SOME QUESTIONS ON SUBGROUPS OF 3-DIMENSIONAL
POINCARE DUALITY GROUPS

J.A-HILLMAN

ABSTRACT. Poincaré duality complexes model the homotopy types of closed
manifolds. In the lowest dimensions the correspondence is precise: every con-
nected PDy-complex is homotopy equivalent to S' or to a closed surface,
when n =1 or 2. Every PD3-complex has an essentially unique factorization
as a connected sum of indecomposables, and these are either aspherical or
have virtually free fundamental group. There are many examples of the lat-
ter type which are not homotopy equivalent to 3-manifolds, but the possible
groups are largely known. However the question of whether every aspherical
P D3-complex is homotopy equivalent to a 3-manifold remains open.

We shall outline the work which lead to this reduction to the aspherical
case, mention briefly remaining problems in connection with indecomposable
virtually free fundamental groups, and consider how we might show that PD3-
groups are 3-manifold groups. We then state a number of open questions
on 3-dimensional Poincaré duality groups and their subgroups, motivated by
considerations from 3-manifold topology.

The first half of this article corresponds to my talk at the Luminy conference
Structure of 3-manifold groups (26 February — 2 March, 2018). When I was first
contacted about the conference, it was suggested that I should give an expository
talk on PDs-groups and related open problems. Wall gave a comprehensive survey
of Poincaré duality in dimension 3 at the CassonFest in 2004, in which he con-
sidered the splitting of PDs-complexes as connected sums of aspherical complexes
and complexes with virtually free fundamental group, and the JSJ decomposition
of orientable PDs-groups along Z? subgroups. I have concentrated on the work
done since then, mostly on PD3-complexes with virtually free fundamental group,
before considering possible approaches to showing that aspherical PD3s-complexes
might all be homotopy equivalent to closed 3-manifolds.

The second half is an annotated list of questions about PDs-groups and their
subgroups, with relevant supporting evidence, mostly deriving from known results
for 3-manifold groups. This began as an aide-memoire thirty years ago, and was put
on the arXiv in 2016. The questions are straightforward, but have largely resisted
answers, and suggest the limitations of our present understanding.

1. POINCARE DUALITY COMPLEXES

Poincaré duality complexes were introduced by Wall to model the homotopy
types of closed manifolds [92].

Let X be a connected finite CW complex with fundamental group =, and let
A = Z|n] be the integral group ring, with its canonical involution determined by
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inversion: g — g~!. Let C.(X;A) be the cellular chain complex of the universal
cover X, considered as a complex of finitely generated free left modules over A.
Taking the A-linear dual modules and using the canonical involution of A to swap

right and left A-module structures gives a cochain complex C*(X; A) with

CUX;A) = Homp (Cy(X;A), A).

Then X is an orientable (finite) PD,,-complex if there is a fundamental class [X] €
H, (X;Z) such that slant product with a locally-finite 3-chain in C3(X;Z) with
image [X] induces a chain homotopy equivalence

—N[X]: C" *(X;A) = Cu(X;A).

This definition can be elaborated in various ways, firstly to allow for non-orientable
analogues, secondly to consider pairs (corresponding to manifolds with boundary),
and thirdly to weaken the finiteness conditions. We shall focus on the orientable
case, for simplicity, but PD,-pairs arise naturally even when the primary interest
is in the absolute case. (Examples of the third type may arise, for instance, as
infinite cyclic covers of manifolds.)

Wall showed that every PD,,-complex is homotopy equivalent to an n-dimensional
complex, and in all dimensions except n = 3 we may assume that there is a single
n-cell. Moreover, this top cell is essentially unique, and so there is a well-defined
connected sum, for oriented PD,-complexes. When n = 3 we may write X as a
union X = X’ Ue3, where c.d. X’ < 2. (Thus the exceptional case relates to the
Eilenberg-Ganea Conjecture.)

Closed PL n-manifolds are finite P.D,,-complexes, but there are simply connected
PD,-complexes which are not homotopy equivalent to manifolds, for all n > 4.

2. POINCARE DUALITY GROUPS

The notion of Poincaré duality group of dimension n (or PD,-group, for short)
is an algebraic analogue of the notion of aspherical n-manifold.

A finitely presentable group G is a PD,,-group in the sense of Johnson and Wall
if K(G,1) is homotopy equivalent to a PD,-complex [54]. Bieri and Eckmann
gave an alternative purely algebraic formulation: a group G is a PD,,-group if the
augmentation Z[G]-module Z has a finite projective resolution, H*(G;Z[G]) = 0
for i < n and H"(G;Z[G]) is infinite cyclic as an abelian group [6, 7]. The right
action of G on this group determines the orientation character wi(G) : G — Z*.
The group G is orientable it H"(G;Z[G] is the augmentation module (i.e., if w(G)
is the trivial homomorphism).

PD,-groups are F'P, and thus finitely generated, but there examples which are
not finitely presentable, for all n > 4 [22]. Indeed, there are uncountably many,
by Theorem 18.1 of [71]. Whether there are PDs-groups which are not finitely
presentable remains unknown. (The case n = 3 is critical; there are PD,-groups
with all sorts of bad behaviour when n > 3. See [22] and the references there.)

It is still an open question whether every finitely presentable PD,,-group is the
fundamental group of a closed n-manifold. (This is one aspect of the circle of ideas
around the Novikov Conjecture.)

[If we define a PD,,-space to be a space homotopy equivalent to a CTW-complex
X and such that C,(X;A) is chain homotopy equivalent to a finite complex of
finitely generated projective left Z[mi(X)]-modules and with a class [X] defining
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a duality chain homotopy equivalence as for PD,-complexes, then G is a PD,,-
group in the sense of Bieri and Eckmann if and only if K(G,1) is an (aspherical)
PD,-space. A PD,-space X is finitely dominated if and only if 71 (X) is finitely
presentable [15].]

There is also a relative notion, of PD,-pair of groups, which corresponds to an
aspherical compact manifold with incompressible, aspherical boundary components.
This notion arises naturally in connection with JSJ-decompositions of P D3-groups.

Bieri and Eckmann defined a PD,,-pair of groups (G,S) as a group G of finite
cohomological dimension with a finite family S of monomorphisms jg : S — G,
satisfying a modified form of Poincaré-Lefshetz duality. The “boundary” subgroups
js(S) are PD,,_1-groups, and ¢.d.G = n — 1 if S is nonempty. (There is another
formulation, in terms of a group G and a G-set W. In this formulation the boundary
subgroups arise as stabilizers of points of W. See [23, page 138].)

