Graded Nakajima Quiver Varieties in Type A

A conjecture on the $S L_{n}$ representation afforded by a graded quiver variety

Joel Gibson

Advisor: Oded Yacobi

Abstract
Nakajima quiver varieties give geometric realisations of representations and crystals of any symmetrisable Kac-Moody Lie algebra \mathfrak{g}. Graded quiver varieties are (for very generic choices of the grading) used to construct geometrically the tensor product of irreducible representations of \mathfrak{g}, however arbitrary choices of the grading have not been studied extensively. Arbitrary gradings arise in the context of truncated shifted Yangians, varieties quantising slices in the affine Grassmannian. For $\mathfrak{g}=\mathfrak{s l}_{n+1}$, we conjecture which representation is afforded by an arbitrary grading, and prove this conjecture in a restricted

Nakajima Quiver Varieties

A smooth symplectic variety $\mathcal{M}(\lambda)$ defined by the data:
$\bullet n \geq 2$, representing $\mathfrak{g}=\mathfrak{s l}_{n+1}$ with Dynkin quiver $Q=1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n$

- A dominant coweight $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$

Example: $\lambda=(N, 0,0, \ldots, 0) \Longrightarrow \mathcal{M}(\lambda) \cong T^{*}\left(\mathcal{F} l_{n \text {-step }}\left(\mathbb{C}^{N}\right)\right)$.
Theorem: The homology $H^{\bullet}(\mathcal{M}(\lambda))$ has a convolution product, and accepts a surjective map $U(\mathfrak{g}) \rightarrow$ $H^{\bullet}(\mathcal{M}(\lambda))$, making the homology ring of $\mathcal{M}(\lambda)$ a quotient of the universal enveloping algebra of \mathfrak{g} [Na1].

Graded Nakajima Quiver Varieties

A family of \mathbb{C}^{\times}-actions on $\mathcal{M}(\lambda)$ are parametrised by some grading data R :

- A collection of integers $R \in \mathbb{Z}^{\lambda_{1}} \times \cdots \times \mathbb{Z}^{\lambda_{n}}$

The \mathbb{C}^{\times}-attracting sets define a Lagrangian subvariety $\mathcal{L}(\lambda, R) \subseteq \mathcal{M}(\lambda)$.
Theorem: The homology $H^{\text {top }}(\mathcal{L}(\lambda, R))$ is a \mathfrak{g}-module, and the \mathfrak{g}-crystal for this representation is given by the irreducible components of $\mathcal{L}(\lambda, R)$.

Example: $R=0 \times \cdots \times 0 \Longrightarrow H^{\operatorname{top}}(\mathcal{L}(\lambda, R)) \cong L(\lambda)$, the irrep of \mathfrak{g} with highest weight λ.
The trivial grading $R=0 \times \cdots \times 0$ always gives an irreducible. Other choices of grading may be used to geometrically construct arbitrary tensor products of irreducibles [Na 2].

Example: $\lambda=(3,2,2), R=(M, M, N) \times(M, N) \times(N, N)$, for $|M-N| \gg 0$.
Then $H^{\text {top }}(\mathcal{L}(\lambda, R)) \cong L(2,1,0) \otimes L(1,1,2)$.
Question: What is the representation $H^{\operatorname{top}}(\mathcal{L}(\lambda, R))$ for general R ?

Product Monomial Crystal

An explicit combinatorial model for the crystal $\operatorname{Ir}(\mathcal{L}(\lambda, R))$ is given by the product monomial crystal, defined on the data n, λ, R [KTWWY]. The data defines a configuration of pegs on a lattice:

- To $\mathfrak{g}=\mathfrak{s l}_{n+1}$, associate a lattice $\mathbb{Z} \times\{1, \ldots, n\}$.
- $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ specifies the number of pegs in each column.
- $R=R_{1} \times \cdots \times R_{n}$ determines where to place the pegs.

Example: For the data

- $n=8, \lambda=(0,0,3,0,1,2,1,0)$.
- $R_{3}=(1,2,2), R_{5}=(2), R_{6}=(1,2), R_{7}=(2)$.

Elements of the crystal are numberings of the boxes inside the lattice, such that they count some covering by partitions hung from pegs.

