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Set-up and main result.
Eigenvalue problem:

N

(
u
v

)
= λ

(
u
v

)
,

(
u(0)
v(0)

)
=

(
u(`)
v(`)

)
=

(
0
0

)
(1)

where

N =

(
0 L−
−L+ 0

)
,

{
L+ = ∂xx + g(x),

L− = ∂xx + h(x),
g , h ∈ C 2([0, `];R).

Define:

P := # positive eigenvalues of L+,

Q := # positive eigenvalues of L−,

n+(N) := # positive real eigenvalues of N,

Then we have the lower bound:

n+(N) ≥ |P − Q − c| (2)

where c ∈ {−1, 0, 1} is the contribution to the Maslov index from the
“corner” of the Maslov box.
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Motivating example for the Maslov index: Sturm-Liouville theory

Consider the eigenvalue problem

y ′′ + q(x)y = λy , y(0) = y(`) = 0. (3)

Sturm-Liouville theory:

I Eigenvalues λn of (3) are real,
discrete, simple, and satisfy

λ1 > λ2 > λ3 > . . . λn > · · · → −∞

I Eigenfunction yn for nth eigenvalue
has n − 1 zeros on (0, `).

Second statement is actually a statement about oscillations in phase space
(yy ′-plane).
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Motivating example for the Maslov index: Sturm-Liouville theory

Example:

EVP: y ′′ + q(x)y = λy y(0) = y(`) = 0

Define the polar angle in the phase plane: tan θ(x ;λ) =
y ′(x ;λ)

y(x ;λ)

Initial condition: y(0) = 0 =⇒ θ(0;λ) = π
2

.

Observations:

Eigenvalue λ = λ∗ when y(`) = 0, i.e.

θ(`;λ∗) =
π

2
+ nπ, n ∈ Z.

Fix λ = λ∗. Can show:

∂θ

∂x
(x ;λ∗)

∣∣∣
θ= π

2
+nπ

< 0

Fix x = `. Can show:

∂θ

∂λ
(`;λ)

∣∣∣
θ= π

2
+nπ

> 0
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Motivating example for the Maslov index: Sturm-Liouville theory

We interpret this oscillation in phase space with the following picture:

“Box theorem”: the signatures of the points on this box sum to zero!

These ideas are generalisable to Hamiltonian systems via the Maslov index.
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Motivating example for the Maslov index: Sturm-Liouville theory

Yet another interpretation is offered by the monotonicity of the eigenvalue
curves:

Figure: Locus of points in λ, s plane where ŷ(x ;λ) = 0

(where ŷ(0;λ) = 0)

Can show x ′(λ) > 0 using the I.F.T. and the original ODE

=⇒ # {crossings on left}= #{crossings on top}
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The Maslov index: framework

A symplectic form on R2n is a nondegenerate, skew-symmetric bilinear form

ω : R2n × R2n −→ R, ω(x , y) = 〈Jx , y〉R2n , J =

(
0 −In
In 0

)
.

The Lagrangian Grassmannian is the set of all Lagrangian subspaces of R2n,

L(n) = {Λ ⊂ R2n : dim Λ = n, ω(x , y) = 0 ∀x , y ∈ Λ}.

The Maslov index can be thought of as a winding number for loops in L(n).

In practice we compute it by counting signed intersections of our path with a
codimension one submanifold of L(n):

T (Λ0) := {Λ ∈ L(n) : Λ ∩ Λ0 6= {0}}

(the train of a fixed Lagrangian plane Λ0).
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The Maslov index: framework

Consider a path Λ : [a, b] −→ L(n), and fix Λ0 ∈ L(n).

I A crossing is a value t = t0 s.t. Λ(t0) ∈ T (Λ0)

Figure: Shematic of a path Λ(t) in the Lagrangian Grassmannian L(n)
intersecting the train T (Λ0) at t = t0.

I The Maslov index is a signed count of the crossings, with the signature
being determined by that of a certain quadratic form.
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Application to eigenvalue problem at hand.

Restrict problem to [0, s`]:

Nu = λu, u(0) = u(s`) = 0, x ∈ [0, s`].

General solutions: Kλ,s :=
{
u ∈ H2(0, s`) : Nu = λu

}
(no BC’s)

Trace of u ∈ H2(0, s`):

Trs u :=
(
u(0), v(0), u(s`), v(s`),−u′(0), v ′(0), u′(s`),−v ′(s`)

)> ∈ R8
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The Maslov box

Consider the following rectangle in the λs-plane with image in L(4) under Λ:

Let Γ be the solid box, so that ∂Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.

Our Lagrangian path is the image in L(4) of ∂Γ; i.e. Λ : ∂Γ→ L(4).
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The Maslov box

Now mark the intersections of this path with the train T (D).

Topological properties of Maslov index imply

Mas(Λ,D; ∂Γ) = Mas(Λ,D; Γ1)+Mas(Λ,D; Γ2)+Mas(Λ,D; Γ3)+Mas(Λ,D; Γ4) = 0.

No crossings on Γ1, Γ4 =⇒ Mas(Λ,D; Γ1) = Mas(Λ,D; Γ4) = 0. Thus

Mas(Λ,D; Γ2) + Mas(Λ,D; Γ3) = 0.
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The Maslov box

Now assign signature to each crossing and sum!

I Mas(Λ,D; Γε2) = +Q − P, where

Q = # positive eigenvalues of L−

P = # positive eigenvalues of L+

I Along Γε3 : signatures may offset
each other; therefore

n+(N) ≥ |Mas(Λ,D; Γε3)|

I Contribution from corner is
c := Mas(Λ,D; corner).

