The Product Monomial Crystal

Joel Gibson The University of Sydney Supervisor: Dr. Oded Yacobi

Presented at AustMS 2018, The University of Adelaide

December 5, 2018

<ロ > < 回 > < 三 > < 三 > < 三 > < 三 > の へ ? 1/16

Type A and Schur modules 00000

MOTIVATION: NAKAJIMA QUIVER VARIETIES

<ロ > < 回 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 の Q へ 2/16

MOTIVATION: NAKAJIMA QUIVER VARIETIES

MOTIVATION: NAKAJIMA QUIVER VARIETIES

 $\mathcal{M}(\boldsymbol{\lambda})$

MOTIVATION: NAKAJIMA QUIVER VARIETIES

MOTIVATION: NAKAJIMA QUIVER VARIETIES

INTRODUCTION	WHAT IS A CRYSTAL?	Product monomial crystal	Type <i>A</i> and Schur modules 00000
O	●OO	000000	
Setup			

Fix some Lie-theoretic data:

- 1. g a semisimple simply-laced complex Lie algebra g.
- 2. $\mathfrak{h} \subseteq \mathfrak{b} \subseteq \mathfrak{g}$ a choice of Cartan and Borel.

INTRODUCTION	WHAT IS A CRYSTAL?	Product monomial crystal	Type <i>A</i> and Schur modules
O	●OO	000000	
Setup			

Fix some Lie-theoretic data:

- 1. g a semisimple simply-laced complex Lie algebra g.
- 2. $\mathfrak{h} \subseteq \mathfrak{b} \subseteq \mathfrak{g}$ a choice of Cartan and Borel.

Introduction	WHAT IS A CRYSTAL?	Product monomial crystal	Type <i>A</i> and Schur modules 00000
O	●OO	000000	
0			

Setup

Fix some Lie-theoretic data:

- 1. \mathfrak{g} a semisimple simply-laced complex Lie algebra \mathfrak{g} .
- 2. $\mathfrak{h} \subseteq \mathfrak{b} \subseteq \mathfrak{g}$ a choice of Cartan and Borel.

Then, for free, get

1. A Dynkin diagram *I*, a simple graph. $I = \circ^{1} \circ^{2}$ 2. A weight lattice *P*, and dominant weights *P*⁺.

Type A and Schur modules 00000

Introduction O	WHAT IS A CRYSTAL?	Product monomial crystal 000000	Type <i>A</i> and Schur modules 00000

A g-CRYSTAL IS...

A g-crystal is a *combinatorial shadow* of a g-representation.

A g-crystal is a *combinatorial shadow* of a g-representation.

 ${\mathfrak g}$ crystals form a semisimple category, with simples indexed by dominant weights.

A \mathfrak{g} -crystal is a *combinatorial shadow* of a \mathfrak{g} -representation.

 ${\mathfrak g}$ crystals form a semisimple category, with simples indexed by dominant weights.

The category of crystals is *monoidal*: the underlying set of $C_1 \otimes C_2$ is $C_1 \times C_2$.

The decomposition numbers match those in g-mod:

$$[B(\nu):B(\lambda)\otimes B(\mu)]=[V(\nu):V(\lambda)\otimes V(\mu)]$$

A g-crystal is a *combinatorial shadow* of a g-representation.

 ${\mathfrak g}$ crystals form a semisimple category, with simples indexed by dominant weights.

The category of crystals is *monoidal*: the underlying set of $C_1 \otimes C_2$ is $C_1 \times C_2$.

The decomposition numbers match those in g-mod:

$$[B(\nu):B(\lambda)\otimes B(\mu)]=[V(\nu):V(\lambda)\otimes V(\mu)]$$

... but there is no functor $\mathfrak{g}\text{-mod} \to \mathfrak{g}\text{-crystals}$.

INTRODUCTION	WHAT IS A CRYSTAL?	PRODUCT MONOMIAL CRYSTAL	Type A and Schur modules
0	000	00000	00000

REMINDER: NAKAJIMA QUIVER VARIETIES

INTRODUCTION	WHAT IS A CRYSTAL?	PRODUCT MONOMIAL CRYSTAL	Type A and Schur modules
0	000	00000	00000

Partition $I = I_0 \sqcup I_1$ into a bipartite graph.

$$L := \{(i, h) \in I \times \mathbb{Z} \mid \mathsf{parity}(i) = \mathsf{parity}(h)\}$$

Partition $I = I_0 \sqcup I_1$ into a bipartite graph. $L := \{(i, h) \in I \times \mathbb{Z} \mid \mathsf{parity}(i) = \mathsf{parity}(h)\}$

The *monomial crystal* is the set $\mathbb{Z}L$.

