G E O M E T R Y A N D
 A S Y M P T O T I C S

by

Nalini Joshi

11 July 2012
© 2012 Nalini Joshi

Contents

Contents 1
1 Algebraic Curves 1
1.1 Motivation 1
Bibliography 7

Chapter 1

Algebraic Curves

1.1 Motivation

Given a constant parameter g_{2}, consider the ordinary differential equation (ODE)

$$
\begin{equation*}
w^{\prime \prime}=6 w^{2}-\frac{g_{2}}{2}, \tag{1.1}
\end{equation*}
$$

where w is a function of $t \in \mathbb{C}$ and primes denote derivatives with respect to t.

Multiplying Equation (1.1) by w^{\prime} and integrating once, we obtain

$$
\begin{equation*}
w^{\prime 2}=4 w^{3}-g_{2} w-g_{3} \tag{1.2}
\end{equation*}
$$

where g_{3} is another constant parameter. Integrating once more, by separation of variables, we obtain the well known solutions:

$$
\begin{equation*}
w(t)=\wp\left(t-t_{0} ; g_{2}, g_{3}\right) \tag{1.3}
\end{equation*}
$$

which are functions of two arbitrary parameters t_{0} and g_{3}.
Here, \wp is the Weierstrass elliptic function, a doubly periodic, meromorphic function of order 2 , which has a double pole at the origin. The equivalent notation $\wp(t)=\wp\left(t ; g_{2}, g_{3}\right)$ is often used for conciseness, when the dependence on g_{2} and g_{3} is assumed. Below, we use the fact that it is an even function, i.e., $\wp(-t)=\wp(t)$. (For further information, see a reference on the theory of analytic functions of one complex variable, such as Ahlfors [1].)

Equation (1.2) defines a curve

$$
\begin{equation*}
y^{2}=4 x^{3}-g_{2} x-g_{3} \tag{1.4}
\end{equation*}
$$

called an elliptic curve (or Weierstrass' cubic curve), which is parameterised by

$$
x=w(t), \quad y=w^{\prime}(t),
$$

where $w(t)$ is given by Equation (1.3).

Figure 1.1: Weierstrass cubic curve

Let the roots of the cubic on the right of (1.4) be e_{1}, e_{2}, e_{3}. If they are real, assume without loss of generality that $e_{1} \leq e_{2} \leq e_{3}$. In the real case, the graph of y as a function of x, given by (1.4) for generic values of $e_{i}, i \in\{1,2,3\}$, is shown in Figure 1.1.

But solutions of the ODE (1.1) vary as its accompanying initial data vary. Such initial data determine the values of g_{3} and t_{0}, i.e., the values of e_{1}, e_{2}, e_{3} and a starting point on the corresponding curve, such as the one in Figure 1.1. The values of g_{3} give a family of level curves of the polynomial

$$
\begin{equation*}
f(x, y)=y^{2}-4 x^{3}+g_{2} x \tag{1.5}
\end{equation*}
$$

The collection of corresponding curves, a subset of which is depicted in Figure 1.2 , is called a pencil of curves.

As g_{3} varies, two of the roots e_{1}, e_{2}, e_{3} may coincide. An example is given below.
Example 1.1.1. Take $g_{2}=2, g_{3}=-(2 / 3)^{3 / 2}$ and transform variables in Equation (1.4) to

$$
x=\frac{\xi}{\sqrt{6}}, \quad y=\left(\frac{2}{3^{3}}\right)^{1 / 4} \eta
$$

Then the curve becomes

$$
\eta^{2}=(\xi-1)^{2}(\xi+2)
$$

whose graph is depicted in Figure 1.3.

Figure 1.2: A pencil of Weierstrass cubic curves

Figure 1.3: Singular Weierstrass cubic curve

Figure 1.4: Addition on Weierstrass cubic curve

The Weierstrass elliptic function $\wp\left(t-t_{0}\right)$ parametrizes the curve (1.4) as a function of a continuous variable t. But, there is also a discrete mapping that parametrizes this curve as a function of a discrete variable n. Geometrically, this mapping is given by taking two distinct points P_{1} and P_{2} on the curve and finding a third point P_{3} also on the curve constructed as follows.

Take the straight line passing through P_{1} and P_{2}. (We assume below that the x coordinates of these points are distinct ${ }^{1}$.) As we show below, this line must intersect with the curve again. Take the resulting point of intersection and reflect this point across the x-axis to obtain P_{3}. This construction is depicted graphically in Figure 1.4.

We provide an analytic proof here that the image of this mapping can be expressed rationally in terms of the coordinates of P_{1} and P_{2}. Let $2 \omega_{1}$ and $2 \omega_{2}$ be the (smallest) periods of $\wp(t)$. (By the definition of $\wp(t), \omega_{1}$ and $i \omega_{2}$ are real.) Denote the fundamental period parallelogram with vertices at the origin, $2 \omega_{1}, 2 \omega_{2}$ and $2\left(\omega_{1}+\omega_{2}\right)$ by Π. The integer linear combinations of $2 \omega_{1}$ and $2 \omega_{2}$ generate a lattice L in the complex plane. A typical such L and Π is drawn in Figure 1.5.

