The Product Monomial Crystal

Joel Gibson
The University of Sydney
Supervisor: Dr. Oded Yacobi

Presented at AustMS 2018, The University of Adelaide

December 5, 2018

Motivation: NaKajima QUiver varieties

Motivation: NaKajima QUiver varieties

Motivation: NaKajima QUiver varieties

Motivation: Nakajima Quiver varieties

$$
\begin{aligned}
& D_{6}
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{g}=\mathfrak{s o}(12) \\
& \mathfrak{g} \curvearrowright H_{\mathrm{top}}(\mathcal{M}(\lambda), \mathbb{C}) \\
& \cong V(\lambda)
\end{aligned}
$$

Motivation: NaKajima QUiver varieties

$$
\begin{aligned}
& \lambda= \mathcal{M}(\lambda) \\
& \mathfrak{g}=\mathfrak{s o}(12) \mathfrak{g} \curvearrowright H_{\text {top }}(\mathcal{M}(\lambda), \mathbb{C}) \\
& \cong V(\lambda) \\
& \\
& \rho_{\mathbf{R}}: \mathbb{C}^{\times} \rightarrow \operatorname{Aut}(\mathcal{M}(\lambda)) \mathfrak{g} \curvearrowright H_{\text {top }}\left(\mathcal{M}(\lambda)^{\rho_{\mathbf{R}}}, \mathbb{C}\right) \\
& \cong ? ? ?
\end{aligned}
$$

SETUP

Fix some Lie-theoretic data:

1. \mathfrak{g} a semisimple simply-laced complex Lie algebra \mathfrak{g}.
2. $\mathfrak{h} \subseteq \mathfrak{b} \subseteq \mathfrak{g}$ a choice of Cartan and Borel.

SETUP

Fix some Lie-theoretic data:

1. \mathfrak{g} a semisimple simply-laced complex Lie algebra \mathfrak{g}.
2. $\mathfrak{h} \subseteq \mathfrak{b} \subseteq \mathfrak{g}$ a choice of Cartan and Borel.

$$
\mathfrak{s l}_{3} \text { example: } \quad\left(\begin{array}{lll}
* & & \\
& * & \\
& & *
\end{array}\right) \subseteq\left(\begin{array}{ccc}
* & * & * \\
& * & * \\
& & *
\end{array}\right) \subseteq\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right)
$$

SETUP

Fix some Lie-theoretic data:

1. \mathfrak{g} a semisimple simply-laced complex Lie algebra \mathfrak{g}.
2. $\mathfrak{h} \subseteq \mathfrak{b} \subseteq \mathfrak{g}$ a choice of Cartan and Borel.

$$
\mathfrak{s l}_{3} \text { example: } \quad\left(\begin{array}{lll}
* & & \\
& * & \\
& & *
\end{array}\right) \subseteq\left(\begin{array}{lll}
* & * & * \\
& * & * \\
& & *
\end{array}\right) \subseteq\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right)
$$

Then, for free, get

1. A Dynkin diagram I, a simple graph. $\quad I=\begin{aligned} & 1 \\ & 0\end{aligned}$
2. A weight lattice P, and dominant weights P^{+}.

CHARACTERS OF REPRESENTATIONS

CHARACTERS OF REPRESENTATIONS

CHARACTERS OF REPRESENTATIONS

CHARACTERS OF REPRESENTATIONS

A \mathfrak{g}-CRYSTAL IS...

A \mathfrak{g}-crystal is a combinatorial shadow of a \mathfrak{g}-representation.

A \mathfrak{g}-CRYSTAL IS...

A \mathfrak{g}-crystal is a combinatorial shadow of a \mathfrak{g}-representation.
\mathfrak{g} crystals form a semisimple category, with simples indexed by dominant weights.

A \mathfrak{g}-CRYSTAL IS...

A \mathfrak{g}-crystal is a combinatorial shadow of a \mathfrak{g}-representation.
\mathfrak{g} crystals form a semisimple category, with simples indexed by dominant weights.

The category of crystals is monoidal: the underlying set of $C_{1} \otimes C_{2}$ is $C_{1} \times C_{2}$.

