GEOMETRY AND ASYMPTOTICS

by

Nalini Joshi

11 July 2012 ©2012 Nalini Joshi

Contents

Contents	1
1 Algebraic Curves 1.1 Motivation	1 1
Bibliography	7

Chapter 1

Algebraic Curves

1.1 Motivation

Given a constant parameter g_2 , consider the ordinary differential equation (ODE)

$$w'' = 6 w^2 - \frac{g_2}{2}, \tag{1.1}$$

where w is a function of $t \in \mathbb{C}$ and primes denote derivatives with respect to t.

Multiplying Equation (1.1) by w' and integrating once, we obtain

$$w^{\prime 2} = 4 \, w^3 - g_2 \, w - g_3 \tag{1.2}$$

where g_3 is another constant parameter. Integrating once more, by separation of variables, we obtain the well known solutions:

$$w(t) = \wp(t - t_0; g_2, g_3) \tag{1.3}$$

which are functions of two arbitrary parameters t_0 and g_3 .

Here, \wp is the Weierstrass elliptic function, a doubly periodic, meromorphic function of order 2, which has a double pole at the origin. The equivalent notation $\wp(t) = \wp(t; g_2, g_3)$ is often used for conciseness, when the dependence on g_2 and g_3 is assumed. Below, we use the fact that it is an even function, i.e., $\wp(-t) = \wp(t)$. (For further information, see a reference on the theory of analytic functions of one complex variable, such as Ahlfors [1].)

Equation (1.2) defines a curve

$$y^2 = 4x^3 - g_2x - g_3 \tag{1.4}$$

called an elliptic curve (or Weierstrass' cubic curve), which is parameterised by

$$x = w(t), \quad y = w'(t),$$

where w(t) is given by Equation (1.3).

Figure 1.1: Weierstrass cubic curve

Let the roots of the cubic on the right of (1.4) be e_1, e_2, e_3 . If they are real, assume without loss of generality that $e_1 \leq e_2 \leq e_3$. In the real case, the graph of y as a function of x, given by (1.4) for generic values of $e_i, i \in \{1, 2, 3\}$, is shown in Figure 1.1.

But solutions of the ODE (1.1) vary as its accompanying initial data vary. Such initial data determine the values of g_3 and t_0 , i.e., the values of e_1 , e_2 , e_3 and a starting point on the corresponding curve, such as the one in Figure 1.1. The values of g_3 give a family of level curves of the polynomial

$$f(x,y) = y^2 - 4x^3 + g_2x \tag{1.5}$$

The collection of corresponding curves, a subset of which is depicted in Figure 1.2, is called a *pencil* of curves.

As g_3 varies, two of the roots e_1 , e_2 , e_3 may coincide. An example is given below.

Example 1.1.1. Take $g_2 = 2$, $g_3 = -(2/3)^{3/2}$ and transform variables in Equation (1.4) to

$$x = \frac{\xi}{\sqrt{6}}, \quad y = \left(\frac{2}{3^3}\right)^{1/4} \eta$$

Then the curve becomes

$$\eta^2 = (\xi - 1)^2 \, (\xi + 2)$$

whose graph is depicted in Figure 1.3.

Figure 1.2: A pencil of Weierstrass cubic curves

Figure 1.3: Singular Weierstrass cubic curve

Figure 1.4: Addition on Weierstrass cubic curve

The Weierstrass elliptic function $\wp(t-t_0)$ parametrizes the curve (1.4) as a function of a continuous variable t. But, there is also a discrete mapping that parametrizes this curve as a function of a discrete variable n. Geometrically, this mapping is given by taking two distinct points P_1 and P_2 on the curve and finding a third point P_3 also on the curve constructed as follows.

Take the straight line passing through P_1 and P_2 . (We assume below that the x coordinates of these points are distinct¹.) As we show below, this line must intersect with the curve again. Take the resulting point of intersection and reflect this point across the x-axis to obtain P_3 . This construction is depicted graphically in Figure 1.4.

We provide an analytic proof here that the image of this mapping can be expressed rationally in terms of the coordinates of P_1 and P_2 . Let $2\omega_1$ and $2\omega_2$ be the (smallest) periods of $\wp(t)$. (By the definition of $\wp(t)$, ω_1 and $i\omega_2$ are real.) Denote the fundamental period parallelogram with vertices at the origin, $2\omega_1$, $2\omega_2$ and $2(\omega_1 + \omega_2)$ by Π . The integer linear combinations of $2\omega_1$ and $2\omega_2$ generate a lattice L in the complex plane. A typical such L and Π is drawn in Figure 1.5.