3. LOW DIMENSIONS

When n = 1 or 2 the modelling of n-manifolds by PD,,-complexes is precise: the
only such complexes are homotopy equivalent to the circle or to a closed surface, and
two such manifolds are homeomorphic if and only if their groups are isomorphic.

It is easy to see that a PDj-complex X must be aspherical, and 7 = 71(X)
has two ends and c.d.w = 1. Since 7 is free of finite rank r» > 0 and Hy(m; Z) is
cyclic (or since 7 is torsion-free and has two ends), 7 = Z and X ~ S!. (There are
elementary arguments do not require cohomological characterizations of free groups
or of the number of ends.)

Every PDs-complex with finite fundamental group is homotopy equivalent to
one of S2 or the real projective plane RP?. All others are aspherical. Eckmann
and Miiller showed that every P Ds-complex with x(X) < 0 is homotopy equivalent
to a closed surface, by first proving the corresponding result for P Dy-pairs with
nonempty boundary and then showing that every P Dy-group splits over a copy of
Z [28]. Shortly afterwards, Eckmann and Linnell showed that there is no aspherical
PDy-complex X with x(X) > 0 [27]. Much later Bowditch used ideas from geomet-
ric group theory to prove the stronger result that if G is a finitely generated group
such that H2(G;F[G]) has an F[G]-submodule of finite dimension over F, for some
field F, then G is commensurable with a surface group (i.e., the fundamental group
of an aspherical closed surface) [14]. One might hope for a topological argument,
based on improving a degree-1 map f : M — X with domain a closed surface.

The first non-manifold example occurs in dimension n = 3. Swan showed that
every finite group of cohomological period 4 acts freely on a finite-dimensional
cell complex homotopy equivalent to S% [85]. The quotient complexes are PD3-
complexes. (Swan’s result predates the notion of PD-complex!) However, if the
group has non-central elements of order 2, it cannot act freely on S® [75], and so is
not a 3-manifold group. In particular, the symmetric group S3 has cohomological
period 4, but is not a 3-manifold group. (By the much later work of Perelman, the
finite 3-manifold groups are the fixed-point free finite subgroups of SO(4).)

In these low dimensions n < 3 it suffices to show that there is some chain
homotopy equivalence C"*(X;A) ~ C,(X;A); that it is given by cap product
with a fundamental class follows fairly easily [50].

The fundamental triple of a PD3s-complex X is (7, w, cx«[X]), where m = 71 (X),
w = w1 (X) is the orientation character, cx : X — K(m,1) is the classifying map
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and [X] is the fundamental class in Hs(X;Z"™). There is an obvious notion of
isomorphism for such triples. (Note, however, that in the non-orientable case it is
only meaningful to specify the sign of [X] if we work with pointed spaces.) Hendriks
showed that this is a complete homotopy invariant for such complexes. (This was
first used by Swarup, for orientable 3-manifolds, in [86].)

Theorem. [40] Two PDs-complezes are (orientably) homotopy equivalent if and
only if their fundamental triples are isomorphic. ([

Turaev has characterized the possible triples corresponding to a given finitely
presentable group and orientation character (the “Realization Theorem”). In par-
ticular, he gave the following criterion.

Theorem. [91] A finitely presentable group 7 is the fundamental group of an ori-
entable finite PDs-complex if and only if I, & A" = J, ® A® for some r,s > 0,
where I is the augmentation ideal of 7, with finite rectangular presentation matriz
M, and J, = Coker(M). O

C.B.Thomas gave an alternative set of invariants, for orientable 3-manifolds,
based on the Postnikov approach [88]. This applies equally well for P Ds-complexes.
When 7 is finite, X is orientable and X ~ S3, and X is determined by 7 and the
first nontrivial k-invariant ro(X) € H*(m;Z). Let B : H3(m;Q/Z) = H*(m;Z) be
the Bockstein isomorphism. Then cx.[X] and ko(X) generate isomorphic cyclic
groups, and are paired by the equation 87! (k2(X))(cx«[X]) = 2

==l

When 7 is infinite, mo(X) = H(m;Z[r]) and X is determined by the triple
(m,w, k1(X)), where k1(X) € H3(m;m2(X)) is now the first nontrivial k-invariant.
In this case the connection between the homological and Postnikov invariants is not
so clear.

The work of Turaev has been extended to the case of PDs-pairs with aspherical
boundary components by Bleile [11]. The relative version of the Realization Theo-
rem proven there requires also that the boundary components be 7i-injective. The
Loop Theorem of Crisp [21] should also be noted here.

The homotopy type of a higher dimensional PD,,-complex X is determined by
the triple (P,—2(X), w, fx«[X]), where fx : X — P,_2(X) is the Postnikov (n—2)-
stage and w = wy(X) [2]. If X is (n — 2)-connected then P,_5(X) ~ K(m,1), so
this triple is a direct analogue of Hendriks’ invariant.

4. REDUCTION TO INDECOMPOSABLES

In his foundational 1967 paper Wall asked whether P D3-complexes behaved like

3-manifolds with regards to connected sum [92]. Consider the following conditions

(1) X is a non-trivial connected sum;

(2) m = m(X) is a nontrivial free product;

(3) either 7 has infinitely many ends, or # & Do, = Z/27Z x Z/27.
Clearly (1) = (2) = (3). Wall asked whether either of these implications could
be reversed. Turaev used his Realization Theorem to show that (1) < (2) (the
“Splitting Theorem”).

Theorem. [91] A PDs-complex X is indecomposable with respect to connected sum
if and only if m = m1(X) is indecomposable with respect to free product. ]

The further analysis (for 7 infinite) is based on the following three observations.
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(1) m2(X) = H(m; A), by Poincaré duality;

(2) Since 7 is FPy we have m & wG, where (G,T') is a finite graph of finitely
generated groups in which each vertex group has at most one end and each
edge group is finite, by Theorem VI.6.3 of [23]. Hence H!(m;A) has a

“Chiswell-Mayer-Vietoris” presentation as a right A-module:
0 = Boev, ZIG\T] —2— BeepZlGe\T] = H' (15 A) — 0.

Here V; is the set of vertices with finite vertex groups, £ is the set of edges,
and the image of a coset G, ¢ in m under A is

A(Gvg) = Eo(e):v(ZGchCGv Gehg) - Et(e):v(EGchCGvGehg)a

with outer sums over edges e and inner sums over cosets of G in G,,.
(3) Since X has only one nontrivial homology group in positive degrees,
H;(C;ma (X)) = Hi5(C5Z),
for any subgroup C of 7 and all ¢ > 1, by a simple devissage.
These were first used together to show that if 7 is infinite and has a nontrivial finite
normal subgroup then X ~ S* x RP? [44].