Therefore: Mas(Λ,D; Γ2) + Mas(Λ,D; Γ3) = 0

=⇒ Mas(Λ,D; Γε2) + c + Mas(Λ,D; Γε3) = 0

=⇒ Mas(Λ,D; Γε3) = −Mas(Λ,D; Γε2)− c

=⇒ n+(N) ≥ |Mas(Λ,D; Γε3)| = |P − Q − c|
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Computing c

The contribution c is irregular, since the associated quadratic form is
degenerate.

This corresponds to our ‘box’ being tangential to the (flat) eigenvalue curve at
λ = 0, s = 1:

We will use a homotopy argument to compute c, which hinges on knowing the
concavity of the eigenvalue curves...
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Computing c

Theorem (Cox, Curran, Latushkin, Marangell)

Let s = s(λ) be the eigenvalue curve through (λ, s) = (0, 1).

If 0 ∈ Spec(L−)\ Spec(L+) with L−v = 0, then

sign s̈(0) = sign

∫ `

0

û v dx ,

where −L+û = v . Note u =

(
0
v

)
∈ ker(N) and û =

(
û
0

)
∈ ker(N2)\ ker(N).

If 0 ∈ Spec(L+)\Spec(L−) with L+u = 0, then

sign s̈(0) = − sign

∫ `

0

v̂ u dx ,

where L−v̂ = u. Note u =

(
u
0

)
∈ ker(N) and û =

(
0
v̂

)
∈ ker(N2)\ ker(N).
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Computing c

Homotoping the top left corner of the Maslov box:

Figure: Blow-up of the crossing at (λ, s) = (0, 1), with the (blue) eigenvalue curve,
Maslov box (solid black) and homotoped path (dashed) passing through it. Images of

black and dashed paths in L(4) on the right.
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Computing c

Theorem (Cox, Curran, Latushkin, Marangell)

Let s = s(λ) be the eigenvalue curve through (λ, s) = (0, 1).

If 0 ∈ Spec(L−)\ Spec(L+) then

c =

{
0 sign s̈(0) > 0

+1 sign s̈(0) < 0.

If 0 ∈ Spec(L+)\Spec(L−) then

c =

{
0 sign s̈(0) > 0

−1 sign s̈(0) < 0.
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Application: The Vakhitov-Kolokolov criterion

Nonlinear Schrödinger (NLS) equation on a compact interval,

iψt = ψxx + f
(
|ψ|2

)
ψ, ψ(x , t) : [0, `]× [0,∞) −→ C (4)

Linearising (4) about a standing wave solution

ψ̂(x , t) = e iβtφ(x), φ(x) ∈ R, β ∈ R,

using a complex perturbation

ψ(x , t) = ψ̂(x , t) + ε(u(x , t) + iv(x , t))

leads to the linearised dynamics in u, v :

∂t

(
u
v

)
= N

(
u
v

)
where

N =

(
0 L−
−L+ 0

)
,

{
L− = ∂xx + f (φ2) + β,

L+ = ∂xx + 2f ′(φ2)φ2 + f (φ2) + β.
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Application: The Vakhitov-Kolokolov criterion

Known result:

NLS equation on the real line,

iψt = ψxx + f
(
|ψ|2

)
ψ, ψ(x , t) : R× [0,∞) −→ C

Standing wave:

ψ̂(x , t) = e iβtφ(x), φ ∈ L2(R;R), β ∈ R

Theorem (VK criterion)

If P = 1 and Q = 0 then:

∂

∂β

∫ ∞
−∞

φ2(x ;β)dx > 0 =⇒ n+(N) = 1

=⇒ standing wave ψ̂ spectrally unstable

∂

∂β

∫ ∞
−∞

φ2(x ;β)dx < 0 =⇒ Spec(N) ⊂ iR

=⇒ standing wave ψ̂ spectrally stable
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Application: The Vakhitov-Kolokolov criterion

Analogous result for NLS on compact interval:

Concavity of the eigenvalue curve through the top left corner provides an
(in)stability criterion!

Lemma
If P = 0 or Q = 0 then Spec(N) ⊂ R ∪ iR and n+(N) = |P − Q − c|.

Theorem (Cox, Curran, Latushkin, Marangell)

For standing waves where 0 ∈ Spec(L−)\Spec(L+) and P = 1,Q = 0:

sign s̈(λ)|(λ,s)=(0,1) > 0 =⇒ n+(N) = 1

=⇒ ψ̂ spectrally unstable

sign s̈(λ)|(λ,s)=(0,1) < 0 =⇒ n+(N) = 0 =⇒ Spec(N) ⊂ iR

=⇒ ψ̂ spectrally stable

A similar statement holds when 0 ∈ Spec(L+)\ Spec(L−) and P = 0,Q = 1.
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The Vakhitov-Kolokolov criterion

If P + Q = 1 then ∃ exactly one conjugate point on the left side of the Maslov
box (excluding (λ, s) = (0, 1)). Thus,

sign s̈(λ)|(λ,s)=(0,1) > 0 =⇒ n+(N) = 1 =⇒ instability

sign s̈(λ)|(λ,s)=(0,1) < 0 =⇒ n+(N) = 0 =⇒ stability
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Figure: Two scenarios when P + Q = 1. Left: n+(N) = 1. Right: n+(N) = 0.
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Thank you.


	Motivation, summary of results.