The decomposition numbers match those in \mathfrak{g}-mod:

$$
[B(\nu): B(\lambda) \otimes B(\mu)]=[V(\nu): V(\lambda) \otimes V(\mu)]
$$

A \mathfrak{g}-CRYSTAL IS...

A \mathfrak{g}-crystal is a combinatorial shadow of a \mathfrak{g}-representation.
\mathfrak{g} crystals form a semisimple category, with simples indexed by dominant weights.

The category of crystals is monoidal: the underlying set of $C_{1} \otimes C_{2}$ is $C_{1} \times C_{2}$.

The decomposition numbers match those in \mathfrak{g}-mod:

$$
[B(\nu): B(\lambda) \otimes B(\mu)]=[V(\nu): V(\lambda) \otimes V(\mu)]
$$

... but there is no functor \mathfrak{g}-mod $\rightarrow \mathfrak{g}$-crystals.

Reminder: Nakajima quiver varieties

$$
\begin{aligned}
& D_{6} \\
& \lambda=\stackrel{\circ}{3} \underset{0}{\circ} \quad \underset{1}{\circ} \\
& \mathcal{M}(\lambda) \\
& \mathfrak{g}=\mathfrak{s o}(12) \\
& \mathfrak{g} \curvearrowright H_{\text {top }}(\mathcal{M}(\lambda), \mathbb{C}) \\
& \cong V(\lambda) \\
& \rho_{\mathbf{R}}: \mathbb{C}^{\times} \rightarrow \operatorname{Aut}(\mathcal{M}(\lambda)) \\
& \mathfrak{g} \curvearrowright H_{\text {top }}\left(\mathcal{M}(\lambda)^{\rho_{\mathbf{R}}}, \mathbb{C}\right) \\
& \cong ? ? ?
\end{aligned}
$$

MONOMIAL CRYSTAL

Partition $I=I_{0} \sqcup I_{1}$ into a bipartite graph.
$L:=\{(i, h) \in I \times \mathbb{Z} \mid \operatorname{parity}(i)=\operatorname{parity}(h)\}$

MONOMIAL CRYSTAL

Partition $I=I_{0} \sqcup I_{1}$ into a bipartite graph.
$L:=\{(i, h) \in I \times \mathbb{Z} \mid \operatorname{parity}(i)=\operatorname{parity}(h)\}$
The monomial crystal is the set $\mathbb{Z} L$.

MONOMIAL CRYSTAL

Partition $I=I_{0} \sqcup I_{1}$ into a bipartite graph.
$L:=\{(i, h) \in I \times \mathbb{Z} \mid \operatorname{parity}(i)=\operatorname{parity}(h)\}$
The monomial crystal is the set $\mathbb{Z} L$.

$$
\begin{aligned}
\left\langle\mathrm{wt}(b), \alpha_{i}^{\vee}\right\rangle & =\text { sum in column } i \\
\mathrm{wt}(b) & =-2 \varpi_{1}+\varpi_{3}+3 \varpi_{5}
\end{aligned}
$$

MONOMIAL CRYSTAL

Partition $I=I_{0} \sqcup I_{1}$ into a bipartite graph.
$L:=\{(i, h) \in I \times \mathbb{Z} \mid \operatorname{parity}(i)=\operatorname{parity}(h)\}$
The monomial crystal is the set $\mathbb{Z} L$.

$$
\begin{aligned}
\left\langle\mathrm{wt}(b), \alpha_{i}^{\vee}\right\rangle & =\text { sum in column } i \\
\mathrm{wt}(b) & =-2 \varpi_{1}+\varpi_{3}+3 \varpi_{5}
\end{aligned}
$$

Computing arrow $i=3$...

MONOMIAL CRYSTAL

Partition $I=I_{0} \sqcup I_{1}$ into a bipartite graph.
$L:=\{(i, h) \in I \times \mathbb{Z} \mid \operatorname{parity}(i)=\operatorname{parity}(h)\}$
The monomial crystal is the set $\mathbb{Z} L$.

$$
\begin{aligned}
\left\langle\mathrm{wt}(b), \alpha_{i}^{\vee}\right\rangle & =\text { sum in column } i \\
\mathrm{wt}(b) & =-2 \varpi_{1}+\varpi_{3}+3 \varpi_{5}
\end{aligned}
$$

Computing arrow $i=3$...

