication along a boundary’ operation of
Lemma 7.1.7 preserves the property of being a Demazure crystal. We begin by reformulating this ‘boundary
multiplication’ in purely crystal-theoretic terms.

7.3.1 Lemma
Let ℳ(𝜆,R, 𝐽 ) be a truncation, and (𝜇,Q) a dominant pair such that SuppQ ⊆ 𝜕𝐽 . There is a bijective,
weight-preserving map

Φ∶ ℳ(𝜆 + 𝜇,R + Q, 𝐽 ) → ℳ(R, 𝐽 ) ⊗ ℬ(𝜇), 𝑒𝜆+𝜇 ⋅ 𝑦R+Q ⋅ 𝑧−1S ↦ 𝑒𝜆+𝜇 ⋅ 𝑦R ⋅ 𝑧−1S ⊗ 𝑏𝜇 , (7.3.2)

which is equivariant under the crystal raising operators 𝑒𝑖 for all 𝑖 ∈ 𝐼 . Henceℳ(R+Q, 𝐽 ) ≅ ℳ(R, 𝐽 )⊗ℬ(𝜇)
as upper-seminormal crystals.

7.3.3 Proof
The map is defined as a consequence of Lemma 7.1.7 and is bijective and weight-preserving, hence all that
remains to be seen is the 𝑒𝑖-equivariance. Let 𝑞 = 𝑒𝜇 ⋅ 𝑦Q, fix an 𝑖 ∈ 𝐼 and a 𝑝 = 𝑒𝜆 ⋅ 𝑦R ⋅ 𝑧−1S ∈ ℳ(𝜆,R, 𝐽 )
so that Φ(𝑝𝑞) = 𝑝 ⊗ 𝑏𝜇 . The tensor product rule for applying 𝑒𝑖 to a tensor product of two crystal elements
gives

𝑒𝑖(𝑝𝑞) = {𝑒𝑖(𝑝) ⊗ 𝑏𝜇 if 𝜀𝑖(𝑝) > ⟨𝜇, 𝛼∨𝑖 ⟩,
⊥ if 𝜀𝑖(𝑝) ≤ ⟨𝜇, 𝛼∨𝑖 ⟩.

(7.3.4)

Fix an 𝑖 ∈ 𝐼 and let (𝑖, 𝑘) ∈ 𝜕𝐽 . We have (𝑝𝑞)[𝑖, 𝑙] = 𝑝[𝑖, 𝑙] + 𝑞[𝑖, 𝑙] for all 𝑙, but 𝑞 is concentrated at 𝑘 and hence
𝑞[𝑖, 𝑙] = 𝛿𝑙𝑘⟨𝜇, 𝛼∨𝑖 ⟩. Since (𝑝𝑞)[𝑖, 𝑙] = 0 for all 𝑙 < 𝑘 we then have

𝜀 𝑙𝑖 (𝑝𝑞) = {0 for 𝑙 < 𝑘,
𝜀 𝑙𝑖 (𝑝) − ⟨𝜇, 𝛼∨𝑖 ⟩ for 𝑙 ≥ 𝑘. (7.3.5)

If 𝑒𝑖(𝑝𝑞) = ⊥ then 𝜀𝑖(𝑝𝑞) = 0 and hence 𝜀 𝑙𝑖 (𝑝) ≤ ⟨𝜇, 𝛼∨𝑖 ⟩ for all 𝑙 ≥ 𝑘. Therefore we are in the second case of
Eq. (7.3.4) and hence 𝑒𝑖(𝑝 ⊗ 𝑏𝜇) = ⊥ also.

If 𝑒𝑖(𝑝𝑞) = 𝑝𝑞𝑧𝑖,𝑙 then we must have 𝑙 ≥ 𝑘 and also 0 < 𝜀𝑖(𝑝𝑞) = 𝜀 𝑙𝑖 (𝑝𝑞). Applying Eq. (7.3.5) gives that
⟨𝜇, 𝛼∨𝑖 ⟩ < 𝜀 𝑙𝑖 (𝑝) and so 𝑒𝑖(𝑝 ⊗ 𝑏𝜇) = 𝑒𝑖(𝑝) ⊗ 𝑏𝜇 , so all we have remaining to check is that 𝑒𝑖(𝑝) = 𝑝𝑧𝑖,𝑙 . This is
clear however, since

𝜀 𝑙𝑖 (𝑝) = {0 for 𝑙 < 𝑘,
𝜀 𝑙𝑖 (𝑝) for 𝑙 ≥ 𝑘, (7.3.6)

and so the point 𝑙 where 𝜀 𝑙𝑖 (𝑝𝑞) first attains the positive value 𝜀𝑖(𝑝𝑞) is the same as the point 𝑙 where 𝜀 𝑙𝑖 (𝑝)
first attains the positive value 𝜀𝑖(𝑝) = 𝜀𝑖(𝑝𝑞) + ⟨𝜇, 𝛼∨𝑖 ⟩.

Repeated application of the raising operators followed by Lemma 7.3.1 leads to an embedding of ℳ(𝜆,R) into
the tensor product ⨂(𝑖,𝑐)∈Rℬ(𝜛𝑖), as promised in Section 6.3.

We now appeal to the general fact that the tensor product of a Demazure module with a highest-weight vector
is again a Demazure module. In crystal terms, this is the main result of [Jos03]: the tensor product 𝑋 ⊗ 𝑏𝜇 of a
Demazure crystal 𝑋 with the highest-weight element 𝑏𝜇 ∈ ℬ(𝜇) is again a Demazure crystal.

7.3.7 Theorem (Truncations are Demazure crystals)
Let (𝜆,R) be a dominant pair, and 𝐽 an upward-closed set containing R. The truncation ℳ(𝜆,R, 𝐽 ) is a
Demazure crystal.

7.3.8 Proof

For each dominant pair (𝜆,R) the set {𝑒𝜆 ⋅ 𝑦R} is a Demazure crystal, isomorphic to ℬ𝑒(𝜆). By Proposition
3.2.3 of [Kas93], the property of being Demazure is preserved under extension of 𝑖-strings. By the main
theorem of [Jos03] and Lemma 7.3.1, multiplication at the boundary 𝜕𝐽 of a truncation ℳ(𝜆,R, 𝐽 ) by a
monomial of the form 𝑒𝜇 ⋅ Q for SuppQ ⊆ 𝜕𝐽 also preserves the property of being Demazure. Since every
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truncation can be built out of these operations (Theorem 7.2.3), every truncation is Demazure.

The upshot of this result is twofold. The fact that the truncations ℳ(𝜆,R, 𝐽 ) are Demazure is quite interesting,
since the truncations are defined straightfowardly, and globally in terms of the monomials (rather than in terms
of any crystal-theoretic operations). The second is that our character formula is now useful for truncations, as it
uniquely determines the isomorphism class of the truncation as a Demazure crystal. As a consequence of this, we
obtain in finite type a character formula for the full crystal ℳ(𝜆,R) in terms of the character of any truncation
of it.

7.3.9 Corollary (A character formula in finite type)
Let Φ be a root datum of finite type (𝐼 , ⋅), 𝑤𝐼 ∈ 𝑊𝐼 the longest element of the Weyl group, and 𝐽 ⊇ SuppR
any upward-closed set containing R. Then a formula for the character of ℳ(𝜆,R) is

chℳ(𝜆,R) = 𝜋𝑤𝐼 chℳ(𝜆,R, 𝐽 ). (7.3.10)

7.3.11 Proof
As it is a disjoint union of highest-weight crystals, the character of the product monomial crystal is

chℳ(𝜆,R) = ∑
ℎ∈𝐻

chℬ(wt ℎ), (7.3.12)

where 𝐻 ⊆ ℳ(𝜆,R) is the set of highest-weight elements. Since the truncation ℳ(𝜆,R, 𝐽 ) has the same set
of primitive elements 𝐻 and is a Demazure crystal, there exists some function 𝑤 ∶ 𝐻 → 𝑊𝐼 into the Weyl
group such that

ℳ(𝜆,R, 𝐽 ) ≅ ⨁
ℎ∈𝐻

ℬ𝑤(ℎ)(wt ℎ), (7.3.13)

which on the level of characters gives the sum of Demazure characters

chℳ(𝜆,R, 𝐽 ) = ∑
ℎ∈𝐻

𝜋𝑤(ℎ)(𝑒wt ℎ). (7.3.14)

Since the Demazure operators give a zero-Hecke action (Remark 5.2.10) on the character ring ℤ[𝑋(Φ)], we
have

𝜋𝑤𝐼 chℳ(𝜆,R, 𝐽 ) = ∑
ℎ∈𝐻

𝜋𝑤𝐼 (𝑒wt ℎ), (7.3.15)

which is precisely the character of the product monomial crystalℳ(𝜆,R), since by the Demazure character
formula Theorem 5.2.5 we have 𝜋𝑤𝐼 (𝑒wt ℎ) = chℬ(wt ℎ).

We now have two of our main results: the general inductive formula Theorem 7.2.3 for the character of a trun-
cation, and the finite-type specialisation Corollary 7.3.9 to the character of the whole crystal finite type. Where
should we go from here? We still have not proven that the product monomial crystal is actually a crystal (Theo-
rem 6.3.5), and that will be the purpose of the next chapter. After that we will move on to putting this character
formula to good use, showing in type A that the product monomial crystal is the crystal of a particular module
called a generalised Schur module.
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8 Nakajima quiver varieties

Nakajima has defined varieties𝔐(𝜆, 𝜇), now calledNakajima quiver varities, which geometrise the 𝜇-weight space
of the integrable highest-weight representation 𝐿(𝜆). By this we mean that there is symplectic structure on
𝔐(𝜆, 𝜇) and a Lagrangian subvariety 𝔏(𝜆, 𝜇) ⊆ 𝔐(𝜆, 𝜇) such that the top homology of the Lagrangian subva-
riety has the same dimension as 𝐿(𝜆)𝜇 . The top homology (with complex coefficients) of the variety 𝔏(𝜆) ∶=
⋃𝜇≤𝜆 𝔏(𝜆, 𝜇) posesses an action of the Kac-Moody algebra 𝔤(Φ), making the homology into a module isomorphic
to 𝐿(𝜆). Furthermore, the set Irr𝔏(𝜆) of irreducible components can be given a crystal structure, isomorphic to
the crystalℬ(𝜆).
The goal of this chapter is to give a relatively self-contained explanation of why the product monomial crystal,
which was defined as a subset of the monomial crystal ℳ(Φ), is actually a subcrystal — this was Theorem 6.3.5
whose proof we had deferred. The proof will use a subvariety of a quiver variety called a graded quiver variety,
and a construction (again by Nakajima) of a Φ-crystal on the set of connected components of the graded quiver
variety. We will show that Nakajima’s crystal structure agrees with the analogue of the product monomial crystal
inside the variationℳ𝑐(Φ) of the monomial crystal. The method of proof we use is not our own, instead following
Section 7 of [Kam+19a].

One caveat to this proof is that Nakajima quiver varieties only work when the Cartan datum (𝐼 , ⋅) is symmetric
and bipartite, meaning that out of the finite and affine type Cartan matrices this proof will only be valid for finite
types A, D, and E, as well as their untwisted affinisations (excluding those A(1)

𝑛 which are an odd cycle). Various
computer experiments suggest that the product monomial crystal is always a genuine subcrystal of ℳ(Φ), and
all of the results in this thesis still hold true in this generality, assuming one could somehow prove Theorem 6.3.5
for any bipartite type (𝐼 , ⋅).

8.1 Representations of quivers

A quiver is a generalisation of a directed graph, which is allowed to have arbitrarily many doubled edges and self-
loops. The quivers we deal with will be finite in both the number of vertices and the number of edges, however
we give the general definition below.

8.1.1 Definition (Quiver)
A quiver is a quadruple 𝑄 = (𝐼 , 𝐸, tail, head), where

1. 𝐼 is a set, called the vertex set,
2. 𝐸 is a set, called the edge set,
3. tail∶ 𝐸 → 𝐼 is a function, giving the tail vertex of each edge, and
4. head∶ 𝐸 → 𝐼 is a function, giving the head vertex of each edge.

Quivers are drawn in the same way as directed graphs, where vertices are represented by dots, and the edge 𝑒 ∈ 𝐼
is represented as an arrow from the tail of 𝑒 to the head of 𝑒, i.e. tail(𝑒) 𝑒−→ head(𝑒). For example, below is a quiver
on the vertex set 𝐼 = {𝑎, 𝑏, 𝑐} and the edge set 𝐸 = {𝑤, 𝑥, 𝑦 , 𝑧}.

𝑏 𝑐𝑎 𝑤

𝑥

𝑦
𝑧
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A representation of a quiver is an assignment of a vector space to each vertex, and a linear map to each arrow
from the tail vector space to the head vector space.

8.1.2 Definition (Quiver representation)
A representation (𝑉 , 𝜑) of the quiver 𝑄 = (𝐼 , 𝐸, tail, head) over the field 𝕜 is the data of:

1. For each vertex 𝑖 ∈ 𝐼 a 𝕜-vector space 𝑉𝑖, and
2. for each edge 𝑒 = (𝑖 𝑒−→ 𝑗) ∈ 𝐸 a 𝕜-linear map 𝜑𝑒 ∶ 𝑉𝑖 → 𝑉𝑗 .

Let (𝑉 , 𝜑) and (𝑊 , 𝜓 ) be two 𝕜-representations of the same quiver 𝑄. A morphism of quiver representations

𝑇 ∶ (𝑉 , 𝜑) → (𝑊 , 𝜓) is a collection 𝑇 = (𝑇𝑖)𝑖∈𝐼 of 𝕜-linear maps 𝑇𝑖 ∶ 𝑉𝑖 → 𝑊𝑖 such that for each edge 𝑒 = (𝑖 𝑒−→
𝑗) ∈ 𝐸 in the quiver, the obvious square 𝑇𝑗𝜑𝑒 = 𝜓𝑒𝑇𝑖 commutes.

Let 𝑄 be a quiver and 𝕜 a field. Define Rep𝕜 𝑄 to be the category whose objects are representations of the
quiver 𝑄 over the field 𝕜, and whose morphisms are morphisms of quiver representations.

It is a pleasant exercise with the axioms to show that the category Rep𝕜 𝑄 is an abelian category. An alternative
way of seeing this fact is to find an associative algebra 𝕜𝑄 (commonly called the path algebra) whose represen-
tation category is equivalent to Rep𝕜 𝑄.