Crisp added an ingenious combinatorial argument to give a substantial partial
answer to the second part of Wall’s question.

Theorem. [20] Let X be an indecomposable orientable PDs-complex. Then either
X is aspherical or m = w1 (X) s virtually free. O

His arguments strengthened the result on finite normal subgroups.

Theorem. If g # 1 € 7 has finite order then either w(g) = 1 and the centralizer
Cr(g) is finite or g*> =1, w(g) = —1 and C,(g) has two ends. O

If Cr(g) has two ends it is in fact (g) x Z, by Corollary 7 of [51].

The Realization Theorem (in the form given earlier), Crisp’s result on centralizers
and the “Normalizer Condition” (the fact that proper subgroups of finite nilpotent
groups are properly contained in their normalizers) lead to an almost complete
characterization of the class of indecomposable, virtually free groups which are
fundamental groups of orientable PD3-complexes.

Theorem. [50] If a finitely generated virtually free group m is the fundamental
group of an indecomposable orientable PDs-complex X then m = nG where (G,T")
is a finite graph of finite groups such that
(1) the underlying graph T is a linear tree;
(2) all vertex groups have cohomological period dividing 4, and at most one is
not dihedral;
(8) all edge groups are nontrivial, and at most one has order > 2.

If an edge group has order > 2 then it is Z/6Z, and one of the adjacent vertex
groups is B x Z/dZ with B = T} or I*. FEuvery such group 7 with all edge groups
Z/2Z is the fundamental group of such a complez. O

The Realization Theorem is used to exclude subgroups of period > 4, as well as
to support the final assertion. The first infinite example [47] is the group S3*z /27 S3
with presentation

{a,b,c| cac = a®, cbc =b?, * =1).
We shall give an indication of the style of arguments in the following lemma.
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Lemma. Let X and w be as in the theorem. If S < 7 is a p-group, for some prime
p, then S is cyclic or S = Q(2%) for some k > 3.

Proof. Since 7 is virtually free it has a free normal subgroup F' of finite index.
Since F'S has finite index in 7, the corresponding covering space Xpg is again an
orientable PD3-complex. After replacing X by an indecomposable factor of Xgg,
if necessary, we may assume that @ = 7G, where (G,T') is a finite graph of finite
p-groups. We may also assume that if an edge e has distinct vertices v, w then
G. # G, or Gy,. But then N, (G,) is infinite, by the Normalizer Condition and
basic facts about free products with amalgamation. Since G, is finite, C(G.) is
also infinite, which contradicts Crisp’s result on centralizers. Hence there is only
one vertex. Similarly, there are no edges, and so m = S is finite. Hence X ~ g3
and S is as described. (|

Is there an example with edge group Z/6Z7 If so, there is one with group
(Dam x Z[3Z) %762 T7, for some m with (m,6) = 1 [50]. (Such groups have
presentations (w,x, z, | 22r = xzrz, o2 = 28, waw =z, WM = 1). Thus far, we
have not been able to apply the criterion of the Realization Theorem effectively.)

Are there examples which “arise naturally”, perhaps as infinite cyclic covers of
closed 4-manifolds? This is so for the generalized quaternionic group Q(24,13,1)
and for certain other finite groups which have cohomological period 4 but are not
3-manifold groups [38]. [Note also that if M is a closed 4-manifold with x(M) =0
and f : m (M) — Z is an epimorphism with finitely generated kernel x then the
associated infinite cyclic covering space M,; is a P D3-space, by Theorem 4.5 of [41].]

In the non-orientable case we have the following result.

Theorem. [51] Let P be an indecomposable non-orientable PDs-complex. Then
Ker(wy (P)) is torsion-free. If it is free then it has rank 1. O

In particular, if 71 (P) is not virtually free then w1 (P) = G, where each vertex
group of (G,T') has one end, and each edge group has order 2. The orientation-
preserving subgroups of the vertex groups are then PDs-groups. Such 3-manifolds
are unions of quotients of punctured aspherical 3-manifolds by free involutions.
However, it is not known whether the vertices of I' must all have even valence,
nor whether an indecomposable PDjs-complex with orientation cover homotopy
equivalent to a 3-manifold must be homotopy equivalent to a 3-manifold. On the
other hand, if 71 (P) is virtually free then P ~ RP? x St or $2x St [50].

The above arguments apply with little change to the study of PD,,-complexes
with (n — 2)-connected universal cover. When n is odd, the results are similar.
However when n is even it is not known whether the group must be virtually
torsion-free. On the other hand, if 7 is indecomposable, virtually free and has no
dihedral subgroups of order > 2 then either 7 has order < 2 or it has two ends and
its maximal finite subgroups have cohomology of period dividing n. (See [12].)

5. ASPHERICAL CASE

The work of Perelman implies that every homotopy equivalence between aspheri-
cal 3-manifolds is homotopic to a homeomorphism. It is natural to ask also whether
every PDs-group is the fundamental group of an aspherical closed 3-manifold. An
affirmative answer in general would suggest that a large part of the study of 3-
manifolds may be reduced to algebra.
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If G is a PDs-group which has a subgroup isomorphic to 71 (M) where M is
an aspherical 3-manifold then G is itself a 3-manifold group. For M is either
Haken, Seifert fibred or hyperbolic, by the Geometrization Theorem of Perelman
and Thurston, and so we may apply [99], Section 63 of [98] or Mostow rigidity,
respectively. Thus it is no loss of generality to assume that G is orientable.

It may also be convenient to assume also that G is coherent, and, in particular,
finitely presentable. (No PDs-group has F(2) x F(2) as a subgroup [69]; this is
evidence that PDs-groups might be coherent.)

The key approaches to this question seem to be through

(1) splitting over proper subgroups — geometric group theory; or
(2) homological algebra; or
(3) topology.

Of course, there are overlaps between these. The fact that PDs-groups are surface
groups is one common ingredient.

(1). This approach has been most studied, particularly in the form of the Cannon
Conjecture, and there is a good exposition based on JSJ decompositions of (finitely
presentable) PDs-groups and pairs of groups (as in [25]) in [93]. If one takes this
approach it is natural to consider also the question of realizing P Ds-pairs of groups.
Splitting of PDs-groups over proper subgroups was first considered by Thomas
[89]. Kropholler showed that PD,,-groups with Maz-c (the maximum condition on
centralizers) have canonical splittings along codimension-1 poly-Z subgroups [64].
(When n = 3 such subgroups are Z? or the Klein bottle group Z x Z.) Castel
showed that all PDs-groups have Maz-c, and used [81] to give a JSJ decomposition
for arbitrary PDs-groups (i.e., not assuming finite presentability) [19].
[Kropholler and Roller have considered splittings of a PD,-group G over sub-
groups which are PD,,_1-groups. If S is such a subgroup let F3[S] = Hom(F2[S], Fa).
Then Poincaré duality (for each of G and S) and Shapiro’s Lemma together give

HY(G;Fo[S] ®r,[s] F2[G]) = Fa, and G splits over a subgroup commensurable with
S if and only if the restriction to H'(S;F2[S] ®p,[s) F2[G]) is 0. See [67, 68, 69].]