Partition $I = I_0 \sqcup I_1$ into a bipartite graph. $L := \{(i, h) \in I \times \mathbb{Z} \mid \mathsf{parity}(i) = \mathsf{parity}(h)\}$

The *monomial crystal* is the set $\mathbb{Z}L$.

 $\langle \operatorname{wt}(b), \alpha_i^{\vee}
angle = \operatorname{sum} \operatorname{in \ column} i$ $\operatorname{wt}(b) = -2\varpi_1 + \varpi_3 + 3\varpi_5$

Partition $I = I_0 \sqcup I_1$ into a bipartite graph. $L := \{(i, h) \in I \times \mathbb{Z} \mid \mathsf{parity}(i) = \mathsf{parity}(h)\}$

The *monomial crystal* is the set $\mathbb{Z}L$.

 $\langle \operatorname{wt}(b), \alpha_i^{\vee}
angle = \operatorname{sum} \operatorname{in \ column} i$ $\operatorname{wt}(b) = -2\varpi_1 + \varpi_3 + 3\varpi_5$

Computing arrow i = 3...

Partition $I = I_0 \sqcup I_1$ into a bipartite graph. $L := \{(i, h) \in I \times \mathbb{Z} \mid \mathsf{parity}(i) = \mathsf{parity}(h)\}$

The *monomial crystal* is the set $\mathbb{Z}L$.

 $\langle \operatorname{wt}(b), \alpha_i^{\vee}
angle = \operatorname{sum} \operatorname{in \ column} i$ $\operatorname{wt}(b) = -2\varpi_1 + \varpi_3 + 3\varpi_5$

Computing arrow i = 3...

Partition $I = I_0 \sqcup I_1$ into a bipartite graph. $L := \{(i, h) \in I \times \mathbb{Z} \mid \mathsf{parity}(i) = \mathsf{parity}(h)\}$

The *monomial crystal* is the set $\mathbb{Z}L$.

 $\langle \operatorname{wt}(b), \alpha_i^{\vee}
angle = \operatorname{sum} \operatorname{in \ column} i$ $\operatorname{wt}(b) = -2\varpi_1 + \varpi_3 + 3\varpi_5$

Computing arrow i = 3...

Partition $I = I_0 \sqcup I_1$ into a bipartite graph. $L := \{(i, h) \in I \times \mathbb{Z} \mid \mathsf{parity}(i) = \mathsf{parity}(h)\}$ The *monomial crystal* is the set $\mathbb{Z}L$.

> $\langle \operatorname{wt}(b), \alpha_i^{\vee}
> angle = \operatorname{sum} \operatorname{in \ column} i$ $\operatorname{wt}(b) = -2\varpi_1 + \varpi_3 + 3\varpi_5$

Computing arrow i = 3...

FUNDAMENTAL MONOMIAL CRYSTALS

The crystal generated by $(i, c) \in L$ is a *fundamental* crystal, written B(i, c).

The basic crystal B(1, c) in type A_2 .

Theorem (Kashiwara)

The crystal B(i, c) is isomorphic to $B(\varpi_i)$, the irreducible crystal of highest weight ϖ_i .

INTRODUCTION	WHAT IS A CRYSTAL?	PRODUCT MONOMIAL CRYSTAL	Type A and Schur modules
0	000	000000	00000

Let **R** = { $(i_1, c_1), ..., (i_r, c_r)$ } be a multiset.

- Each $B(i_k, c_k) \subseteq \mathbb{Z}L$ is a finite crystal isomorphic to $B(\varpi_{i_k})$.
- Let $B(\mathbf{R}) \subseteq \mathbb{Z}L$ be their sum:

$$B(\mathbf{R}) = \{b_1 + \cdots + b_r \mid b_k \in B(i_k, c_k)\}$$

► Redundancies may occur: $|B(\mathbf{R})| \le |B(i_1, c_1)| \cdots |B(i_r, c_r)|$

Theorem (Kamnitzer, Tingley, Webster, Weekes, Yacobi)

 $B(\mathbf{R})$ is a subcrystal of $\mathbb{Z}L$.

The crystal $B(\mathbf{R})$ is called the *product monomial crystal* associated to the data \mathbf{R} .

MY CONTRIBUTIONS

Natural question: can we describe $B(\mathbf{R})$ for arbitrary **R**?

```
Theorem (G, 2018)
```

In any simply-laced type, there is a Demazure-type formula giving the character of $B(\mathbf{R})$. This formula consists of Demazure operators π_i , and multiplications by the fundamental weights ϖ_i .

