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Preface

This book is intended as an introduction to links and a reference

for the invariants of abelian coverings of link exteriors, and to outline

more recent work, particularly that related to free coverings, nilpo-

tent quotients and concordance. Knot theory has been well served

with a variety of texts at various levels, but essential features of the

multicomponent case such as link homotopy, I-equivalence, the fact

that not all links are boundary links, longitudes, the role of the lower

central series as a source of invariants and the homological complex-

ity of the many-variable Laurent polynomial rings are all generally

overlooked. Moreover, it has become apparent that for the study of

concordance and link homotopy it is more convenient to work with

disc links; the distinction is imperceptible in the knot theoretic case.

Invariants of these types play an essential role in the study of such

difficult and important problems as the concordance classification of

classical knots and the questions of link concordance arising from

the Casson-Freedman analysis of topological surgery problems, and

particularly in the applications of knot theory to other areas of topol-

ogy. For instance, the extension of the Disc Embedding Lemma to

groups of subexponential growth by Freedman and Teichner derived

from computations using link homotopy and the lower central series.

Milnor’s interpretation of the multivariable Alexander polynomial as

a Reidemeister-Franz torsion was refined by Turaev, to give “sign-

determined” torsions and Alexander polynomials. These were used

by Lescop to extend the Casson invariant to all closed orientable 3-

manifolds, and by Meng and Taubes to identify the Seiberg-Witten

invariant for 3-manifolds. The multivariable Alexander polynomial

xi
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also arises in McMullen’s lower bound for the Thurston norm of a

torally bounded 3-manifold.

Links and the main equivalence relations relating them are de-

fined in Chapter 1. (In particular, we include a proof of Giffen’s

theorem relating F -isotopy and I-equivalence via shift-spinning.) In

Chapter 2 we review homology and cohomology with local coeffi-

cients, and Poincaré duality for covering spaces. The most useful

manifestations of duality are the Blanchfield pairings for abelian

coverings (considered in this chapter) and for free coverings of ho-

mology boundary links (considered in Chapter 9). Most of Chapter

3 is on the determinantal invariants of modules over a commuta-

tive noetherian ring (including the Reidemeister-Franz torsion for

chain complexes), but it also considers some special features of low-

dimensional rings and Witt groups of hermitean pairings on torsion

modules. These results are applied to the homology of abelian cov-

ers of link exteriors in the following five chapters. Chapter 4 is on

the maximal abelian cover. Some results well-known for knots are

extended to the many component case, and the connections between

various properties of boundary links are examined. Relations with

the invariants of sublinks, the total linking number cover, fibred links

and finite abelian branched covers are considered in Chapter 5.

In the middle of the book (Chapters 6-8) the above ideas are

applied in some special cases. Chapters 6 and 7 consider in more de-

tail invariants of knots and of 2-component links, respectively. Here

there are some simplifications, both in the algebra and the topology.

In particular, surgery is used to describe the Blanchfield pairing of

a classical knot (in Chapter 6) and to give Bailey’s theorem on pre-

sentation matrices of the modules of 2-component links (in Chapter

7). Symmetries of links and link types, as reflected in the Alexander

invariants, are studied in Chapter 8.

The later chapters (9-12) describe some invariants of nonabelian

coverings and their application to questions of concordance and link

homotopy. The links of greatest interest here are those concordant

to sublinks of homology boundary links (cSHB links). The exteriors
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of homology boundary links have covers with nontrivial free cover-

ing group. As free groups have cohomological dimension 1, the ideas

used in studying knot modules extend readily to the homology mod-

ules and duality pairings of such covers. This is done in Chapter 9,

which may be considered as an introduction to the work of Sato, Du

Val and Farber on high dimensional boundary links. We also give a

new proof of Gutiérrez’ unlinking theorem for n-links, which holds

for all n ≥ 3 and extends, modulo s-cobordism, to the case n = 2.

Although cSHB links do not always have such free covers, their

groups have nilpotent quotients isomorphic to those of a free group.

More generally, the quotients of a link group by the terms of its

lower central series are concordance invariants of the link. (The

only other such invariants known are the Witt classes of duality

pairings on covering spaces.) Chapter 10 considers the connections

between the nilpotent quotients, Lie algebra, cohomology algebra

and minimal model of a group and more particularly the relations

between Massey products and Milnor invariants for a link group.

Although we establish the basic properties of the Milnor invariants

here, we refer to Cochran’s book for further details on geometric

interpretations, computation and construction of examples.

The final two chapters are intended as an introduction to the

work of Levine (on algebraic closure and completions), Le Dimet

(on high dimensional disc links) and Habegger and Lin (on string

links). As this work is still evolving, and the directions of further

development may depend on the outcome of unproven conjectures,

some arguments in these chapters are only sketched, if given at all.

One of the difficulties in constructing invariants for links from the

duality pairings of covering spaces is that, in contrast to the knot

theoretic case, link groups do not in general share a common quo-

tient with reasonable homological properties. The groups of all µ-

component 1-links with all Milnor invariants 0 and the groups of all

µ-component n-links for any n ≥ 2 share the same tower of nilpotent

quotients. The projective limit of this tower is the nilpotent comple-

tion of the free group on µ generators, and is uncountable. This is
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related to other notions of completion in Chapter 11. Another prob-

lem is that the set of concordance classes of links does not have a

natural group structure. However “stacking” with respect to the last

coordinate endows the set of concordance classes of n-disc links with

such a structure. Chapter 12 considers disc links and their relation

to spherical links.

The emphasis is on establishing algebraic invariants and their

properties, and constructions for realizing such invariants have been

omitted, for the most part. The reader is assumed to know some

algebraic and geometric topology, and some commutative algebra

(to the level of a first graduate course in each). We occasionally use

spectral sequence arguments. Commutative and homological algebra

are used systematically, and we avoid as far as possible accidental

features, such as the existence of Wirtinger presentations. While the

primary focus is on links in S3, links in other homology spheres and

higher dimensions and disc links in discs are also considered.

I would like to thank M.Morishita, D.S.Silver and V.G.Turaev

for their detailed comments on earlier drafts of this book. The text

was prepared using the AMS-LATEX generic monograph package.

Jonathan Hillman

Added in February 2012. The topic considered in this book that

has expanded most rapidly in the past decade is that of Twisted

Polynomial Invariants. The final section of the former Chapter 5

has become a new Chapter 6, on this topic. In addition, Chapter 2

has been rewritten, and there is a new Chapter 10, on Singularities

of Plane Curves. Material has been added to the chapters on Knot

Modules and on Nilpotent Quotients. The errors noticed to date have

been corrected, and equations have been displayed more often.

I would like to thank C.Livingston and S.Naik, and D.Silver and

S.Williams for our recent collaborations, and J.C.Cha, T.D.Cochran

and S.A.Melikhov for their observations.
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CHAPTER 1

Links

In this chapter we shall define knots and links and the standard

equivalence relations used in classifying them. We shall also out-

line the most important geometric aspects. The later chapters shall

concentrate largely on the algebraic invariants of covering spaces.

