Counting eigenvalues in Hamiltonian systems via the Maslov index

Mitch Curran
In collaboration with Robby Marangell, Graham Cox, Yuri Latushkin

AustMS UNSW December 2022

Set-up and main result.

Eigenvalue problem:

$$
\begin{equation*}
N\binom{u}{v}=\lambda\binom{u}{v}, \quad\binom{u(0)}{v(0)}=\binom{u(\ell)}{v(\ell)}=\binom{0}{0} \tag{1}
\end{equation*}
$$

where

$$
N=\left(\begin{array}{cc}
0 & L_{-} \\
-L_{+} & 0
\end{array}\right), \quad\left\{\begin{array}{l}
L_{+}=\partial_{x x}+g(x), \\
L_{-}=\partial_{x x}+h(x),
\end{array} \quad g, h \in C^{2}([0, \ell] ; \mathbb{R})\right.
$$

Define:

$$
\begin{aligned}
P & :=\# \text { positive eigenvalues of } L_{+}, \\
Q & :=\# \text { positive eigenvalues of } L_{-}, \\
n_{+}(N) & :=\#
\end{aligned} \text { positive real eigenvalues of } N,
$$

Then we have the lower bound:

$$
\begin{equation*}
n_{+}(N) \geq|P-Q-\mathfrak{c}| \tag{2}
\end{equation*}
$$

where $\mathfrak{c} \in\{-1,0,1\}$ is the contribution to the Maslov index from the "corner" of the Maslov box.

Motivating example for the Maslov index: Sturm-Liouville theory

Consider the eigenvalue problem

$$
\begin{equation*}
y^{\prime \prime}+q(x) y=\lambda y, \quad y(0)=y(\ell)=0 \tag{3}
\end{equation*}
$$

Sturm-Liouville theory:

- Eigenvalues λ_{n} of (3) are real, discrete, simple, and satisfy

$$
\lambda_{1}>\lambda_{2}>\lambda_{3}>\ldots \lambda_{n}>\cdots \rightarrow-\infty
$$

- Eigenfunction y_{n} for nth eigenvalue has $n-1$ zeros on ($0, \ell$).

Second statement is actually a statement about oscillations in phase space ($y y^{\prime}$-plane).

Motivating example for the Maslov index: Sturm-Liouville theory

Example:

EVP: $\quad y^{\prime \prime}+q(x) y=\lambda y \quad y(0)=y(\ell)=0$
Define the polar angle in the phase plane: $\quad \tan \theta(x ; \lambda)=\frac{y^{\prime}(x ; \lambda)}{y(x ; \lambda)}$
Initial condition: $\quad y(0)=0 \Longrightarrow \theta(0 ; \lambda)=\frac{\pi}{2}$.

Observations:

Eigenvalue $\lambda=\lambda^{*}$ when $y(\ell)=0$, i.e.

$$
\theta\left(\ell ; \lambda^{*}\right)=\frac{\pi}{2}+n \pi, \quad n \in \mathbb{Z}
$$

$\operatorname{Fix} \lambda=\lambda^{*}$. Can show:

$$
\left.\frac{\partial \theta}{\partial x}\left(x ; \lambda^{*}\right)\right|_{\theta=\frac{\pi}{2}+n \pi}<0
$$

Fix $x=\ell$. Can show:

$$
\left.\frac{\partial \theta}{\partial \lambda}(\ell ; \lambda)\right|_{\theta=\frac{\pi}{2}+n \pi}>0
$$

Motivating example for the Maslov index: Sturm-Liouville theory

We interpret this oscillation in phase space with the following picture:

"Box theorem": the signatures of the points on this box sum to zero!

These ideas are generalisable to Hamiltonian systems via the Maslov index.

Motivating example for the Maslov index: Sturm-Liouville theory

Yet another interpretation is offered by the monotonicity of the eigenvalue curves:

Figure: Locus of points in λ, s plane where $\widehat{y}(x ; \lambda)=0$ (where $\widehat{y}(0 ; \lambda)=0)$

Can show $x^{\prime}(\lambda)>0$ using the I.F.T. and the original ODE
$\Longrightarrow \#\{$ crossings on left $\}=\#\{$ crossings on top $\}$

The Maslov index: framework

A symplectic form on $\mathbb{R}^{2 n}$ is a nondegenerate, skew-symmetric bilinear form

$$
\omega: \mathbb{R}^{2 n} \times \mathbb{R}^{2 n} \longrightarrow \mathbb{R}, \quad \omega(x, y)=\langle J x, y\rangle_{\mathbb{R}^{2 n}}, \quad J=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)
$$