Crystal element

A covering by partitions

In general, there may be many ways to cover a crystal element by partitions hung from pegs. Some key behaviours of this crystal:

- Crystal operators f_{i} act either by 0 , or by incrementing a box in column i
- Far-apart collections of pegs do not interact \Longrightarrow tensor product behaviour ($|N-M| \gg 0$ from above).
- The crystal is always of a homogeneous degree $|\lambda|=\lambda_{1}+\ldots+\lambda_{n}$ representation.

Conjecture: Generalised Schur Modules

Let $D \subseteq \mathbb{Z}^{2}$ be a finite set of boxes in the plane.

- D defines a Young symmetriser $y_{D} \in \mathbb{C}\left[S_{|\lambda|}\right]$.
- For $V=\mathbb{C}^{n+1}$, the generalised Schur module for D is the subspace $S_{D}:=V^{\otimes|\lambda|} \cdot y_{D}$.

Example: S_{D} may also be described as the image of a composite map from a space alternating in the columns of D to a space symmetric in the columns of D, through the space $V^{\otimes|D|}$:

The modules S_{D} are not so well-known. Some key results are:

- Permuting rows/columns of D preserves isoclass of S_{D}.
- D is a skew shape $\Longrightarrow S_{D}$ has decomposition according to the Littlewood-Richardson rule (S_{D} is irreducible for D a Young diagram).
- S_{D} may be constructed as the space of sections of a line bundle on a flag-like variety [Mag].

Building a diagram from a graded quiver variety: to the data n, λ, R, associate the diagram D

- Rotate the peg diagram by 45°.
- For each peg over column i, draw a column of boxes of length i.
- Relative heights are given by positioning of pegs.

Grading data R
Diagram D
Conjecture: As $\mathfrak{s l}_{n+1}$-representations, $H^{\text {top }}(\mathcal{L}(\lambda, R)) \cong S_{D}$.
The conjecture would imply the first known combinatorial model for the crystal of S_{D}.

Results

Suppose there is a path through the lattice containing all pegs, moving strictly south-west or south-east at each step, then:

- D is a skew shape, so S_{D} has a crystal described by semistandard tableaux of shape D.
- There is a bijection of the elements of the product monomial crystal for R to the semistandard tableaux.
- It is expected that this bijection is also a crystal map, which would imply the conjecture for any R satisfying this path condition.

Forthcoming research

The proof in the case above relied on a combinatorial model for the crystal of S_{D} when D is a skew shape. For general D, a combinatorial model is not known, so a proof of the conjecture in general needs to take a different approach.

Say D has column lengths c_{1}, \ldots, c_{n} and row lengths r_{1}, \ldots, r_{m}. Then S_{D} is the image of

$$
\Lambda^{c_{1}} V \otimes \cdots \otimes \bigwedge^{c_{n}} V \longleftrightarrow V^{\otimes|\lambda|} \xrightarrow{\sigma} V^{\otimes|\lambda|} \longrightarrow S^{r_{1}} V \otimes \cdots \otimes S^{r_{m}} V
$$

where $\sigma \in S_{n}$ rearranges a column ordering of D to a row ordering of D. The above maps can be categorified using for example the Category $\mathcal{O}\left(\mathfrak{g l}_{m}\right)$ methods of Sartori-Stroppel [SS]. The image of the resulting functors categorifies S_{D}, and we hope that by studying the combinatorics of these functors, we can relate S_{D} to the combinatorics of the product monomial crystal.

References

[Na1] Hiraku Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), no. 1, 145-238 (electronic).
[Na2] Hiraku Nakajima, Quiver varieties and tensor products, Invent. Math. 146 (2001), no. 2, 399-449. [KTWWY] Joel Kamnitzer, Peter Tingley, Ben Webster, Alex Weekes, and Oded Yacobi, Highest weights for truncated shifted Yangians and product monomial crystals, arXiv:1511.09131.
[Mag] Peter Magyar, Borel-Weil theorem for con guration varieties and Schur modules, Advances in Mathematics 134.2 (1998), 328-366.
[SS] Antonio Sartori, Catharina Stroppel, Categorification of tensor product representations of $\mathfrak{s l}(k)$ and category \mathcal{O}, J. Algebra 428 (2015) 256-291