1.1. Basic notions

The standard orientation of R
n induces an orientation on the

unit n-disc Dn = {(x1, . . . , xn) ∈ R
n | Σx2i ≤ 1} and hence on its

boundary Sn−1 = ∂Dn, by the convention “outward normal first”.

We shall assume that standard discs and spheres have such orienta-

tions. Qualifications shall usually be omitted when there is no risk

of ambiguity. In particular, we shall often abbreviate X(K), M(K)

and πK (defined below) as X, M and π, respectively. If µ is a pos-

itive integer and Y is a topological space µY = Y × {1, . . . , µ}, the

disjoint union of µ copies of Y .

All manifolds and maps between them shall be assumed PL un-

less otherwise stated. The main exceptions arise when considering

4-dimensional issues.

A µ-component n-link is an embedding L : µSn → Sn+2 which

extends to an embedding j of µSn×D2 onto a closed neighbourhood

N of L, such that j(µSn × {0}) = L and ∂N is bicollared in Sn+2.

(We may also use the terms classical link when n = 1, higher di-

mensional link when n ≥ 2 and high dimensional link when n ≥ 3.)

With this definition and the above conventions on orientations, each

link is oriented. It is determined up to (ambient) isotopy by its im-

age L(µSn), considered as an oriented codimension 2 submanifold

of Sn+2, and so we may let L also denote this submanifold. The ith

3
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component of L is the n-knot (1-component n-link) Li = L|Sn×{i}.

Most of our arguments extend to links in homology spheres.

Links are locally flat by definition. (However, PL embeddings of

higher dimensional manifolds in codimension 2 need not be locally

flat. The typical singularity is the cone over an (n − 1)-knot; there

are no nontrivial 0-knots.) We may assume that the embedding

j of the product neighbourhood is orientation preserving, and it

is then unique up to isotopy rel µSn × {0}. The exterior of L is

the compact (n + 2)-manifold X(L) = Sn+2 \ intN with boundary

∂X(L) ∼= µSn × S1, and is well defined up to homeomorphism. It

inherits an orientation from Sn+2. LetM(L) = X(L)∪µDn+1×S1 be

the closed manifold obtained by surgery on L in Sn+2, with framing

0 on each component if n = 1. (Since πn(O(2)) = 0 if n > 1, the

framing is then essentially unique.)

The link group is πL = π1(X(L)). A meridianal curve for the

ith component of L is an oriented curve in ∂X(Li) ⊆ ∂X(L) which

bounds a 2-disc in Sn+2\X(Li) having algebraic intersection +1 with

Li. The image of such a curve in πL is well defined up to conjugation,

and any element of πL in this conjugacy class is called an ith merid-

ian. A basing for a link L is a homomorphism f : F (µ) → πL deter-

mined by a choice of one meridian for each component of L. The ho-

mology classes of the meridians form a basis for H1(X(L);Z) ∼= Z
µ,

whileHn+1(X(L);Z) ∼= Z
µ−1 andHq(X(L);Z) = 0 for 1 < q < n+1,

by Alexander duality.

A Seifert hypersurface for L is a locally flat, oriented codimension

1 submanifold V of Sn+2 with (oriented) boundary L. By a standard

argument these always exist. (Using obstruction theory it may be

shown that the projection of ∂X ∼= µSn × S1 onto S1 extends to

a map q : X → S1 [Ke65]. By transversality (TOP if n = 2!)

we may assume that q−1(1) is a bicollared, proper codimension 1

submanifold of X. The union q−1(1)∪ j(Sn × [0, 1]) is then a Seifert

hypersurface for L.) In general there is no canonical choice of Seifert

surface. However, there is one important special case. A link L is

fibred if there is such a map q : X → S1 which is the projection

of a fibre bundle. The exterior is then the mapping torus of a self
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homeomorphism θ of the fibre F of q. The isotopy class of θ is called

the geometric monodromy of the bundle. Such a map q extends to a

fibre bundle projection q̂ : M(L) → S1, with fibre F̂ = F ∪ µDn+1,

called the closed fibre of L. Higher dimensional links with more than

one component are never fibred. (See Theorem 5.12.)

An n-link L is trivial if it bounds a collection of µ disjoint locally

flat 2-discs in Sn. It is split if it is isotopic to one which is the union

of nonempty sublinks L1 and L2 whose images lie in disjoint discs

in Sn+2, in which case we write L = L1 ∐ L2, and it is a boundary

link if it bounds a collection of µ disjoint orientable hypersurfaces in

Sn+2. Clearly a trivial link is split, and a split link is a boundary

link; neither implication can be reversed if µ > 1. Knots are bound-

ary links, and many arguments about knots that depend on Seifert

hypersurfaces extend readily to boundary links.

1.2. The link group

If mi is a meridian for Li, represented by a simple closed curve

on ∂X then X ∪{mi}

⋃
D2 is a deformation retract of Sn+2 \ µ{∗}

and so is 1-connected. (This is the only point at which we need the

ambient homology sphere to be 1-connected.) Hence π = πL is the

normal closure of a set of meridians. (If S is a subset of a group

G the normal closure 〈〈S〉〉G, or just 〈〈S〉〉, is the smallest normal

subgroup of G containing S, and G has weight m if G = 〈〈S〉〉G for

some subset S with m elements.) By Hopf’s theorem, H2(π;Z) is the

cokernel of the Hurewicz homomorphism from π2(X) to H2(X;Z).

If π is the group of a µ-component n-link L in Sn+2 then

(1) π finitely presentable;

(2) π is of weight µ;

(3) H1(π;Z) = π/π′ ∼= Z
µ; and

(4) (if n > 1) H2(π;Z) = 0.

Conversely, any group satisfying these conditions is the group

of an n-link, for every n ≥ 3. If (4) is replaced by the stronger

condition that π has deficiency µ then π is the group of a 2-link, but

this stronger condition is not necessary [Ke65’]. If subcomplexes of

aspherical 2-complexes are aspherical then a higher-dimensional link
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group π has geometric dimension at most 2 if and only def(π) = µ

(in which case it is a 2-link group).

The group of a classical link has geometric dimension at most 2.

Moreover it has a Wirtinger presentation of deficiency 1 and satisfies

(1-3), but satisfies (4) if and only if the link splits completely as a

union of knots in disjoint balls. This is related to the presence of

longitudes, nontrivial elements which commute with meridians. By

the Loop Theorem, every 1-link L has a connected Seifert surface

whose fundamental group injects into πL. The image is a non-abelian

free subgroup of πL unless the Seifert surface is a disc or an annulus.

In fact the unknot and the Hopf link Ho (221 in the tables of [Rol])

are the only 1-links with solvable link group.

Let L be a µ-component 1-link. An ith longitudinal curve for L

is a closed curve in ∂X(Li) which intersects an ith meridianal curve

transversely in one point and which is null homologous in X(Li).

The ith meridian and ith longitude of L are the images of such

curves in πL, and are well defined up to simultaneous conjugation.