In the simplest cases, G is either solvable, of Seifert type or atoroidal (i.e.,
has no abelian subgroup of rank > 1). The solvable case is easy, and the Seifert
case was settled by Bowditch [14]. (If G/G’ is infinite, this case follows from the
earlier work of Eckmann, Miiller and Linnell [42].) The most studied aspect of the
atoroidal case is the Cannon Conjecture, that an atoroidal, Gromov hyperbolic
P Ds-group should be a cocompact lattice in PSL(2,C). (In [5] it is shown that a
Gromov hyperbolic PD3-group has boundary S?, and in [58] it is shown that an
atoroidal PDs-group which acts geometrically on a locally compact CAT(0) space
is Gromov hyperbolic.)

(2). The homological approach perhaps has the least prospect of success, as it starts
from the bare definition of a PD3-group, and needs something else, to connect with
topology. However it has proven useful in the subsidiary task of finding purely
algebraic proofs for algebraic properties of 3-manifold groups, an activity that I
have pursued for some time. One can also show that if G has sufficiently nice
subgroups then it is a 3-manifold group. For instance, if G has a nontrivial F'P;
ascendant subgroup of infinite index, then either G is the group of a Seifert fibred
3-manifold or it is virtually the group of a mapping torus [49]. In particular, G is
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the fundamental group of a Sol®>-manifold or of a Seifert fibred 3-manifold if and
only if it has a nontrivial locally-nilpotent normal subgroup.

This strategy seems to work best when there subgroups which are surface groups.
One relatively new ingredient is the Algebraic Core Theorem of Kapovich and
Kleiner [57], which ensures that this is so if G has an F'P, subgroup with one end.
If H is a surface subgroup then either H has finite index in its commensurator
Commg(H) or H has a subgroup K of finite index such that [G : Ng(K)] is finite
(and then Commg(H) = Commg(K) > Ng(K) has finite index in G). More
generally, if H is a F'P, subgroup then either G is virtually the group of a mapping
torus or H has finite index in a subgroup H which is its own normalizer in G. Does
G then split over H?

However it remains possible that there may be PDs-groups which are simple
groups, or even Tarski monsters, whose only proper subgroups are infinite cyclic.
It is then not at all clear what to do. [Once again, the Davis construction may be
used to give PD,-groups containing Tarski monsters, for all n > 3 [78].]

(3). To the best of my knowledge, no-one has explored the third option in any
detail. It has the advantage of direction connection with topology, but needs G
to be finitely presentable. Here one starts from the fact that if X is an orientable
PDs-complex then there is a degree-1 map f : M — X with domain a closed
orientable 3-manifold. (This is not hard to see, but is a consequence of working
in a low dimension.) Since 71 (f) is surjective and 71 (X) is finitely presentable,
Ker(m1(f)) is normally generated by finitely many elements of 71 (M), which may
be represented by a link L C M. (The link L is far from being unique!) We might
hope to modify M by Dehn surgery on L to render the kernel trivial. This is
possible if X is homotopy equivalent to a closed orientable 3-manifold N, for M
may then be obtained from N by Dehn surgery on a link whose components are
null-homotopic in N [32]. However, Gadgil’s argument appears to use the topology
of the target space in an essential way. Moreover, there are P D3s-complexes which
are not homotopy equivalent to manifolds, and so this cannot be carried through
in general. (All known counterexamples have finite covers which are homotopy
equivalent to manifolds.)

Let L = I;<,,L; be a link in a 3-manifold M and let n(L) = ;<,,n(L;) be
an open regular neighbourhood of L in M. We shall say that L admits a drastic
surgery if there is a family of slopes 7; C 9n(L;) such that the normal closure
of {[m],-.-,[¥]} in 71 (M — n(L)) meets the image of each peripheral subgroup
m1(0n(L;)) in a subgroup of finite index.

If X is an aspherical orientable PD3-complex and f: M — X is a degree-1 map
such that Ker(f,) is represented by a link L which admits a drastic surgery then
after the surgery we may assume that Ker(f,) is normally generated by finitely
many elements of finite order. Let M = #]_, M; be the decomposition into irre-
ducibles. Since X is aspherical the map f extends to a map from f, : Vi_; M; — X.
Elementary considerations then show that f\, restricts to a homotopy equivalence
from one of the aspherical summands of M to X.

Unfortunately there are knots which do not admit drastic surgeries, but we
do have counsiderable latitude in our choice of link L representing Ker(f.). In
particular, we may modify L by a link homotopy, and so the key question may be:

is every knot K C M homotopic to one which admits a drastic surgery?
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The existence of P Ds-complexes which are not homotopy equivalent to 3-manifolds
shows that we cannot expect a stronger result, in which “meets the image ... finite
index” is replaced by “contains ... m1(9n(L;))” in the definition of drastic surgery.
Can we combine Dehn surgery with passage to finite covers and varying L by link-
homotopy?

[There is a parallel issue in the PDy-case. Here the strategy can be justified
ex post facto: if a degree-1 map f : M — N of closed orientable surfaces is not a
homotopy equivalence then there is a non-separating simple closed curve v C M
with image in the kernel of 71 (f) [29]. Surgery on ~ replaces f by a new degree-1
map f': M’ — N, where x(M') = x(M) 4 2. After finitely many iterations we
obtain a degree-1 map f : M — N, with X(M) = x(NV). Such a map must be
a homotopy equivalence. However it seems that Edmonds’ argument requires the
codomain N to also be a 2-manifold, which is what we want to prove! Can we avoid
a vicious circle?]

On a more speculative level, can we use stabilization with products to bring the
methods of high dimensional topology (as in the Novikov Conjecture) to bear? Is
G x Z" realizable by an aspherical (r + 3)-manifold for some r > 07

Among the most promising new ideas for studying PDs-groups since Wall’s
survey are the JSJ decomposition for arbitrary P Ds-groups [19], based on the work
of Scott and Swarup, the Algebraic Core Theorem, based on coarse geometry [57],
and the use of profinite and pro-p completions, particular in connection with the
Tits alternative, as in [13] and [61].

