Quick reference:

- Familiar categories: Set (sets and functions), Group (groups and homomorphisms), AbGroup (abelian groups and homomorphisms), Vect_k (k-vector spaces and k-linear maps), Mat_k (natural numbers and matrices), CRing (commutative rings and ring morphisms), Top (topological spaces and continuous maps), Met (metric spaces and continuous maps), Hilb_ℝ (real Hilbert spaces and bounded linear operators).
- An isomorphism $f: A \to B$ admits a $g: B \to A$ such that $gf = id_A, fg = id_B$.
- An epimorphism e is right-cancellable: $fe = ge \implies f = g$.
- A monomorphism m is left-cancellable: $mf = mg \implies f = g$.
- $X \in Ob(\mathcal{C})$ is terminal if for any $Y \in Ob(\mathcal{C})$, there exists a unique morphisms $Y \to X$.
- $X \in Ob(\mathcal{C})$ is *initial* if for any $Y \in Ob(\mathcal{C})$, there exists a unique morphisms $X \to Y$.
- $(P, p_A : P \to A, p_B : P \to B)$ is a *categorical product* for A and B if for every pair of morphisms $(f_A : X \to A, f_B : X \to B)$, there exists a unique morphisms $\varphi : X \to P$ satisfying $p_A \circ \varphi = f_A$ and $p_B \circ \varphi = f_B$. We use the notation $\varphi = (f_A, f_B)_P$.
- $(C, i_A : A \to C, i_B : B \to C)$ is a *categorical coproduct* for A and B if for every pair of morphisms $(g_A : A \to Y, g_B : B \to Y)$, there exists a unique morphisms $\psi : C \to Y$ such that $\psi \circ i_A = g_A$ and $\psi \circ i_B = g_B$. We use the notation $\psi = (g_A, g_B)_C$.

• Given a covariant functor $F : \mathcal{A} \to \mathcal{B}$ and objects $A, B \in Ob(\mathcal{A})$, define

$$\Phi_{A,B} : \mathcal{A}(A,B) \to \mathcal{B}(FA,FB), \quad (A \xrightarrow{f} B) \mapsto \left(FA \xrightarrow{Ff} FB\right)$$

F is called full if $\Phi_{A,B}$ is surjective for all A, B. F is faithful if $\Phi_{A,B}$ is injective for all A, B.

- A functor $F : \mathcal{A} \to \mathcal{B}$ is an *isomorphism of categories* if there is $S : \mathcal{B} \to \mathcal{A}$ such that $FS = id_{\mathcal{A}}$ and $SF = id_{\mathcal{B}}$.
- Given functors $F, S : \mathcal{A} \to \mathcal{B}$, a natural transformation $\eta : F \Rightarrow S$ is a collection of maps $(FA \xrightarrow{\eta_A} SA) \in \mathcal{B}$ for each object $A \in \mathcal{A}$, such that whenever $(A \xrightarrow{f} B) \in \mathcal{A}$, then

$$FA \xrightarrow{Ff} FB$$

$$\downarrow \eta_A \qquad \qquad \downarrow \eta_B \qquad \text{(This is a diagram in } \mathcal{B}\text{)}$$

$$SA \xrightarrow{Sf} SB$$

- A natural transformation $\eta: S \Rightarrow T$ is a *natural equivalence* of functors if each component η_A is an isomorphism. In this case, we write $S \cong T$.
- An equivalence of categories \mathcal{A} and \mathcal{B} is a pair of functors $S : \mathcal{A} \to \mathcal{B}, T : \mathcal{B} \to \mathcal{A}$, together with a pair of natural isomorphisms making $\mathrm{id}_{\mathcal{A}} \cong TS$ and $\mathrm{id}_{\mathcal{B}} \cong ST$.

Preliminaries:

- 1. Isomorphism defines an equivalence relation on the objects of a category.
- 2. An isomorphism is automatically both a monomorphism and an epimorphism.
- 3. Monomorphisms and epimorphisms in Set are injective and surjective maps, respectively.
- 4. $\mathbb{Z} \hookrightarrow \mathbb{Q}$ is an epimorphism in CRing. (Epis need not be surjective, and monic + epic is not iso!)
- 5. Terminal and initial objects (should they exist) are unique up to unique isomorphism.
- 6. Determine initial and terminal objects in all of the categories above.

Working with products and coproducts:

- 1. Determine/guess the products and coproducts in the categories above (when they exist). Actually prove the product and coproduct in CRing. What makes $Vect_k$, Mat_k and AbGroup special? (This is the notion of a *categorical biproduct*.)
- 2. In a categorical product $(A \times B, p_A, p_B)$, the projections p_A and p_B need not be epimorphisms. (Silly example: Set. Better example??)
- 3. In a categorical coproduct $(A \amalg B, i_A, i_B)$, the inclusions i_A , i_B , need not be monomorphisms. (Hint: What is the coproduct in CRing, commutative rings?)
- 4. Show that a terminal object satisfies the universal property for an empty product. Show that if X is terminal, then $A \times X \cong A$ in a natural way. Write the corresponding statement for initials.
- 5. * Let $\{X_i\}_{i \in I}$ be a family of objects in a category, for some (possibly infinite) index set I. Define the product $\prod_{i \in I} X_i$ and state its universal property. Show that even if all finite products exist, arbitrary products may not exist.
- 6. ** Let Field be the full subcategory of CRing consisting of fields. Show that not all pairs of fields (K, F) admit a product. (Bonus points: show that even in the full subcategory of characteristic-zero fields, a product need not exist).

Functors and natural transformations:

- 1. Show that if a category \mathcal{A} has a single object, and every morphism is an isomorphism, then \mathcal{A} is the same thing as a group. Show that a functor $F : \mathcal{A} \to \mathcal{B}$ between two such categories is the same thing as a group homomorphism.
- 2. Define $F : \text{Group} \to \text{AbGroup}$ as the functor taking a group G to its quotient G/[G, G], where [G, G] is the (normal) subgroup generated by all commutators. Show that this is a functor (why does it land in the right category? Where does it take morphisms?)
- 3. Define $F : \text{Group} \to \text{AbGroup}$ on objects by FG = Z(G), the centre of G. Why does F not extend in a useful way to a functor?
- 4. Show that $Vect_k$ and Mat_k are not isomorphic categories. Give an explicit equivalence of categories between $Vect_k$ and Mat_k . (Moral: an isomorphism of categories is more like a homeomorphism, wheras equivalence is more like a homotopy equivalence).
- 5. A *pointed space* is a topological space X along with a distinguished point $x \in X$. Define the category Top_* of pointed spaces, and write down the product, coproduct, initial and final objects. Let $\pi_1 : \mathsf{Top}_* \to \mathsf{Group}$ be the fundamental group functor. Does it preserve any of the above?
- 6. * Let $(-)^*$: Vect_k \rightarrow Vect_k be the duality functor. Write down explicitly the transformation η : id_{Vect_k} \Rightarrow $(-)^{**}$, and check that everything works.
- 7. * Let $\operatorname{Inn}_{\mathbb{R}}$ be the category consisting of finite-dimensional real inner product spaces $(V, \langle -, -\rangle_V)$, and morphisms $f : V \to W$ are those \mathbb{R} -linear isomorphisms preserving the inner product: $\langle f(u), f(v) \rangle_W = \langle u, v \rangle_V$ for all $u, v \in V$. Show that in this category there is a natural transformation $\operatorname{id}_{\operatorname{Inn}_{\mathbb{R}}} \Rightarrow (-)^*$. (Hint: first write down a "natural" isomorphism $V \xrightarrow{\sim} V^*$).