If ∗ is a basepoint for X(L) then representatives for the conjugacy

classes of the meridians and longitudes may be determined on choos-

ing paths joining each component of ∂X(L) to the basepoint. The

linking number ℓij = lk(Li, Lj) is the image of the ith longitude in

H1(X(Lj);Z) ∼= Z; in particular, ℓii = 0. It is not hard to show that

ℓij = ℓji.

When chosen as above, the ith longitude and ith meridian com-

mute, since they both come from π1(∂X(Li)) ∼= Z
2. In classical knot

theory (µ = 1) the longitudes play no role in connection with abelian

invariants, as they always lie in the second commutator subgroup

(πK)′′. In higher dimensions there is no analogue of the longitude in

the link group; there are longitudinal n-spheres, but these represent

classes in πn(X(L)) and so are generally inaccessible to computation.

Let F (r) denote the free group on r letters.

Theorem 1.1. A 1-link L is trivial if and only if πL is free.

Proof. The condition is clearly necessary. If πL is free then the

ith longitude and ith meridian must lie in a common cyclic group,
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for each 1 ≤ i ≤ µ, since a free group has no non-cyclic abelian sub-

groups. On considering the images in H1(X(Li);Z) ∼= Z we conclude

that the ith longitude must be null homotopic in X(L). Hence us-

ing the Loop Theorem inductively we see that the longitudes bound

disjoint discs in S3. �

In Chapter 11 we shall show that if n ≥ 3 an n-link L is trivial

if and only if πL is freely generated by meridians and the homotopy

groups πj(X(L)) are all 0, for 2 ≤ j ≤ [n+1
2 ]. These conditions

are also necessary when n = 2, and if moreover µ = 1 then L is

topologically unknotted, by TOP surgery, since F (1) = Z is “good”

[FQ]. However, it is not yet known whether such a knot is (PL)

trivial, nor whether these conditions characterize triviality of 2-links

with µ > 1. (We show instead that such a 2-link is s-concordant

to a trivial link. See §5 below re s-concordance.) The condition on

meridians cannot be dropped if n > 1 and µ > 1 ([Po71] – see §7 of

Chapter 8 below).

x

y

z

∞

−→ xyx−1 = z

∞

Figure 1.

Any 1-link is ambient isotopic to a link L with image lying strictly

above the hyperplane R2×{0} in R
3 = S3 \{∞} and for which com-

position with the projection to R
2 is a local embedding with finitely

many double points. Given such a link, theWirtinger presentation is

obtained as follows. For each component of the link minus the lower

member of each double point pair assign a generator. (This corre-

sponds to a loop coming down on a vertical line from ∞, going once



8 1. LINKS

around this component, and returning to ∞.) For the double point

corresponding to the arc x crossing over the point separating arcs y

and z, there is a relation xyx−1 = z, where the arcs are oriented as

in Figure 1. Thus πL has a presentation

〈xi,j | ui,jxi,ju
−1
i,j = xi,j+1, 1 ≤ j ≤ j(i), 1 ≤ i ≤ µ〉,

where ui,j = x±1
p,q for some p, q and xi,j(i)+1 = xi,1. It is not hard

to see that one of these relations is redundant, and so πL has a

presentation of deficiency 1. For an unsplittable link this is best

possible.

Theorem 1.2. Let L be a 1-link. Then the following are equiv-

alent:

(1) L is splittable;

(2) πL is a nontrivial free product;

(3) def(πL) > 1.

Proof. Clearly (1) implies (2) and (2) implies (3). If C is the

finite 2-complex determined by a presentation of deficiency ≥ 2 for

πL then β2(πL) ≤ β2(C) ≤ µ − 2 < β2(X(L)) = µ − 1. Hence

π2(X(L)) 6= 0 and so there is an essential embedded S2 in X(L),

which must split L, by the Sphere Theorem. �

There is not yet a good splitting criterion in higher dimensions.

The centre of a 1-link group is infinite cyclic or trivial, except

for the Hopf link, which has group Z
2 [Mu65]. The argument of

[HK78] extends to show that any finitely generated abelian group

can be the centre of the group of a boundary 3-link. However, the

group of a 2-link with more than one component has no abelian

normal subgroup of rank > 0. (See page 42 of [Hil]. In all known

examples the centre is trivial.)

If G is a group and x, y ∈ G let [x, y] = xyx−1y−1 be the com-

mutator, and let G′ = [G,G] be the commutator subgroup. Define

the lower central series {Gq}q≥1 for G inductively by G1 = G, G2 =

G′ = [G,G1] and Gq+1 = [G,Gq]. Let Gω = ∩q≥1Gq. A group homo-

morphism f : G → H induces homomorphisms fq : G/Gq → H/Hq,

for all 1 ≤ q ≤ ω. It is homologically 2-connected if H1(f ;Z) is an
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isomorphism and H2(f ;Z) is an epimorphism. These notions are

related in the following result of Stallings.

Theorem 1.3. [St65] Let f : G → H be a homologically 2-

connected group homomorphism. Then fq : G/Gq → H/Hq is an iso-

morphism, for all q ≥ 1. If f is an epimorphism then fω : G/Gω →

H/Hω is also an isomorphism.

Proof. The LHS spectral sequence for G as an extension of

G/Gq by Gq gives an exact sequence

H2(G;Z) → H2(G/Gq ;Z) → Gq/Gq+1 → 0,

for all q ≥ 1. Since G/Gq+1 is a central extension of G/Gq by

Gq/Gq+1 the result follows by the Five-Lemma and induction. �

The group of a link L may be given a pre-abelian presentation

〈xi, yij | [vij , xi]yij, [wi, xi], 2 ≤ j ≤ j(i), 1 ≤ i ≤ µ〉,

where the words xi and wi represent ith meridians and longitudes.

The images of the xis generate the nilpotent quotients; for links there

is a more precise result due to Milnor.

Theorem 1.4. [Mi57] Let π be the group of a µ-component 1-

link. Then π/πq has a presentation

〈xi, 1 ≤ i ≤ µ | [wi,q, xi] = 1, 1 ≤ i ≤ µ, F (µ)q〉,

where xi and wi,q represent the images in π/πq of the ith meridian

and longitude, respectively. There are words yi ∈ F (µ) such that

Πyi[wi,q, xi]y
−1
i ∈ F (µ)q.

Proof. (From [Tu76].) Fix a basepoint ∗ ∈ X and choose arcs

αi from ∗ to ∂X(Li) which meet only at ∗. Let N be a closed regular

neighbourhood of ∪αi in X and let Di = N∩∂X(Li). ThenN ∼= D3,

Di
∼= D2 and ∂X(Li) \Di is a punctured torus. Let W = X \N and

G = π1(W, ∗). SinceH1(W ;Z) ∼= Z
µ andH2(W ;Z) = 0 the inclusion

of meridians induces isomorphisms from F (µ)/F (µ)q to G/Gq for all

q ≥ 1, by Theorem 1.3. Since X = W ∪ (∪i=µ
i=1Di) ∪ N we see that

π ∼= G/〈〈∂Di | 1 ≤ i ≤ µ〉〉. Clearly ∂Di represents the commutator

of curves in W whose images in π are an ith meridian-longitude pair.
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The final assertion follows from the fact that W ∩N = ∂N \ ∂X

is a punctured sphere with boundary ∪i=µ
i=1∂Di. �

If L is the closure of a pure braid we may take wi,q = wi for all

q, for πL then has a presentation 〈xi, 1 ≤ i ≤ µ | [wi, xi], 1 ≤ i ≤ µ〉.