6. QUESTIONS ON PD3-GROUPS AND THEIR SUBGROUPS: PREAMBLE

In the following sections we shall present a number of questions on subgroups of
P Ds-groups, motivated by results conjectured or already established geometrically
for 3-manifold groups. The underlying question is whether every PDs-group G is
the fundamental group of some aspherical closed 3-manifold, and has been discussed
above. The following questions represent possibly simpler consequences. (If we
assume G is coherent and has a finite K(G, 1)-complex, as is the case for all 3-
manifold groups, a number of these questions have clear answers.)

Prompted by the main result of [57], we define an open PD,-group to be a
countable group G of cohomological dimension < n — 1 such that every nontrivial
FP subgroup H with H*(H;Z[H]) = 0 for s < n — 1 is the ambient group of a
PD,-pair (H,T), for some set of monomorphisms 7. Every subgroup of infinite
index in a PDs-group G is an open PDs-group in our sense, by Theorem 1.3 of
[57]. (The analogies are precise if n = 2, but these definitions are too broad when
n > 4. We shall consider only the case n = 3.)

The corresponding questions for subgroups of open PD3-groups should be con-
sidered with these. Any group with a finite 2-dimensional Eilenberg — Mac Lane
complex is the fundamental group of a compact aspherical 4-manifold with bound-
ary, obtained by attaching 1- and 2-handles to D*. (Conjecturally such groups are
exactly the finitely presentable groups of cohomological dimension 2). On applying
the reflection group trick of Davis to the boundary we see that each such group
embeds in a PD4-group [22]. Thus the case considered here is critical.

We assume throughout that G is an orientable PDs-group. The normalizer
and centralizer of a subgroup H of G shall be denoted by Ng(H) and Cg(H),
respectively. We shall also let (G = Cg(G), G’ and G = NG™) denote the
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centre, the commutator subgroup and the intersection of the terms of the derived
series of G, respectively. A group has a given property virtually if it has a subgroup
of finite index with that property.

Since we are interested in P Ds-groups, we shall use 8-manifold group henceforth
to mean fundamental group of an aspherical closed 3-manifold.

7. THE GROUP

If M = K(G,1) is a closed 3-manifold we may assume it has one 0-cell and one
3-cell, and equal numbers of 1- and 2-cells. Hence G has a finite presentation of
deficiency 0; this is clearly best possible, since 51(G;Fq) = 52(G;Fs). Moreover
G is FF, i.e., the augmentation module Z has a finite free Z[G]-resolution, while
Ko(Z[G]) = Wh(G) = 0 and M = R3, so G is 1-connected at oo.

In general, the augmentation Z[G]-module Z has a finite projective resolution,
so G is almost finitely presentable (F'P), and there is a 3-dimensional K(G,1)
complex. The K (G, 1)-complex is finitely dominated, and hence a Poincaré complex
in the sense of [92], if and only if G is finitely presentable.

For each g € G with infinite conjugacy class [G : Ca((g))] = o0, s0 c.d.Ca({g)) <
2 [83]. Hence C({g))/{g) is locally virtually free, by Theorem 8.4 of [6]. Therefore
G must satisfy the Strong Bass Conjecture, by [26].

An FP, group S such that H?(S;Z[S]) 2 Z is virtually a PDy-group [14].

(1) Is G finitely presentable?

(2) If G is finitely presentable does it have deficiency 07

(3) Is G of type FF?

(4) Is Ko(Z[G]) = 0? Is Wh(G) = 0?

(5) Is G 1-connected at co?

(6) Is K(G, 1) homotopy equivalent to a finite complex?

(7) If a group S is F'P; and H3(S;Z[S]) & Z is S virtually a PDs-group?

8. SUBGROUPS IN GENERAL

Since G has cohomological dimension 3 it has no nontrivial finite subgroups.
Any nontrivial element g generates an infinite cyclic subgroup (g); it is not known
whether there need be any other proper subgroups. If a subgroup H of G has finite
index then it is also a PDs-group. The cases when [G : H| is infinite are of more
interest, and then either c.d.H = 2 or H is free, by [83] and [84]. If there is a finitely
generated (respectively, F'Py) subgroup of cohomological dimension 2 there is one
such which has one end (i.e., which is indecomposable with respect to free product).
A solvable subgroup S of Hirsch length A(S) > 2 must be finitely presentable, since
either [G : S] is finite or ¢.d.S = 2 = h(S) [34]. (In particular, abelian subgroups
of rank > 1 are finitely generated.)

3-manifold groups are coherent: finitely generated subgroups are finitely pre-
sentable. In fact something stronger is true: if H is a finitely generated subgroup
it is the fundamental group of a compact 3-manifold (possibly with boundary) [79].
We shall say that a group G is almost coherent if every finitely generated subgroup
of G is F'P,. This usually suffices for homological arguments, and is implied by ei-
ther coherence of the group or coherence of the group ring. (If 7 is the fundamental
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group of a graph manifold then the group ring Z[r] is coherent. The corresponding
result for lattices in PSL(2,C) is apparently not known.)

If G is a PD3s-group with a one-ended F P, subgroup H then there is a system
of monomorphisms ¢ such that (H, o) is a PDs-pair [57]. Hence x(H) < 0. In
particular, no P Ds-group has a subgroup F x F' with F' a noncyclic free group. (This
was first proven in [69].) As such groups F' x F' have finitely generated subgroups
which are not finitely related (cf. Section 8.2 of [6]), this may be regarded as weak
evidence for coherence. (On the other hand, every surface group ¢ with x(o) < 0
has such a subgroup F and so F' x F' is a subgroup of o x ¢. Thus PD,-groups
with n > 4 need not be coherent.)

Let M be a closed orientable 3-manifold. Then M is Haken, Seifert fibred or
hyperbolic, by the Geometrization Theorem. With [55] it follows that if 71 (M) is
infinite then it has a PDs-subgroup. A transversality argument implies that every
element of Hy(M;Z) = H*(M;Z) = [M; S'] is represented by an embedded sub-
manifold. If M is aspherical it follows that Hy (w1 (M);Z) is generated by elements
represented by surface subgroups of 71 (M).

If G/G' is infinite then G is an HNN extension with finitely generated base and
associated subgroups [10], and so has a finitely generated subgroup of cohomological
dimension 2. If, moreover, G is almost coherent then it has a P Dy-subgroup [57].

If H is a subgroup of G which is a PDsy-group then H has finite index in a
maximal such subgroup. This is clear if x(H) < 0, by the multiplicativity of x in
the passage to subgroups of finite index. If x(H) = 0 we argue instead that an
infinite increasing union of copies of Z? must have cohomological dimension 3.

(8) Is there a noncyclic proper subgroup? If so, is there one of cohomological
dimension 27 and finitely generated?

