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Abstract

In 1993, Birman conjectured that the desingularization map from the singular braid
monoid to the integral group ring of the braid group determined by σ±1

i
7→ σ±1

i
and

τi 7→ σi − σ−1

i
is injective. The conjecture, which has recently been proven true by Paris

(2003), may be generalised to all Artin groups. In this article we prove that the conjecture
holds for one of the infinite families of Artin groups of spherical type, namely I2(p).

1 Introduction

A Coxeter graph Γ is a complete graph on a finite vertex set S, whose edges are labelled
from the set {2, 3, . . . ,∞}. For s, t ∈ S, let mst denote the label on the edge {s, t}, and for
convenience let mss = ∞ for all s ∈ S. The Coxeter group of type Γ is

WΓ =
〈

S
∣

∣ s2 = 1 (∀s ∈ S) , 〈st〉mst = 〈ts〉mst if mst 6= ∞ (∀s, t ∈ S)
〉

.

Here 〈gh〉m denotes the alternating product ghg · · · with m terms if m ∈ N, or
(

〈gh〉−m
)−1

if −m ∈ N. Let Σ = {σs | s ∈ S} be a set in one-one correspondence with S. The Artin group
of type Γ is

BΓ =
〈

Σ
∣

∣ 〈σsσt〉
mst = 〈σtσs〉

mst if mst 6= ∞ (∀s, t ∈ S)
〉

.

There is a natural surjective homomorphism π : BΓ → WΓ : σs 7→ s, the kernel of which, PΓ,
is known as the pure Artin group of type Γ. Put Σ−1 = {σ−1

s | s ∈ S} and T = {τs | s ∈ S}.
The singular Artin monoid of type Γ is the monoid SBΓ generated by Σ∪Σ−1 ∪T subject to
defining relations, for all s, t ∈ S,

σ±1
s σ∓1

s = 1

σsτs = τsσs

τsτt = τtτs if mst = 2

〈σsσt〉
mst = 〈σtσs〉

mst if mst 6= ∞

τs〈σtσs〉
mst−1 = 〈σtσs〉

mst−1τu if mst 6= ∞,

where u = s if mst is even, or u = t if mst is odd. The τs are known as the singular generators.
See [5] for more details. The map π extends to a monoid homomorphism π : SBΓ → WΓ

by further defining π(τs) = s. Analogously, the pure singular Artin monoid of type Γ is
SPΓ = π−1(1) =

{

β ∈ SBΓ

∣

∣π(β) = 1
}

.
An important class of Artin groups are those of spherical type (ie. the associated Coxeter

group is finite). For a classification of finite Coxeter groups see for example [9].
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When Γ = An−1, WΓ = Sn is the symmetric group on n letters [11], BΓ = Bn is the
n-string braid group [2], and SBΓ = SBn is the n-string singular braid monoid [3, 4].

Denote by ZBΓ the integral group ring of the Artin group BΓ. For s ∈ S, define η(σ±1
s ) =

σ±1
s and η(τs) = σs − σ−1

s . Then η extends to a well defined homomorphism η : SBΓ → ZBΓ.
Birman [4] conjectured that η is injective for Γ = An. This is simple when n = 1. Járai [10]
demonstrated that the conjecture holds when n = 2. Recently, Paris [12] proved the conjecture
for all n, and Godelle and Paris [8] have proved the conjecture in the case that Γ is right angled
(ie. mst ∈ {2,∞} for all s, t). With this in mind, it is natural to ask for which other types the
conjecture holds. The purpose of this article is to show how to extend the methods of Járai,
and demonstrate the injectivity of η when Γ = I2(p) for any 3 ≤ p ∈ N. Along the way we
prove some structural results about SBΓ for arbitrary Γ.

s1 s2

p
I2(p) =

2 Preliminary Results

We begin by defining a number of natural homomorphisms which will be used throughout.
Define

N : SBΓ → (N,+) : σ±1
s 7→ 0 , τs 7→ 1.

So if β ∈ SBΓ, then N(β) is the number of τ ’s in (any word representing) β. Define

φ : SBΓ → BΓ : σ±1
s 7→ σ±1

s , τs 7→ σs.

We now introduce some notation, and recall some well known properties of Coxeter groups
which may be found in any standard text (eg. [9]). Let S∗ denote the set of all words over
S. If w,w′ ∈ S∗, we write w ≡ w′ if w and w′ are identical words, and w = w′ if w and w′

represent the same element of WΓ. For w ≡ s1 · · · sk ∈ S∗, we define `(w) = k, and define

`W (w) = min
{

`(w′)
∣

∣w′ ∈ S∗ and w = w′
}

.