(See Theorem 2.2 of [Bir].)

1.3. Homology boundary links

Classical boundary links were characterized by Smythe, and his

result was extended to higher dimensions by Gutiérrez.

Theorem 1.5. [Sm66, Gu72] A µ-component link L is a bound-

ary link if and only if there is an epimorphism f : πL → F (µ) which

carries a set of meridians to a free basis.

Proof. Suppose that L has a set of disjoint Seifert hypersurfaces

Uj , with disjoint product neighbourhoods Nj
∼= Uj × (−1, 1) in X.

Let p : X → ∨µS1 be the map which sends X \∪Nj to the basepoint

and which sends (n, t) ∈ Nj to eπi(t+1) in the jth copy of S1, for

1 ≤ j ≤ µ. Then f = π1(p) sends a set of meridians for L to the

standard basis of π1(∨
µS1) ∼= F (µ).

Conversely, such a homomorphism f : πL → F (µ) may be real-

ized by a map F : X → ∨µS1, since ∨µS1 is aspherical. We may

also assume that F |∂X is standard, since f sends meridians to gener-

ators, and that F is transverse to µe−πi, the set of midpoints of the

circles. The inverse image F−1(µe−πi) is then a family of disjoint

hypersurfaces spanning L. �

An equivalent characterization that is particularly useful in ques-

tions of concordance and surgery is that a µ-component n-link L

is a boundary link if and only if there is a degree 1 map of pairs

from (X(L), ∂X(L)) to the exterior of the trivial link which re-

stricts to a homeomorphism on the boundary [CS80]. A boundary

n-link L is simple if there is such a degree 1 map which is [n+1
2 ]-

connected. (Thus L is simple if πL is freely generated by meridians

and πj(X(L)) = 0 for 1 < j < [n+1
2 ], and so every such degree 1 map

is [n+1
2 ]-connected.)
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If the condition on meridians is dropped L is said to be a homol-

ogy boundary link. Smythe showed also that a classical link L is a

homology boundary link if and only if there are µ disjoint oriented

codimension 1 submanifolds Ui ⊂ X(L) with ∂Ui ⊂ ∂X(L) and such

that the image of ∂Ui in Hn(∂X(L);Z) is homologous to the image

of the ith longitudinal n-sphere. This characterization extends to all

higher dimensions. In Chapter 2 such singular Seifert hypersurfaces

are used to construct covering spaces of X(L).

If L is a homology boundary link the epimorphism from π =

πL to F (µ) satisfies the hypotheses of Stallings’ Theorem, and so

π/πq ∼= F (µ)/F (µ)q for all q ≥ 1. Moreover π/πω ∼= F (µ), since free

groups are residually nilpotent.

If L is a higher dimensional link H2(πL;Z) = H2(F (µ);Z) =

0 and hence a basing f induces isomorphisms on all the nilpotent

quotients F (µ)/F (µ)q ∼= πL/(πL)q, and a monomorphism F (µ) →

πL/(πL)ω , by Stallings’ Theorem, since in any case H1(f ;Z) is an

isomorphism. (In particular, if µ ≥ 2 then πL contains a non-abelian

free subgroup.) The latter map is an isomorphism if and only if L is

a homology boundary link.

An SHB link is a sublink of a homology boundary link. Although

sublinks of boundary links are clearly boundary links, SHB links

need not be homology boundary links. (See Chapter 8 below.)

1.4. Z/2Z-boundary links

A µ-component n-link is a Z/2Z-boundary link if there is an

embedding P : U = ∐i=µ
i=1Ui → Sn+2 of µ disjoint (n + 1)-manifolds

Ui such that L = P |∂U . (We do not require that the hypersurfaces

are orientable.) The simplest nontrivial example is spanned by two

simply linked Möbius bands. (See the link 9261 of the tables of [Rol].)

Theorem 1.6. A link L is a Z/2Z-boundary link if and only if

there is an epimorphism from πL to ∗µ(Z/2Z) which carries some

ith meridian to the generator of the ith factor, for all 1 ≤ i ≤ µ.

Proof. Let L be a Z/2Z-boundary n-link with spanning sur-

faces Ui, and let νi be the normal bundle of Ui in X. Crushing
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the complement of a disjoint family of open regular neighbourhoods

of the Ui to a point collapses X onto the wedge of Thom spaces

∨T (νi). The bundles νi are induced from the canonical line bundle

ηN over RPN (for N large) by classifying maps ni : Ui → RP
N , and

these maps induce a map T (n) : ∨T (νi) → ∨µT (ηN ). Now T (ηN )

is homeomorphic to RP
N+1 by a homeomorphism carrying the zero

section to the hyperplane at infinity. Hence we obtain a map from X

to ∨µ
RP

∞ = K(∗µ(Z/2Z), 1), which determines a homomorphism

f : πL → ∗µ(Z/2Z). The map from X to ∨µ
RP

N+1 carries a loop

which meets Ui transversely in one point and is disjoint from Uj for

j 6= i to the Thom space of the restriction of ηN over a point, in

other words to a curve which meets RP
N in one point. Thus this

curve is essential in RP
N+1, and so in RP

∞. Hence the image of the

corresponding meridian generates the ith factor of ∗µ(Z/2Z).

Conversely, such a homomorphism f : πL → ∗µ(Z/2Z) may be

realized by a map F : X → ∨µ
RP

∞. Since X(L) has the homotopy

type of an (n+1)-dimensional complex, we may assume that F maps

X to ∨µ
RP

n+1. We may also assume that F |∂X is standard, since f

sends meridians to generators, and that F is transverse to ∐µ
RP

n,

the disjoint union of the hyperplanes at infinity. Then F−1(∐µ
RP

n)

is a family of disjoint hypersurfaces spanning L. �

The normal bundles for orientable hypersurfaces are trivial, and

the universal trivial line bundle R (with base space a point) has

Thom space T (R) = S1 = K(Z, 1). In the characterization of bound-

ary links this plays the part which T (η) = RP
∞ plays here. Fi-

nite dimensional approximations RPN have been used to emphasize

the distinction between the base space (RPN ) and the Thom space

(RPN+1) of the universal line bundle.

A similar application of transversality to high dimensional lens

spaces shows that L has µ disjoint spanning complexes, the ith be-

ing a Z/piZ-manifold with no singularities on the boundary, if and

only if there is an epimorphism from π to ∗i=µ
i=1 (Z/piZ) which carries

meridians to generators of the factors.

Smythe’s characterization of homology boundary links suggests

several possible definitions for the unoriented analogue. The most
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useful seems to be as follows. A link L is a Z/2Z-homology boundary

link if and only if there are µ disjoint codimension 1 submanifolds

Ui ⊂ X(L) with ∂Ui ⊂ ∂X(L) and such that the images of ∂Ui

and the ith longitudinal n-sphere are homologous in Hn(∂X(L);F2).

