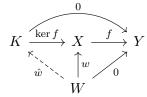
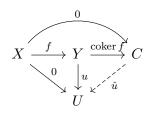
Additive and Abelian Categories

- A zero object $Z \in \mathcal{C}$ is an object which is both initial and terminal.
- A subobject of an object A in a category C is a monomorphism $u : B \to A$. If $v : C \to A$ is another monomorphism, say that u and v are equivalent as subobjects of A if there is an isomorphism $\phi : B \to C$ such that $u = v\phi$.
- A *pointed category* is a category admitting a zero object.
- In a pointed category, a *biproduct* of X, Y is the data (B, p_X, p_Y, i_X, i_Y) such that (B, p_X, p_Y) is a categorical product of X and Y, (B, i_X, i_Y) is a categorical coproduct of X and Y, and this data is *compatible* in the sense that $p_X \circ i_X = id_X, p_Y \circ i_Y = id_Y, p_X \circ i_Y = 0_{YX}, p_Y \circ i_X = 0_{XY}$.
- The category \mathcal{A} is *additive* if it satisfies the following conditions:
 - 1. There is a zero object in \mathcal{A} .
 - 2. For any $X, Y \in \mathcal{A}$, a categorical product $X \times Y \in \mathcal{A}$ exists.
 - 3. Each hom-set $\mathcal{A}(X,Y)$ is an abelian group, and composition of morphisms is bilinear, i.e. the maps $\mathcal{A}(Y,Z) \times \mathcal{A}(X,Y) \to \mathcal{A}(X,Z), (f,g) \mapsto f \circ g$ are \mathbb{Z} -bilinear.
- In an additive category, if a product $(X \times Y, p_X, p_Y)$ exists, it extends uniquely to a biproduct $(X \times Y, p_X, p_Y, i_X, i_Y)$. Similarly for a coproduct.
- A functor $F : \mathcal{A} \to \mathcal{B}$ between additive categories is an *additive functor* if F(f+g) = Ff + Fg.
- Let $(X \xrightarrow{f} Y) \in \mathcal{C}$, a pointed category. A *kernel* of f is an object $K \in \mathcal{C}$, along with a map $(K \xrightarrow{\ker f} X)$, such that $f \circ (\ker f) = 0$, and whenever $(W \xrightarrow{w} X)$ satisfies $f \circ w = 0$, there exists a unique $\hat{w} : W \to K$ such that



• Let $(X \xrightarrow{f} Y) \in \mathcal{C}$, a pointed category. A *cokernel* of f is an object $C \in \mathcal{C}$, along with a map $(Y \xrightarrow{\text{coker} f} C)$, such that (coker f) $\circ f = 0$, and whenever $(Y \xrightarrow{u} U)$ satisfies $u \circ f = 0$, there exists a unique $(C \xrightarrow{\hat{u}} U)$ such that



- The *image* of $f: X \to Y$ is $\operatorname{im} f = \operatorname{ker}(\operatorname{coker} f)$, whenever it exists.
- The coimage of $f: X \to Y$ is coim $f = \operatorname{coker}(\ker f)$, whenever it exists.
- The additive category \mathcal{A} is called an *abelian category* if all morphisms admit kernels and cokernels, and furthermore that every monomorphism arises as a kernel, and every epimorphism arises as a cokernel.
- \mathcal{A} abelian. The sequence $(A \xrightarrow{f} B \xrightarrow{g} C) \in \mathcal{A}$ is *exact at* B if im $f \cong \ker g$ as subobjects of B.

Easy exercises about biproducts and additive categories:

- 1. If $Z, Z' \in \mathcal{C}$ are zero objects, there is a unique isomorphism $Z \xrightarrow{\sim} Z'$.
- 2. Let \mathcal{C} be a pointed category, and $X, Y \in \mathcal{C}$ objects. Define the zero map $X \xrightarrow{0_{XY}} Y$. If \mathcal{C} happens to be additive, show 0_{XY} is necessarily the identity in the abelian group $\mathcal{C}(X, Y)$.
- 3. If X is an object in an additive category \mathcal{A} , then $\mathcal{A}(X, X)$ is naturally a unital ring.
- 4. Let \mathcal{C} be a category with binary products and coproducts. Given an object $A \in \mathcal{C}$, define the diagonal map $\Delta_A : A \to A \times A$ and the codiagonal map $\nabla_A : A \amalg A \to A$.
- 5. Let C be a pointed category with binary biproducts. Show that each hom-set is naturally a commutative monoid, with N-bilinear composition. If C is additive, does this commutative monoid structure necessarily agree with the abelian group structure?
- 6. (A more efficient definition of biproducts) Let C be an additive category, and suppose we have a diagram of the form

$$X \xrightarrow[p_X]{i_X} B \xrightarrow[p_Y]{i_Y} Y$$

satisfying the three equations

$$p_X i_X = \operatorname{id}_X, \quad p_Y i_Y = \operatorname{id}_Y, \quad i_X p_X + i_Y p_Y = \operatorname{id}_B.$$

(This diagram and set of equations is a *binary biproduct diagram*). Show that these maps then equip B with the structure of a biproduct of X and Y. Conversely, show that the equation $i_X p_X + i_Y p_Y = id_B$ holds for any biproduct.