The character formula is proved using a novel method for analysing $B(\mathbf{R})$ through *Demazure truncations*.

SCHUR FUNCTORS

 λ a partition, \mathbb{S}_{λ} : Vect_{\mathbb{C}} \rightarrow Vect_{\mathbb{C}} a "Schur functor".

 $\mathbb{S}_{\lambda}(V)$ is the image of d_{λ} :

 $d_{\lambda} : \operatorname{Alt}^{\operatorname{cols} \lambda}(V) \xrightarrow{\operatorname{comult}} V^{\otimes \lambda} \xrightarrow{\operatorname{mult}} \operatorname{Sym}^{\operatorname{rows} \lambda}(V)$

SCHUR FUNCTORS

 λ a partition, \mathbb{S}_{λ} : Vect_{\mathbb{C}} \rightarrow Vect_{\mathbb{C}} a "Schur functor".

 $\mathbb{S}_{\lambda}(V)$ is the image of d_{λ} :

 $d_{\lambda}: \operatorname{Alt}^{\operatorname{cols} \lambda}(V) \xrightarrow{\operatorname{comult}} V^{\otimes \lambda} \xrightarrow{\operatorname{mult}} \operatorname{Sym}^{\operatorname{rows} \lambda}(V)$

For
$$\lambda = (3, 1)$$
,
 $d_{\lambda} : \bigwedge^{2}(V) \otimes \bigwedge^{1}(V) \otimes \bigwedge^{1}(V) \to S^{3}(V) \otimes S^{1}(V)$
 $(v_{1} \wedge v_{2}) \otimes v_{3} \otimes v_{4} \mapsto \boxed{v_{1} v_{3} v_{4}}_{v_{2}} - \boxed{v_{2} v_{3} v_{4}}_{v_{1}} \mapsto v_{1}v_{3}v_{4} \otimes v_{2} - v_{2}v_{3}v_{4} \otimes v_{1}$

(GENERALISED) SCHUR MODULES

By functorality, $G \curvearrowright V \implies G \curvearrowright \mathbb{S}_{\lambda}(V)$

When $G = \operatorname{GL}_n(\mathbb{C})$, the $\mathbb{S}_{\lambda}(\mathbb{C}^n)$ is called the *Schur module* for λ .

(GENERALISED) SCHUR MODULES

By functorality, $G \curvearrowright V \implies G \curvearrowright \mathbb{S}_{\lambda}(V)$

When $G = GL_n(\mathbb{C})$, the $\mathbb{S}_{\lambda}(\mathbb{C}^n)$ is called the *Schur module* for λ .

Let $D \subseteq \mathbb{N} \times \mathbb{N}$ be a subset of cardinality *d*, for example

The functor \mathbb{S}_D still makes sense. $\mathbb{S}_D(\mathbb{C}^n)$ is the *generalised Schur module* associated to the diagram *D* for GL_n .

CRYSTAL OF GENERALISED SCHUR MODULES

 $\mathbb{S}_D(\mathbb{C}^n)$ is an \mathfrak{sl}_n -module: what is its crystal?

▶ GL_{*n*}-character of $\mathbb{S}_D(\mathbb{C}^n)$: Magyar, Reiner, Shimozono (1990s).

Theorem (*G*, 2018)

In type *A*, the crystal $B(\mathbf{R})$ is the crystal of a generalised Schur module, for a diagram *D* depending on **R**. Conversely, this gives the crystal of every generalised Schur module for a column-convex diagram.

INTRODUCTION	WHAT IS A CRYSTAL?	PRODUCT MONOMIAL CRYSTAL	Type A and Schur modules
0	000	000000	00000

1. Diagram D

INTRODUCTION	WHAT IS A CRYSTAL?	PRODUCT MONOMIAL CRYSTAL	Type A and Schur modules
0	000	000000	00000

1. Diagram D

2. Reorder columns:

INTRODUCTION	WHAT IS A CRYSTAL?	PRODUCT MONOMIAL CRYSTAL	Type A and Schur modules
0	000	000000	00000

4. Place groups along diagonals:

1. Diagram D

2. Reorder columns:

4. Place groups along diagonals:

1. Diagram D

2. Reorder columns:

<□ > < @ > < E > < E > E の Q (15/16)

<ロ > < 回 > < 臣 > < 臣 > 臣 の Q の 16/16

FUTURE DIRECTIONS

- 1. Truncations could apply to other monomial crystals.
- 2. Similar results should hold for simply-laced bipartite Kac-Moody types.
- 3. Do the truncations have a deeper meaning?