Additive and Abelian Categories

- A zero object $Z \in \mathcal{C}$ is an object which is both initial and terminal.
- A subobject of an object A in a category \mathcal{C} is a monomorphism $u: B \rightarrow A$. If $v: C \rightarrow A$ is another monomorphism, say that u and v are equivalent as subobjects of A if there is an isomorphism $\phi: B \rightarrow C$ such that $u=v \phi$.
- A pointed category is a category admitting a zero object.
- In a pointed category, a biproduct of X, Y is the data $\left(B, p_{X}, p_{Y}, i_{X}, i_{Y}\right)$ such that $\left(B, p_{X}, p_{Y}\right)$ is a categorical product of X and $Y,\left(B, i_{X}, i_{Y}\right)$ is a categorical coproduct of X and Y, and this data is compatible in the sense that $p_{X} \circ i_{X}=\mathrm{id}_{X}, p_{Y} \circ i_{Y}=\mathrm{id}_{Y}, p_{X} \circ i_{Y}=0_{Y X}, p_{Y} \circ i_{X}=0_{X Y}$.
- The category \mathcal{A} is additive if it satisfies the following conditions:

1. There is a zero object in \mathcal{A}.
2. For any $X, Y \in \mathcal{A}$, a categorical product $X \times Y \in \mathcal{A}$ exists.
3. Each hom-set $\mathcal{A}(X, Y)$ is an abelian group, and composition of morphisms is bilinear, i.e. the maps $\mathcal{A}(Y, Z) \times \mathcal{A}(X, Y) \rightarrow \mathcal{A}(X, Z),(f, g) \mapsto f \circ g$ are \mathbb{Z}-bilinear.

- In an additive category, if a product $\left(X \times Y, p_{X}, p_{Y}\right)$ exists, it extends uniquely to a biproduct $\left(X \times Y, p_{X}, p_{Y}, i_{X}, i_{Y}\right)$. Similarly for a coproduct.
- A functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between additive categories is an additive functor if $F(f+g)=F f+F g$.
- Let $(X \xrightarrow{f} Y) \in \mathcal{C}$, a pointed category. A kernel of f is an object $K \in \mathcal{C}$, along with a map $(K \xrightarrow{\operatorname{ker} f} X)$, such that $f \circ(\operatorname{ker} f)=0$, and whenever $(W \xrightarrow{w} X)$ satisfies $f \circ w=0$, there exists a unique $\hat{w}: W \rightarrow K$ such that

- Let $(X \xrightarrow{f} Y) \in \mathcal{C}$, a pointed category. A cokernel of f is an object $C \in \mathcal{C}$, along with a map $(Y \xrightarrow{\operatorname{coker} f} C)$, such that (coker $f) \circ f=0$, and whenever $(Y \xrightarrow{u} U)$ satisfies $u \circ f=0$, there exists a unique $(C \xrightarrow{\hat{u}} U)$ such that

- The image of $f: X \rightarrow Y$ is $\operatorname{im} f=\operatorname{ker}($ coker $f)$, whenever it exists.
- The coimage of $f: X \rightarrow Y$ is coim $f=\operatorname{coker}(\operatorname{ker} f)$, whenever it exists.
- The additive category \mathcal{A} is called an abelian category if all morphisms admit kernels and cokernels, and furthermore that every monomorphism arises as a kernel, and every epimorphism arises as a cokernel.
- \mathcal{A} abelian. The sequence $(A \xrightarrow{f} B \xrightarrow{g} C) \in \mathcal{A}$ is exact at B if $\operatorname{im} f \cong \operatorname{ker} g$ as subobjects of B.

Easy exercises about biproducts and additive categories:

1. If $Z, Z^{\prime} \in \mathcal{C}$ are zero objects, there is a unique isomorphism $Z \xrightarrow{\sim} Z^{\prime}$.
2. Let \mathcal{C} be a pointed category, and $X, Y \in \mathcal{C}$ objects. Define the zero map $X \xrightarrow{0_{X Y}} Y$. If \mathcal{C} happens to be additive, show $0_{X Y}$ is necessarily the identity in the abelian group $\mathcal{C}(X, Y)$.
3. If X is an object in an additive category \mathcal{A}, then $\mathcal{A}(X, X)$ is naturally a unital ring.
4. Let \mathcal{C} be a category with binary products and coproducts. Given an object $A \in \mathcal{C}$, define the diagonal map $\Delta_{A}: A \rightarrow A \times A$ and the codiagonal map $\nabla_{A}: A \amalg A \rightarrow A$.
5. Let \mathcal{C} be a pointed category with binary biproducts. Show that each hom-set is naturally a commutative monoid, with \mathbb{N}-bilinear composition. If \mathcal{C} is additive, does this commutative monoid structure necessarily agree with the abelian group structure?
6. (A more efficient definition of biproducts) Let \mathcal{C} be an additive category, and suppose we have a diagram of the form

$$
X \underset{p_{X}}{\stackrel{i_{X}}{\longleftrightarrow}} B \underset{p_{Y}}{\stackrel{i_{Y}}{\leftrightarrows}} Y
$$

satisfying the three equations

$$
p_{X} i_{X}=\operatorname{id}_{X}, \quad p_{Y} i_{Y}=\operatorname{id}_{Y}, \quad i_{X} p_{X}+i_{Y} p_{Y}=\operatorname{id}_{B}
$$