- 7. Let e_1, \ldots, e_n be a basis of the k-vector space V. This basis determines injections $i_j : k \to V$, $\lambda \mapsto \lambda e_j$ equipping V with the structure of a coproduct of n copies of k. There is a unique compatible product structure making V into a biproduct $k^{\oplus n}$: what is it?
- 8. Important exercise. Suppose C is a pointed category with binary biproducts. Explain how a map $A \oplus B \xrightarrow{f} C \oplus D$ may be represented as a matrix of maps

$$[f] = \begin{pmatrix} f_{AC} & f_{BC} \\ f_{AD} & f_{BD} \end{pmatrix} = \begin{pmatrix} f_{AC} : A \to C & f_{BC} : B \to C \\ f_{AD} : A \to D & f_{BD} : B \to D \end{pmatrix}$$

Write down formulas for each of the maps in the matrix. Show that the maps in the matrix uniquely determine f. Show that $[f \circ g] = [f][g]$, i.e. that composition is matrix multiplication.

- 9. Write down the maps i_X, i_Y, p_X, p_Y in the biproduct $A \oplus B$ in matrix form. Write down the diagonal $A \to A \oplus A$ and the codiagonal $A \oplus A \to A$ in matrix form.
- 10. (Non-essential exercise: a category with addition but not subtraction) The category Rel has sets as its objects, and relations as its morphisms: A morphism $R : A \to B$ is a subset of $B \times A$, with notation bRa meaning $(b, a) \in R$. The composition rule for $R : A \to B$ and $S : B \to C$ is

$$S \circ R : A \to C$$
, $c(S \circ R)a \iff \exists b \in B \text{ such that } cSb \text{ and } bRa$

- a) Show this is a pointed category (identity morphism, composition is associative, zero object).
- b) Show that the disjoint union of sets can be equipped with a biproduct structure. (5) now implies that morphisms can be added. Can they always be subtracted?

Some exercises on abelian categories:

- 1. Show that if $u: B \to A$ and $v: C \to A$ are subobjects of A in $Vect_k$, that they are equivalent subobjects iff im $u = \operatorname{im} v$ (where the image is a vector space image, not a categorical one).
- 2. Let \mathcal{C} be a pointed category (so that kernels and cokernels are defined). Show the following:
 - a) Kernels are always monic.
 - b) Cokernels are always epic.
- 3. In an abelian category, a morphism which is both monic and epic is an isomorphism.
- 4. In an abelian category, every arrow f factors as f = me, where m is monic and e is epic. (Full disclosure: I have no idea how annoying this proof really is but it looks kinda annoying.)
- 5. Show that the category of quiver representations $\operatorname{\mathsf{Rep}}_k Q$ is abelian. (Either show it directly, or show $\operatorname{\mathsf{Rep}}_k Q$ is isomorphic to the category $kQ-\operatorname{\mathsf{mod}}$, where kQ is the path algebra).
- 6. Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a sequence in an abelian category. Verify the usual stuff:
 - a) Exactness at A iff f is monic.
 - b) Exactness at C iff g is epic.
 - c) Exactness at A, B, and C iff $f = \ker g$ and $g = \operatorname{coker} f$.

Determine why each of the following categories fails to be additive/abelian:

- 1. The category of groups and group homomorphisms.
- 2. The full subcategory of k-vector spaces whose dimensions are powers of 2.
- 3. The full subcategory of even-dimensional k-vector spaces.
- 4. The full subcategory of Z-modules admitting a finite basis.
- 5. $K^+(\mathbb{Z}-\mathsf{mod})$, the homotopy category of bounded-below complexes of \mathbb{Z} -modules. Hint: start with the nontrivial morphism $(\cdots \to 0 \to \mathbb{Z} \to 0 \to \cdots) \to (\cdots \to 0 \to \mathbb{Z}/(2) \to 0 \to \cdots)$. Since $K^+(\mathcal{A})$ may not be abelian, we care about its triangulated structure instead, where distinguished triangles would take the place of short exact sequences.