So for example, if s ∈ S, then `(ss) = 2 while `W (ss) = 0. If w ∈ S∗ and `(w) = `W (w),
we say that w is reduced. If w ∈ S∗ is reduced and s ∈ S, then either ws (resp. sw) is
reduced, or w = w′s (resp. w = sw′) for some reduced w′ ∈ S∗ with `(w′) = `(w) − 1. If
w ≡ s1 · · · sk ∈ S∗ is reduced, we define w = σs1 · · · σsk

∈ BΓ. If w,w′ ∈ S∗ are reduced and
w = w′, then w = w′.

For w ∈ S∗, s ∈ S with ws reduced, define

aw,s = wσ2
sw

−1 ∈ PΓ

yw,s = wσsτsw
−1 ∈ SPΓ,

and put

A = {aw,s |w ∈ S∗ , s ∈ S , ws is reduced}

Y = {yw,s |w ∈ S∗ , s ∈ S , ws is reduced}.
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Proposition 1 ([6], Corollary 6) The pure Artin monoid PΓ is generated by A. 2

The aw,s are calculated explicitly in [6] for some types Γ.

Lemma 2 Let t ∈ S and y ∈ Y . Then there exists y ′ ∈ Y and p ∈ PΓ such that

σtyσ
−1
t = py′p−1.

Proof Suppose y = yw,s where w ∈ S∗, s ∈ S, and ws is reduced. If tws is reduced, then

σtyσ
−1
t = (σtw)σsτs(σtw)−1 = ytw,s ∈ Y

and we are done. So suppose tws is not reduced. Then ws = tw ′ for some w′ ∈ S∗ with
`(w′) = `(ws) − 1. Since both ws and tw′ are reduced, we conclude that wσs = σtw

′, and so
w = σtw

′σ−1
s . Now

σtyσ
−1
t = σtwσsτsw

−1σ−1
t

= σt(σtw
′σ−1

s )σsτs(σtw
′σ−1

s )−1σ−1
t

= σ2
t w

′σsτs(w
′)−1σ−2

t .

If w′s is reduced, then we are done with y′ = yw′,s ∈ Y and p = σ2
t ∈ PΓ. So suppose w′s is

not reduced. Then w′ = w′′s for some w′′ ∈ S∗ with `(w′′) = `(w′) − 1. Since both w′ and
w′′s are reduced, we conclude that w′ = w′′σs. Thus

σtyσ
−1
t = σ2

t w
′σsτs(w

′)−1σ−2
t from above

= σ2
t (w

′′σs)σsτs(w
′′σs)

−1σ−2
t

= σ2
t w

′′σsτs(w
′′)−1σ−2

t ,

and we are done with y′ = yw′′,s ∈ Y and p = σ2
t ∈ PΓ. 2

Corollary 3 Let β ∈ BΓ and y ∈ Y . Then there exists y′ ∈ Y and p ∈ PΓ such that

βyβ−1 = py′p−1.

Proof Suppose y ∈ Y and β = σε1
s1
· · · σεk

sk
where s1, . . . , sk ∈ S and ε1, . . . , εk ∈ {±1}. We

prove the result by induction on k. If k = 0 then the result is trivial. The case k = 1 and
ε1 = 1 is covered by Lemma 2. If k = 1 and ε1 = −1, then by the same lemma we have

σ−1
s1
yσs1 = σ−2

s1
σs1yσ

−1
s1
σ2

s1
= σ−2

s1
py′p−1σ2

s1
= (σ−2

s1
p)y′(σ−2

s1
p)−1

for some y′ ∈ Y and p ∈ PΓ, and we are done since σ−2
s1
p ∈ PΓ. Suppose now that k ≥ 2, and

put β′ = σε1
s1
· · · σ

εk−1
sk−1 . Then by induction we have

βyβ−1 = β′σεk

sk
yσ−εk

sk
(β′)−1

= β′py′p−1(β′)−1 for some y′ ∈ Y , p ∈ PΓ

=
(

β′p(β′)−1
)

β′y′(β′)−1
(

β′p−1(β′)−1
)

=
(

β′p(β′)−1
)

p′y′′(p′)−1
(

β′p−1(β′)−1
)

for some y′′ ∈ Y , p′ ∈ PΓ

=
[(

β′p(β′)−1
)

p′
]

y′′
[(

β′p(β′)−1
)

p′
]−1

and we are done since
(

β′p(β′)−1
)

p′ ∈ PΓ. 2

The following was mentioned in [10] for type An. Here we give a proof for arbitrary type Γ.
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Proposition 4 The pure singular Artin monoid SPΓ is generated by A ∪A−1 ∪ Y .