There is an analogous characterization, which we shall not prove.

Theorem 1.7. A link L is a Z/2Z-homology boundary link if

and only if there is an epimorphism from πL to ∗µ(Z/2Z) such that

composition with abelianization carries some ith meridian to the gen-

erator of the ith summand of (Z/2Z)µ, for all 1 ≤ i ≤ µ. �

1.5. Isotopy, concordance and I-equivalence

A link type is an ambient isotopy class of links. A locally flat

isotopy is an ambient isotopy, but even an isotopy of 1-links need

not be locally flat. For instance, any knot is isotopic to the unknot,

but no such isotopy of a nontrivial knot can be ambient. However,

a theorem of Rolfsen [Ro72] shows that the situation for links is no

more complicated.

Two µ-component n-links L and L′ are locally isotopic if there is

an embedding j : Dn+2 → Sn+2 such that D = L−1(j(Dn+2)) is an

n-disc in one component of µSn and L|(µSn)\D = L′|(µSn)\D.

Theorem. [Ro72] Two n-links L and L′ are isotopic if and only

if L′ may be obtained from L by a finite sequence of local isotopies

and an ambient isotopy. �

In other words, L and L′ are isotopic if and only if L′ may be

obtained from L by successively suppressing or inserting small knots

in one component at a time.

An I-equivalence between two embeddings f, g : A → B is an

embedding F : A × [0, 1] → B × [0, 1] such that F |A×{0} = f ,

F |A×{1} = g and F−1(B × {0, 1}) = A× {0, 1}. Here we do not as-

sume the embeddings are PL. Clearly isotopy implies I-equivalence.

The next result is clear.

Theorem 1.8. Let L be an I-equivalence between µ-component

n-links L and L′. Then the inclusions of X(L) and X(L′) into X(L)

induce isomorphisms on homology. �
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A concordance between two µ-component n-links L and L′ is

a locally flat PL I-equivalence L between L and L′. Let Cn(µ)

denote the set of concordance classes of such links, and let Cn =

Cn(1). The concordance is an s-concordance if its exterior is an s-

cobordism (rel ∂) from X(L) to X(L′). In high dimensions this is

equivalent to ambient isotopy, by the s-cobordism theorem, but this

is not known when n = 2. (s-Concordant 1-links are isotopic, by

standard 3-manifold topology.) A link L is null concordant (or slice)

if it is concordant to a trivial link. Thus L is a slice link if and

only if it extends to a locally flat embedding C : µDn+1 → Dn+3

such that C−1(Sn+2) = µSn. It is an attractive conjecture that

every even-dimensional link is a slice link. This has been verified

under additional hypotheses on the link group. In particular, even-

dimensional SHB links are slice links [Co84, De81].

A µ-component n-link L is doubly null concordant or doubly slice

if there is a trivial µ-component (n + 1)-link U which is transverse

to the equatorial Sn+2 ⊂ Sn+3 and such that Ui meets Sn+2 in Li,

for 1 ≤ i ≤ µ. Doubly slice links are clearly boundary links, as they

are spanned by the intersections of Sn+2 with µ disjoint (n+2)-discs

spanning U .

Theorem. [Ro85] Two n-links L and L′ are PL I-equivalent if

and only if L′ may be obtained from L by a finite sequence of local

isotopies and a concordance. �

A concordance between boundary links L and L′ is a bound-

ary concordance if it extends to an embedding of disjoint orientable

(n+ 2)-manifolds which meet Sn+2 ×{0} and S3 ×{1} transversely

in systems of disjoint spanning surfaces for L and L′, respectively.

There is a parallel notion of Z/2Z-boundary concordance.

The process of replacing Li by a knot K contained in a regular

neighbourhood N of Li (disjoint from the other components) such

that K is homologous to Li in N is called an elementary F -isotopy

on the ith component of L. (The elementary F -isotopy is strict if

the maximal abelian covering space of N \ K is acyclic.) Two µ-

component n-links L and L′ are (strictly) F -isotopic if they may be

related by a sequence of (strict) elementary F -isotopies.
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Giffen found a beautiful elementary construction which related

F -isotopy and I-equivalence. As his “shift-spinning” construction

has never been published, we present it here.

Theorem 1.9. [Gi76] F -isotopic 1-links are I-equivalent.

Proof. Let K be a knot in the interior of S1 ×D2 which is ho-

mologous to the core S1×{0}. Let ∆ be a 2-disc properly embedded

in S1 × D2, with ∂∆ essential in S1 × S1, and which is transverse

to K. Assume that the number w = |K ∩ ∆| is minimal. (This

is the geometric winding number of K in S1 × D2.) Suppose that

K ⊂ S1×ρD2, where 0 < ρ < 1, and split S1×D2 along ∆ to obtain

a copy of D2 × [0, 1], with a 1-submanifold L.

∆

K

−→ . . . •

r(L) sr(L)

0 1
2

2
3

3
4

. . . 1

Figure 2.

Let f : [0, 1]2 → [12 , 1] be a continuous function such that f(x, t)=
1
2 if 0 ≤ x ≤ (1− t)ρ and f(x, t) = 1 if (1 + (1− t)ρ)/2 ≤ x ≤ 1. Let

r and s be the self maps of D2 × [0, 1] given by r(z, t) = (2−tz, t
2 )

and s(z, t) = (f(|z|, t)z, 1/(2 − t)), for all (z, t) ∈ D2 × [0, 1], and let

κ = (∪n≥0s
nr(L)) ∪ {(0, 1)}. Then κ is the union of finitely many

arcs in D2 × [0, 12) with a “periodic” Fox-Artin arc which tapers

towards the core as the interval coordinate increases and converges

to (0, 1), which is the one wild point, and s(κ) ⊂ κ. (See Figure 2.)

Now form the mapping torus of the pair (s, s|κ). The result is a

wild annulus in M(s) ∼= S1×D2× [0, 1] with boundary K∐C, where

C = S1 × {(0, 1)} is the core of S1 ×D2 × {1}. On embedding this

solid torus appropriately in S3 × [0, 1], we obtain an I-equivalence

from K to C. (See Figure 3.) This clearly implies the theorem. �
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S1 ×D2 × {1}S1 ×D2 × {0}

K

Figure 3.

If K is as depicted in Figure 2 then K ∐ ∂∆ is I-equivalent to

the Hopf link C ∐ ∂∆, but there is no PL I-equivalence - see §3 of

Chapter 8.

1.6. Link homotopy and surgery

Two µ-component n-links L and L′ are link homotopic if they are

connected by a map H : µSn× [0, 1] → Sn+2 such that H|µSn×{0} =

L, H|µSn×{1} = L′ and H(Sn×{(i, t)})∩H(Sn×{(j, t)}) = ∅ for all

t ∈ [0, 1] and all 1 ≤ i < j ≤ µ. Thus a link homotopy is a homotopy

of the maps L and L′ such that at no time do the images of distinct

spheres intersect (although self intersections are allowed). This is

interesting only in the classical case as every higher dimensional link

is link homotopic to a trivial link [BT99, Ba01]. (However, the

link homotopy classification of higher-dimensional “link maps” is

nontrivial. See also [Kai].)