8.2 Moduli spaces of quiver representations

Fix a quiver 𝑄 = (𝐼 , 𝐸) and an 𝐼 -graded vector space 𝑉 = ⨁𝑖∈𝐼 𝑉𝑖. Let Rep(𝑄, 𝑉 ) denote the set of representations
of 𝑄 with underlying vector spaces 𝑉 . This is simply a direct product of morphism spaces:

Rep(𝑄, 𝑉 ) = {(𝜑𝑒)𝑒∈𝐸 ∣ 𝑒 = (𝑖 𝑒−→ 𝑗) ∈ 𝐸 and 𝜑𝑒 ∈ Hom𝕜(𝑉𝑖, 𝑉𝑗)}. (8.2.1)

Hence Rep(𝑄, 𝑉 ) is a 𝕜-vector space. (The vector space structure of Rep(𝑄, 𝑉 ) is not so easy to see from the 𝕜𝑄-
module perspective). Furthermore, it carries a 𝐺𝑉 = ∏𝑖∈𝐼 GL(𝑉𝑖)-action by base-change, where the action on the

component 𝜑𝑒 for (𝑖
𝑒←− 𝑗) is given by 𝑔 ⋅ 𝜑𝑒 = 𝑔𝑖𝜑𝑒𝑔−1𝑗 . The subgroup 𝕜× ↪ 𝐺𝑉 of diagonally embedded scalars

acts trivially on Rep(𝑄, 𝑉 ).
8.2.2 Example

Consider the quiver 𝑄 consisting of two vertices 𝐼 = {1, 2} and a single edge 1 → 2. Suppose we choose the
𝐼 -graded vector space 𝑉 with 𝑉1 = ℂ and 𝑉2 = ℂ2. Then the space Rep(𝑄, 𝑉 ) ≅ 𝔸2ℂ since we may identify a

map 𝜑1→2 ∶ ℂ → ℂ2 with the column vector 𝜑1→2(1) = (𝑥𝑦). The group 𝐺𝑉 = GL1 ×GL2 acts by

(𝑔1, 𝑔2) ⋅ (𝑥𝑦) = 𝑔2 (𝑥𝑦) 𝑔
−11 . (8.2.3)
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8.3 Nakajima quiver varieties

In this section we will go over the basics of Nakajima’s construction of the quiver variety𝔐(𝜆) for any dominant
weight 𝜆.
Let (𝐼 , ⋅) be a symmetric Cartan datum— for our purposes, wewill also assume that it is bipartite and hence admits
a 2-colouring 𝜁 ∶ 𝐼 → {0, 1}. Define a quiver by taking 𝐼 as the vertex set, and adding |𝑖 ⋅ 𝑗| oriented edges between
𝑖 and 𝑗, pointing from the odd vertex to the even vertex: call the collection of all these edges Ω. Similarly, add
another |𝑖 ⋅ 𝑗| edges between 𝑖 and 𝑗, this time pointing from the even vertex to the odd vertex: call the collection of
all these edges Ω . Then 𝑄 = (𝐼 , Ω ⊔ Ω ) is a quiver. For example, if (𝐼 , ⋅) is A3, the resulting quiver 𝑄 looks like

Fix a root datum Φ of type (𝐼 , ⋅), and a pair of weights 𝜆, 𝜇 such that 𝜆 is dominant and 𝜇 ≤ 𝜆. In order to construct
the quiver variety𝔐(𝜆, 𝜇)we choose 𝐼 -graded vector spaces𝑊 and 𝑉 which will ‘represent’ the weights 𝜆 and 𝜇.
The framing space 𝑊 is any 𝐼 -graded vector space such that ⟨𝜆, 𝛼∨𝑖 ⟩ = dim𝑊𝑖 for all 𝑖 ∈ 𝐼 , while the other vector
space 𝑉 is any 𝐼 -graded vector space such that 𝜆 − 𝜇 = ∑𝑖∈𝐼 (dim 𝑉𝑖)𝛼𝑖.
Now that we have our fixed choice of 𝑊 and 𝑉 , define the large vector space

M(𝑉 ,𝑊 ) = Repℂ(𝑄, 𝑉 ) ⊕ Homℂ𝐼 (𝑊 , 𝑉 ) ⊕ Homℂ𝐼 (𝑉 ,𝑊 ). (8.3.1)

This space can be thought of as a kind of Repℂ(𝑄♡, 𝑉 , 𝑊 ) for a framed quiver 𝑄♡. The notation used in [Nak01b]
is (𝐵, 𝑖, 𝑗) ∈ M(𝑉 ,𝑊 ) for a typical element, so 𝐵∶ 𝑉 → 𝑉 are the horizontal maps, 𝑖∶ 𝑊 → 𝑉 goes downwards,
and 𝑗 ∶ 𝑉 → 𝑊 goes upwards. In the 𝐴3 example the framed quiver looks like this, with a ‘summary schematic’
on the right.

𝑉2𝑉1 𝑉3

𝑊2𝑊1 𝑊3

𝑉

𝑊

𝑖 𝑗

𝐵

=

Since we really want to keep to Nakajima’s notation here, in this chapter only we will use 𝑖, 𝑗 to mean these maps
of quivers, and switch to using the letters 𝑘, 𝑙 ∈ 𝐼 to index vertices of the Dynkin diagram.

The reductive group 𝐺𝑉 = ∏𝑘∈𝐼 GL(𝑉𝑘) acts on the left ofℳ(𝑉 ,𝑊 ) by base change automorphisms: 𝑔 ⋅ (𝐵, 𝑖, 𝑗) =
(𝑔𝐵𝑔−1, 𝑔𝑖, 𝑗𝑔−1). Choosing any function 𝜖 ∶ Ω → ℂ× satisfying 𝜖(𝑒) + 𝜖(𝑒) = 0 defines a symplectic form on the
vector spaceM(𝑉 ,𝑊 ) by

𝜔((𝐵, 𝑖, 𝑗), (𝐵′, 𝑖′, 𝑗′)) = tr((𝜖𝐵)𝐵′) + tr(𝑖𝑗′ − 𝑖′𝑗), (8.3.2)

where 𝜖𝐵 means to scale each map 𝐵𝑒 ∶ 𝑉tail(𝑒) → 𝑉head(𝑒) by the scalar 𝜖(𝑒). The action of 𝐺𝑉 preserves the
symplectic form:

𝜔(𝑔 ⋅ (𝐵, 𝑖, 𝑗), 𝑔 ⋅ (𝐵′, 𝑖′, 𝑗′)) = 𝜔((𝑔𝐵𝑔−1, 𝑔𝑖, 𝑗𝑔−1), (𝑔𝐵′𝑔−1, 𝑔𝑖′, 𝑗′𝑔−1))
= tr(𝑔(𝜀𝐵)𝐵′𝑔−1) + tr(𝑔𝑖𝑗′𝑔−1 − 𝑔𝑖′𝑗𝑔−1)
= 𝜔((𝐵, 𝑖, 𝑗), (𝐵′, 𝑖′, 𝑗′)).

(8.3.3)

The moment map (which we stress is nonlinear) associated to the action of 𝐺𝑉 is defined up to an additive
constant. The moment map 𝜇 which vanishes at the origin is given by

𝜇 ∶ M(𝑉 ,𝑊 ) → (Lie𝐺𝑉 )∗, 𝜇(𝐵, 𝑖, 𝑗) = (𝜖𝐵)𝐵 + 𝑖𝑗, (8.3.4)
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where Lie𝐺𝑉 has been identified with its dual via the trace pairing, so that for 𝐶 ∈ Lie𝐺𝑉 = ∏𝑘∈𝐼 Endℂ(𝑉𝑘) we
have

𝜇(𝐵, 𝑖, 𝑗)(𝐶) = tr(𝐶((𝜖𝐵)𝐵 + 𝑖𝑗)). (8.3.5)

The preimage 𝜇−1(0) of the moment map is an affine algebraic variety, not necessarily reduced.

The first kind of quiver variety is the categorical quotient

𝔐0(𝑉 ,𝑊 ) = 𝜇−1(0) // 𝐺𝑉 = Specℂ[𝜇−1(0)]𝐺𝑉 . (8.3.6)

This is an affine algebraic variety, whose underlying set is identified with the set of closed 𝐺𝑉 -orbits in 𝜇−1(0).
A point (𝐵, 𝑖, 𝑗) ∈ 𝜇−1(0) is stable if the only 𝐵-invariant 𝐼 -graded subspace 𝑆 ⊆ 𝑉 contained in ker 𝑗 is 0. We write
𝜇−1(0)𝑠 for the set of stable points, which is a 𝐺𝑉 -invariant set. Define the second kind of quiver variety as the
GIT (geometric invariant theory) quotient

𝔐(𝑉 ,𝑊 ) = 𝜇−1(0)𝑠/𝐺𝑉 . (8.3.7)

The underlying set of points of the GIT quotient is the quotient of the 𝐺𝑉 -set 𝜇−1(0)𝑠 of stable points by the
group 𝐺𝑉 . The 𝐺𝑉 action is free, and 𝔐(𝑉 ,𝑊 ) is a smooth projective variety inheriting a symplectic form from
M(𝑉 ,𝑊 ). There is a projective morphism

𝜋 ∶ 𝔐(𝑉 ,𝑊 ) → 𝔐0(𝑉 ,𝑊 ), (8.3.8)

sending the equivalence class [𝐵, 𝑖, 𝑗] to that unique closed orbit contained in the orbit closure 𝐺𝑉 ⋅ (𝐵, 𝑖, 𝑗) .
8.3.9 Example (Nakajima quiver varieties in type A1)
In type A1, the Coxeter graph consists of a single vertex, and hence the framed quiver 𝑄♡ has only two
vertices. Let𝑊 be the framing vector space and 𝑉 the one corresponding to the unique vertex of the original
quiver 𝑄. The linear space simplifies since 𝑄 contains no edges:

M(𝑉 ,𝑊 ) = Homℂ(𝑊 , 𝑉 ) ⊕ Homℂ(𝑉 ,𝑊 ). (8.3.10)

The 𝐺𝑉 = GL(𝑉 )-action on the point (𝑖, 𝑗) ∈ 𝔐(𝑉 ,𝑊 ) is by 𝑔 ⋅ (𝑖, 𝑗) = (𝑔𝑖, 𝑗𝑔−1), with the moment map
𝜇(𝑖, 𝑗) = 𝑖𝑗 ∈ Endℂ(𝑉 ). The condition (𝑖, 𝑗) ∈ 𝜇−1(0) is precisely 𝑖𝑗 = 0 ∈ Endℂ(𝑉 ), or in other words
im 𝑗 ⊆ ker 𝑖. The stability condition is equivalent to requiring that 𝑗 is injective, and hence we have

𝜇−1(0) = {(𝑖∶ 𝑊 → 𝑉 , 𝑗 ∶ 𝑉 → 𝑊) ∣ 𝑗 is injective, and 𝑖𝑗 = 0}. (8.3.11)

Let Gr(𝑉 ,𝑊 ) = {𝑈 ⊆ 𝑊 ∣ 𝑈 ≅ 𝑉 } be the Grassmannian of 𝑉 -planes in 𝑊 . Alternatively, we can think
of Gr(𝑉 ,𝑊 ) as the quotient of the space Homℂ(𝑉 ,𝑊 )∘ of injective linear maps by the right action of 𝐺𝑉 ,
identifying all injective maps with the same image. Fix a splitting𝑊 = 𝑉 ⊕𝑉 ′, then any point 𝑈 ∈ Gr(𝑉 ,𝑊 )
may be written as the image of the map (𝑗𝑉𝜎𝑈 ) ∶ 𝑉 → 𝑉 ⊕ 𝑉 ′ = 𝑊 , where 𝑗𝑉 ∶ 𝑉 ↪ 𝑊 is the inclusion

and 𝜎𝑈 ∶ 𝑉 → 𝑉 ′. This defines an affine open neighbourhood of the point 𝑉 ∈ Gr(𝑉 ,𝑊 ) isomorphic to
Hom(𝑉 , 𝑉 ′). Correspondingly, the cotangent space at the point 𝑉 is the affine space Hom(𝑉 ′, 𝑉 ) ≅ {𝑗 ∈
Hom(𝑊 , 𝑉 ) ∣ 𝑗(𝑉 ) = 0}. The cotangent bundle of the Grassmannian is precisely the quotient of 𝜇−1(0) by
the action of 𝐺𝑉 , hence we have

𝜇−1(0)/𝐺𝑉 = 𝔐(𝑉 ,𝑊 ) ≅ 𝑇 ∗ Gr(𝑉 ,𝑊 ). (8.3.12)

We find that 𝔐(𝑉 ,𝑊 ) is nonempty if and only if dim 𝑉 ≤ dim𝑊 , and that if dim 𝑉 = 0 or dim 𝑉 = dim𝑊
then𝔐(𝑉 ,𝑊 ) is a point.

Define the Nakajima quiver variety associated to𝑊 to be𝔐(𝑊) = ⨆𝑉 𝔐(𝑊 , 𝑉 ), where we let 𝑉 vary over a fixed
set of vector spaces, one for each possible 𝐼 -graded dimension. As we have already seen in Example 8.3.9, there
will typically be many 𝑉 for which 𝔐(𝑊 , 𝑉 ) is empty. It is important to remember that whenever a 𝑉 appears
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in the discussion of the variety𝔐(𝑊), we are implicitly working inside the piece𝔐(𝑊 , 𝑉 ). This is obvious once
pointed out, but might trip up the casual reader otherwise.

Lastly, recall that the 𝐼 -graded dimensions of 𝑊 and 𝑉 were determined by a dominant weight 𝜆 and a weight
𝜇 ≤ 𝜆. We define𝔐(𝜆, 𝜇) = 𝔐(𝑊 , 𝑉 ) and𝔐(𝜆) = 𝔐(𝑊) when we prefer to speak of weights rather than graded
vector spaces.

8.4 Vector bundles on quiver varieties

For a given pair (𝑊 , 𝑉 ), both 𝑊 and 𝑉 can be considered as left 𝐺𝑉 representations, where 𝑉 is the defining
representation of 𝐺𝑉 , and 𝑊 is a trivial representation. As the action of 𝐺𝑉 on the set 𝜇−1(0)𝑠 of stable points is
free, the projection map 𝜇−1(0)𝑠 ↠ 𝔐(𝑉 ,𝑊 ) is a left principal 𝐺𝑉 -bundle. We may perform the associated bundle
construction (Chapter 4.5 of [Hus94]) yielding two 𝐼 -graded vector bundles 𝒱 and𝒲 over𝔐(𝑊 , 𝑉 ).
We have vector bundles Rep(𝑄, 𝒱 ), Homℂ𝐼 (𝒲 ,𝒱 ) and Homℂ𝐼 (𝒱 ,𝒲 ) analogously as before.

8.5 Graded quiver varieties

In [Nak01b], Nakajima constructs representations of tensor products 𝐿(𝜆1)⊗⋯⊗𝐿(𝜆𝑛) by considering a suitable
subvariety inside 𝔐(𝜆1 + ⋯ + 𝜆𝑛), defined by picking a grading on the framing space 𝑊 which separates it into
pieces of ‘sizes’ 𝜆1, … , 𝜆𝑛. Later in the same paper (Section 8), a more general grading is considered, defining a
subvariety which we will call a graded Nakajima quiver variety. A crystal structure is defined on the connected
components of this graded quiver variety, which we will show is isomorphic to the product monomial crystal.

Wewill now consider𝑊 to be not just an 𝐼 -graded vector space, but an (𝐼 , ℤ)-bigraded vector space, meaning that
we put a ℤ-grading on each 𝐼 -homogeneous piece 𝑊𝑘 . We will continue to use lower indices for the 𝐼 -grading,
and start using upper indices for the ℤ-grading, so that 𝑊 𝑝

𝑘 is the subspace of the 𝐼 -graded piece 𝑊𝑘 which has
ℤ-grading 𝑝. Up to conjugacy in GL𝐼 (𝑊 ), the extra data of such a ℤ-grading is determined by a finite multiset Q
based in 𝐼 × ℤ, where dim𝑊 𝑝−1

𝑖 = Q[𝑖, 𝑝] (the indexing shift 𝑝 − 1 we use will make the morphism to the varied
monomial crystal ℳ𝑐(Φ) more pleasant later on). Let 𝜌Q ∶ ℂ× → GL𝐼 (𝑊 ) be a morphism of algebraic groups
giving the grading Q (again, 𝜌Q is determined by Q only up to conjugacy, so we fix any such morphism for the
remainder of this section).

From this point we are closely following Section 8 of [Nak01b], albeit choosing notation we findmore clear. Using
this extra ℤ-grading on 𝑊 , we define a ℂ×-action on M(𝑊 , 𝑉 ) by the formulas

𝑡 ⋄Q 𝐵𝑒 = {𝐵𝑒 if 𝑒 ∈ Ω,
𝑡𝐵𝑒 if 𝑒 ∈ Ω , 𝑡 ⋄Q 𝑖 = 𝑖𝜌Q(𝑡)−1, 𝑡 ⋄Q 𝑗 = 𝑡𝜌Q(𝑡)𝑗, (8.5.1)

which together define an action 𝑡⋄Q(𝐵, 𝑖, 𝑗). The ⋄Q action preserves the set 𝜇−1(0)𝑠 of stable points and commutes
with the 𝐺𝑉 ⋅ action, and hence descends to an action on the quiver variety𝔐(𝑊). The graded quiver variety is the
set of fixed points𝔐(𝑊)Q ⊆ 𝔐(𝑊) under the ⋄Q action, and we will soon see how to equip its set of connected
components with a crystal structure.