(This diagram and set of equations is a binary biproduct diagram). Show that these maps then equip B with the structure of a biproduct of X and Y. Conversely, show that the equation $i_{X} p_{X}+i_{Y} p_{Y}=\operatorname{id}_{B}$ holds for any biproduct.
7. Let e_{1}, \ldots, e_{n} be a basis of the k-vector space V. This basis determines injections $i_{j}: k \rightarrow V$, $\lambda \mapsto \lambda e_{j}$ equipping V with the structure of a coproduct of n copies of k. There is a unique compatible product structure making V into a biproduct $k^{\oplus n}$: what is it?
8. Important exercise. Suppose \mathcal{C} is a pointed category with binary biproducts. Explain how a $\operatorname{map} A \oplus B \xrightarrow{f} C \oplus D$ may be represented as a matrix of maps

$$
[f]=\left(\begin{array}{ll}
f_{A C} & f_{B C} \\
f_{A D} & f_{B D}
\end{array}\right)=\left(\begin{array}{ll}
f_{A C}: A \rightarrow C & f_{B C}: B \rightarrow C \\
f_{A D}: A \rightarrow D & f_{B D}: B \rightarrow D
\end{array}\right)
$$

Write down formulas for each of the maps in the matrix. Show that the maps in the matrix uniquely determine f. Show that $[f \circ g]=[f][g]$, i.e. that composition is matrix multiplication.
9. Write down the maps $i_{X}, i_{Y}, p_{X}, p_{Y}$ in the biproduct $A \oplus B$ in matrix form. Write down the diagonal $A \rightarrow A \oplus A$ and the codiagonal $A \oplus A \rightarrow A$ in matrix form.
10. (Non-essential exercise: a category with addition but not subtraction) The category Rel has sets as its objects, and relations as its morphisms: A morphism $R: A \rightarrow B$ is a subset of $B \times A$, with notation $b R a$ meaning $(b, a) \in R$. The composition rule for $R: A \rightarrow B$ and $S: B \rightarrow C$ is

$$
S \circ R: A \rightarrow C, \quad c(S \circ R) a \Longleftrightarrow \exists b \in B \text { such that } c S b \text { and } b R a .
$$

a) Show this is a pointed category (identity morphism, composition is associative, zero object).
b) Show that the disjoint union of sets can be equipped with a biproduct structure. (5) now implies that morphisms can be added. Can they always be subtracted?

Some exercises on abelian categories:

1. Show that if $u: B \rightarrow A$ and $v: C \rightarrow A$ are subobjects of A in Vect $_{k}$, that they are equivalent subobjects iff im $u=\operatorname{im} v$ (where the image is a vector space image, not a categorical one).
2. Let \mathcal{C} be a pointed category (so that kernels and cokernels are defined). Show the following:
a) Kernels are always monic.
b) Cokernels are always epic.
3. In an abelian category, a morphism which is both monic and epic is an isomorphism.
4. In an abelian category, every arrow f factors as $f=m e$, where m is monic and e is epic. (Full disclosure: I have no idea how annoying this proof really is but it looks kinda annoying.)
5. Show that the category of quiver representations $\operatorname{Rep}_{k} Q$ is abelian. (Either show it directly, or show $\operatorname{Rep}_{k} Q$ is isomorphic to the category $k Q-\bmod$, where $k Q$ is the path algebra).
6. Let $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ be a sequence in an abelian category. Verify the usual stuff:
a) Exactness at A iff f is monic.
b) Exactness at C iff g is epic.
c) Exactness at A, B, and C iff $f=\operatorname{ker} g$ and $g=\operatorname{coker} f$.

Determine why each of the following categories fails to be additive/abelian:

1. The category of groups and group homomorphisms.
2. The full subcategory of k-vector spaces whose dimensions are powers of 2 .
3. The full subcategory of even-dimensional k-vector spaces.
4. The full subcategory of \mathbb{Z}-modules admitting a finite basis.
5. $K^{+}(\mathbb{Z}-\mathrm{mod})$, the homotopy category of bounded-below complexes of \mathbb{Z}-modules. Hint: start with the nontrivial morphism $(\cdots \rightarrow 0 \rightarrow \mathbb{Z} \rightarrow 0 \rightarrow \cdots) \rightarrow(\cdots \rightarrow 0 \rightarrow \mathbb{Z} /(2) \rightarrow 0 \rightarrow \cdots)$. Since $K^{+}(\mathcal{A})$ may not be abelian, we care about its triangulated structure instead, where distinguished triangles would take the place of short exact sequences.