Theorem 1.10. [Gi79, Go79] Concordant 1-links are link ho-

motopic.

Proof. Let L be a concordance from L to L′. After an isotopy

if necessary, we may assume that L has an embedded handle decom-

position in which the levels at which the handles are added increase

with the degree. Since the domain of L is a product, we may assume

that the 0-handles cancel with the 1-handles added below level 1
2

(and that none are added at this level). It can then be shown that

the link at this level is link homotopic to L. Viewed from the other
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end, the duals of the remaining 1-handles cancel the duals of the

2-handles, and so this link is also link homotopic to L′. See [Ha92]

for details. �

It is well known that a 1-knot K may be unknotted by “replacing

certain of the undercrossings by overcrossings”; this idea is made

precise and extended to links in the following lemma.

Let L be a 1-link and D ⊂ S3 an oriented 2-disc which meets one

component Li transversely in two points, with opposite orientations,

and is otherwise disjoint from L. Let N be an open regular neigh-

bourhood of ∂D in X(L), Then there is an orientation preserving

homeomorphism D2 × S1 ∼= S3 \ N . Fix such a homeomorphism f

and define a self homeomorphism h of S3 \N by hf(z, s) = f(sz, s),

for all s ∈ S1 and z ∈ D2. The links L and h(L) are then said to be

obtained from each other by an elementary surgery.

Lemma 1.11. Let L and L′ be 1-links. Then the following are

equivalent:

(1) L and L′ are link homotopic;

(2) there is a sequence L(0) = L, . . . , L(n) = L′ of links such

that L(i) is obtained from L(i−1) by an elementary surgery,

for all 1 ≤ i ≤ n.

Proof. Up to isotopy, any link homotopy may be achieved by

a sequence of elementary homotopies, involving the crossing of two

arcs in a small ball B. Clearly such an elementary homotopy is

equivalent to an elementary surgery. �

The correct choices of “twisting” homeomorphisms h are impor-

tant here.

The disc D used in such an elementary surgery may be isotoped

to avoid a finite set of disjoint discs, and so the surgeries of (2) can be

performed simultaneously. Thus the conditions of the lemma imply

Addendum. If L and L′ are link homotopic then there is an

embedding T of mS1 ×D2 in X(L) with core T |mS1×{0} a trivial

link and a self homeomorphism h of X(T ) = S3 \ int T (mS1 ×D2)

such that
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(1) lk(Ti, Lj) = 0, for each 1 ≤ i ≤ m and each component Lj

of L;

(2) h(Ti(z, s)) = Ti(s
e(i)z, s), for some e(i) = ±1 and for all

(z, s) ∈ ∂(S1 ×D2) and 1 ≤ i ≤ m;

(3) h ◦ L = L′. �

We shall say that two links L and L′ related by such surgeries are

surgery equivalent. The requirement that the core be trivial ensures

that the 3-manifold resulting from the surgeries is again S3; the

linking number condition implies that the surgery tori lift to abelian

covers of L. Surgery equivalent links need not be link homotopic, as

the cores of the surgery tori may link distinct components of L.

1.7. Ribbon links

A µ-component n-ribbon is a map R : µDn+1 → Sn+2 which

is locally an embedding and whose only singularities are transverse

double points, the double point sets being a disjoint union of discs,

and such that R|µSn is an embedding. A µ-component n-link L is a

ribbon link if there is a ribbon R such that L = R|µSn .

If D is a component of the singular set of R then either D is

disjoint from ∂(µDn+1) or ∂D = D ∩ ∂(µDn+1): we call such a

component a slit or a throughcut , respectively. We may assume that

each component of the graph with vertices the components of the

complement of the throughcuts and edges the throughcuts has at

most one vertex of degree > 2, and that the slits are in components

corresponding to terminal vertices [Yj69]. In our examples below

(here and in Chapter 8) each vertex has degree ≤ 2.

An n-link L is a homotopy ribbon link if it bounds a properly

embedded (n+1)-disc in Dn+3 whose exterior W has a handlebody

decomposition consisting of 0-, 1- and 2-handles. The dual decom-

position of W relative to ∂W = M(L) has only (n+1)- and (n+2)-

handles, and so the inclusion of M into W is n-connected. (The

definition of “homotopically ribbon” for 1-knots given in Problem

4.22 of [Ki97] requires only that this latter condition be satisfied.)

Every ribbon link is homotopy ribbon and hence slice [Ht79]. It is
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unknown whether every classical slice knot is ribbon, but in higher

dimensions there are slice knots which are not even homotopy ribbon.

Theorem 1.12. Let L be a µ-component ribbon n-link. Then

L is a sublink of a ν-component ribbon n-link L̂ such that M(L̂) ∼=
♯ν(S1 × Sn+1). In particular, L̂ is a homology boundary link and L

is an SHB link.

Proof. Let R be a ribbon for L, with slits {Si | 1 ≤ i ≤ σ}.

Choose disjoint regular neighbourhoodsNi for each slit in the interior

of the corresponding (n+1)-disc. Let ν = µ+σ and let L̂ = L∪R|∂N ,

where N = ∪Ni. Let W = Dn+3 ∪ ν(Dn+1 × D2) be the trace of

surgery on L̂ (with framing 0 on each component if n = 1). Then

M(L̂) = ∂W .

Now L̂ may be replaced by a ribbon link with one less singularity,

by adding a pushoff of L̂|∂Ni
to the component of L bounding the

(n+1)-disc containing Ni. Moreover, if n = 1 each component of the

new link still has framing 0. Continuing thus, L̂may be replaced by a

ribbon link L̃ for which the only singularities are those corresponding

to the components ∂Ni. These may be slipped off the ends of the

other components of the new ribbon and so L̃ is trivial. Adding

pushoffs of link components to one another corresponds to sliding

(n + 1)-handles of W across one another, which leaves unchanged

the topological type of W . Hence M(L̂) ∼= M(L̃) ∼= ♯ν(S1 × Sn+1),

and πL̂ maps onto F (ν). �

If n = 1 the homomorphism πL̂ → F (ν) is an isomorphism if

and only if L̂ is trivial, in which case L is also trivial. If n > 1 this

homomorphism is an isomorphism, but need not carry any set of

meridians to a basis. This is so if and only if L̂ is a boundary link.

If n > 2 it is then trivial and so L is also trivial.

If M(K) ∼= S1 × S2 then K is the unknot [Ga87]. Is there a

nontrivial boundary 1-link L such that M(L) ∼= ♯µ(S1 × S2)?

There is the following partial converse.

Theorem 1.13. If L is a ν-component n-link such that M(L) ∼=
♯ν(S1 × Sn+1) then L is a homology boundary link and is null con-

cordant. Hence also any sublink of L is nullconcordant.
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Proof. That L is a homology boundary link is clear. Let U(L)

be the trace of the surgeries on L, so ∂U(L) = Sn+2∐ ♯ν(S1×Sn+1).