Consider a fixed point [𝐵, 𝑖, 𝑗] ∈ 𝔐(𝑊 , 𝑉 )Q. For each representative (𝐵, 𝑖, 𝑗) ∈ M(𝑊 , 𝑉 ) of the fixed point [𝐵, 𝑖, 𝑗],
there exists a unique map 𝜌 ∶ ℂ× → 𝐺𝑉 of algebraic groups satisfying

𝑡 ⋄Q (𝐵, 𝑖, 𝑗) = 𝜌−1(𝑡) ⋅ (𝐵, 𝑖, 𝑗). (8.5.2)

The conjugacy class of 𝜌 is independent of the choice of representative (𝐵, 𝑖, 𝑗), and hence we obtain a map

𝐹Q ∶ 𝔐(𝑊 , 𝑉 )Q → HomAlgGrp(ℂ×, 𝐺𝑉 )/𝐺𝑉 , (8.5.3)
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taking a fixed point [𝐵, 𝑖, 𝑗] to the conjugacy class [𝜌]. It turns out that the fibres of this map are precisely the
connected components of the graded quiver variety𝔐(𝑊 , 𝑉 )Q, and so we have a map

HomAlgGrp(ℂ×, 𝐺𝑉 )/𝐺𝑉 → 𝜋0(𝔐(𝑊 , 𝑉 )Q), [𝜌] ↦ 𝐹−1Q ([𝜌]). (8.5.4)

Technically, in order to construct a crystal structure on the set of connected components, one should consider a
larger Lagrangian subvariety containing the graded quiver variety, of points whose 𝑡 → ∞ ⋄Q-limit lands inside
the graded quiver variety. This gives ‘enough information’ to determine where the crystal operators should go.
However, it turns out that all of this information is implied by the conjugacy class [𝜌] indexing a connected
component, and so we will not mention these attracting sets further.

The crystal structure on the set of connected components is spelled out in Proposition 8.3 and Lemma 8.4 of
[Nak01b]. We will write it down here in compatible notation. Our main change is replacing a conjugacy class
[𝜌] ∈ HomAlgGrp(ℂ×, 𝐺𝑉 )/𝐺𝑉 by a finite multiset T𝜌 ∶ 𝐼 × ℤ → ℕ based in 𝐼 × ℤ, noting that the conjugacy class
of 𝜌 in 𝐺𝑉 is entirely determined by the dimensions T𝜌[𝑖, 𝑝] = dim 𝑉 𝑝

𝑖 , where the ℤ-grading on 𝑉 is coming from
𝜌. Therefore we have that each connected component of the graded quiver variety 𝔐(𝑊 , 𝑉 )Q is indexed by a
finite multiset T.

Over the connected component 𝐹−1Q (T) indexed by the multiset T, there is a complex of (𝐼 , ℤ)-graded vector
bundles, whose (𝑘, 𝑝)-graded component is

𝐶𝑝𝑘 (T) ∶ 𝑉 𝑝
𝑘 → 𝑊 𝑝−1

𝑘 ⨁
(𝑘 𝑒−→𝑙)∈Ω

𝑉 𝑝−1
𝑙 ⨁

(𝑘 𝑒−→𝑙)∈Ω
𝑉 𝑝
𝑙 → 𝑉 𝑝−1

𝑘 , (8.5.5)

where the middle term is in homological degree zero (recall that the dimensions of the 𝑉 𝑝
𝑘 appearing in the com-

plex above are determined by T, via T[𝑖, 𝑝] = dim 𝑉 𝑝
𝑖 ). The rank of this complex (alternating sum of dimensions)

features in the definition of the crystal structure, so we compute it explicitly here. Recall that our partition Ω⊔Ω
was determined by a two-colouring 𝜁 ∶ 𝐼 → {0, 1}, where we declared that Ω contains edges going from odd to
even vertices, while Ω goes from even to odd vertices, where ‘odd’ or ‘even’ is given by the two-colouring 𝜁 .
This means that for each vertex, one of the two summations in Eq. (8.5.5) is zero, depending on the parity of the
vertex. For even vertices, only the 𝑉 𝑝

𝑙 term contributes, while for odd vertices only the 𝑉 𝑝−1
𝑙 term contributes.

Together with our contrived choice of indexing shift dim𝑊 𝑝
𝑘 = Q[𝑘, 𝑝 + 1] we get

rank 𝐶𝑝𝑘 (T) = Q[𝑘, 𝑝] − T[𝑘, 𝑝] − T[𝑘, 𝑝 − 1] −∑
𝑙≠𝑘

𝑎𝑙𝑘 T[𝑙, 𝑝 − 𝜁 (𝑙)]. (8.5.6)

We can now give the crystal structure on the set 𝜋0(𝔐(𝑊 )Q) of connected components of the graded Nakajima
quiver variety.

8.5.7 Definition (Crystal structure on the graded quiver variety)

This is Lemma 8.4 of [Nak01b]1. Let Φ be a root datum of symmetric bipartite type (𝐼 , ⋅), 𝜆 ∈ 𝑋(Φ)+ a
dominant weight, 𝑊 an 𝐼 -graded vector space with dim𝑊𝑖 = ⟨𝜆, 𝛼∨𝑖 ⟩, and Q a multiset giving the (𝐼 , ℤ)-
bigrading on 𝑊 via dim𝑊 𝑝−1

𝑖 = Q[𝑖, 𝑝]. Over the connected component 𝐹−1Q (T) ⊆ 𝔐(𝑊 , 𝑉 )Q ⊆ 𝔐(𝑊)Q,
define

𝜀𝑝𝑘 (T) = −∑
𝑞>𝑝

rank 𝐶𝑞𝑘 (T), 𝜑𝑝𝑘 (T) = ∑
𝑞≤𝑝

rank 𝐶𝑞𝑘 (T),

𝜀𝑘(T) = max𝑝∈ℤ 𝜀𝑝𝑘 (T), 𝜑𝑘(T) = max𝑝∈ℤ 𝜑𝑝𝑘 (T),
(8.5.8)

and let
𝑛𝑒,𝑘(T) = max {𝑞 ∣ 𝜀𝑞𝑘 (T) = 𝜀𝑘(T)} , 𝑛𝑓 ,𝑘(T) = min {𝑞 ∣ 𝜑𝑞𝑘 (T) = 𝜑𝑘(T)} . (8.5.9)
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Define the weight on the connected component indexed by T to be

wt(T) = 𝜆 −∑
𝑘∈𝐼

(dim 𝑉𝑘)𝛼𝑘

= 𝜆 −∑
𝑘∈𝐼

∑
𝑝∈ℤ

T[𝑘, 𝑝]𝛼𝑘 .
(8.5.10)

Define the crystal operators by

𝑒𝑘(T) = {0 if 𝜀𝑘(T) = 0,
T − {(𝑘, 𝑛𝑒,𝑘(T))} if 𝜀𝑘(T) > 0, 𝑓𝑘(T) = {0 if 𝜑(T) = 0,

T + {(𝑘, 𝑛𝑓 ,𝑘(T))} if 𝜑𝑘(T) > 0. (8.5.11)

Then (wt, 𝜀𝑘 , 𝜑𝑘 , 𝑒𝑘 , 𝑓𝑘) gives the set of connected components 𝜋0(𝔐(𝜆)Q) the structure of a seminormal
crystal.

We can give an embedding of the crystal 𝜋0(𝔐(𝜆)Q) into the varied monomial crystal ℳ𝑐(Φ) of Definition 6.2.1
with parameters 𝑐𝑘𝑙 = 𝜁 (𝑘). Recall the auxiliary monomial from Definition 6.2.1:

𝑎𝑘,𝑝 = 𝑒𝛼𝑘 ⋅ 𝑦𝑘,𝑝 ⋅ 𝑦𝑘,𝑝+1 ⋅∏
𝑙≠𝑘

𝑦𝑎𝑙𝑘𝑙 ,𝑝+𝑐𝑙𝑘 . (8.5.12)

Extracting the exponent of 𝑦𝑘,𝑝 from the monomial 𝑒𝜆 ⋅ 𝑦Q ⋅ 𝑎−1T we get

(𝑒𝜆 ⋅ 𝑦Q ⋅ 𝑎−1T )[𝑘, 𝑝] = Q[𝑘, 𝑝] − T[𝑘, 𝑝] − T[𝑘, 𝑝 − 1] −∑
𝑙≠𝑘

𝑎𝑙𝑘T[𝑝 − 𝑐𝑙𝑘], (8.5.13)

precisely the same expression as rank 𝐶𝑝𝑘 (T) in Eq. (8.5.6) since 𝑐𝑙𝑘 = 𝜁 (𝑙). Define the map of sets

𝜙 ∶ 𝜋0(𝔐(𝑊)Q) → ℳ𝑐(Φ), 𝐹−1Q (T) ↦ 𝑒𝜆 ⋅ 𝑦R ⋅ 𝑧−1T . (8.5.14)

It is straightforward to verify that 𝜙 is a strict inclusion of crystals, by directly comparing Definitions 6.2.1
and 8.5.7 using Eq. (8.5.13) to convert between monomials and multisets.

We now wish to show that the image of 𝜙 is the product monomial crystal ℳ𝑐(𝜆,Q), by which we mean the
analogue of the product monomial crystalℳ(𝜆,Q), but defined inside the varied monomial crystalℳ𝑐(Φ) rather
than the monomial crystalℳ(Φ).

8.5.15 Theorem
LetΦ be a root datumof symmetric, bipartite, acyclic Cartan type (𝐼 , ⋅). Then the image of themap 𝜙 ∶ 𝜋0(𝔐(𝑊)Q) →
ℳ𝑐(Φ) is the varied product monomial crystal ℳ𝑐(𝜆,Q), where

ℳ𝑐(𝜆,Q) = 𝑒𝜆0 ⋅ ∏
(𝑖,𝑐)∈SuppQ

ℳ(𝑒𝜆𝑖,𝑐 ⋅ 𝑦R[𝑖,𝑐]𝑖,𝑐 ), (8.5.16)

and 𝜆 = 𝜆0 +∑(𝑖,𝑐)∈R 𝜆𝑖,𝑐 is any decomposition of 𝜆 such that ⟨𝛼∨𝑖 , 𝜆𝑖,𝑐⟩ = R[𝑖, 𝑐] for all (𝑖, 𝑐) ∈ R.

The proof follows the approach outlined in Proposition 7.7 of [Kam+19a].

8.5.17 Proof
Firstly, we reason that this works for a monomial concentrated in a single point. When the multiset Q is
concentrated, i.e. it is of the form Q = {(𝑘, 𝑝)𝑛}, then the vector space 𝑊 is concentrated in the term 𝑊 𝑝

𝑘 , so
it is concentrated over a single vertex with a ℂ×-action by a single weight. In this case a result2of Nakajima’s
(references in Section 8 of [Nak01b]) gives that the graded quiver variety (or rather, the set attracting to it)

1This is almost exactly what appears in [Nak01b], but we have switched the min and max appearing in the definitions of 𝑛𝑒,𝑘 and 𝑛𝑓 ,𝑘 .
We believe that this is a typo in Nakajima’s original paper, since the 𝑒𝑖 and 𝑓𝑖 crystal operators are not obviously partially inverse
without this change.
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8 Nakajima quiver varieties

is the usual Lagrangian variety 𝔏(𝜆) ⊆ 𝔐(𝜆), and hence the crystal afforded by the quiver variety is the
highest weight crystal ℬ(𝜆). Therefore in this case we have 𝜋0(𝔐(𝑊)Q) ≅ ℬ(𝜆) ≅ ℳ(𝑒𝜆 ⋅ 𝑦Q), and the
claim follows since 𝜙 is a nonzero crystal morphism between two connected seminormal crystals, and hence
must be an isomorphism.

Next, we consider the general case. Fix a factorisation of (𝜆,R) into dominant pairs

(𝜆1, (𝑘1, 𝑝1)𝑛1), … , (𝜆𝑁 , (𝑘𝑁 , 𝑝𝑁 )𝑛𝑁 ). (8.5.18)

An arbitrary monomial 𝑝 of the product monomial crystal ℳ𝑐(𝜆,Q) has an according factorisation 𝑝 =
𝑝1⋯𝑝𝑁 into monomials coming from the fundamental subcrystals.

Let Q𝑟 = {(𝑘𝑟 , 𝑝𝑟 )𝑛𝑟 }, so that each monomial 𝑝𝑟 is an element of the fundamental subcrystalℳ𝑐(𝜆𝑟 ,Q𝑟 ), and
let𝑊 = 𝑊[1]⊕⋯⊕𝑊[𝑟] be a factorisation of𝑊 such that𝑊[𝑟] is concentrated in the (𝐼 , ℤ)-degree (𝑘𝑟 , 𝑝𝑟 )
with dimension 𝑛𝑟 . Since the claim holds on fundamental subcrystals, for each 𝑟 there is an isomorphism

𝜙[𝑟]∶ 𝜋0(𝔐(𝑊 [𝑟])Q𝑟 ) ∼−→ ℳ𝑐(𝜆𝑟 ,Q𝑟 ) of crystals, and hence for each monomial 𝑝𝑟 there exists some 𝐼 -graded
vector space 𝑉 [𝑟] and fixed point (𝐵[𝑟], 𝑖[𝑟], 𝑗[𝑟]) ∈ ℳ(𝑊[𝑟], 𝑉 [𝑟])Q𝑟 mapping to 𝑝𝑟 under 𝜙[𝑟]. It is then
straightforward to check that

(𝐵[1] ⊕ ⋯ ⊕ 𝐵[𝑟], 𝑖[1] ⊕ ⋯ ⊕ 𝑖[𝑟], 𝑗[1] ⊕ ⋯ ⊕ 𝑗[𝑟]) ∈ ℳ(𝑊 , 𝑉 [1] ⊕ ⋯ ⊕ 𝑉 [𝑟]) (8.5.19)

is a ⋄Q-fixed point mapping to 𝑝 under 𝜙. This shows that ℳ𝑐(𝜆,Q) ⊆ im 𝜙.
To get the opposite inclusion, consider a T such that 𝐹−1Q (T) is nonempty (and hence is a connected com-
ponent of 𝔐(𝑊)Q). By Proposition 4.1.2 of [Nak01a] the variety 𝐹−1Q (T) is homotopic to its projective sub-
variety 𝐹−1Q (T) ∩ 𝔏(𝑊 ). The maximal torus 𝑇𝑊 ⊆ GL𝐼 (𝑊 ) acts on this subvariety, and hence there exists a
fixed point by Borel’s theorem. Lemma 3.2 of [Nak01b] implies that such a fixed point can be decomposed
as a sum of (𝐵[𝑟], 𝑖[𝑟], 𝑗[𝑟]) as above, where each (𝐵[𝑟], 𝑖[𝑟], 𝑗[𝑟]) is an element of 𝜋0(𝔐(𝑊 [𝑟])Q𝑟 ), and hence
𝜙(𝐹−1Q (T)) ∈ ℳ𝑐(𝜆,Q), showing that im 𝜙 ⊆ ℳ𝑐(𝜆,Q).

Having shown that 𝜙 is a crystal isomorphism, it is immediate that the subsetℳ𝑐(𝜆,Q) is a seminormal abstract

crystal of an 𝒪 int𝑞 (Φ)-module, and together with the isomorphismℳ𝑐(Φ)
∼−→ ℳ(Φ) given in Lemma 6.2.5 implies

that the product monomial crystalℳ(𝜆,R) is indeed a crystal: Theorem 6.3.5 is proven.

Finally, we also note that Theorem 8.5.15 together with the fact that 𝜋0(𝔐(𝑊 )Q) is connected when Q is con-
centrated in a single point imply that the product monomial crystal ℳ(𝜆,R) is well-defined, no matter how the
multiset R is broken up into fundamental pairs, since the identity Eq. (6.3.4) is proven.

2The acyclic assumption on (𝐼 , ⋅) is necessary for this result to hold.
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9 Generalised Schur modules

The irreducible polynomial representations of GL𝑛(ℂ) are parametrised by partitions 𝜆 with at most 𝑛 rows, each
simple module 𝐿(𝜆) having an explicit construction by applying a certain Schur functor 𝒮𝜆 ∶ Vectℂ → Vectℂ to
the defining representation of GL𝑛. For this reason, the representation 𝐿(𝜆) is sometimes called a Schur module:
the image of the defining representation under a Schur functor. There is a natural generalisation of the functor
𝒮𝜆 to any diagram 𝐷 of boxes in the plane, recovering 𝒮𝐷 = 𝒮𝜆 in the case that 𝐷 is a Young diagram of the
partition 𝜆. The image of the defining representation under such a functor 𝒮𝐷 is accordingly called a generalised
Schur module.

Our eventual aim for these final two chapters is to show a correspondence between diagrams 𝐷 and multisets R
such that the product monomial crystalℳ(𝜆,R) ⊆ ℳ(GL𝑛) is the crystal of a generalised Schur module 𝒮𝐷(ℂ𝑛).
In order to do this we put two character formulae to work, the first being our own formula Theorem 7.2.3 on the
product monomial crystal side, and the second formula due Magyar, Reiner, and Shimozono on the generalised
Schur module side. Unfortunately, this only gets us as far as the statement ‘they match for large enough 𝑛’, and
so we spend Chapter 10 showing some stability properties of the monomial crystal (which are interesting in their
own right) to deduce the result in general.