(9) Is there a subgroup which is a surface group?

10) Is every element of Ho(G;Z) represented by a PDs subgroup?

11) Is G (almost) coherent?

12) Is Z[G] coherent as a ring?

13) Does every (finitely presentable) subgroup of cohomological dimension 2
have a (finite) 2-dimensional Eilenberg-Mac Lane complex (with x < 0)?

(14) Let H be a finitely generated subgroup with one end and of infinite index
in G. Does H have infinite abelianization? contain a surface group?

9. ASCENDANT SUBGROUPS

If M is a closed aspherical 3-manifold which is not a graph manifold then M
has a finite covering space which fibres over the circle [1, 77]. Hence indecom-
posable finitely generated subgroups of infinite index in such groups are (finitely
presentable) semidirect products F' x Z, with F a free group. Such groups are HNN
extensions with finitely generated free base, and associated subgroups free factors
of the base [31].

If N is an F'P; ascendant subgroup of G and c.d.N = 2 then it is a surface
group and G has a subgroup of finite index which is a surface bundle group. If
c.d.N =1 then N = Z and either G is virtually poly-Z or N is normal in G and
[G: Ca(N)] <28, 49]. In the latter case G is the group of a Seifert fibred 3-
manifold [14]. It is easy to find examples among normal subgroups of 3-manifold
groups to show that finite generation of N is necessary for these results.
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If N is finitely generated, normal and [G : N] = oo then H!(G/N;Z|G/N)) is iso-
morphic to H!(G;Z[G/N]) and hence to Ha(G;Z[G/N]) = H3(N;Z), by Poincaré
duality. If G/N has two ends, then after passing to a subgroup of finite index, we
may assume that G/N = Z. Shapiro’s lemma and Poincaré duality (for each of G
and G/N) together imply that lim_, H2(N; M;) is 0 for any direct system M; with
limit 0. (See Theorem 1.19 of [41].) Hence N is F'P, by Brown’s criterion [17] and
so is a surface group by the above result.

(15) Is there a simple PDs-group?

) Is G virtually representable onto Z?

17) Must a finitely generated normal subgroup N be finitely presentable?

18) Suppose N < U are subgroups of G with U finitely generated and in-
decomposable, [G : U] infinite, N subnormal in G and N not cyclic. Is
[G: Ng(U)] < 00? (Cf. [30].)

(19) Let G be a PD3-group such that G is free. Is G a semidirect product K xZ
with K a PDy-group?

10. CENTRALIZERS, NORMALIZERS AND COMMENSURATORS

If G is a PD3-group with nontrivial centre then (G is finitely generated and
G is the fundamental group of an aspherical Seifert fibred 3-manifold [14]. (See
also [42].) Since an elementary amenable group of finite cohomological dimension
is virtually solvable [52], it follows also that either G is virtually poly-Z or its
maximal elementary amenable normal subgroup is cyclic.

Every strictly increasing sequence of centralizers Cy < C7 < --- < C,, = G in
a PDs-group G has length n at most 4 [49]. (The finiteness of such sequences in
any P Ds-group is due to Castel [19].) On the other hand, the 1-relator group with
presentation (t,x | tz%t~! = 23) has an infinite chain of centralizers, and hence so
does the PDg-group obtained from it by the Davis construction [66].

If the sequence of centralizers C7 £ Z < Cy < C3 < C4 = G is strictly increasing
then C5 must be nonabelian. (See [49].) Hence it is FP, [19], and so either G is
Seifert or c¢.d.C3 = 2. In all cases it follows that Cy = Z2. Equivalently, if G has a
maximal abelian subgroup A which is not finitely generated then 1 < A < G is the
only sequence of centralizers containing A.

If every abelian subgroup of G is finitely generated then the centralizer Cg(x) of
any x € G is finitely generated [19]. It then follows that every centralizer is either
Z, finitely generated and of cohomological dimension 2 or of index < 2 in G [49].
(Applying the Davis construction to the group with presentation (t,z | tzt~! = z?)
gives a PDy-group with an abelian subgroup which is not finitely generated [73].)

An element g is a root of x if x = g™ for some n. All roots of z are in Cq(z).
If Cg(z) is finitely generated then « is not infinitely divisible. For if ¢.d.Cq(x) =1
then Cg(x) = Z; if ¢.d.Cg(x) = 2 then Cg(z)/{x) is virtually free, by Theorem
8.4 of [6]; and if c.d.Cg(z) = 3 then Cg(x)/(zx) is virtually a PDy-group [14].
Conversely, if « is not infinitely divisible then Cg(x) is finitely generated [19].

If Cg(x) is nonabelian then it is F' P, and is either of bounded Seifert type or
has finite index in G [19]. In the latter case either [G : Cg(z)] < 2 or G is virtually
Z3, by Theorem 2 of [49].

If z is a nontrivial element of G then [Ng({(z)) : Cq(x)] < 2 (since (z) = Z).
If F is a finitely generated nonabelian free subgroup of G then Ng(F) is finitely
generated and Ng(F')/F is finite or virtually Z [49]. (See [80] for another argument
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in the 3-manifold case.) If H is an F P, subgroup which is a nontrivial free product
but is not free then [Ng(H) : H] < oo and Ce(H) =1 [49].

If H is a one-ended F P, subgroup of infinite index in G then either [G : Ng(H)]
or [Ng(H) : H]J is finite. (See Lemma 2.15 of [41]). More precisely, define an
increasing sequence of subgroups {H;[i > 0} by Hy = H and H; = N¢(H;-1) for
i > 0. Then H = UH, is F P, and either c.d.H = 2, H has one end and Ng(H) = H,
or His a PDjs-group and G is virtually the group of a surface bundle, by Theorem
2.17 of [41]. In particular, if G has a subgroup H which is a surface group with
X(H) = 0 (respectively, < 0) then either it has such a subgroup which is its own
normalizer in G or G is virtually the group of a surface bundle.

The commensurator in G of a subgroup H is the subgroup

Commg(H)={9€G|[H:HNgHg '] <oocand [H: HNg 'Hg] < oc}.

It clearly contains Ng(H).

If + # 1 in G then the Baumslag-Solitar relation txPt~! = 27 implies that
p = £q [19]. It follows easily that Commg((x)) = UNg({z™)). Since the chain of
centralizers Cg ((z™) is increasing and [Ng ((z*) : Cg((x*)] < 2 for any k it follows
that Commg((x)) = Ng({(z™)) for some n > 1.