The (n + 3)-manifold D(L) = U(L) ∪ ♮ν(D2 × Sn+1) is contractible

and has boundary Sn+2, and so is homeomorphic to Dn+3. The link

L clearly bounds ν disjoint (n+ 1)-discs in D(L). �

This argument rests on the TOP 4-dimensional Poincaré conjec-

ture when n = 1. This dependance can be partially sidestepped.

A relatively simple argument using the TOP Schoenflies Theorem

shows that if the result of 0-framed surgery on the first ρ components

of L is ♯ρ(S1 × S2), for each ρ ≤ ν, then L is TOP null concordant

[Ru80]. Is every slice link an SHB link?

Theorem 1.14. A finitely presentable group G is the group of

a µ-component sublink of a ν-component n-link L with group πL ∼=
F (ν) (for some ν and any n ≥ 2) if and only if it has deficiency µ

and weight µ.

Proof. The conditions are clearly necessary. Suppose that G

has a presentation 〈xi, 1 ≤ i ≤ ν | rj, 1 ≤ j ≤ ν − µ〉 and that the

images of s1, . . . , sµ ∈ F (ν) in G generate G normally. The words

rj and sk may be represented by disjoint embeddings ρj and σk of

S1 × Dn+1 in ♯ν(S1 × Sn+1). If surgery is performed on all the

ρj and σk the resulting manifold is a homotopy (n+ 2)-sphere, and

Y = ♯ν(S1×Sn+2)\∪j=ν−µ
j=1 ρj(S

1×Dn+1)\∪k=µ
k=1σk(S

1×Dn+1) is the

complement of a ν-component n-link in this homotopy sphere, with

link group F (ν). Therefore if surgery is performed on the ρj only,

the space Y ∪ (ν−µ)(D2×Sn) is the complement of a µ-component

sublink with group G. �

When n = 2 the resulting link is merely TOP locally flat.

Let G(i, j) be the group with presentation 〈x, y, z | x[zi, x][zj , y]〉.

Then the generators y and z determine a homomorphism from F (2)

to G(i, j) which induces isomorphisms on all nilpotent quotients, and

G(i, j)ω = 1, but G(i, j) is not free unless ij = 0 [Ba69]. As G(i, j)

is the normal closure of the images of y and z, and the presentation

〈x, y, z | x[zi, x][zj , y], y, z〉 of the trivial group is AC-equivalent to

the empty presentation, this group can be realized by a PL locally
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flat link in S4. The higher dimensional links constructed from this

presentation as in Theorem 1.14 are sublinks of 3-component ho-

mology boundary links but are not homology boundary links. See

Chapter 8 for examples of ribbon 1-links which are not homology

boundary links (although they are SHB links, by Theorem 1.12).

An immediate consequence of Theorems 1.12 and 1.14 is that if

n > 1 the group of a µ-component ribbon n-link has a presentation of

deficiency µ. Thus the 2-twist spin of the trefoil knot is slice [Ke65],

but not ribbon [Yj64]. (See also Theorems 4.3 and 4.6 below.)

We may use a ribbon map R extending a 1-link L to construct

a concordance C from L to a trivial link U , such that the only sin-

gularities of the composite f = pr2 ◦ C : µD2 → S3 × [0, 1] → [0, 1]

are saddle points corresponding to the throughcuts. Capping off the

components of U in D4 and doubling gives a µ-component 2-link

DR. The ribbon group of R is H(R) = πDR. Each throughcut T

determines a conjugacy class g(T ) ⊂ πL represented by the oriented

boundary of a small disc neighbourhood in R of the corresponding

slit. (The standard orientation on D2 induces an orientation on this

neighbourhood via the local homeomorphism R.) Let TC be the

normal subgroup determined by the throughcuts of R.

Theorem 1.15. Let L be a ribbon 1-link with group π = πL

and R a ribbon map extending L. Then H(R) = πL/TC and has

a Wirtinger presentation of deficiency µ. The longitudes of L are

in the normal subgroup TC, which is contained in πω. Hence the

projection of π onto π/πω factors through H(R).

Proof. It is clear from the description of the construction in

the above paragraph that the inclusion of X(L) into X(C) induces

an isomorphism from πL/TC to π1(X(C)). Hence πDR ∼= πL/TC,

by Van Kampen’s Theorem.

Each longitude is represented up to conjugacy by a curve on

and near the boundary of the corresponding disc, which is clearly

homotopic to a product of conjugates of loops about the slits on the

disc. Thus the longitudes of L are in TC.

We may show by induction on q that TC ≤ πq for all q ≥ 1. This

is clear for q = 1. If TC ≤ πn the image of each conjugacy class g(T )
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in π/πn+1 is a central element gn+1(T ). If T and T ′ are adjacent rep-

resentatives of g(T ) and g(T ′) differ only by commutators involving

loops around slits in the segment of the ribbon between T and T ′,

and so gn+1(T ) = gn+1(T
′). Moving along the ribbon, we find that

gn+1(T ) = 1, and so g(T ) ⊂ πn+1, for all T . Thus TC ≤ πω.

We may choose a generic projection of the ribbon with no triple

points. The Wirtinger generators of the link group corresponding to

the subarcs of the link which “lie under” a segment of the ribbon

may be deleted, and the two associated relations replaced by one

stating that either adjacent generator is conjugate to the other by a

loop around the overlying segment.

Any loop about a segment of the ribbon dies in H(R), for the

only obstructions to deforming it onto a loop around the throughcut

at an end of the segment are elements in the conjugacy classes of

the throughcuts between the loop and that end. Hence the remain-

ing generators corresponding to subarcs of the boundary of a given

component of the complement of the throughcuts coalesce in H(R).

Conversely the presentation obtained from the Wirtinger presenta-

tion by making such deletions and identifications is as claimed, and

presents a group in which the image of each g(T ) is trivial, for the

image of g(T ) is trivial if and only if the pair of generators corre-

sponding to arcs meeting the projection of T are identified. Thus

the group is exactly H(R). �

Conversely, any such presentation can be realized by some ribbon

map R : µD2 → S3. A similar argument shows that a group G is

the group of a µ-component ribbon n-link for any n ≥ 2 if and

only if G has a Wirtinger presentation of deficiency µ and G/G′ ∼=
Zµ. The generators correspond to meridianal loops transverse to

the components of the complements of the throughcuts, and there

is one relation for each throughcut. Thus although the group of an

unsplittable 1-link has no presentation of deficiency > 1, the groups

of ribbon links have quotients with deficiency µ. (See [Si80] for some

connections between Wirtinger presentations and homology.)

Much of this theorem can be deduced from Theorem 1.12, by

arguing as in Theorem 1.14 to adjoin ν − µ relations to F (ν). In
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general, π/πω, H(R) and π/〈〈longitudes〉〉 are distinct groups, even

when µ = 1. (Consider the square knot 31♯ − 31.) If one ribbon R1

is obtained from another R2 by knotting the ribbon or inserting full

twists then H(R1) = H(R2), as such operations do not change the

pattern of the singularities.