In this chapter we will first define generalised Specht modules, the symmetric group analogues of the generalised
Schur modules, which can be used to give a quick definition of the Schur modules from which their stability
properties are evident. We then introduce the generalised Schur functors 𝒮𝐷 which give a second definition of
a generalised Schur module as the image of the defining representation under 𝒮𝐷 , and show that (in character-
istic zero) these two different definitions of generalised Schur modules coincide. The Schur functors are special
cases of flagged Schur functors, in a similar way to how the highest-weight modules 𝐿(𝜆) are special cases of De-
mazure modules 𝐿𝑤 (𝜆). The flagged Schur functors are more amenable to inductive analysis, and we give results
due to Magyar, Reiner, and Shimozono about the characters of flagged Schur modules. Finally, we give a direct
correspondence between diagrams 𝐷 and multisets R which we use to show that the characters of the product
monomial crystal ℳ(𝜆,R) and the generalised Schur module 𝒮𝐷(ℂ𝑛) coincide for column-convex diagrams 𝐷,
provided that 𝑛 is large enough.

9.1 Generalised Specht modules

Perhaps the quickest way of defining generalised Schur modules is via their analogue for representations of
symmetric groups, the generalised Specht modules. We first recall some necessary combinatorics.

9.1.1 Definition (Partitions)
A partition is a weakly decreasing finitely supported sequence 𝜆∶ ℙ → ℕ. A partition 𝜆 can be regarded as
a finite list 𝜆 = (𝜆1, … , 𝜆𝑙) where 𝜆1 ≥ ⋯ ≥ 𝜆𝑙 > 0 and 𝜆𝑟 = 0 for 𝑟 > 𝑙. Each element 𝜆𝑖 ≥ 1 is called a part
of 𝜆, the sum of the parts |𝜆| = ∑𝑖≥1 𝜆𝑖 is called the size of 𝜆, and the size of the support ℓ(𝜆) = 𝑙 is called the
length of 𝜆. When 𝜆 has size 𝑛 we say that 𝜆 is a partition of 𝑛. The empty partition is the unique partition of
0 and is denoted by ∅. We define the sets

1. Part of all partitions,
2. Part(≤ 𝑙) of all partitions of length at most 𝑙,
3. Part𝑛 of all partitions of size 𝑛,
4. Part𝑛(≤ 𝑙) = Part𝑛 ∩Part(≤ 𝑙) of all partitions of 𝑛 with length at most 𝑙.
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9 Generalised Schur modules

The first two sets are always infinite (besides the special case Part(≤ 0) = {∅}), while the last two sets are
always finite.

It is common to represent a partition 𝜆 pictorially via its Young diagram 𝐷(𝜆) ⊆ ℙ × ℙ, where 𝐷(𝜆) is the subset
consisting of those (𝑖, 𝑗) such that 𝑗 ≤ 𝜆𝑖. The coordinates (𝑖, 𝑗) are read similarly to matrices, with 𝑖 increasing
down the page and 𝑗 increasing to the right. The Young diagrams of the partitions 𝜆 ∈ Part5 are pictured as
follows:

(5) (4, 1) (3, 2) (3, 1, 1) (2, 2, 1) (2, 1, 1, 1) (1, 1, 1, 1, 1)

The partitions Part𝑑 of size 𝑑 index the conjugacy classes in the symmetric group 𝔖𝑑 , classifying a permutation
by its sorted list of cycle lengths. By the general theory of representations of finite groups, the partitions of
size 𝑑 also index the set {Σ𝜆 ∣ 𝜆 ∈ Part𝑑 } of pairwise nonisomorphic irreducible representations of ℂ[𝔖𝑑 ]. The
constructions we will give of these modules Σ𝜆 are called Specht modules, and the reader can find a full account
of this from the traditional perspective (which we will briefly go over here) in Chapter 7 of [Ful96]). We also
mention that there is an alternative beautiful derivation of these modules, including a canonical decomposition
into lines, due to Okounkov and Vershik [VO05] and explained well in Chapter I.2 of [Kle05].

In order to construct the Specht module Σ𝜆 , we first fix a bijective tableau 𝑇 of shape 𝜆, which is a bijective
map 𝑇 ∶ 𝐷(𝜆) → [𝑑]. The symmetric group 𝔖𝑑 has a free transitive action on the set of bijective tableaux by
postcomposition, 𝜎 ⋅ 𝑇 = 𝜎 ∘ 𝑇 . The tableau 𝑇 determines a row stabilising subgroup 𝑅𝑇 ⊆ 𝔖𝑑 of elements
permuting the entries of 𝑇 within their rows, and a column stabilising subgroup 𝐶𝑇 of elements permuting the
entries of 𝑇 within their columns. For example, shown below is a bijective tableau 𝑇 of 𝜆 = (3, 2) together with
its row and column stabilising subgroups:

1 3
52 4
𝑇

𝑅𝑇 = 𝔖({2, 4, 5}) × 𝔖({1, 3}) 𝐶𝑇 = 𝔖({1, 2}) × 𝔖({3, 5}) × 𝔖({4})

Define the following elements of the group algebra ℂ[𝔖𝑑 ]:

𝑐𝑇 = ∑
𝜋∈𝐶𝑇

(−1)𝜋𝜋, 𝑟𝑇 = ∑
𝜎∈𝑅𝑇

𝜎, 𝑦𝑇 = 𝑐𝑇 𝑟𝑇 . (9.1.2)

The element 𝑦𝑇 is called the Young symmetriser associated to 𝑇 and is a pseudo-idempotent of ℂ[𝔖𝑑 ], meaning that
𝑦2𝑇 = 𝑧𝑦𝑇 for some nonzero scalar 𝑧 ∈ ℂ×. The left submodule Σ𝑇 = ℂ[𝔖𝑑 ]𝑦𝑇 is called a Specht module associated
to 𝜆. Since 𝑅𝜎𝑇 = 𝜎𝑅𝑇 𝜎−1 and 𝐶𝜎𝑇 = 𝜎𝐶𝑇 𝜎−1, we have 𝑦𝜎𝑇 = 𝜎𝑦𝑇 𝜎−1 and hence a different choice of bijective
tableau 𝜎𝑇 will yield an isomorphic Specht module, with the map

Σ𝑇 → Σ𝜎𝑇 , 𝑥 ↦ 𝑥𝜎−1 (9.1.3)

giving an isomorphism of representations. Hence we can define the Specht module Σ𝜆 up to isomorphism to be
any one of the Σ𝑇 where 𝑇 is a bijective tableau of shape 𝜆.

9.1.4 Theorem
Fix a 𝑑 ≥ 1. The Specht modules {Σ𝜆 ∣ 𝜆 ∈ Part𝑑 } give a complete list of pairwise nonisomorphic irreducible
representations of the symmetric group 𝔖𝑑 over the complex numbers ℂ.

Everything we have done so far is completely classic. We will generalise this construction in one of the most
naïve ways possible, by replacing the Young diagram 𝐷(𝜆) ⊆ ℙ × ℙ with an arbitrary subset 𝐷 ⊆ ℙ × ℙ of size 𝑑 ,
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called a diagram. We can define bijective tableaux 𝑇 ∶ 𝐷 → [𝑑] and the row and column stabilising subgroups 𝑅𝑇
and 𝐶𝑇 in the same way as before, and we end up with a generalised Young symmetriser 𝑦𝑇 . This symmetriser is
still a pseudo-idempotent of the group algebra, but the associated generalised Specht module Σ𝐷 ≅ Σ𝑇 = ℂ[𝔖𝑑 ]𝑦𝑇
is no longer irreducible in general. As the representation theory of ℂ[𝔖𝑑 ] is semisimple, the generalised Specht
module Σ𝐷 decomposes as a direct sum of Specht modules.

9.1.5 Definition (Generalised Littlewood-Richardson coefficients)

The multiplicity 𝑐𝜆𝐷 ∶= [Σ𝜆 ∶ Σ𝐷] of the irreducible module Σ𝜆 inside the generalised Specht module Σ𝐷 is
called a generalised Littlewood-Richardson coefficient. As the isomorphism class of Σ𝐷 is invariant under row
or column permutations of 𝐷, so are the coefficients 𝑐𝜆𝐷 .

We will justify the name generalised Littlewood-Richardson coefficients. A diagram is skew if it is equal to the
difference 𝐷(𝜈) ⧵ 𝐷(𝜆) of two Young diagrams. By a theorem in Section 3 of [JP79], the multiplicity of the Specht
module Σ𝜇 in the generalised Specht module Σ𝐷(𝜈)⧵𝐷(𝜆) is equal to the inner product ⟨𝑠𝜈/𝜆 , 𝑠𝜇⟩ of symmetric
functions, which is the Littlewood-Richardson coefficient 𝑐𝜈𝜆𝜇 counting the number of Littlewood-Richardson
tableaux of shape𝐷(𝜈)⧵𝐷(𝜆) and weight 𝜇 (Section I.9 of [Mac95]). Hence the generalised Littlewood-Richardson
coefficient 𝑐𝜇𝐷(𝜈)⧵𝐷(𝜆) is equal to the Littlewood-Richardson coefficient 𝑐𝜈𝜆𝜇 .

9.1.6 Example

Let 𝐷 be the 5-box diagram 𝐷 = {(1, 1), (2, 2), (2, 3), (3, 2), (4, 3)} ⊆ ℙ × ℙ. By applying the row permutation
(234) and the column permutation (132),𝐷may be rearranged into a skew diagram𝐷′ = 𝐷(3, 2, 2, 1)⧵𝐷(2, 1).
We show this rearrangement pictorially, using colours to mark the original and final positions of boxes:

𝐷 𝐷′

We can then state the multiplicities of Specht modules inside the generalised (skew) Specht module by

𝑐𝜆𝐷(3,2,2,1)⧵𝐷(2,1) = [Σ𝜆 ∶ Σ𝐷(3,2,2,1)⧵𝐷(2,1)] = ⟨𝑠(3,2,2,1)/(2,1), 𝑠𝜆⟩, (9.1.7)

which are easily calculated by any software package1dealing with symmetric functions or Littlewood-
Richardson coefficients. In this case, we get

Σ𝐷 ≅ Σ𝐷′ ≅ Σ(2,1,1,1) ⊕ Σ(3,1,1) ⊕ Σ⊕2(2,2,1) ⊕ Σ(3,2). (9.1.8)

Hence the generalised Littlewood-Richardson coefficient 𝑐(2,2,1)𝐷 = 2.
The generalised Littlewood-Richardson coefficients are really a strict generalisation of Littlewood-Richardson
coefficients, since not all diagrams can be made via row and column permutations into a skew shape. For example
the following diagram

cannot be rearranged by column and row permutatinos to be skew. In addition to [JP79], the modules Σ𝐷 have
been studied in [Liu10], [Liu15], and variousworks of Reiner and Shimozonowhichwewill cite inwhat follows.

1Or by hand, if it’s a rainy day.
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9.2 Generalised Schur modules

Let 𝑉 be a finite-dimensional complex vector space, and GL(𝑉 ) the associated general linear group. The tensor
power 𝑉⊗𝑑 of the defining representation is naturally a (GL(𝑉 ), 𝔖𝑑 )-bimodule, where GL(𝑉 ) acts along the di-
agonal 𝑔 ⋅ (𝑣1 ⊗ ⋯𝑣𝑑 ) = 𝑔𝑣1 ⊗ ⋯ ⊗ 𝑔𝑣𝑑 and 𝔖𝑑 acts on the right by permuting tensor factors. For each diagram
𝐷 we get a left GL(𝑉 )-module 𝒮𝐷(𝑉 ) = 𝑉⊗𝑑 ⊗ℂ[𝔖𝑑 ] Σ𝐷 called a generalised Schur module, where 𝑑 = |𝐷| is the
number of boxes in the diagram 𝐷. When 𝐷 = 𝐷(𝜆) is the Young diagram of a partition, the generalised Schur
module 𝒮𝜆(𝑉 ) is irreducible, and we call it a Schur module.

As a consequence of Schur-Weyl duality, the generalised Schur module 𝒮𝐷(𝑉 ) decomposes in terms of the ir-
reducibles 𝒮𝜆(𝑉 ) with the same decomposition multiplicites 𝑐𝜆𝐷 given by the generalised Littlewood-Richardson
coefficients, where the sum is taken over the restricted set Part𝑑 (≤ dim 𝑉 ) of partitions with length at most
(dim 𝑉 ):

𝒮𝐷(𝑉 ) ≅ ⨁
ℓ(𝜆)≤dim 𝑉

𝑐𝜆𝐷𝒮𝜆(𝑉 ). (9.2.1)

Note that if ℓ(𝜆) > dim 𝑉 then𝒮𝜆(𝑉 ) = 0, so the above sumwould still be validwithout this restriction, butmust be
read more carefully. Eq. (9.2.1) has an important consequence for what we will call the stability of the generalised
Littlewood-Richardson coefficients: although the decomposition of the generalised Schur module 𝒮𝐷(𝑉 ) depends
on dim 𝑉 , the coefficients 𝑐𝜆𝐷 do not. Via an alternative definition of the generalised Schur module (Definition 9.2.5
and Lemma 9.2.7) and the Pieri rule, we can see that 𝑐𝜆𝐷 = 0 whenever the length of 𝜆 is larger than the number
of rows of 𝐷.
Eq. (9.2.1) gives the following interpretation of generalised Littlewood-Richardson coefficients, which should be
read in two parts: firstly a stability part about the ideal coefficients 𝑐𝜆𝐷 being determined for dim 𝑉 large enough,
and secondly a restriction part about how to apply those coefficients to unstable 𝑉 .

9.2.2 Corollary (Generalised Littlewood-Richardson coefficients via Schur modules)
Let 𝐷 be a diagram of 𝑑 boxes, and 𝑉 a vector space such that dim 𝑉 is at least the number of rows of 𝐷. Then
the coefficients 𝑐𝜆𝐷 appearing in the decomposition 𝒮𝐷(𝑉 ) ≅ ⨁𝜆 𝑐𝜆𝐷𝒮𝜆(𝑉 ) are the generalised Littlewood-
Richardson coefficients of Definition 9.1.5. Furthermore, if 𝑈 is any vector space, then the decomposition of
𝒮𝐷(𝑈 ) into irreducible modules is given by 𝒮𝐷(𝑈 ) ≅ ⨁ℓ(𝜆)≤dim 𝑈 𝑐𝜆𝐷𝒮𝜆(𝑈 ).

Although the definition we have given above of generalised Schur modules is concise and naturally gives the
stability result Corollary 9.2.2, it is is quite difficult to use for more ‘hands-on’ work and does not lend itself to a
straightforward filtration by smaller modules. We turn instead to the notion of a Schur functor.

The symmetric algebra 𝑆•(𝑉 ) and exterior algebra Λ•(𝑉 ) are graded-commutative Hopf algebras associated to 𝑉 .
Fixing a degree 𝑑 ∈ ℕ, iterated comultiplication followed by taking the (1, … , 1)-graded piece gives maps into
the tensor power 𝑉⊗𝑑 :

𝑆𝑑 (𝑉 ) Δ−→ 𝑉⊗𝑑 , 𝑣1⋯𝑣𝑑 ↦ ∑
𝜎∈𝔖𝑑

𝑣𝜎(1) ⊗⋯ ⊗ 𝑣𝜎(𝑛),

Λ𝑑 (𝑉 ) Δ−→ 𝑉⊗𝑑 , 𝑣1⋯𝑣𝑑 ↦ ∑
𝜎∈𝔖𝑑

(−1)𝜎 𝑣𝜎(1) ⊗⋯ ⊗ 𝑣𝜎(𝑛).
(9.2.3)

Similarly, we have maps from the tensor power 𝑉⊗𝑑 to the degree-𝑑 part of the symmetric and exterior algebras
by taking iterated multiplication:

𝑉⊗𝑑 𝑚−→ 𝑆𝑑 (𝑉 ), 𝑣1 ⊗⋯ ⊗ 𝑣𝑑 ↦ 𝑣1⋯𝑣𝑑 ,
𝑉⊗𝑑 𝑚−→ Λ𝑑 (𝑉 ), 𝑣1 ⊗⋯ ⊗ 𝑣𝑑 ↦ 𝑣1⋯𝑣𝑑 .