If H is a PDy-group then Theorem 1.3 and Proposition 4.4 of [70] imply that
either [Commeg(H) : H] < oo or H is commensurable with a subgroup K such
that [G : Ng(K)] < o0, and so [G : Commg(H)] < co. This dichotomy is similar
to the one for normalizers of F P, subgroups cited above. It can be shown that
if H = Z? then either Commg(H) = Ng(H) or G is virtually Z®. However, the
exceptional cases do occur. If G = Bj is the flat 3-manifold group with presentation
(t,z,y | tat™r =271 ty = yt, oy = yz) and A is the subgroup generated by {t,y}
then Ng(A) = A but Commg(A) = G.

(20) Is every abelian subgroup of G finitely generated?

(21) If G is not virtually abelian and H is an F'P, subgroup such that Ng(H) =

H is [Commg(H) : H] finite?

11. THE DERIVED SERIES AND PERFECT SUBGROUPS

Let G = NG™ be the intersection of the terms of the derived series for G.
If G&@ = G™ for some finite n then n < 3, and G/G(“) is either a finite solvable
group with cohomological period dividing 4, or has two ends and is Z, Z® Z/2Z or
Dy, =Z/2Z x Z/2Z, or has one end and is a solvable PDs-group. (The argument
given in [45] for orientable 3-manifold groups also applies here.) There is a similar
result for the lower central series. If G is orientable and G,; = G|, for some finite
n then n < 3, and G/G|,, is finite, Z or a nilpotent P Ds-group [87].

If G is not virtually representable onto Z then G/G(“) is either a finite solvable
group with cohomological period dividing 4 (and G“) is a perfect PDs-group) or
is a finitely generated, infinite, residually finite-solvable group with one or infinitely
many ends. Let M be the (aspherical) 3-manifold obtained by 0-framed surgery
on a nontrivial knot K with Alexander polynomial Ax=1, and let G = m(M).
Then G’ is a perfect normal subgroup which is not finitely generated. (In this case
G = G =G’ and G/G*) = 7.) Replacing a suitable solid torus in RP3#RP3
by the exterior of such a knot K gives an example with G/G®) = D

Let x be a perfect normal subgroup of the fundamental group 7 of a PD3-complex
X. Then p =7/k is F Py, since 7 is F'Py and Hy(k;Z) = 0. The arguments of [20]
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give p = (%]_,G;) * V, where each factor G, has one end and V is virtually free.
Moreover, if p is infinite and has a nontrivial finite normal subgroup then p has
two ends. (However, the further analysis of [50] does not apply, since there is no
analogue of the Splitting Theorem of Turaev.) We also have Hy(x;Z) = H'(p; Z|p])
as an abelian group. In particular, if x is acyclic then p is a PDs-group.

The intersection P = NG(® of the terms of the transfinite derived series for G
is the maximal perfect subgroup of G, and is normal in G. The quotient G/P is
FP,. If P # 1 and [G : P] is infinite then c.d.P = 2, but P cannot be F'P,, for
otherwise it would be a surface group [43]. Note that P C G“), and if c.d.P = 2
then ¢.d.G*) = 2 also. If [G : P] is infinite and (G # 1 then P = 1.

If G is a PD3-group and H is a nontrivial F'P; subgroup such that H'(H;Z) = 0
then [G : H] is finite. (Use [57]. See [53] for 3-manifold groups.)

(22) Can a nontrivial finitely generated normal subgroup of infinite index be

perfect? acyclic?

(23) If a finitely generated, infinite, residually solvable group has infinitely many

ends must it be virtually representable onto Z?
(24) If P =1 is G residually solvable (i.e., is G*) =1 also)?

12. THE TITS ALTERNATIVE

A group satisfies the Tits alternative if every finitely generated subgroup is either
solvable or contains a non-abelian free group.

Let N be the subgroup generated by all the normal subgroups which have no
nonabelian free subgroup. Then N is the maximal such subgroup, and clearly it
contains the maximal elementary amenable normal subgroup of G. If NV is nontrivial
then either N 2 Z, c.d.N =2 or N = G. If N is a rank 1 abelian subgroup then
N = Z. (For otherwise N < G’ and G’ < Cg(N), so either [G : Cg(N)] is
finite, which can be excluded by [14], or G’ is abelian, by Theorem 8.8 of [6], in
which case G is solvable and hence virtually poly-Z, and N must again be finitely
generated.) If ¢.d.N = 2 then N cannot be F P, for otherwise it would be a surface
group and G would be virtually the group of a surface bundle [43]. Since N has
no nonabelian free subgroup this would imply that N and hence G are virtually
poly-Z, and so N = G. Similarly, if N = G and G/G’ has rank at least 2 then
there is an epimorphism ¢ : G — Z with finitely generated kernel [9]. Hence Ker(¢)
is a surface group and so G is poly-Z.

A finitely generated, torsion-free group is properly locally cyclic if every finitely
generated subgroup of infinite index is cyclic. If G is an almost coherent P Ds-group
which is not virtually properly cyclic then every finitely generated subgroup of G
satisfies the Tits alternative [13]. (In fact it suffices for their argument for “almost
coherent” to be assumed only for the subgroup, as in [46]). Solvable subgroups are
then abelian or virtually poly-Z, by [34] and Corollary 1.4 of [57].

(25) Is N the maximal elementary amenable normal subgroup?

(26) If H is a finitely generated subgroup which has no nonabelian free subgroup

must it be virtually poly-Z7?

(27) In particular, is a PDs-group of subexponential growth virtually nilpotent?

13. ATOROIDAL GROUPS

We shall say that G is atoroidal if all of its finitely generated abelian subgroups
are cyclic. Two-generator subgroups of atoroidal, almost coherent PD3-groups are
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either free or of finite index, by [3] together with the Algebraic Core Theorem of
[57]. 3-Manifolds with atoroidal fundamental group are hyperbolic, by the Ge-
ometrization Theorem. Every closed hyperbolic 3-manifold has a finite covering
space which fibres over the circle [1, 77].

If G is atoroidal and acts geometrically on a locally compact C' AT'(0) space then
it is Gromov hyperbolic [59]. It then has boundary S? [5].

(28) Is every atoroidal PDs-group Gromov hyperbolic?

(29) Does every atoroidal PDs-group have a boundary in the sense of [4]?

(30) The Cannon Conjecture: is every Gromov hyperbolic PDs-group isomor-
phic to a discrete uniform subgroup of PSL(2,C)?

(31) Does every atoroidal PDs-group have a nontrivial finitely generated sub-
normal subgroup of infinite index?