Figure 4.

Let R be the ribbon disc of Figure 4 and let K = ∂R. ThenH(R)

has the presentation 〈a, b, c, d | aca−1 = d, dad−1 = b, dcd−1 = b〉,

and so H(R) ∼= Z. It can be shown that there is a homomorphism

from πK to SL(2,F7) with non-abelian image. The corresponding

ribbon 2-knot is trivial, and so K is a nontrivial slice of a trivial 2-

knot [Yn70]. (It is in fact the Kinoshita-Terasaka 11-crossing knot

with Alexander polynomial 1 [KT57]. See Figure 3(a) of [Wa94].)

Figure 5.

Similarly, 〈a,w, x, y, z | axa−1 = y,wyw−1 = z, zwz−1 = x〉

leads to a 2-component homology boundary link which is a slice of a

2-link with group F (2). (See Figure 5.) This 1-link is not a boundary

link ([Cr71] - see also §7 of Chapter 8 below). Hence the 2-link with

group F (2) of which it is a slice is not one either, illustrating the

result of Poenaru [Po71].
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The above results may be usefully extended by the notion of

fusion. A fusion band for an n-link L is a pair β = (b, u), where

b : [0, 1] → Sn+2 is an embedded arc with endpoints on L and

u is a unit normal vector field along b such that u|{0,1} is normal

to L, and such that the orientations are compatible. These data

determine a band B : [0, 1]×Dn → Sn+2 which may be used to form

the connected sum of two of the components of L. The resulting

(µ − 1)-component link is called the fusion of L (along β). The

strong fusion is the µ-component link obtained by adjoining to the

fusion the boundary of an (n + 1)-disc transverse to b.

When n > 1 the normal vector field u is unique up to isotopy,

but in the classical case any two choices differ by an element of

π1(SO(2)) ∼= Z, and so it determines the twisting of the band B.

Ribbon links are fusions of trivial links. The argument of Theo-

rem 1.12 can be extended to show that a fusion of a boundary link

is an SHB link [Co87]. Moreover any SHB link is concordant to

a fused boundary link [CL91]. If a strong fusion of a link is an

homology boundary link then so was the original link [Ka93].

Concordance of 1-links is generated as an equivalence relation by

fusions L → L+β ∂R, where R : D2 → X(L) is a ribbon map with

image disjoint from L and where +β denotes fusion along a band β

from some component of L to ∂R [Tr69].

1.8. Link-symmetric groups

Let rn : Sn → Sn be the map which changes the sign of the last

coordinate. Then every (PL) homeomorphism of Sn is isotopic to

idSn or rn, depending on whether it preserves or reverses the orienta-

tion. An n-knot K is invertible, +amphicheiral or −amphicheiral if

it is ambient isotopic to Kρ = K ◦rn, rK = rn+2 ◦K or −K = rKρ,

respectively. If a knot has two of these properties then it has all

three. Conway has suggested the alternative terminology reversible,

obversible, inversible, as −K represents the inverse of the class of K

in the knot concordance group [Co70].

These notions have been extended to links as follows. The ex-

tended symmetric group on µ symbols is the semidirect product
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(Z/2Z)µ ⋊ Sµ, where Sµ acts on the normal subgroup (Z/2Z)µ by

permutation of the symbols. Then the link-symmetric group of de-

gree µ is LS(µ) = (Z/2Z)× ((Z/2Z)µ ⋊Sµ). A µ-component n-link

L admits γ = (ǫ0, . . . , ǫµ, σ) ∈ LS(µ) if L is ambient isotopic to

γL = rǫ0n+2 ◦ L ◦ (∐rǫin ) ◦ σ̃, (where σ̃ permutes the components, and

where Z/2Z is identified with {±1}). A link L is invertible if it ad-

mits (1,−1, . . . ,−1, id), ǫ-amphicheiral if it admits (−1, ǫ, . . . , ǫ, id),

and interchangeable if it admits γ with image σ ∈ Sµ not the identity

permutation.

The group of symmetries of a link L is the subgroup Σ(L) ≤

LS(µ) consisting of the elements admitted by L. This group depends

only on the ambient isotopy type of L. Changing the orientation of

one component or the order of the components replaces Σ(L) by a

conjugate subgroup. (See [Wh69].)

1.9. Link composition

Let L be a µ-component n-link, and choose homeomorphisms φi

from Sn × D2 onto disjoint regular neighbourhoods of the compo-

nents Li, for 1 ≤ i ≤ µ. If n = 1 assume that the circles φi(S
1×{d})

corresponding to different values of d ∈ D2 have mutual linking

number 0. Let K(i) be a νi-component link in Sn × D2 and let

K(i)+ be the (νi + 1)-component n-link in Sn+2 obtained by ad-

joining Sn × {1} ⊂ ∂(Sn × D2). Then the composite of L with

K = {K(i)}1≤i≤µ is L ◦ K =
⋃

1≤i≤µ φi ◦ K(i). (This link has

ν = Σνi components.) As X(L ◦ K) ∼= X(L) ∪
⋃

1≤i≤µX(K(i)+),

this construction is well adapted to applications of the Van Kampen

and Mayer-Vietoris Theorems. If K(i) = Sn × {0} for all i then

L ◦ K = L. We shall assume henceforth that K(i) = Sn × {0} for

i 6= j.

If µ = 1 = ν then L ◦ K is a satellite of L; in particular, if

K = K(1) has geometric winding number 1 in Sn×D2 (i.e., intersects

some disc {s}×D2 transversely in one point) this gives the sum K♯L

of the knots K and L.

If νj = 1 and K(j) is homologous to S1 × {0} in S1 ×D2 then

L ◦ K is obtained from L by an elementary F -isotopy on the jth
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component. If L′ is obtained from L by an elementary F -isotopy

then X(L) is a retract of X(L′), since ∂X(h) is a retract of X(h) for

any 2-component link h with linking number 1.

Figure 6. θ ◦Wh2

Let Wh : 2S1 → S3 be the Whitehead link (521 in the tables of

[Rol]), and let θ : X(Wh1) → S1 ×D2 be a homeomorphism such

that θ(φ1(u, v)) = (v, u), for all u, v ∈ S1. If K(j) = θ ◦Wh2 then

L ◦K is obtained from L by Whitehead doubling the jth component.

(See Figure 6.) When µ = 1 this is an untwisted double of the knot

L. Since each component of the Whitehead link bounds a punc-

tured torus in the complement of the other component, Whitehead

doubling every component of a link gives a boundary link.

Figure 7. θ ◦Bo2,3

Similarly, if Bo : 3S1 → S3 is the Borromean ring link (632 in

the tables of [Rol]) let θ : X(Bo1) → S1 ×D2 be a homeomorphism

such that θ(φ1(u, v)) = (v, u), for all u, v ∈ S1. If Bo2,3 is the union

of the second and third components of Bo and K(j) = θ◦Bo2,3 then

L ◦ K is obtained from L by Bing doubling the jth component. (See

Figure 7.) In the latter two cases there are further mild ambiguities,

related to the definition of the Whitehead link, etc.