(9.2.4)

For a diagram 𝐷, let cols(𝐷)∶ ℙ → ℕ and rows(𝐷)∶ ℙ → ℕ be the finitely supported functions counting the
number of boxes in each column or row. For a finitely supported function 𝛼 ∶ ℙ → ℕ, let 𝑆𝛼 (𝑉 ) be the tensor
product of symmetric powers

𝑆𝛼 (𝑉 ) = 𝑆𝛼(1)(𝑉 ) ⊗ 𝑆𝛼(2)(𝑉 ) ⊗ 𝑆𝛼(3)(𝑉 ) ⊗ ⋯ ,
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9.2 Generalised Schur modules

noting that 𝑆0(𝑉 ) ≅ ℂ and hence this tensor product is isomorphic to a finite tensor product. We similarly define
Λ𝛼 (𝑉 ), hence we get the spaces Λcols(𝐷)(𝑉 ) and 𝑆rows(𝐷)(𝑉 ).
There are two distinguished bijective tableaux associated to 𝐷, the column ordered tableau 𝐶 corresponding to
ordering columns from left-to-right, and from top-to-bottom within a column, and the row ordered tableau 𝑅
corresponding to ordering rows from top-to-bottom, and left-to-right within a row. There is a unique permutation
𝜋𝐷 such that 𝜋𝐷 ∘ 𝐶 = 𝑅.

𝐷

2
1
3

4
5

6
𝐶

3
1
5

2
4
6

𝑅
𝜋𝐷 = (13624)

We may now define the Schur functor associated to 𝐷.
9.2.5 Definition (Generalised Schur functor)
Let 𝐷 ⊆ ℙ × ℙ be a diagram of 𝑑 boxes in the plane, with cols(𝐷), rows(𝐷), and 𝜋𝐷 as defined above. Given
a vector space 𝑉 , define the map 𝜓𝐷,𝑉 to be the composition

𝜓𝐷,𝑉 ∶ Λcols(𝐷)(𝑉 ) Δ−→ 𝑉⊗𝑑 𝜋𝐷−−→ 𝑉⊗𝑑 𝑚−→ 𝑆rows(𝐷)(𝑉 ). (9.2.6)

Define the Schur functor on a vector space by 𝒮𝐷(𝑉 ) = im 𝜓𝐷,𝑉 . For a map 𝑓 ∶ 𝑉 → 𝑊 , let 𝒮𝐷(𝑓 )∶ 𝒮𝐷(𝑉 ) →
𝒮𝐷(𝑊 ) be themap obtained by restricting the naturalmap 𝑓 rows(𝐷) ∶ 𝑆rows(𝐷)(𝑉 ) → 𝑆rows(𝐷)(𝑊 ) to im 𝜓𝐷,𝑉 .

It is straightforward to check that the image of 𝒮𝐷(𝑓 ) does indeed land in the subspaces im 𝜓𝐷,𝑉 , and hence
𝒮𝐷 defines an endofunctor in the category of complex vector spaces. Endofunctors of vector spaces naturally
produce new representations from old representations: if 𝜌 ∶ 𝐺 → Endℂ(𝑉 ) is a representation of a group 𝐺 on
the vector space 𝑉 , then we obtain a new representation of 𝐺 on 𝒮𝐷(𝑉 ) by letting the group element 𝑔 ∈ 𝐺 act
by 𝒮𝐷(𝜌(𝑔)). Our second definition of a generalised Schur module of GL(𝑉 ) is the image 𝒮𝐷(𝑉 ) of the defining
representation under the Schur module. We note that column permutations of 𝐷 do not affect the functor 𝒮𝐷 at
all, while row permutations of 𝐷 give functors isomorphic to 𝒮𝐷 .

We can also interpret Definition 9.2.5 in terms of a ‘wiring diagram’ defined by 𝐷. The data 𝐷 is equivalent to a
bipartite graph on ℙ×ℙ (and the isomorphism class of 𝒮𝐷 depends only on the isomorphism class of this bipartite
graph). Drawing all of the edges in this graph in an ordered fashion, we can then group edges together and treat
the whole thing as a string diagram.

1
2
3

1 2 3

4
1 2 3

1 2 3 4

𝜋𝐷

columns

rows

Λ3(𝑉 ) Λ2(𝑉 ) Λ1(𝑉 )

𝑆2(𝑉 ) 𝑆1(𝑉 ) 𝑆2(𝑉 ) 𝑆1(𝑉 )

Δ

𝑚

Λcols(𝐷)(𝑉 )

𝑆rows(𝐷)(𝑉 )

𝜓𝐷,𝑉

Above we have shown a diagram 𝐷, its associated bipartite graph embedded into the plane, and a string diagram
(read from bottom-to-top). The junctions in the bottom orange part of the string diagram should be understood
as iterated comultiplication in the exterior algebra followed by projection onto the (1, … , 1)-graded piece, as in
Eq. (9.2.3). The junctions in the top green part of the diagram are the iterated multiplications 𝑉⊗𝑘 ↠ 𝑆𝑘(𝑉 ) into
the symmetric power, as in Eq. (9.2.4). The middle blue part of the diagram is a map 𝜋𝐷 ∶ 𝑉⊗𝑑 → 𝑉⊗𝑑 permuting
tensor factors according to the permutation 𝜋𝐷 = (13624) defined before.
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9 Generalised Schur modules

Now that we have given two different definitions of generalised Schur modules, we should show that they are
equivalent. In this proof we will have to make use of the characteristic-zero assumption on the base field, a
reflection of how semisimplicity of both categories is partly responsible for this equivalence.

9.2.7 Lemma (Equivalence of definitions of generalised Schur modules)
Let 𝐷 be a diagram of size 𝑑 , with 𝐶 its column ordered tableau, 𝑅 its row ordered tableau, and 𝜋𝐷 ∈ 𝔖𝑑 the
unique permutation such that 𝜋𝐷 ∘ 𝐶 = 𝑅. Recall that to the column-stabilising subgroup of 𝐶 we associate
the alternating sum over its elements 𝑐𝐶 = ∑𝜎 (−1)𝜎𝜎 , and to the row-stabilising subgroup of 𝑅 we associate
the sum over its elements 𝑟𝑅 = ∑𝜎 𝜎 . Let Γ𝑘(𝑉 ) ⊆ 𝑉⊗𝑑 denote the subspace of tensors which are symmetric
under the action of 𝔖𝑘 . Consider the following diagram:

Λcols(𝐷)(𝑉 ) 𝑉⊗𝑑 𝑉⊗𝑑 𝑆rows(𝐷)(𝑉 )

𝑉⊗𝑑 𝑐𝐶 Γrows(𝐷)(𝑉 )

Δ 𝜋𝐷 𝑚
⋅𝑟𝑅 Δ (9.2.8)

It is easy to check that the triangle on the right commutes, just by checking that the operation Δ ∘𝑚 is equal
to the action of 𝑟𝑅. The two maps on the left have the same image inside 𝑉⊗𝑑 , and since the vertical map
Δ is an isomorphism (a strictly characteristic-zero phenomenon) we have that the image im 𝜓𝐷,𝑉 of the top
horizontal map is isomorphic to the image of the bottom composition 𝑉⊗𝑑 𝑐𝐶𝜋𝐷𝑟𝑅.
As subgroups of𝔖𝑑 we have 𝜋𝐷 RowStab𝑅 𝜋−1𝐷 = RowStab𝜋−1𝐷 ∘𝑅 = RowStab𝐶 , hence 𝜋𝐷𝑟𝑅𝜋−1𝐷 = 𝑟𝐶 , showing
that

𝑉⊗𝑑 𝑐𝐶𝜋𝐷𝑟𝑅 = 𝑉⊗𝑑 𝑐𝐶 𝑟𝐶𝜋𝐷 ≅ 𝑉⊗𝑑 𝑐𝐶 𝑟𝐶 , (9.2.9)

where the last isomorphism is because right multiplication by a permutation is an isomorphism 𝑉⊗𝑑 → 𝑉⊗𝑑 .
Therefore we have that the image of 𝜓𝐷,𝑉 is isomorphic to 𝑉⊗𝑑 𝑐𝐶 𝑟𝐶 = 𝑉⊗𝑑 ⊗ℂ[𝔖𝑑 ] Σ𝐶 where Σ𝐶 is the Specht
module associated to the tableau 𝐶 of the diagram 𝐷.

We briefly remark on how this setup can be extended to the positive characteristic case.

9.2.10 Remark
There is a dual notion ofWeyl functor 𝒲𝐷 , defined as the image of the composition

𝜑𝐷,𝑉 ∶ Γrows(𝐷)(𝑉 ) Δ−→ 𝑉 |𝐷| 𝜋−1𝐷−−−→ 𝑉 |𝐷| 𝑚−→ Λcols(𝐷)(𝑉 ), (9.2.11)

where Γ𝑑 (𝑉 ) denotes the 𝑑th divided power algebra (see Appendix 2.4 of [Eis95] for a definition of the
divided power algebra). On a morphism 𝑓 ∶ 𝑉 → 𝑊 , the Weyl functor is the restriction of the natural map
𝑓 cols(𝐷) ∶ Λcols(𝐷)(𝑉 ) → Λcols(𝐷)(𝑊 ) to the image of 𝜑𝐷,𝑉 . The Schur and Weyl functors 𝒮𝐷 and 𝒲𝐷 make
sense for modules over any commutative unital ring 𝑘, and behave well under base change (in fact, when 𝐷
is a Young diagram or skew diagram, both functors are universally free [ABW82]).

For a partition 𝜆, the Schur module 𝒮𝜆(𝑉 ) is what we would call the induced module of GL(𝑉 ) corresponding
to the weight 𝜆, isomorphic to the space of sections Γ(𝐺/𝐵,ℒ𝜆), while the Weyl module 𝒲𝜆(𝑉 ) is its dual.
When we say dual, we mean the composition of the normal dual with the anti-involution of 𝐺 switching
positive and negative roots — in the case of a module𝑀 over GL𝑛, this is the vector space Hom𝑘(𝑀, 𝑘) with
the action (𝑔 ⋅ 𝑓 )(𝑣) = 𝑓 (𝑔𝑇 𝑣) where 𝑔𝑇 is the transpose matrix.

In the characteristic-zero case the functors𝒮𝐷 and𝒲𝐷 are isomorphic, and furthermore both are isomorphic
to the functor (−)⊗𝔖|𝐷| Σ𝐷 of tensoring with a generalised Specht module, however this is no longer true in
the case of positive characteristic. A modern perpective for the study of the functors 𝒮𝐷 and 𝒲𝐷 is notion
of polynomial functors.
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9.3 Flagged Schur modules

The generalised Schur functors 𝒮𝐷 are not straightforward to study. The results of [JP79; ABW82], which give
a basis of 𝒮𝐷(𝑉 ) when 𝐷 is a Young diagram or skew shape, depend in an essential way on a partial ordering
on semistandard tableaux. Such a partial ordering simply does not exist when 𝐷 is an arbitrary diagram, so a
different approach is required. The approach we use here will follow that of Magyar, Reiner, Shimozono and
others, studying the Schur module 𝒮𝐷(𝑉 ) by certain 𝐵-stable quotients defined by the rows of the diagram 𝐷.

We now need to be clear about what we mean by a Borel subgroup 𝐵. For each 𝑛 ≥ 0, let ℂ𝑛• be the full flag
of quotient spaces ℂ𝑛• = (ℂ𝑛 ↠ ℂ𝑛−1 ↠ ⋯ ↠ ℂ), where the map ℂ𝑖 ↠ ℂ𝑖−1 sends the coordinate vector 𝑒𝑖 to
zero. We say that a group element 𝑔 ∈ GL(𝑉 ) preserves a flag 𝐹• if 𝑔(𝐹𝑖) ⊆ 𝐹𝑖 for all 𝑖. Let 𝐵(ℂ𝑛• ) ⊆ GL(ℂ𝑛) be
the subgroup preserving the coordinate flag ℂ𝑛• , which is precisely the subgroup of upper-triangular matrices.
Defining 𝑇 (ℂ𝑛) ⊆ GL(ℂ𝑛) to be the subgroup of diagonal matrices, we get a pinning (𝑇 (ℂ𝑛) ⊆ 𝐵(ℂ𝑛• ) ⊆ GL(ℂ𝑛))
of the reductive algebraic group GL(𝑉 ), a realisation of the root datum GL𝑛 of type A𝑛−1.

9.3.1 Definition (Flagged Schur module)
Let 𝐷 be a diagram with 𝑑 boxes fitting within the first 𝑟 rows, meaning that 𝐷 ⊆ [𝑟] × ℙ, and fix a full
flag ℂ𝑟• of quotient spaces. When row 𝑖 of the diagram has row𝑖(𝐷)-many boxes, we can apply the symmetric
power functor 𝑆row𝑖(𝐷) to the surjection ℂ𝑟 ↠ ℂ𝑖 determined by the flag ℂ𝑟• to get a surjection 𝑆row𝑖(𝐷)(ℂ𝑟 ) ↠
𝑆row𝑖(𝐷)(ℂ𝑖). Taking the tensor product of these and precomposing with the map 𝜓𝐷,ℂ𝑟 defining the Schur
module gives a map

Λcols(𝐷)(ℂ𝑟 ) 𝜓𝐷,ℂ𝑟−−−−→ 𝑆rows(𝐷)(ℂ𝑟 ) 𝜙𝐷−−→→ ⨂
𝑖≥1

𝑆row𝑖(𝐷)(ℂ𝑖). (9.3.2)

The image of this map is the flagged Schur module ℱ𝐷(ℂ𝑟 ). It is naturally a 𝐵(ℂ𝑟•)-module, but is no longer
in general a GL(ℂ𝑟 )-module.

Note that we have ℱ𝐷(ℂ𝑛) = ℱ𝐷(ℂ𝑟 ) for all 𝑛 ≥ 𝑟 , and furthermore that the definition does not make sense
for 𝑛 < 𝑟 . Therefore we can use the notation ℱ𝐷(ℂ𝑟 ) = ℱ (𝐷) and leave it implied we are working inside
some flag of length at least 𝑟 .

This quotient is quite straightforward to reason about in terms of a basis of the target space 𝑆rows(𝐷)(ℂ𝑟 ) of the
Schur functor map 𝜓𝐷,ℂ𝑟 . As a tensor product of symmetric powers, 𝑆rows(𝐷)(ℂ𝑟 ) has a basis indexed by tableaux
𝑇 ∶ 𝐷 → [𝑟] which are row-semistandard, meaning that the entries along each row weakly increase. In terms
of this basis, the quotient 𝑆rows(𝐷)(ℂ𝑟 ) ↠ ⨂𝑖≥1 𝑆row𝑖(𝐷)(ℂ𝑖) simply kills any tableaux having an entry in row 𝑖
which is larger than 𝑖.

9.3.3 Example
Below are shown two row-semistandard tableaux 𝑇1, 𝑇2 for a diagram 𝐷, and another row-semistandard
tableau 𝑇 ′3 for a different diagram 𝐷′.

1
2
3
1

2

𝑒11 ⊗ 𝑒2 ⊗ 𝑒23

1
2
3

1
3
2
1

1

𝑒11 ⊗ 𝑒3 ⊗ 𝑒12

1
2
3

𝑇1 𝑇2

1
3
2
1

1

1
2
3

𝑇 ′3

4
𝑒11 ⊗ 𝑒3 ⊗ 𝑒12

The tableau 𝑇1 survives the quotient 𝜙𝐷 because every entry of row 𝑖 is at most 𝑖. The tableau 𝑇2 gets killed
in the quotient 𝜙𝐷 because there is a 3 in row 2. The third tableau 𝑇 ′3 survives the quotient 𝜙𝐷′ , because by
shifting 𝑇2 down a row we have removed the only problem. However, 𝑇 ′3 is a tableau for a different diagram
to 𝑇2, and they do not represent elements in the same flagged Schur module.

The example above shows that the isomorphism class of the flagged Schur moduleℱ𝐷(ℂ𝑟 ) is not invariant under
row permutations of the diagram 𝐷, in contrast to the Schur module 𝒮𝐷(ℂ𝑟 ). However, it is clear from the defini-
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tions that a permutation of the columns of 𝐷 leaves the flagged Schur module unchanged. For further properties
of these modules (and their dual equivalents, the flagged Weyl modules), the reader can consult Sections 2 and 5
of [RS99].