14. SPLITTING

The central role played by incompressible surfaces in the geometric study of
Haken 3-manifolds suggests strongly the importance of splitting theorems for P Ds-
groups. This issue was raised in [89], the first paper on PDs-groups. Kropholler and
Roller considered splittings of PD,,-groups over PD,,_; subgroups [67, 68, 69, 70];
see also [24] and [60]. Kropholler gave two different formulations of a torus theorem
for PDs-groups, one extending to higher dimensions but requiring that the group
have Maa-c, the maximal condition on centralizers [64], and the other with a weaker
conclusion [66]. Castel has since shown that every PDs-group has Maa-c, and has
given a JSJ-decomposition theorem for PDs-groups and group pairs [19].

In particular, if G has a subgroup H 2 Z? then either G splits over a subgroup
commensurate with H or it has a nontrivial abelian normal subgroup [64], and so is
a 3-manifold group [14]. If G splits over a PDy-group H then either G is virtually
a semidirect product or Ng(H) = H. (See §7 of [49].)

If G is an ascending HNN extension with F' P, base H then H is a PDs-group and
is normal in G, and so G is the group of a surface bundle. (This follows from Lemma
3.4 of [18].) If G has no noncyclic free subgroup and G/G’ is infinite then G is an
ascending HNN extension with finitely generated base and associated subgroups. If
G is residually finite and has a subgroup isomorphic to Z? then either G is virtually
poly-Z or it has subgroups of finite index with abelianization of arbitrarily large
rank. (A residually finite PDs-group which has a subgroup H = Z? is virtually
split over a subgroup commensurate with H [67], so we may suppose that G splits
over Z2, and then we may use the argument of [63], which is essentially algebraic.)

(32) If G is a nontrivial free product with amalgamation or HNN extension does
it split over a PDs group?

(33) If G is a nontrivial free product with amalgamation is it virtually repre-
sentable onto Z?

(34) Can G be a properly ascending HNN extension (with base not F'P;)?

(35) If G has a subgroup H which is a PDy-group and such that Ng(H) = H
does GG have a subgroup of finite index which splits over H? In particular
is this so if H = Z2?

(36) Suppose that G is an HNN extension with stable letter ¢, base H and
associated subgroup F C H. Is u(G) = Nt* Ft~* finitely generated? (See
[56] for a related result on knot groups, and also [82].)
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(37) Suppose G is not virtually poly-Z and that G/G’ is infinite. Does G have
subgroups of finite index whose abelianization has rank > 27

15. RESIDUAL FINITENESS, HOPFICITY, COHOPFICITY

Let K,, = N{H C G||G : H] divides n!}. Then [G : K,,] is finite, for all n > 1,
and G is residually finite if and only if NK,, = 1. If G is not virtually representable
onto Z this intersection is also the intersection of the terms in the more rapidly
descending series given by Kr(Ln), and is contained in G,

If G has a maximal finite p-quotient P for some prime p then P has cohomological
period dividing 4, and so is cyclic, if p is odd, and cyclic or quaternionic, if p = 2.
Hence if 81(G;F,) > 1 for some odd prime p, or if 51(G;Fs) > 2, then the pro-p
completion of G is infinite [74].

If [G : NK,] = co and G is a 3-manifold group then either G is solvable or there
is a prime p such that G has subgroups H of finite index with £, (H;F,) arbitrarily
large [74]. Hence either some such H maps onto Z or the pro-p completion of
any such subgroup with £ (H;F,) > 1 is a pro-p PDs-group [62]. If G is almost
coherent and [G : NK,,] = oo then it satisfies the Tits alternative [13].

The groups of 3-manifolds are residually finite, by [39] and the Geometrization
Theorem. Hence they are hopfian, i.e., onto endomorphisms of such groups are
automorphisms. The Baumslag-Solitar groups (z,t | tzPt~1 = 29) embed in PDj-
groups. Since these groups are not hopfian, there are PD4-groups which are not
residually finite [73]. No such Baumslag-Solitar relation with |p| # |¢| holds in any
PDs-group G there is no homomorphism from (x,t | tzPt~1 = 29) to G [19].

Let X be the class of groups of cohomological dimension 2 which have an infinite
cyclic subgroup which is commensurate with all of its conjugates. If G is a PDs-
group with no nontrivial abelian normal subgroup and which contains a subgroup
isomorphic to Z? then G splits over an X-group [66]. (See also [65].) This class
includes the Baumslag-Solitar groups and also the fundamental groups of Seifert
fibred 3-manifolds with nonempty boundary. If H is in the latter class and is not
virtually Z? then vVH = Z and H / V/H is a free product of cyclic groups. It then
follows from the result of [19] on Baumslag-Solitar relations that finitely generated
X-groups which are subgroups of PD3-groups are of this “Seifert type”.

An injective endomorphism of a P Ds-group must have image of finite index, by
Strebel’s theorem [83]. A 3-manifold group satisfies the volume condition (isomor-
phic subgroups of finite index have the same index) if and only if it is not solvable
and is not virtually a product [96, 97]. In particular, such 3-manifold groups are
cohopfian, i.e., injective endomorphisms are automorphisms. The volume condition
is a property of commensurability classes; this is not so for cohopficity.

(38) Does every PDs-group have a proper subgroup of finite index?

(39) Are all PDs-groups residually finite?

(40) Let G be a pro-p PDs-group. Is G virtually representable onto Z\p?

(41) Do all PDs-groups other than those which are solvable or are virtually

products satisfy the volume condition?

16. OTHER QUESTIONS

We conclude with some related questions. (Here X is an indecomposable PDs3-
complex and m = m1 (X).)
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Is (Do X Z/3Z) % 7,67 T1 the group of a PD3-complex, for some m > 57
If the orientable double cover of X is homotopy equivalent to a 3-manifold,
is X itself homotopy equivalent to a 3-manifold?

If m11(X) & 7G, where (G,I') is a graph of groups with vertex groups one-
ended and edge groups of order 2, must each vertex of I' have even valence?
I Z®Z/2Z <7 must X ~ St x RP??

Is X x S' or X x S' x S' homotopy equivalent to a closed manifold?
Clarify the connection between k1(X) and cx.[X] when 7 is infinite.

Is there an explicit example of a free action of a generalized quaternionic
group Q(8a,b,1) (with a,b > 1 and (a,b) = 1) on an homology 3-sphere?
Is there an algebraic analogue of the reflection group trick which may be
used to embed FP groups of cohomological dimension k in PDsg-groups?

way to prove (44) might be to use the Realization Theorem of [11] to show

that (G, {Ge : o(e) or t(e) = v, o(e) # t(e)}) is the fundamental group system of
a PDs-pair (with all boundary components RP?), for each vertex v € V/(T).

See [48] and the references there [36, 37, 94, 95] for work on maps of nonzero
degree between P D3-groups.
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