
Additive and Abelian Categories

• A zero object Z ∈ C is an object which is both initial and terminal.

• A subobject of an object A in a category C is a monomorphism u : B → A. If v : C → A
is another monomorphism, say that u and v are equivalent as subobjects of A if there is an
isomorphism φ : B → C such that u = vφ.

• A pointed category is a category admitting a zero object.

• In a pointed category, a biproduct of X,Y is the data (B, pX , pY , iX , iY ) such that (B, pX , pY )
is a categorical product of X and Y , (B, iX , iY ) is a categorical coproduct of X and Y , and this
data is compatible in the sense that pX ◦ iX = idX , pY ◦ iY = idY , pX ◦ iY = 0Y X , pY ◦ iX = 0XY .

• The category A is additive if it satisfies the following conditions:

1. There is a zero object in A.

2. For any X,Y ∈ A, a categorical product X × Y ∈ A exists.

3. Each hom-set A(X,Y ) is an abelian group, and composition of morphisms is bilinear, i.e.
the maps A(Y,Z)×A(X,Y )→ A(X,Z), (f, g) 7→ f ◦ g are Z-bilinear.

• In an additive category, if a product (X × Y, pX , pY ) exists, it extends uniquely to a biproduct
(X × Y, pX , pY , iX , iY ). Similarly for a coproduct.

• A functor F : A → B between additive categories is an additive functor if F (f + g) = Ff + Fg.

• Let (X
f−→ Y ) ∈ C, a pointed category. A kernel of f is an object K ∈ C, along with a map

(K
ker f−−−→ X), such that f ◦ (ker f) = 0, and whenever (W

w−→ X) satisfies f ◦w = 0, there exists
a unique ŵ : W → K such that
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• Let (X
f−→ Y ) ∈ C, a pointed category. A cokernel of f is an object C ∈ C, along with a map

(Y
coker f−−−−→ C), such that (coker f) ◦ f = 0, and whenever (Y

u−→ U) satisfies u ◦ f = 0, there

exists a unique (C
û−→ U) such that
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• The image of f : X → Y is im f = ker(coker f), whenever it exists.

• The coimage of f : X → Y is coim f = coker(ker f), whenever it exists.

• The additive category A is called an abelian category if all morphisms admit kernels and cok-
ernels, and furthermore that every monomorphism arises as a kernel, and every epimorphism
arises as a cokernel.

• A abelian. The sequence (A
f−→ B

g−→ C) ∈ A is exact at B if im f ∼= ker g as subobjects of B.
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Easy exercises about biproducts and additive categories:

1. If Z,Z ′ ∈ C are zero objects, there is a unique isomorphism Z
∼−→ Z ′.

2. Let C be a pointed category, and X,Y ∈ C objects. Define the zero map X
0XY−−−→ Y . If C happens

to be additive, show 0XY is necessarily the identity in the abelian group C(X,Y ).

3. If X is an object in an additive category A, then A(X,X) is naturally a unital ring.

4. Let C be a category with binary products and coproducts. Given an object A ∈ C, define the
diagonal map ∆A : A→ A×A and the codiagonal map ∇A : AqA→ A.

5. Let C be a pointed category with binary biproducts. Show that each hom-set is naturally a
commutative monoid, with N-bilinear composition. If C is additive, does this commutative
monoid structure necessarily agree with the abelian group structure?

6. (A more efficient definition of biproducts) Let C be an additive category, and suppose we have
a diagram of the form

X B Y
iX

pX pY

iY

satisfying the three equations

pXiX = idX , pY iY = idY , iXpX + iY pY = idB .

(This diagram and set of equations is a binary biproduct diagram). Show that these maps then
equip B with the structure of a biproduct of X and Y . Conversely, show that the equation
iXpX + iY pY = idB holds for any biproduct.

7. Let e1, . . . , en be a basis of the k-vector space V . This basis determines injections ij : k → V ,
λ 7→ λej equipping V with the structure of a coproduct of n copies of k. There is a unique
compatible product structure making V into a biproduct k⊕n: what is it?

8. Important exercise. Suppose C is a pointed category with binary biproducts. Explain how a

map A⊕B f−→ C ⊕D may be represented as a matrix of maps

[f ] =

(
fAC fBC

fAD fBD

)
=

(
fAC : A→ C fBC : B → C
fAD : A→ D fBD : B → D

)
Write down formulas for each of the maps in the matrix. Show that the maps in the matrix
uniquely determine f . Show that [f ◦ g] = [f ][g], i.e. that composition is matrix multiplication.

9. Write down the maps iX , iY , pX , pY in the biproduct A ⊕ B in matrix form. Write down the
diagonal A→ A⊕A and the codiagonal A⊕A→ A in matrix form.

10. (Non-essential exercise: a category with addition but not subtraction) The category Rel has sets
as its objects, and relations as its morphisms: A morphism R : A → B is a subset of B × A,
with notation bRa meaning (b, a) ∈ R. The composition rule for R : A→ B and S : B → C is

S ◦R : A→ C, c(S ◦R)a ⇐⇒ ∃b ∈ B such that cSb and bRa.

a) Show this is a pointed category (identity morphism, composition is associative, zero object).

b) Show that the disjoint union of sets can be equipped with a biproduct structure. (5) now
implies that morphisms can be added. Can they always be subtracted?
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Some exercises on abelian categories:

1. Show that if u : B → A and v : C → A are subobjects of A in Vectk, that they are equivalent
subobjects iff imu = im v (where the image is a vector space image, not a categorical one).

2. Let C be a pointed category (so that kernels and cokernels are defined). Show the following:

a) Kernels are always monic.

b) Cokernels are always epic.

3. In an abelian category, a morphism which is both monic and epic is an isomorphism.

4. In an abelian category, every arrow f factors as f = me, where m is monic and e is epic. (Full
disclosure: I have no idea how annoying this proof really is but it looks kinda annoying.)

5. Show that the category of quiver representations RepkQ is abelian. (Either show it directly, or
show RepkQ is isomorphic to the category kQ−mod, where kQ is the path algebra).

6. Let 0→ A
f−→ B

g−→ C → 0 be a sequence in an abelian category. Verify the usual stuff:

a) Exactness at A iff f is monic.

b) Exactness at C iff g is epic.

c) Exactness at A,B, and C iff f = ker g and g = coker f .

Determine why each of the following categories fails to be additive/abelian:

1. The category of groups and group homomorphisms.

2. The full subcategory of k-vector spaces whose dimensions are powers of 2.

3. The full subcategory of even-dimensional k-vector spaces.

4. The full subcategory of Z-modules admitting a finite basis.

5. K+(Z−mod), the homotopy category of bounded-below complexes of Z-modules. Hint: start
with the nontrivial morphism (· · · → 0→ Z→ 0→ · · · )→ (· · · → 0→ Z/(2)→ 0→ · · · ). Since
K+(A) may not be abelian, we care about its triangulated structure instead, where distinguished
triangles would take the place of short exact sequences.
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