Many of the results known about generalised Schur modules are due to geometric constructions of this module as
sections of a line bundle over a (generally singular) variety, first explored in [Mag98a; Mag98b]. In this setting, the
flagged Schur module (or the dual construction, the flagged Weyl module) naturally arise, and in [RS95; RS98] a
Demazure-type character formula is given for the characters of the flagged Schur modules of percentage-avoiding
diagrams 𝐷. The only diagrams we will encounter are northwest (or can be made northwest via a column permu-
tation) which are automatically percentage-avoiding, and hence these results apply. (A diagram 𝐷 is northwest if
whenever (𝑗, 𝑘), (𝑖, 𝑙) ∈ 𝐷 with (𝑖 < 𝑗) and (𝑘 < 𝑙), then (𝑖, 𝑘) ∈ 𝐷).
From now on, we will restrict ourselves to diagrams which are column-convex, meaning that the columns have no
gaps. A column-convex diagram satisfies the northwest property after a column permutation has been applied,
and hence the results in the above paper will apply to our situation.

In order to use the results of Reiner and Shimozono to write down a character formula for the flagged Schur
module ℱ𝐷 for a column-convex diagram 𝐷, it will help to have a convenient way of encoding the data of a
column-convex diagram 𝐷. We will encode a column-convex diagram 𝐷 fitting within 𝑟 rows as a sequence of 𝑟
partitions.

9.3.4 Definition (Partition sequences and diagrams)

A partition sequence of length 𝑟 ≥ 0 is a sequence 𝜆 = (𝜆(1), … , 𝜆(𝑟)) of partitions, such that ℓ(𝜆(𝑖)) ≤ 𝑖 (the
𝑖th partition has at most 𝑖 rows). For each 0 ≤ 𝑖 ≤ 𝑟 , let 𝜆𝑖 = (𝜆(1), … , 𝜆(𝑖)) denote the prefix of 𝜆 of length 𝑖.
When 𝜆 is a partition sequence of length 𝑟 , we define the associated diagram 𝐷(𝜆) inductively by:

1. For 𝑖 = 0, 𝐷(𝜆0) = ∅, the empty diagram,

2. For 𝑖 > 0, 𝐷(𝜆𝑖) is obtained by shifting the contents of the previous diagram 𝐷(𝜆𝑖−1) down one row,
and placing the Young diagram of the partition 𝜆(𝑖) to the right of the previous diagram, with the first
row of 𝜆(𝑖) in row 1.

The diagram 𝐷(𝜆𝑖) is always column-convex and contained within the rows {1, … , 𝑖}.
9.3.5 Example

Consider the partition sequence 𝜆 = (∅, (1, 1), (2, 1), (1, 1, 1, 1), (2, 1, 1)), which we could picture as the fol-
lowing sequence of Young diagrams:

𝜆(1)

∅

𝜆(2) 𝜆(3) 𝜆(4) 𝜆(5)

The associated sequence of diagrams 𝐷(𝜆𝑖) is shown below.

row

𝐷(𝜆4) 𝐷(𝜆5)𝐷(𝜆3)𝐷(𝜆2)𝐷(𝜆0)

∅

𝐷(𝜆1)

∅1
2
3
4
5
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The above examplemakes it clear that the diagram𝐷(𝜆) is always column-convex. Conversely, given any column-
convex diagram𝐷 its columnsmay be sorted in such a way that there exists a partition sequence 𝜆with𝐷(𝜆) = 𝐷.
This sorting can be done by placing columns with entries appearing higher to the right, and breaking ties by
putting longer columns on the left.

In order to read the next lemma, we remind the reader that any integer vector 𝛼 = (𝛼1, … , 𝛼𝑛) ∈ ℤ𝑛 can be treated
as a weight of GL𝑛, the function 𝑒𝛼 ∶ 𝑇 (ℂ𝑛) → ℂ× taking the torus element diag(𝑡1, … , 𝑡𝑛) to 𝑡𝛼11 ⋯ 𝑡𝛼𝑛𝑛 . (This is
explained further in Section 9.4). Each integer partition 𝜆 = (𝜆1, …) of length at most 𝑛 defines a dominant weight
𝑒𝜆 of GL𝑛.

9.3.6 Lemma (Character of a flagged Schur module)

Let 𝜆 be a partition sequence of length 𝑟 . The characters of the flagged Schur modules ℱ (𝐷(𝜆𝑖)) satisfy the
following recurrence:

1. For 𝑖 = 0, chℱ (𝐷(𝜆0)) = chℱ (∅) = 1,
2. For 𝑖 > 0, chℱ (𝐷(𝜆𝑖)) = 𝑒𝜆(𝑖) ⋅ 𝜋1⋯𝜋𝑖−1 (chℱ (𝐷(𝜆𝑖−1))).

9.3.7 Proof
The case for 𝑖 = 0 is clear. The inductive case follows from Theorem 23 of [RS98], noting that moving the
diagram 𝐷(𝜆𝑖−1) down one row can be done by applying the successive row permutations (𝑖 − 1, 𝑖), … , (1, 2),
which corresponds to the application of Demazure operators 𝜋𝑖−1, … , 𝜋1, and adding a Young diagram 𝜆 in
the top row corresponds to multiplication by 𝑒𝜆 .
9.3.8 Example
Consider Example 9.3.5 above. By the recursion rule given in Lemma 9.3.6, the character of the flagged
Demazure module ℱ (𝐷(𝜆)) is

chℱ (𝐷(𝜆)) = 𝑒(2,1,1)𝜋1𝜋2𝜋3𝜋4(𝑒(1,1,1,1)𝜋1𝜋2𝜋3(𝑒(2,1)𝜋1𝜋2(𝑒0𝜋1𝑒0))). (9.3.9)

9.4 Polynomial characters of GL𝑛

In this section we will explain how the characters of flagged Schur modules fit into the more well-known frame-
work of characters of Schur modules. We begin by fixing a choice of root datum of GL𝑛.

9.4.1 Definition
Fix an 𝑛 ≥ 1. The root datum Φ = GL𝑛 is the type (𝐼 , ⋅) = A𝑛−1 root datumwith the following presentation:

𝑋(GL𝑛) = ℤ {𝜖1, … , 𝜖𝑛} , 𝛼𝑖 = 𝜖𝑖 − 𝜖𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 − 1,
𝑋 ∨(GL𝑛) = ℤ {𝜖∨1 , … , 𝜖∨𝑛 } , 𝛼∨𝑖 = 𝜖∨𝑖 − 𝜖∨𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 − 1,

⟨𝜖𝑖, 𝜖∨𝑗 ⟩ = 𝛿𝑖𝑗 .
(9.4.2)

A weight 𝜆 = 𝜆1𝜖1 + ⋯ + 𝜆𝑛𝜖𝑛 is dominant iff 𝜆1 ≥ ⋯ ≥ 𝜆𝑛, and polynomial if 𝜆𝑖 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑛. There
is an alternative basis of weights which we call fundamental weights by abuse of notation (as GL𝑛 is not
semisimple, it does not really have fundamental weights). These fundamental weights are 𝜛𝑖 = 𝜖1 + ⋯ + 𝜖𝑖
for 1 ≤ 𝑖 ≤ 𝑛, and we have ⟨𝜛𝑖, 𝛼∨𝑗 ⟩ = 𝛿𝑖𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1, with 𝜛𝑛 = 𝜖1 + ⋯ + 𝜖𝑛 generating the null space
𝑋(GL𝑛)0 = ⋂𝑖∈𝐼 ker⟨−, 𝛼∨𝑖 ⟩. A weight is dominant polynomial if and only if it expands positively in the basis
of the 𝜛𝑖.

The polynomial weights of GL𝑛 are indexed by compositions of 𝑛, meaning finite sequences 𝜆 = (𝜆1, … , 𝜆𝑛) ∈ ℕ𝑛.
A polynomial weight is dominant if and only if it is a partition. The category of representations with polynomial
weights is closed under taking direct sums and tensor products, and furthermore to reach any non-polynomial
representation one only needs to tensor with an appropriate negative power of the one-dimensional determinant
representation 𝐿(𝜛1). From here on, we restrict our attention only to polynomial weights, which we will denote
by 𝑋(GL𝑛)𝑝 .
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There is an isomorphism of algebras ℤ[𝑋(GL𝑛)𝑝] ≅ ℤ[𝑥1, … , 𝑥𝑛] between the monoid algebra of the polynomial
weights and the polynomial ring in 𝑛 variables, taking 𝑒𝜆 to 𝑥𝜆 ∶= 𝑥𝜆11 ⋯𝑥𝜆𝑛𝑛 . Furthermore, the Weyl group action
on 𝑋(GL𝑛) preserves the polynomial weights, and hence descends to the usual action of the symmetric group𝔖𝑛
on the polynomial ring ℤ[𝑥1, … , 𝑥𝑛] by permuting coordinates. Since we have realised the polynomial ring and
the ring of symmetric polynomials ℤ[𝑥1, … , 𝑥𝑛]𝔖𝑛 as the character ring and Weyl-invariant character ring of a
root datum, we will get interesting new bases of these rings by considering characters of Demazure modules and
highest-weight modules respectively.

When 𝜆 is a partition (a dominant polynomial weight), the Schur module 𝒮𝜆(ℂ𝑛) gives an explicit construction
of the highest-weight module 𝐿(𝜆), and when the resulting characters are viewed inside ℤ[𝑥1, … , 𝑥𝑛]𝔖𝑛 they are
called Schur polynomials and usually denoted ch 𝐿(𝜆) = 𝑠𝜆(𝑥1, … , 𝑥𝑛). The Schur polynomials form a basis for
the ring of invariants ℤ[𝑥1, … , 𝑥𝑛]𝔖𝑛 , by a slight modification of the argument in Lemma 5.1.2 for polynomial
weights. The Schur polynomials are extremely well-studied, and we could point the reader to several references
[Ful96; Mac95; Sta97].

When 𝛼 is a composition (an arbitrary polynomial weight), the character of the Demazure module 𝐷(𝛼) with
Demazure lowest weight 𝛼 is called a key polynomial, and usually denoted ch𝐷(𝛼) = 𝜅𝛼 . Computing these key
polynomials is quite straightforward. If 𝛼 is a partition then 𝐷(𝛼) = 𝐿𝑒(𝛼) = 𝐿(𝛼)𝛼 is the one-dimensional weight
space of weight 𝛼 and hence 𝜅𝛼 = 𝑥𝛼 . In terms of Demazure operators, we have that 𝜅𝛼 = 𝜋𝑤 (𝑥𝜆), where 𝜆 is
dominant and 𝑤 ∈ 𝑊 is the shortest permutation such that 𝑤𝜆 = 𝛼 . This together with the zero-Hecke property
(Remark 5.2.10) gives that

𝜋𝑖(𝜅𝛼 ) = {𝜅𝑠𝑖𝛼 if 𝛼𝑖 > 𝛼𝑖+1,
𝜅𝛼 otherwise. (9.4.3)

Finally, we can rewrite the Demazure operator 𝜋𝑖 ∶ ℤ[𝑥1, … , 𝑥𝑛] → ℤ[𝑥1, … , 𝑥𝑛] using the fact that 𝑒𝛼𝑖 = 𝑥𝑖
𝑥𝑖+1 :

𝜋𝑖(𝑥𝜆) =
𝑥𝑖𝑥𝜆 − 𝑥𝑖+1𝑥 𝑠𝑖𝜆

𝑥𝑖 − 𝑥𝑖+1
. (9.4.4)

Some example of key polynomial computations are below:

𝜅(1,1,0) = 𝑥(1,1,0)
𝜅(1,0,1) = 𝜋2(𝜅(1,1,0)) = 𝑥1 ⋅ (𝑥2 + 𝑥3) = 𝑥(1,1,0) + 𝑥(1,0,1)
𝜅(0,1,1) = 𝜋1(𝜅(1,0,1)) = 𝑥(1,1,0) + 𝑥(1,0,1) + 𝑥(0,1,1).

(9.4.5)

The last character 𝜅(0,1,1) is symmetric, and equal to the Schur polynomial 𝑠(1,1,0). This is a general fact: the Schur
polynomial 𝑠(𝜆1,…,𝜆𝑛) in 𝑛 variables is equal to the key polynomial 𝜅(𝜆𝑛 ,…,𝜆1).
It was shown in [RS95] that, similarly to how the highest-weight module 𝐿(𝜆) can be constructed as a Schur
module 𝒮𝜆(ℂ𝑛) using the Young diagram associated to 𝜆, the flagged Schur moduleℱ (𝛼) has character 𝜅𝛼 , where
𝛼 is treated as a left-justified diagram having 𝛼𝑖 boxes in row 𝑖. The next image shows three diagrams 𝐷, with the
character of the flagged Schur module ℱ (𝐷) written below.

1
2
3
4

𝜅(2,0,5,3)

1
2
3
4

𝜅(5,3,2,0) = 𝑥(5,3,2,0)

1
2
3
4

𝜅(0,2,3,5) = 𝑠(5,3,2,0)

We again see how Demazure modules interpolate between a single highest-weight space and the full space of a
representation, and here they have a very concrete interpretation in terms of boxes in the plane. To the author’s
knowledge, it is still unknown whether ℱ (𝛼) is isomorphic to the Demazure module 𝐷(𝛼), despite them both
having the same character 𝜅𝛼 (the character of a 𝐵-module does not determine its isomorphism class). There are

94



9.5 Type A truncations

combinatorial interpretations of these diagrams as well, for example a Demazure crystal for 𝐷(𝛼) can be built
using key tableau, which are certain fillings of the diagrams above by the letters 1, … 𝑛. For a good survey, one
can read [AG19].

9.5 Type A truncations

Throughout this section, we work in type (𝐼 , ⋅) = A𝑛 for 𝑛 large enough. When considering a partition sequence
of length 𝑟 , we will need to be working in A𝑛 for 𝑛 ≥ 𝑟 . Since we will only be working with product monomial
crystals whose data is supported over the first 𝑟 nodes of the diagram, the particular choice of 𝑛 does not matter
for any of the statements we make, provided 𝑛 ≥ 𝑟 .

9.5.1 Definition (Multisets and truncations associated to partition sequences)

Let 𝜆 be a partition sequence of length 𝑟 . Define the associated multisets R(𝜆𝑖) and the associated upward-
closed set 𝐽𝑖 inductively as follows:

1. For 𝑖 = 0, the multiset R(𝜆0) = ∅ is empty, and 𝐽0 is the complement of the downward-closed set
generated by (1, −1).

2. For 𝑖 > 0, let 𝐽𝑖 be the union of 𝐽𝑖−1 with the upward-closed set generated by (1, 3 − 2𝑖), and let the
difference R(𝜆𝑖) − R(𝜆𝑖−1) be supported on the elements along the north-east diagonal beginning at
(1, 3 − 2𝑖) and have weight 𝜆(𝑖).

When 𝜆 has length 𝑟 , we set R(𝜆) = R(𝜆𝑟 ) and 𝐽 (𝜆) = 𝐽𝑟 .
The definition above is more easily interpreted as a picture in terms of monomial diagrams. Rather than saying
‘A𝑛 for 𝑛 large enough’, we will draw the half-infinite path A+∞ and work in this setting until we need to compute
the character of a whole crystalℳ(𝜆,R). While we are working with the truncationsℳ(𝜆,R, 𝐽 ) it will not matter
which A𝑛 we are working in, so long as all monomial in question are supported over A𝑛 ×̇ ℤ.

9.5.2 Example

Taking the same partition sequence 𝜆 = (∅, (1, 1), (2, 1), (1, 1, 1, 1), (2, 1, 1)) as in Example 9.3.5, a schematic
picture of what the data R(𝜆𝑖) and 𝐽𝑖 looks like for every 0 ≤ 𝑖 ≤ 5 is shown below.

(1, 1) 𝐽0 = 𝐽1

𝐽2 ⧵ 𝐽1

𝐽3 ⧵ 𝐽2

𝐽4 ⧵ 𝐽3

𝐽5 ⧵ 𝐽4

A+∞

We start with the upward-closed set 𝐽0 (note that 𝐽0 is not finitely-generated, since A+∞ is infinite). The set
𝐽1 adds a single point (1, 1), the set 𝐽2 adds two more points, then 𝐽3 three more, and so on. We end up with
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𝐽5, which is the entire green shaded region.

In terms of the ‘fundamental weights’ of A+∞, our partition sequence 𝜆 is the sequence of weights (0, 𝜛2, 𝜛1+
𝜛2, 𝜛4, 𝜛1 + 𝜛3). The construction of the R(𝜆𝑖) multiset from the previous one is simply to include elements
from 𝐽𝑖 ⧵ 𝐽𝑖−1 with multiplicities according to the weights given by 𝜆(𝑖). For example, here the weight of 𝜆(3)
is 𝜛1 + 𝜛2, and therefore we include into R the two points (1, −3) and (2, −2) of 𝐽3 ⧵ 𝐽2 which will give that
weight.