Choose $t_1, t_2 \in \mathbb{C}$ but not in L and assume $t_1 \neq t_2 \mod L$. Let $a, b \in \mathbb{C}$

 $^{{}^{1}}P_{3}$ can also be constructed when P_{1} and P_{2} have the same *x*-coordinate. But, in this case, the line containing these points is vertical and P_{3} will lie at infinity.

Figure 1.5: A period lattice

such that

$$\wp'(t_1) = a \wp(t_1) + b$$

$$\wp'(t_2) = a \wp(t_2) + b$$

That is, y = ax + b is the line through $P_i = (\wp(t_i), \wp'(t_i)), i = 1, 2.$

For any elliptic function F(t) with period lattice L and a fundamental period parallelogram Π , we have

$$\frac{1}{2\pi i} \oint_{\Pi} t \frac{F'(t)}{F(t)} dt = \sum_{i} (z_i - p_i) = 0$$

by Cauchy's residue theorem, where z_i and p_i are respectively zeroes and poles of F in Π . We take

$$F(t) = \wp'(t) - a\,\wp(t) - b$$

which is an elliptic function of order 3, with a triple pole at the origin. So if t_1 , t_2 are zeroes of F(t), then (because the pole is located at the origin), a third zero must exist at $t_3 = -(t_1 + t_2) \mod L$. So we have

$$\wp'(t_3) = a\,\wp(t_3) + b.$$

Note that this shows that the straight line y = ax + b must intersect the Weierstrass cubic curve (1.2) a third time.

At such an intersection between the curve given by (1.2) and the straight line y = ax + b, we also have

$$4x^3 - g_2x - g_3 - (ax+b)^2 = 0 (1.6)$$

Chapter 1. Algebraic Curves

which has three roots given by $\wp(t_1)$, $\wp(t_2)$, $\wp(t_3)$. So we get

$$4 (x - \wp(t_1)) (x - \wp(t_2)) (x - \wp(t_3)) = 0.$$
 (1.7)

Comparing the coefficient of x^2 between Equations (1.6-1.7), we get

$$\wp(t_1) + \wp(t_2) + \wp(t_3) = \frac{a^2}{4} \tag{1.8}$$

But also, because a is the slope of the line through the two points $P_i = (\wp(t_1), \wp'(t_i)), i = 1, 2$, we have

$$a = \frac{\wp'(t_1) - \wp'(t_2)}{\wp(t_1) - \wp(t_2)}.$$
(1.9)

Moreover, $\wp(t_3) = \wp(-(t_1 + t_2)) = \wp(t_1 + t_2)$ by the evenness of $\wp(t)$ and $b = \wp'(t_1) - a \wp(t_1)$. We find therefore from Equation (1.8) that

$$\wp(t_1 + t_2) = -\wp(t_1) - \wp(t_2) + \frac{1}{4} \left(\frac{\wp'(t_1) - \wp'(t_2)}{\wp(t_1) - \wp(t_2)}\right)^2.$$
(1.10)

and

$$-\wp'(t_1 + t_2) = a \wp(t_1 + t_2) + \wp'(t_1) - a \wp(t_1)$$

= $\wp'(t_1) + \frac{\wp'(t_1) - \wp'(t_2)}{\wp(t_1) - \wp(t_2)} (\wp(t_1 + t_2) - \wp(t_1))$ (1.11)

If we write $\overline{y} = \wp'(t_1 + t_2)$, $y = \wp'(t_1)$, $y_0 = \wp'(t_2)$, $\overline{x} = \wp(t_1 + t_2)$, $x = \wp(t_1)$, $x_0 = \wp(t_2)$, then these equations become

$$\begin{cases} \overline{x} = \frac{1}{4} \left(\frac{y - y_0}{x - x_0} \right)^2 - x - x_0 \\ \overline{y} = -y - \left(\frac{y - y_0}{x - x_0} \right) (\overline{x} - x) \end{cases}$$
(1.12)

which provides a discrete mapping on the Weierstrass cubic curve.

Bibliography

 Lars V. Ahlfors, Complex analysis. An introduction to the theory of analytic functions of one complex variable, 3rd edition, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978.