MONOMIAL CRYSTAL

Partition $I=I_{0} \sqcup I_{1}$ into a bipartite graph.
$L:=\{(i, h) \in I \times \mathbb{Z} \mid \operatorname{parity}(i)=\operatorname{parity}(h)\}$
The monomial crystal is the set $\mathbb{Z} L$.

$$
\begin{aligned}
\left\langle\mathrm{wt}(b), \alpha_{i}^{\vee}\right\rangle & =\text { sum in column } i \\
\mathrm{wt}(b) & =-2 \varpi_{1}+\varpi_{3}+3 \varpi_{5}
\end{aligned}
$$

Computing arrow $i=3$...

MONOMIAL CRYSTAL

Partition $I=I_{0} \sqcup I_{1}$ into a bipartite graph.
$L:=\{(i, h) \in I \times \mathbb{Z} \mid \operatorname{parity}(i)=\operatorname{parity}(h)\}$
The monomial crystal is the set $\mathbb{Z} L$.

$$
\begin{aligned}
\left\langle\mathrm{wt}(b), \alpha_{i}^{\vee}\right\rangle & =\text { sum in column } i \\
\mathrm{wt}(b) & =-2 \varpi_{1}+\varpi_{3}+3 \varpi_{5}
\end{aligned}
$$

Computing arrow $i=3$...

FUNDAMENTAL MONOMIAL CRYSTALS

The crystal generated by $(i, c) \in L$ is a fundamental crystal, written $B(i, c)$.

The basic crystal $B(1, c)$ in type A_{2}.

Theorem (Kashiwara)
The crystal $B(i, c)$ is isomorphic to $B\left(\varpi_{i}\right)$, the irreducible crystal of highest weight ϖ_{i}.

ThE PRODUCT MONOMIAL CRYSTAL

Let $\mathbf{R}=\left\{\left(i_{1}, c_{1}\right), \ldots,\left(i_{r}, c_{r}\right)\right\}$ be a multiset.

- Each $B\left(i_{k}, c_{k}\right) \subseteq \mathbb{Z} L$ is a finite crystal isomorphic to $B\left(\varpi_{i_{k}}\right)$.
- Let $B(\mathbf{R}) \subseteq \mathbb{Z} L$ be their sum:

$$
B(\mathbf{R})=\left\{b_{1}+\cdots+b_{r} \mid b_{k} \in B\left(i_{k}, c_{k}\right)\right\}
$$

- Redundancies may occur: $|B(\mathbf{R})| \leq\left|B\left(i_{1}, c_{1}\right)\right| \cdots\left|B\left(i_{r}, c_{r}\right)\right|$

Theorem (Kamnitzer, Tingley, Webster, Weekes, Yacobi) $B(\mathbf{R})$ is a subcrystal of $\mathbb{Z} L$.

The crystal $B(\mathbf{R})$ is called the product monomial crystal associated to the data \mathbf{R}.

BETWEEN GENERIC AND SINGULAR

$$
B(\mathbf{R}) \cong B\left(\varpi_{2}+\varpi_{8}+\varpi_{9}\right)
$$

MY CONTRIBUTIONS

Natural question: can we describe $B(\mathbf{R})$ for arbitrary \mathbf{R} ?

$$
\text { Theorem }(G, 2018)
$$

In any simply-laced type, there is a Demazure-type formula giving the character of $B(\mathbf{R})$. This formula consists of Demazure operators π_{i}, and multiplications by the fundamental weights ϖ_{i}.

The character formula is proved using a novel method for analysing $B(\mathbf{R})$ through Demazure truncations.