Our construction of the R(𝜆𝑖) and 𝐽𝑖 is designed to be compatible with our inductive character formula Theo-
rem 7.2.3. From the picture above it is clear that we can go from the set 𝐽𝑖−1 to 𝐽𝑖 by adding (𝑖 − 1) points to the
truncating set, and each one added can be taken to beminimal by adding the rightmost one first. After this is done,
we place the new elements of R(𝜆𝑖) over the new points 𝐽𝑖, noting that (𝐽𝑖 ⧵ 𝐽𝑖−1) ⊆ 𝜕𝐽𝑖 and so every new element
of R(𝜆𝑖) is added along the boundary. We get a recurrence of characters for the truncations ℳ(wt 𝜆𝑖,R(𝜆𝑖), 𝐽𝑖)
which matches the recurrence for the flagged Schur modules Lemma 9.3.6.

9.5.3 Lemma

Let 𝜆 be a partition sequence of length 𝑟 . The characters of the truncations ℳ(wt 𝜆𝑖,R(𝜆𝑖), 𝐽𝑖) satisfy the
recurrence

1. For 𝑖 = 0, chℳ(0, ∅, 𝐽1) = 1,
2. For 𝑖 > 0,

chℳ(wt 𝜆𝑖,R(𝜆𝑖), 𝐽𝑖) = 𝑒𝜆(𝑖) ⋅ chℳ(wt 𝜆𝑖−1,R(𝜆𝑖−1), 𝐽𝑖)
= 𝑒𝜆(𝑖) ⋅ 𝜋1⋯𝜋𝑖−1 chℳ(wt 𝜆𝑖−1,R(𝜆𝑖−1), 𝐽𝑖−1).

(9.5.4)

Therefore, the character of the flagged Schur module ℱ (𝐷(𝜆)) matches the character of the truncated crystal
ℳ(wt 𝜆,R(𝜆), 𝐽 (𝜆)). We can apply two different stabilisation results to see that the characters of the correspond-
ing product monomial crystal and Schur module match.

9.5.5 Theorem
Let 𝜆 be a partition sequence of length 𝑟 , and work in type 𝐼 = A𝑛 for 𝑛 ≥ 𝑟 . Then the characters of the Schur
module 𝒮𝐷(𝜆)(ℂ𝑟 ) and the product monomial crystal ℳ(wt 𝜆,R(𝜆)) are equal.
9.5.6 Proof
By Corollary 7.3.9, the character of the whole product monomial crystal can be obtained from any of its
truncations by applying the Demazure operator 𝜋𝑤𝐼 corresponding to the longest element of theWeyl group
𝑊𝐼 ≅ 𝔖𝑛+1. Hence

chℳ(wt 𝜆,R(𝜆)) = 𝜋𝑤𝐼 chℳ(wt 𝜆𝑟 ,R(𝜆𝑟 , 𝐽𝑟 )). (9.5.7)

By Theorem 21 of [RS98], the character of the Schur module 𝒮𝐷(ℂ𝑛) can be obtained from the character of
the flagged Schur module ℱ𝐷(ℂ𝑛) by applying the Demazure operator 𝜋𝑤𝐼 , hence

ch𝒮𝐷(ℂ𝑛) = 𝜋𝑤𝐼 chℱ𝐷(ℂ𝑛). (9.5.8)

Since both the characters appearing on the right-hand sides of the above expressions are equal, the result
follows.

It is worth pointing out that we really did need to use both results Corollary 7.3.9 and (Theorem 21, [RS98]) in
the statement above. Despite the fact that we know that the character of the flagged Schur module matches the
character of the truncated product monomial crystal, and that both are positive sums of Demazure characters
even, we cannot apply the stabilising operator 𝜋𝑤𝐼 and expect to get the character of the containing representation
(resp. crystal) unless we know for sure that the representationℱ𝐷(ℂ𝑛) has a filtration byDemazuremodules (resp.
the crystal is a sub-Demazure crystal). In this case due to our result that the truncations of the product monomial
crystals are Demazure (Theorem 7.3.7) we know that each truncation is a sub-Demazure crystal. Interestingly it
is still unknown whether the flagged Schur modules admit a filtration by Demazure modules (Reiner, personal
communication). Theorem 21 of [RS98] is proven in an entirely different manner, by a construction due toMagyar
[Mag98b] realising 𝒮𝐷(ℂ𝑛) as the space of sections of a line bundle over a ‘configuration variety’ depending on
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the diagram 𝐷.
The result Theorem 9.5.5 is good, but is not as strong as we want since it only holds for 𝑛 large enough compared
to the height of the diagram 𝐷. If the partition sequence 𝜆 is of length 𝑟 , but each partition has length at most 5
(for example), then it is easy to see from Example 9.5.2 that the corresponding multiset R(𝜆) is defined in type A5.
However our above result Theorem 9.5.5 is not applicable in type A5 if 𝑟 > 5. In the following chapter, we will
develop some stability properties of the product monomial crystals defined when R is held fixed and the type A𝑛
varies, so that we can strengthen the above result to all 𝑛.
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In Chapter 9 we discussed the generalised Littlewood-Richardson coefficients 𝑐𝜆𝐷 associated to a diagram 𝐷, and
remarked on their stability properties in terms of Schur functors (Corollary 9.2.2). Namely, for any vector space
whose dimension is large enough, every coefficient 𝑐𝜆𝐷 can be read off from the decomposition of the generalised
Schur module 𝒮𝐷(𝑉 ), and furthermore these stable coefficients can be used to deduce the decomposition of 𝒮𝐷(𝑈 )
for any dim 𝑈 ≤ dim 𝑉 .
In this chapter we will see that the product monomial crystalℳ(𝜆,R) ⊆ ℳ(GL𝑛) has similar behaviour: there ex-
ist stable coefficients 𝑐𝜆R giving the decomposition ofℳ(𝜆,R) into irreducible crystals whenever 𝑛 is large enough,
and furthermore these stable coefficients can be used to deduce the decomposition ofℳ(𝜆,R) ⊆ ℳ(GL𝑚)when-
ever 𝑚 ≤ 𝑛. Once we have this result, we can apply Theorem 9.5.5 to show that whenever 𝐷 and R correspond,
we have 𝑐𝜆𝐷 = 𝑐𝜆R, and hence the product monomial crystal ℳ(𝜆,R) ⊆ ℳ(GL𝑛) is the crystal of the generalised
Schur module 𝒮𝐷(ℂ𝑛) for all 𝑛.

10.1 Stability of restriction

Let Φ be a root datum of Cartan type (𝐼 , ⋅). Recall from Definitions 3.1.1 and 3.4.1 that each subset 𝐽 ⊆ 𝐼 defines a
Cartan datum (𝐽 , ⋅) by restriction, and a restricted root datumΦ𝐽 of type (𝐽 , ⋅) by keeping the weight and coweight
lattices the same, but only remembering the simple roots and coroots indexed by 𝐽 . For eachΦ-crystal 𝐵, we have a
Φ𝐽 -crystal 𝐵𝐽 by restriction: keeping the set 𝐵 the same, but remembering only the crystal operators indexed by 𝐽 .
As an example, we show the GL4-crystalℬ(2, 0, 0, 0), and the restrictionsℬ(2, 0, 0, 0){1,2} andℬ(2, 0, 0, 0){1,3}.

ℬ(2, 0, 0, 0)

A3 1 2 3

ℬ(2, 0, 0, 0){1,2} ℬ(2, 0, 0, 0){1,3}

As the example shows, we expect a restricted crystal 𝐵𝐽 to often have many connected components, for example
with 𝐽 = {1, 2} in the example we see that ℬ(2, 0, 0, 0)𝐽 is a disjoint union of three connected crystals. When
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𝐽 is a single element 𝐽 = {𝑖}, rather than writing Φ{𝑖} and 𝐵{𝑖}, we will simply write Φ𝑖 and 𝐵𝑖. The connected
components of the restricted crystal 𝐵𝑖 are exactly the 𝑖-strings inside 𝐵.
Suppose that (𝜆,R) is a dominant pair defining a product monomial crystal ℳ(𝜆,R) ⊆ ℳ(Φ). Whenever 𝐽 ⊆ 𝐼
is a subset such that the multiset R is supported over 𝐽 ×̇ ℤ, this data also defines a product monomial crystal
ℳ(𝜆,R) ⊆ ℳ(Φ𝐽 ), a Φ𝐽 -crystal rather than a Φ-crystal. In this case we will say that the multiset R lives over
𝐽 ⊆ 𝐼 . We write ℳ(Φ, 𝜆,R) for the Φ-crystal, and ℳ(Φ𝐽 , 𝜆,R) for the Φ𝐽 -crystal to keep notation as clear as
possible. We get a different Φ𝐽 -crystal by the restriction ℳ(Φ, 𝜆,R)𝐽 , and the arguments following will have to
do with the interplay between the Φ-crystal ℳ(Φ, 𝜆,R), its restricted Φ𝐽 -subcrystal ℳ(Φ, 𝜆,R)𝐽 , and the Φ𝐽 -
crystal ℳ(Φ𝐽 , 𝜆,R).

10.1.1 Example

Let Φ = GL3, a root datum of Cartan type (𝐼 , ⋅) = A2, with vertices 𝐼 = {1, 2}. The data 𝜆 = 2𝜖1, R =
{(1, 3), (1, 1)} defines a Φ-product monomial crystal ℳ(Φ, 𝜆,R), and also a Φ{1}-product monomial crystal
ℳ(Φ{1}, 𝜆,R). These two crystals are pictured below using monomial diagrams, where the point (1, 3) is
circled in green, and we write a 𝑦𝑘 next to the point (𝑖, 𝑐) to indicate that the multiplicity of 𝑦𝑖,𝑐 in that
monomial is 𝑘.

𝑦
𝑦

𝑦

𝑦−1

𝑦−1
𝑦−1

𝑦

𝑦
𝑦

𝑦

𝑦−1

𝑦−1

𝑦−1 𝑦

𝑦−1
𝑦−1

ℳ(Φ, 𝜆,R) ℳ(Φ{1}, 𝜆,R)

𝑦
𝑦

𝑦−1

𝑦

𝑦−1
𝑦−1

𝑦

𝑦−1
𝑦

𝑦−1

Both components of the Φ{1}-crystal ℳ(Φ{1}, 𝜆,R) appear inside the restricted Φ{1}-crystal ℳ(Φ, 𝜆,R){1}.
This is a general fact, which we will make precise in what follows.

Let𝒵(Φ) ⊆ ℳ(Φ) be the subgroup generated by the 𝑧𝑖,𝑘 for all (𝑖, 𝑘) ∈ 𝐼 ×̇ℤ, so that the product monomial crystal
ℳ(Φ, 𝜆,R) is contained inside the coset 𝑒𝜆 ⋅ 𝑦R ⋅ 𝒵(Φ). It is clear from the definition of the monomial crystal
(Definition 6.1.1) that each coset of𝒵(Φ) is a subcrystal ofℳ(Φ). For any subset 𝐽 ⊆ 𝐼 , let 𝛾𝐽 ∶ 𝒵(Φ𝐽 ) ↪ 𝒵(Φ)
be the linear inclusion map taking 𝑧𝑖,𝑘 ∈ 𝒵(Φ𝐽 ) to 𝑧𝑖,𝑘 ∈ 𝒵(Φ) (note that the definition of 𝑧𝑖,𝑘 depends on the
Cartan matrix, so this map is less obvious than it seems). If (𝜆,R) lives over 𝐽 then the product monomial crystal
ℳ(Φ𝐽 , 𝜆,R) makes sense. We define an inclusion of cosets

𝜓𝜆,R,𝐽 ∶ 𝑒𝜆𝑦R𝒵(Φ𝐽 ) ↪ 𝑒𝜆𝑦R𝒵(Φ), 𝑒𝜆𝑦R𝑧 ↦ 𝑒𝜆𝑦R𝛾𝐽 (𝑧), (10.1.2)

which is in fact a map of Φ𝐽 -crystals, where the crystal on the right is equipped with the Φ𝐽 -crystal structure
through restriction. The image of 𝜓𝜆,R,𝐽 consists of all monomials whose 𝑧𝑖,𝑘-exponent is zero for 𝑖 ∉ 𝐽 . Note that
the map 𝜓𝜆,R,𝐽 is an affine, rather than linear, map of abelian groups.
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10.1 Stability of restriction

10.1.3 Lemma
The inclusion 𝜓𝜆,R,𝐽 maps the product monomial crystal ℳ(Φ𝐽 , 𝜆,R) into the set ℳ(Φ, 𝜆,R). Furthermore,
the image of this map consists of all monomials 𝑝 ∈ ℳ(Φ, 𝜆,R) such that SuppR(𝑝) ⊆ 𝐽 ×̇ ℤ.
10.1.4 Proof
First consider the case where (𝜆,R) is a fundamental pair concentrated at some (𝑖, 𝑐). The restricted crystal
ℳ(Φ, 𝜆,R)𝐽 decomposes into a disjoint union of Φ𝐽 -crystals. Let us write ℳ(Φ, 𝜆,R)𝐽 = 𝐵 ⊔ 𝐶 where 𝐵
is the connected component containing the highest-weight element 𝑒𝜆 ⋅ 𝑦R and 𝐶 are the other connected
components. Since the inclusion 𝜓𝜆,R,𝐽 maps the 𝐽 -highest-weight element 𝑒𝜆 ⋅ 𝑦R ∈ ℳ(Φ𝐽 , 𝜆,R) to the
𝐼 -highest-weight element 𝑒𝜆 ⋅ 𝑦R of 𝐵, the Φ𝐽 -crystal map 𝜓𝜆,R,𝐽 gives an isomorphism ℳ(Φ𝐽 , 𝜆,R) → 𝐵.
It remains to be seen that SuppR(𝑝) ⊈ 𝐽 ×̇ ℤ for all 𝑝 ∈ 𝐶 . As ℳ(Φ, 𝜆,R) is connected as a Φ-crystal, every
monomial 𝑝 ∈ ℳ(Φ, 𝜆,R)may be written 𝑝 = 𝑓 𝑟1𝑖1 ⋯𝑓 𝑟𝑙𝑖𝑙 (𝑒𝜆 ⋅𝑦R) for some 𝑙 ≥ 0, 𝑟𝑖 ≥ 1 and 𝑖𝑘 ∈ 𝐼 . The monomial
𝑝 belongs to the top component 𝐵 if and only if {𝑖1, … , 𝑖𝑙 } ⊆ 𝐽 because 𝐵 is a highest-weight Φ𝐽 -crystal with
highest-weight element 𝑒𝜆 ⋅ 𝑦R. Hence every monomial 𝑝 ∈ 𝐶 has SuppR(𝑝) ⊈ 𝐽 ×̇ ℤ, completing the proof
of the claim in the case where (𝜆,R) is a fundamental pair.

For the general case where (𝜆,R) is a dominant pair, we use a factorisation into fundamental pairs (𝜆1,R1),
…, (𝜆𝑟 ,R𝑟 ), and note that for each factorised monomial 𝑝 = 𝑒𝜆0𝑝1⋯𝑝𝑟 ∈ ℳ(Φ, 𝜆,R) we have

𝜓𝐽 ,𝜆,R(𝑝1⋯𝑝𝑟 ) = 𝜓𝐽 ,𝜆1,R1(𝑝1)⋯ 𝜓𝐽 ,𝜆𝑟 ,R𝑟 (𝑝𝑟 ). (10.1.5)

The result then follows from the case of a fundamental pair.

In order to really understand what the affine map 𝜓𝜆,R,𝐽 is doing in Lemma 10.1.3, we return to our previous
example, this time written out in terms of the 𝑒𝜆 ⋅ 𝑦R ⋅ 𝑧−1S labelling.

10.1.6 Example

The crystals ℳ(Φ, 𝜆,R) and ℳ(Φ{1}, 𝜆,R) of Example 10.1.1 are shown as monomial diagrams below, this
time always using the factorisation 𝑦R ⋅ 𝑧−1S .