The Lagrangian Grassmannian is the set of all Lagrangian subspaces of $\mathbb{R}^{2 n}$,

$$
\mathcal{L}(n)=\left\{\Lambda \subset \mathbb{R}^{2 n}: \operatorname{dim} \Lambda=n, \quad \omega(x, y)=0 \forall x, y \in \Lambda\right\} .
$$

The Maslov index can be thought of as a winding number for loops in $\mathcal{L}(n)$.
In practice we compute it by counting signed intersections of our path with a codimension one submanifold of $\mathcal{L}(n)$:

$$
\mathcal{T}\left(\Lambda_{0}\right):=\left\{\Lambda \in \mathcal{L}(n): \Lambda \cap \Lambda_{0} \neq\{0\}\right\}
$$

(the train of a fixed Lagrangian plane Λ_{0}).

The Maslov index: framework

Consider a path $\Lambda:[a, b] \longrightarrow \mathcal{L}(n)$, and fix $\Lambda_{0} \in \mathcal{L}(n)$.

- A crossing is a value $t=t_{0}$ s.t. $\Lambda\left(t_{0}\right) \in \mathcal{T}\left(\Lambda_{0}\right)$

Figure: Shematic of a path $\Lambda(t)$ in the Lagrangian Grassmannian $\mathcal{L}(n)$ intersecting the train $\mathcal{T}\left(\Lambda_{0}\right)$ at $t=t_{0}$.

- The Maslov index is a signed count of the crossings, with the signature being determined by that of a certain quadratic form.

Application to eigenvalue problem at hand.

Restrict problem to [$0, s \ell$]:

$$
N \mathbf{u}=\lambda \mathbf{u}, \quad \mathbf{u}(0)=\mathbf{u}(s \ell)=0, \quad x \in[0, s \ell] .
$$

General solutions: $\mathcal{K}_{\lambda, s}:=\left\{\mathbf{u} \in H^{2}(0, s \ell): N \mathbf{u}=\lambda \mathbf{u}\right\} \quad$ (no BC's)
Trace of $\mathbf{u} \in H^{2}(0, s \ell)$:

$$
\operatorname{Tr}_{s} \mathbf{u}:=\left(u(0), v(0), u(s \ell), v(s \ell),-u^{\prime}(0), v^{\prime}(0), u^{\prime}(s \ell),-v^{\prime}(s \ell)\right)^{\top} \in \mathbb{R}^{8}
$$

The Maslov box

Consider the following rectangle in the λs-plane with image in $\mathcal{L}(4)$ under Λ :

Let Γ be the solid box, so that $\partial \Gamma=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{4}$.
Our Lagrangian path is the image in $\mathcal{L}(4)$ of $\partial \Gamma$; i.e. $\Lambda: \partial \Gamma \rightarrow \mathcal{L}(4)$.

The Maslov box

Now mark the intersections of this path with the train $\mathcal{T}(\mathcal{D})$.

Topological properties of Maslov index imply
$\operatorname{Mas}(\Lambda, \mathcal{D} ; \partial \Gamma)=\operatorname{Mas}\left(\Lambda, \mathcal{D} ; \Gamma_{1}\right)+\operatorname{Mas}\left(\Lambda, \mathcal{D} ; \Gamma_{2}\right)+\operatorname{Mas}\left(\Lambda, \mathcal{D} ; \Gamma_{3}\right)+\operatorname{Mas}\left(\Lambda, \mathcal{D} ; \Gamma_{4}\right)=0$.
No crossings on $\Gamma_{1}, \Gamma_{4} \Longrightarrow \operatorname{Mas}\left(\Lambda, \mathcal{D} ; \Gamma_{1}\right)=\operatorname{Mas}\left(\Lambda, \mathcal{D} ; \Gamma_{4}\right)=0$. Thus

$$
\operatorname{Mas}\left(\Lambda, \mathcal{D} ; \Gamma_{2}\right)+\operatorname{Mas}\left(\Lambda, \mathcal{D} ; \Gamma_{3}\right)=0
$$

The Maslov box

Now assign signature to each crossing and sum!

- $\operatorname{Mas}\left(\Lambda, \mathcal{D} ; \Gamma_{2}^{\varepsilon}\right)=+Q-P$, where $Q=\#$ positive eigenvalues of L_{-} $P=\#$ positive eigenvalues of L_{+}
- Along Γ_{3}^{ε} : signatures may offset each other; therefore

$$
n_{+}(N) \geq\left|\operatorname{Mas}\left(\Lambda, \mathcal{D} ; \Gamma_{3}^{\varepsilon}\right)\right|
$$

- Contribution from corner is $\mathfrak{c}:=\operatorname{Mas}(\Lambda, \mathcal{D}$; corner).