Schur functors

λ a partition, $\mathbb{S}_{\lambda}:$ Vect $_{\mathbb{C}} \rightarrow$ Vect $_{\mathbb{C}}$ a "Schur functor".
$\mathbb{S}_{\lambda}(V)$ is the image of $d_{\lambda}:$

$$
d_{\lambda}: \operatorname{Alt}^{\text {cols } \lambda}(V) \xrightarrow{\text { comult }} V^{\otimes \lambda} \xrightarrow{\text { mult }} \operatorname{Sym}^{\text {rows } \lambda}(V)
$$

SCHUR FUNCTORS

λ a partition, $\mathbb{S}_{\lambda}:$ Vect $_{\mathbb{C}} \rightarrow$ Vect $_{\mathbb{C}}$ a "Schur functor".
$\mathbb{S}_{\lambda}(V)$ is the image of $d_{\lambda}:$

$$
d_{\lambda}: \operatorname{Alt}^{\text {cols } \lambda}(V) \xrightarrow{\text { comult }} V^{\otimes \lambda} \xrightarrow{\text { mult }} \operatorname{Sym}^{\text {rows } \lambda}(V)
$$

For $\lambda=(3,1)$,

$$
d_{\lambda}: \bigwedge^{2}(V) \otimes \bigwedge^{1}(V) \otimes \bigwedge^{1}(V) \rightarrow S^{3}(V) \otimes S^{1}(V)
$$

$\left(v_{1} \wedge v_{2}\right) \otimes v_{3} \otimes v_{4} \mapsto$| v_{1} | v_{3} | v_{4} |
| :--- | :--- | :--- | :--- | :--- |
| v_{2} | | v_{2} v_{3} v_{4}
 v_{1}
 $\| v_{1} v_{3} v_{4} \otimes v_{2}-v_{2} v_{3} v_{4} \otimes v_{1}$ |

(GENERALISED) SCHUR MODULES

By functorality, $G \curvearrowright V \Longrightarrow G \curvearrowright \mathbb{S}_{\lambda}(V)$
When $G=\mathrm{GL}_{n}(\mathbb{C})$, the $\mathbb{S}_{\lambda}\left(\mathbb{C}^{n}\right)$ is called the Schur module for λ.

(GENERALISED) SCHUR MODULES

By functorality, $G \curvearrowright V \Longrightarrow G \curvearrowright \mathbb{S}_{\lambda}(V)$
When $G=\mathrm{GL}_{n}(\mathbb{C})$, the $\mathbb{S}_{\lambda}\left(\mathbb{C}^{n}\right)$ is called the Schur module for λ.
Let $D \subseteq \mathbb{N} \times \mathbb{N}$ be a subset of cardinality d, for example

The functor \mathbb{S}_{D} still makes sense. $\mathbb{S}_{D}\left(\mathbb{C}^{n}\right)$ is the generalised Schur module associated to the diagram D for GL_{n}.

CRystal of generalised Schur modules

$\mathbb{S}_{D}\left(\mathbb{C}^{n}\right)$ is an $\mathfrak{s l}_{n}$-module: what is its crystal?

- GL_{n}-character of $\mathbb{S}_{D}\left(\mathbb{C}^{n}\right)$: Magyar, Reiner, Shimozono (1990s).

Theorem (G, 2018)
In type A, the crystal $B(\mathbf{R})$ is the crystal of a generalised Schur module, for a diagram D depending on \mathbf{R}. Conversely, this gives the crystal of every generalised Schur module for a columnconvex diagram.

CORRESPONDENCE OF DIAGRAMS AND MULTISETS

1. Diagram D

CORRESPONDENCE OF DIAGRAMS AND MULTISETS

1. Diagram D

2. Reorder columns:

CORRESPONDENCE OF DIAGRAMS AND MULTISETS

4. Place groups along diagonals:
5. Diagram D

6. Reorder columns:

CORRESPONDENCE OF DIAGRAMS AND MULTISETS

4. Place groups along diagonals:
5. Diagram D

6. Reorder columns:

7. $\mathbf{R}=\{(3,0),(1,0),(3,4),(2,3),(1,2)\}$

Future Directions

1. Truncations could apply to other monomial crystals.
2. Similar results should hold for simply-laced bipartite Kac-Moody types.
3. Do the truncations have a deeper meaning?