𝑦
𝑦

ℳ(Φ, 𝜆,R) ℳ(Φ{1}, 𝜆,R)

𝑦
𝑦

𝑦𝑧−1
𝑦

𝑦
𝑦

𝑦𝑧−1
𝑦 𝑦

𝑦𝑧−1
𝑦

𝑦𝑧−1
𝑦

𝑦𝑧−1
𝑦

𝑦
𝑦

𝑦𝑧−1
𝑦

𝑦
𝑦

𝑦𝑧−1
𝑦

𝑧−1

𝑧−1

𝑧−1
𝑧−1

𝑧−1
𝑧−1

𝑦𝑧−1
𝑧−1

𝑧−1
𝑧−1

𝑧−1

𝑧−1𝑧−1

𝑧−1

𝑧−1

The claims of Lemma 10.1.3 should be clear in the picture above.
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10 Stability of decomposition

A highest-weight element 𝑝 ∈ ℳ(Φ𝐽 , 𝜆,R) of the smaller Φ𝐽 -crystal gets mapped to a highest-weight element
𝜓𝜆,R,𝐽 (𝑝) of the larger Φ-crystal: we can see that 𝑒𝑗(𝜓𝜆,R,𝐽 (𝑝)) = ⊥ for all 𝑗 ∈ 𝐽 because 𝜓 is a morphism of Φ𝐽 -
crystals, and if 𝑖 ∈ 𝐼 ⧵ 𝐽 then all exponents 𝜓𝜆,R,𝐽 (𝑝)[𝑖, 𝑘] are zero or negative by the definition of the auxiliary
monomial 𝑧𝑖,𝑘 . Therefore we get the following:

10.1.7 Lemma
The map 𝜓𝜆,R,𝐽 restricted to highest-weight elements is an injective map of sets

Ψ𝜆,R,𝐽 ∶ ℳ(Φ𝐽 , 𝜆,R)h.w. ↪ ℳ(Φ, 𝜆,R)h.w.. (10.1.8)

Furthermore, the image of this map consists of all highest-weight monomials 𝑝 ∈ ℳ(Φ, 𝜆,R)h.w. such that
SuppR(𝑝) ⊆ 𝐽 ×̇ ℤ.
10.1.9 Proof
The map is injective since 𝜓𝜆,R,𝐽 is, and its image consists of highest-weight elements as reasoned in the
previous discussion. By Lemma 10.1.3, all we need to prove about the claim describing the image is one
inclusion: that a highest-weight monomial 𝑝 ∈ ℳ(Φ, 𝜆,R)h.w. satisfying SuppR(𝑝) ⊆ 𝐽 ×̇ℤ is in the image of
Ψ𝜆,R,𝐽 . By Lemma 10.1.3 it has a preimage 𝑞 ∈ ℳ(Φ, 𝜆,R), so we just need to show that 𝑞 is highest-weight,
but this is clear because 𝜓𝜆,R,𝐽 is a morphism of Φ𝐽 -crystals.

The inclusions Ψ𝜆,R,𝐽 can be viewed as a directed system consisting of those subsets 𝐽 ⊆ 𝐼 such that R lives over
𝐽 , in the sense that the inclusions ℳ(Φ𝐽 , 𝜆,R) ↪ ℳ(Φ𝐾 , 𝜆,R) ↪ ℳ(Φ, 𝜆,R) are compatible for 𝐽 ⊆ 𝐾 ⊆ 𝐼 . One
can ask: is there a smaller subset 𝐽 ⊆ 𝐼 such that the product monomial crystalℳ(Φ𝐽 , 𝜆,R) captures all necessary
information to determine the isomorphism class ofℳ(Φ, 𝜆,R)?

10.1.10 Lemma
Let (𝜆,R) be a dominant pair for Φ. Consider the set 𝑋 ⊆ 𝐼 ×̇ ℤ defined by

𝑋 = up(R) ∩ (down({(𝑖, 𝑐 − 2)} ∣ (𝑖, 𝑐) ∈ R) ∪ SuppR) . (10.1.11)

Then if 𝑋 is contained in 𝐽 ×̇ ℤ for some 𝐽 ⊆ 𝐼 , the map Ψ𝜆,R,𝐽 ∶ ℳ(Φ𝐽 , 𝜆,R)h.w. ↪ ℳ(Φ, 𝜆,R)h.w. is a
bijection.

10.1.12 Proof
By Lemma 6.5.4 and Corollary 6.6.5, every highest-weight element 𝑞 ∈ ℳ(Φ, 𝜆,R)h.w. satisfies SuppR(𝑞) ⊆
𝑋 ⊆ 𝐽 ×̇ ℤ, and hence by the description of the image in Lemma 10.1.7 the claim follows.

10.2 Application: decomposing a product

The results of the previous section can be applied to decompose the product monomial crystal into a product of
crystals, in some cases. Suppose we are working with the root datum Φ = SL9 of Cartan type (𝐼 , ⋅) = A8, and we
have 𝜆 = 2𝜛1 + 2𝜛8 with the multiset R = {(1, 1), (1, 3), (8, 2), (8, 4)} as pictured here:

A8

In this special case, the set 𝑋 appearing in Lemma 10.1.10 is precisely 𝑋 = SuppR, which lives over 𝐽 = {1, 8}.
Therefore to determine the highest-weight elements of the crystalℳ(Φ, 𝜆,R) it suffices to determine the highest-
weight elements of the (much smaller) crystalℳ(Φ𝐽 , 𝜆,R). Since the Cartan datum (𝐽 , ⋅) is disconnected, we have
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10.3 Stability of the product monomial crystal for GL𝑛

an isomorphism

ℳ(Φ1, 2𝜛1,R1) = {(1, 1), (1, 3)}) ⊗ℳ(Φ8, 2𝜛8,R8) = {(8, 2), (8, 4)}) ∼−→ ℳ(Φ𝐽 , 𝜆,R), (10.2.1)

with the isomorphism being multiplication of monomials. We can determine these crystals using our previous
results about characters:

ℳ(Φ1, 2𝜛1,R1) ≅ ℬ(Φ1, 2𝜛1) ⊕ℬ(Φ1, 𝜛2), ℳ(Φ2, 2𝜛8,R8) ≅ ℬ(Φ8, 2𝜛8) ⊕ℬ(Φ8, 𝜛7). (10.2.2)

Notice that bothℬ(Φ1, 𝜛2) andℬ(Φ8, 𝜛7) are single-element crystals which we are tempted to say are trivial, but
with our definition the restricted root data Φ1 and Φ8 retain the original weight lattice, so these single-element
crystals have weight 𝜛2 and 𝜛7. This makes everything ‘fit back together’ in the nicest possible way. We can then
take the monomial-wise product of these to get the isomorphism of Φ𝐽 -crystals

ℳ(Φ𝐽 , 𝜆,R) ≅ ℬ(2𝜛1 + 2𝜛8) ⊕ℬ(2𝜛1 + 𝜛7) ⊕ℬ(𝜛2 + 2𝜛8) ⊕ℬ(𝜛2 + 𝜛7). (10.2.3)

By Lemma 10.1.10, these are precisely the highest-weights of the large crystalℳ(Φ, 𝜆,R), and hence we have the
isomorphism

ℳ(Φ, 𝜆,R) ≅ ℬ(2𝜛1 + 2𝜛8) ⊕ℬ(2𝜛1 + 𝜛7) ⊕ℬ(𝜛2 + 2𝜛8) ⊕ℬ(𝜛2 + 𝜛7), (10.2.4)

this time of Φ-crystals.

10.3 Stability of the product monomial crystal for GL𝑛

Recall the discussion of polynomial weights and Schur functions from Section 9.4. In that discussion we worked
with the polynomial weights of GL𝑛 for a particular 𝑛, here we want to switch to considering some ‘limit’ where
we can work with characters for any 𝑛. A neat way to package this limit up is to consider a particular root datum
for the ‘infinite Cartan type’ A+∞.

The infinite Cartan datum A+∞ has index set 𝐼 = ℙ, with the bilinear form given by 𝑖 ⋅ 𝑖 = 2, and 𝑖 ⋅ 𝑗 = −1whenever
|𝑖 − 𝑗| = 1. The Dynkin diagram is a half-infinite path:

A+∞

Let Φ be the ‘root datum’ whose weight lattice 𝑋(Φ) is the free ℤ-module with basis 𝜖1, 𝜖2, …, coweight lattice is
the free ℤ-module with basis 𝜖∨1 , 𝜖∨2 , …, the pairing ⟨𝜖𝑖, 𝜖∨𝑗 ⟩ = 𝛿𝑖𝑗 , and simple roots 𝛼𝑖 = 𝜖𝑖 − 𝜖𝑖+1 and simple coroots
𝛼∨𝑖 = 𝜖∨𝑖 − 𝜖∨𝑖+1. This is not really a root datum, since the weight and coweight lattices have infinite rank, and the
pairing is not perfect. However, there exists a unique basis 𝜛𝑖 = 𝜖1 +⋯+ 𝜖𝑖 of 𝑋(Φ) dual to the simple coroots.

A weight 𝜆 = ∑𝑖≥0 𝜆𝑖𝜖𝑖 ∈ 𝑋(Φ) is polynomial if 𝜆𝑖 ≥ 0 for all 𝑖. Any dominant weight is automatically polynomial,
since a weight is dominant if and only if 𝜆1 ≥ 𝜆2 ≥ ⋯, and since 𝜆 ∈ 𝑋(Φ) is finitely supported this sequence
must end in zeros. Therefore we get a bijection 𝑋(Φ)+ ≅ Part between dominant weights and partitions, where
the weight 𝜆 = ∑𝑖≥0 𝜆𝑖𝜖𝑖 is identified with the partition (𝜆1, 𝜆2, …).
Now, suppose that R is a finite multiset based inA+∞ ×̇ℤ. It determines a unique dominant weight 𝜆 = ∑(𝑖,𝑐)∈R 𝜛𝑖 ∈
𝑋(Φ). Whenever 𝑛 ≥ 1 is such that R lives over [𝑛 − 1] ×̇ ℤ, the data of R and 𝜆 determine a product monomial
crystalℳ(Φ[𝑛−1], 𝜆,R), a Φ[𝑛−1]-crystal. All of the weights ofℳ(Φ[𝑛−1], 𝜆,R) belong to the submodule∑𝑖∈[𝑛]ℤ𝜖𝑖,
and hence we may considerℳ(Φ[𝑛−1], 𝜆,R) as a GL𝑛-crystal.

10.3.1 Lemma
Let R be a finite multiset based in A+∞ ×̇ ℤ, with associated dominant weight 𝜆 = ∑(𝑖,𝑐)∈R 𝜛𝑖 ∈ 𝑋(Φ). Then
there exists some 𝑛 ≥ 1 and coefficients 𝑐𝜇𝜆,R such that

ℳ(Φ[𝑛−1], 𝜆,R) ≅ ⨁
𝜇

ℬ(GL𝑛, 𝜇)⊕𝑐
𝜇
𝜆,R as GL𝑛 -crystals, (10.3.2)
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10 Stability of decomposition

and whenever R lives over [𝑚 − 1] ×̇ ℤ for some 𝑚 ≥ 1 we have

ℳ(Φ[𝑚−1], 𝜆,R) ≅ ⨁
ℓ(𝜇)≤𝑚

ℬ(GL𝑚, 𝜇)⊕𝑐
𝜇
𝜆,R as GL𝑚 -crystals. (10.3.3)

Lemma 10.3.1 should be compared with Corollary 9.2.2, as they are similar in two ways: firstly they assert the
existence of certain stable coefficients, and secondly they give a restriction rule, and the restriction rules match.

10.3.4 Proof
Since R is finite, the set 𝑋 ⊆ A+∞ ×̇ ℤ appearing in Lemma 10.1.10 is also finite, so there exists some
𝑛 ≥ 1 such that 𝑋 ⊆ [𝑛 − 1] ×̇ ℤ which we use to define the coefficients 𝑐𝜇𝜆,R according to Eq. (10.3.2).
Lemma 10.1.10 gives that Eq. (10.3.3) holds for all 𝑚 ≥ 𝑛. Now suppose that 𝑚 < 𝑛, and consider the map
Ψ∶ ℳ(Φ[𝑚−1], 𝜆,R)h.w. ↪ ℳ(Φ[𝑛−1], 𝜆,R)h.w. appearing in Lemma 10.1.7 which has image consisting of
those highest-weight monomials whose R-support is contained in [𝑚 − 1] ×̇ ℤ. A highest-weight monomial
𝑝 of ℳ(Φ[𝑛−1], 𝜆,R) has R-support contained in [𝑚 − 1] ×̇ ℤ if and only if wt(𝑝) is a partition with at most
𝑚 parts, giving that Eq. (10.3.3) holds when 𝑚 < 𝑛.

We remark that the statement of Lemma 10.3.1 would be a lot more ugly if we were to use SL𝑛 rather than GL𝑛,
since the property of a monomial having R-support contained in [𝑚 − 1] ×̇ ℤ cannot be checked purely from its
weight. In order to compute decompositions in the SL𝑛 case, one should do computations for GL𝑛, and restrict to
SL𝑛 as a last step.

We now get our main result: for GL𝑚, the product monomial crystal is the crystal of a generalised Schur module,
which follows directly from comparing Lemma 10.3.1 with Corollary 9.2.2, and checking that they both agree for
some large 𝑛 as a result of Theorem 9.5.5.

10.3.5 Corollary
Let 𝜆 be a partition sequence of length 𝑟 , defining both a diagram 𝐷(𝜆) by Definition 9.3.4 and a multiset
R(𝜆) by Definition 9.5.1. Let 𝑚 ≥ 1 be an integer such that R(𝜆) lives over [𝑚 − 1] ×̇ ℤ. Then the product
monomial crystal ℳ(GL𝑚 ,wt 𝜆,R(𝜆)) is the crystal of the generalised Schur module 𝒮𝐷(𝜆)(ℂ𝑚) associated
to the column-convex diagram 𝐷(𝜆).
10.3.6 Remark
Corollary 10.3.5 applies to all product monomial crystals of some GL𝑚, since after applying a vertical shift
R ↦ R′ of the form R′[𝑖, 𝑐] = R[𝑖, 𝑐 + 2𝑘] for some 𝑘 ∈ ℤ, R′ can be brought to the form where R′ = R(𝜆) for
some partition sequence 𝜆. Similarly, Corollary 10.3.5 applies to all column-convex diagrams, which are all
of the form 𝐷(𝜆) after applying some column permutation.

To finish this section, we give a worked example of using Lemma 10.3.1 to find stable coefficients and restrict
them to a smaller GL𝑚 .

10.3.7 Example

Let R = {(1, 5), (3, 1), (4, 6)}, with associated dominant weight 𝜆 = 𝜛1 + 𝜛3 + 𝜛4, which define a product
monomial crystalℳ(GL5, 𝜆,R) in type A4. The figure below shows the set SuppR as the circled points, and
the set down((𝑖, 𝑐 − 2) ∣ (𝑖, 𝑐) ∈ R) ∩ up(R) in green: their union is the set 𝑋 appearing in Lemma 10.1.10.

A4 A+∞
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10.3 Stability of the product monomial crystal for GL𝑛

The figure shows that R is not stable for GL5, but it is stable for GL6 and upwards, so we can determine the
stable coefficients 𝑐𝜇𝜆,R by computing the decomposition of the product monomial crystal ℳ(GL𝑛, 𝜆,R) for
any 𝑛 ≥ 6. Using a computer, we determine the decomposition ofℳ(GL6, 𝜆,R) to be

ℳ(Φ6, 𝜆,R) ≅ ℬ(2𝜛4)⊕ℬ(𝜛3+𝜛5)⊕ℬ(𝜛2+𝜛6)⊕ℬ(𝜛1+𝜛3+𝜛4)⊕ℬ(𝜛1+𝜛2+𝜛5)⊕ℬ(2𝜛1+𝜛6). (10.3.8)
We can then apply the restriction rule in Lemma 10.3.1 to deduce the decomposition of ℳ(GL5, 𝜆,R): we
must discard all partitions with length greater than 5. As GL5-crystals, we get

ℳ(GL5, 𝜆,R) ≅ ℬ(2𝜛4) ⊕ℬ(𝜛3 + 𝜛5) ⊕ℬ(𝜛1 + 𝜛3 + 𝜛4) ⊕ℬ(𝜛1 + 𝜛2 + 𝜛5). (10.3.9)

We could even further restrict to SL5-crystals along the morphism SL5 → GL5 of 𝐴4 root data, which has
the effect of quotienting the weight lattice by ℤ𝜛5:

ℳ(SL5, 𝜆,R) ≅ ℬ(2𝜛4) ⊕ℬ(𝜛3) ⊕ℬ(𝜛1 + 𝜛3 + 𝜛4) ⊕ℬ(𝜛1 + 𝜛2). (10.3.10)
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