Therefore:

$$
\begin{aligned}
& \Longrightarrow \\
& \Longrightarrow
\end{aligned}
$$

$$
\operatorname{Mas}\left(\Lambda, \mathcal{D} ; \Gamma_{2}^{\varepsilon}\right)+\mathfrak{c}+\operatorname{Mas}\left(\Lambda, \mathcal{D} ; \Gamma_{3}^{\varepsilon}\right)=0
$$

$$
\begin{array}{ll}
\Longrightarrow & \operatorname{Mas}\left(\Lambda, \mathcal{D} ; \Gamma_{3}^{\varepsilon}\right)=-\operatorname{Mas}\left(\Lambda, \mathcal{D} ; \Gamma_{2}^{\varepsilon}\right)-\mathfrak{c} \\
\Longrightarrow & n_{+}(N) \geq\left|\operatorname{Mas}\left(\Lambda, \mathcal{D} ; \Gamma_{3}^{\varepsilon}\right)\right|=|P-Q-\mathfrak{c}|
\end{array}
$$

Computing \mathfrak{c}

The contribution \mathfrak{c} is irregular, since the associated quadratic form is degenerate.

This corresponds to our 'box' being tangential to the (flat) eigenvalue curve at $\lambda=0, s=1$:

We will use a homotopy argument to compute \mathfrak{c}, which hinges on knowing the concavity of the eigenvalue curves...

Computing \mathfrak{c}

Theorem (Cox, Curran, Latushkin, Marangell)
Let $s=s(\lambda)$ be the eigenvalue curve through $(\lambda, s)=(0,1)$.
If $0 \in \operatorname{Spec}\left(L_{-}\right) \backslash \operatorname{Spec}\left(L_{+}\right)$with $L_{-} v=0$, then

$$
\operatorname{sign} \ddot{s}(0)=\operatorname{sign} \int_{0}^{\ell} \widehat{u} v d x
$$

where $-L_{+} \widehat{u}=v$. Note $\mathbf{u}=\binom{0}{v} \in \operatorname{ker}(N)$ and $\widehat{\mathbf{u}}=\binom{\widehat{u}}{0} \in \operatorname{ker}\left(N^{2}\right) \backslash \operatorname{ker}(N)$.
If $0 \in \operatorname{Spec}\left(L_{+}\right) \backslash \operatorname{Spec}\left(L_{-}\right)$with $L_{+} u=0$, then

$$
\operatorname{sign} \ddot{s}(0)=-\operatorname{sign} \int_{0}^{\ell} \widehat{v} u d x \text {, }
$$

where $L_{-} \widehat{v}=u$. Note $\mathbf{u}=\binom{u}{0} \in \operatorname{ker}(N)$ and $\widehat{\mathbf{u}}=\binom{0}{\widehat{v}} \in \operatorname{ker}\left(N^{2}\right) \backslash \operatorname{ker}(N)$.

Computing \mathfrak{c}

Homotoping the top left corner of the Maslov box:

Figure: Blow-up of the crossing at $(\lambda, s)=(0,1)$, with the (blue) eigenvalue curve, Maslov box (solid black) and homotoped path (dashed) passing through it. Images of black and dashed paths in $\mathcal{L}(4)$ on the right.

Computing \mathfrak{c}

Theorem (Cox, Curran, Latushkin, Marangell)
Let $s=s(\lambda)$ be the eigenvalue curve through $(\lambda, s)=(0,1)$.
If $0 \in \operatorname{Spec}\left(L_{-}\right) \backslash \operatorname{Spec}\left(L_{+}\right)$then

$$
\mathfrak{c}= \begin{cases}0 & \text { sign } \ddot{s}(0)>0 \\ +1 & \text { sign } \ddot{s}(0)<0 .\end{cases}
$$

If $0 \in \operatorname{Spec}\left(L_{+}\right) \backslash \operatorname{Spec}\left(L_{-}\right)$then

$$
\mathfrak{c}= \begin{cases}0 & \text { sign } \ddot{s}(0)>0 \\ -1 & \text { sign } \ddot{s}(0)<0 .\end{cases}
$$

Application: The Vakhitov-Kolokolov criterion

Nonlinear Schrödinger (NLS) equation on a compact interval,

$$
\begin{equation*}
\mathrm{i} \psi_{t}=\psi_{x x}+f\left(|\psi|^{2}\right) \psi, \quad \psi(x, t):[0, \ell] \times[0, \infty) \longrightarrow \mathbb{C} \tag{4}
\end{equation*}
$$