Choose $t_{1}, t_{2} \in \mathbb{C}$ but not in L and assume $t_{1} \neq t_{2} \bmod L$. Let $a, b \in \mathbb{C}$

[^0]

Figure 1.5: A period lattice
such that

$$
\begin{aligned}
\wp^{\prime}\left(t_{1}\right) & =a \wp\left(t_{1}\right)+b \\
\wp^{\prime}\left(t_{2}\right) & =a \wp\left(t_{2}\right)+b
\end{aligned}
$$

That is, $y=a x+b$ is the line through $P_{i}=\left(\wp\left(t_{i}\right), \wp^{\prime}\left(t_{i}\right)\right), i=1,2$.
For any elliptic function $F(t)$ with period lattice L and a fundamental period parallelogram Π, we have

$$
\frac{1}{2 \pi i} \oint_{\Pi} t \frac{F^{\prime}(t)}{F(t)} d t=\sum_{i}\left(z_{i}-p_{i}\right)=0
$$

by Cauchy's residue theorem, where z_{i} and p_{i} are respectively zeroes and poles of F in Π. We take

$$
F(t)=\wp^{\prime}(t)-a \wp(t)-b
$$

which is an elliptic function of order 3, with a triple pole at the origin. So if t_{1}, t_{2} are zeroes of $F(t)$, then (because the pole is located at the origin), a third zero must exist at $t_{3}=-\left(t_{1}+t_{2}\right)$ modulo L. So we have

$$
\wp^{\prime}\left(t_{3}\right)=a \wp\left(t_{3}\right)+b \text {. }
$$

Note that this shows that the straight line $y=a x+b$ must intersect the Weierstrass cubic curve (1.2) a third time.

At such an intersection between the curve given by (1.2) and the straight line $y=a x+b$, we also have

$$
\begin{equation*}
4 x^{3}-g_{2} x-g_{3}-(a x+b)^{2}=0 \tag{1.6}
\end{equation*}
$$

which has three roots given by $\wp\left(t_{1}\right), \wp\left(t_{2}\right), \wp\left(t_{3}\right)$. So we get

$$
\begin{equation*}
4\left(x-\wp\left(t_{1}\right)\right)\left(x-\wp\left(t_{2}\right)\right)\left(x-\wp\left(t_{3}\right)\right)=0 \tag{1.7}
\end{equation*}
$$

Comparing the coefficient of x^{2} between Equations (1.6-1.7), we get

$$
\begin{equation*}
\wp\left(t_{1}\right)+\wp\left(t_{2}\right)+\wp\left(t_{3}\right)=\frac{a^{2}}{4} \tag{1.8}
\end{equation*}
$$

But also, because a is the slope of the line through the two points $P_{i}=$ $\left(\wp\left(t_{1}\right), \wp^{\prime}\left(t_{i}\right)\right), i=1,2$, we have

$$
\begin{equation*}
a=\frac{\wp^{\prime}\left(t_{1}\right)-\wp^{\prime}\left(t_{2}\right)}{\wp\left(t_{1}\right)-\wp\left(t_{2}\right)} . \tag{1.9}
\end{equation*}
$$

Moreover, $\wp\left(t_{3}\right)=\wp\left(-\left(t_{1}+t_{2}\right)\right)=\wp\left(t_{1}+t_{2}\right)$ by the evenness of $\wp(t)$ and $b=\wp^{\prime}\left(t_{1}\right)-a \wp\left(t_{1}\right)$. We find therefore from Equation (1.8) that

$$
\begin{equation*}
\wp\left(t_{1}+t_{2}\right)=-\wp\left(t_{1}\right)-\wp\left(t_{2}\right)+\frac{1}{4}\left(\frac{\wp^{\prime}\left(t_{1}\right)-\wp^{\prime}\left(t_{2}\right)}{\wp\left(t_{1}\right)-\wp\left(t_{2}\right)}\right)^{2} . \tag{1.10}
\end{equation*}
$$

and

$$
\begin{align*}
-\wp^{\prime}\left(t_{1}+t_{2}\right) & =a \wp\left(t_{1}+t_{2}\right)+\wp^{\prime}\left(t_{1}\right)-a \wp\left(t_{1}\right) \\
& =\wp^{\prime}\left(t_{1}\right)+\frac{\wp^{\prime}\left(t_{1}\right)-\wp^{\prime}\left(t_{2}\right)}{\wp\left(t_{1}\right)-\wp\left(t_{2}\right)}\left(\wp\left(t_{1}+t_{2}\right)-\wp\left(t_{1}\right)\right) \tag{1.11}
\end{align*}
$$

If we write $\bar{y}=\wp^{\prime}\left(t_{1}+t_{2}\right)$, $y=\wp^{\prime}\left(t_{1}\right)$, $y_{0}=\wp^{\prime}\left(t_{2}\right), \bar{x}=\wp\left(t_{1}+t_{2}\right), x=\wp\left(t_{1}\right)$, $x_{0}=\wp\left(t_{2}\right)$, then these equations become

$$
\left\{\begin{align*}
\bar{x} & =\frac{1}{4}\left(\frac{y-y_{0}}{x-x_{0}}\right)^{2}-x-x_{0} \tag{1.12}\\
\bar{y} & =-y-\left(\frac{y-y_{0}}{x-x_{0}}\right)(\bar{x}-x)
\end{align*}\right.
$$

which provides a discrete mapping on the Weierstrass cubic curve.

Bibliography

[1] Lars V. Ahlfors, Complex analysis. An introduction to the theory of analytic functions of one complex variable, 3rd edition, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978.

[^0]: ${ }^{1} P_{3}$ can also be constructed when P_{1} and P_{2} have the same x-coordinate. But, in this case, the line containing these points is vertical and P_{3} will lie at infinity.