Linearising (4) about a standing wave solution

$$
\widehat{\psi}(x, t)=e^{i \beta t} \phi(x), \quad \phi(x) \in \mathbb{R}, \quad \beta \in \mathbb{R},
$$

using a complex perturbation

$$
\psi(x, t)=\widehat{\psi}(x, t)+\varepsilon(u(x, t)+\mathrm{i} v(x, t))
$$

leads to the linearised dynamics in u, v :

$$
\partial_{t}\binom{u}{v}=N\binom{u}{v}
$$

where

$$
N=\left(\begin{array}{cc}
0 & L_{-} \\
-L_{+} & 0
\end{array}\right), \quad\left\{\begin{array}{l}
L_{-}=\partial_{x x}+f\left(\phi^{2}\right)+\beta \\
L_{+}=\partial_{x x}+2 f^{\prime}\left(\phi^{2}\right) \phi^{2}+f\left(\phi^{2}\right)+\beta
\end{array}\right.
$$

Application: The Vakhitov-Kolokolov criterion

Known result:
NLS equation on the real line,

$$
i \psi_{t}=\psi_{x x}+f\left(|\psi|^{2}\right) \psi, \quad \psi(x, t): \mathbb{R} \times[0, \infty) \longrightarrow \mathbb{C}
$$

Standing wave:

$$
\widehat{\psi}(x, t)=e^{i \beta t} \phi(x), \quad \phi \in L^{2}(\mathbb{R} ; \mathbb{R}), \quad \beta \in \mathbb{R}
$$

Theorem (VK criterion)
If $P=1$ and $Q=0$ then:

$$
\begin{aligned}
\frac{\partial}{\partial \beta} \int_{-\infty}^{\infty} \phi^{2}(x ; \beta) d x>0 & \Longrightarrow n_{+}(N)=1 \\
& \Longrightarrow \text { standing wave } \widehat{\psi} \text { spectrally unstable } \\
\frac{\partial}{\partial \beta} \int_{-\infty}^{\infty} \phi^{2}(x ; \beta) d x<0 & \Longrightarrow \operatorname{spec}(N) \subset i \mathbb{R} \\
& \Longrightarrow \text { standing wave } \widehat{\psi} \text { spectrally stable }
\end{aligned}
$$

Application: The Vakhitov-Kolokolov criterion

Analogous result for NLS on compact interval:
Concavity of the eigenvalue curve through the top left corner provides an (in)stability criterion!

Lemma
If $P=0$ or $Q=0$ then $\operatorname{Spec}(N) \subset \mathbb{R} \cup i \mathbb{R}$ and $n_{+}(N)=|P-Q-\mathfrak{c}|$.
Theorem (Cox, Curran, Latushkin, Marangell)
For standing waves where $0 \in \operatorname{Spec}\left(L_{-}\right) \backslash \operatorname{Spec}\left(L_{+}\right)$and $P=1, Q=0$:

$$
\begin{aligned}
\left.\operatorname{sign} \ddot{s}(\lambda)\right|_{(\lambda, s)=(0,1)}>0 & \Longrightarrow n_{+}(N)=1 \\
& \Longrightarrow \widehat{\psi} \text { spectrally unstable } \\
\left.\operatorname{sign~} \ddot{s}(\lambda)\right|_{(\lambda, s)=(0,1)}<0 & \Longrightarrow n_{+}(N)=0 \Longrightarrow \operatorname{Spec}(N) \subset i \mathbb{R} \\
& \Longrightarrow \widehat{\psi} \text { spectrally stable }
\end{aligned}
$$

A similar statement holds when $0 \in \operatorname{Spec}\left(L_{+}\right) \backslash \operatorname{Spec}\left(L_{-}\right)$and $P=0, Q=1$.

The Vakhitov-Kolokolov criterion

If $P+Q=1$ then \exists exactly one conjugate point on the left side of the Maslov box (excluding $(\lambda, s)=(0,1))$. Thus,

$$
\begin{aligned}
& \left.\operatorname{sign} \ddot{s}(\lambda)\right|_{(\lambda, s)=(0,1)}>0 \Longrightarrow n_{+}(N)=1 \Longrightarrow \text { instability } \\
& \left.\operatorname{sign} \ddot{s}(\lambda)\right|_{(\lambda, s)=(0,1)}<0 \Longrightarrow n_{+}(N)=0 \Longrightarrow \text { stability }
\end{aligned}
$$

Figure: Two scenarios when $P+Q=1$. Left: $n_{+}(N)=1$. Right: $n_{+}(N)=0$.

Thank you.