Proof Let Z = A ∪ A−1 ∪ Y . It is clear that Z ⊆ SPΓ. Now let β ∈ SPΓ. To prove
the proposition it suffices to prove by induction on N(β) that β ∈ 〈Z〉. If N(β) = 0 then
the result is true by Proposition 1. Otherwise, write β = β1τsβ2 where N(β1) = 0. By
inserting σ−1

s σs after β1 (if necessary), we may in fact assume that β = β1σsτsβ2. Notice that
π(β1β2) = π(β) = 1 and that N(β1β2) < N(β) so β1β2 ∈ 〈Z〉 by an inductive hypothesis.
Now

β = β1σsτsβ
−1
1 β1β2 = (β1y1,sβ

−1
1 )(β1β2).

By Corollary 3, β1y1,sβ
−1
1 = py′p−1 for some y′ ∈ Y , p ∈ PΓ = 〈A〉. Thus β ∈ 〈Z〉, completing

the proof. 2

A Coxeter graph Γ is said to have the FRZ property if for all β ∈ SBΓ and s, t ∈ S, the
following conditions are equivalent.

βσs = σtβ (FRZ1)

βσm
s = σm

t β for some 0 6= m ∈ Z (FRZ2)

βτs = τtβ (FRZ3)

βτm
s = τm

t β for some 0 6= m ∈ N. (FRZ4)

The property is named after Fenn, Rolfsen, and Zhu, who proved in [7] that the property
holds in SBn. It is now known to be true when WΓ is of FC type [8]. A Coxeter group is
of FC type if every subset X ⊆ S which satisfies mst 6= ∞ for all s, t ∈ X generates a finite
subgroup of WΓ. See also [1].

Proposition 5 Suppose Γ is a Coxeter graph which has the FRZ property. Let β1, β2 ∈ BΓ,
s, t ∈ S, and ws, wt ∈ WΓ such that wss and wtt are reduced. Then the following statements
are equivalent:

β1aws,sβ
−1
1 = β2awt,tβ

−1
2 (a)

β1yws,sβ
−1
1 = β2ywt,tβ

−1
2 . (b)

Proof If (a) holds then we have β1wsσ
2
sw

−1
s β−1

1 = β2wtσ
2
t w

−1
t β−1

2 . Rearranging gives

(w−1
t β−1

2 β1ws)σ
2
s = σ2

t (w
−1
t β−1

2 β1ws).

By the FRZ property, we have

(w−1
t β−1

2 β1ws)σs = σt(w
−1
t β−1

2 β1ws)

(w−1
t β−1

2 β1ws)τs = τt(w
−1
t β−1

2 β1ws),

and so
(w−1

t β−1
2 β1ws)σsτs = σtτt(w

−1
t β−1

2 β1ws).

Rearranging gives (b). The other implication is immediate from the φ map. 2
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From now on we will concentrate on the case Γ = I2(p). For simplicity we will write σi for
σsi

and τi for τsi
(i = 1, 2). We will also denote BI2(p) by BI , and similarly for PI , SPI , etc.

So SBI has a presentation with generators σ±1
i , τi (i = 1, 2), and defining relations

σ±1
i σ∓1

i = 1 for i = 1, 2

σiτi = τiσi for i = 1, 2

〈σ1σ2〉
p = 〈σ2σ1〉

p

τ1〈σ2σ1〉
p−1 = 〈σ2σ1〉

p−1τ1∧2

τ2〈σ1σ2〉
p−1 = 〈σ1σ2〉

p−1τ2∧1,

where i ∧ j = i if p is even or i ∧ j = j if p is odd.
For i ∈ {1, . . . , p− 1} let

ai = 〈σ1σ2〉
i−1σ2

d〈σ1σ2〉
−(i−1)

yi = 〈σ1σ2〉
i−1σdτd〈σ1σ2〉

−(i−1)

where d = 1 if i is odd or d = 2 if i is even. Also let

b = σ2
2

z = σ2τ2.

It is shown in [6] that A = {a1, . . . , ap−1, b} and so Y = {y1, . . . , yp−1, z}, and SPI is generated
by A ∪ A−1 ∪ Y by Proposition 4. Let UI be the subgroup of PI generated by a1, . . . , ap−1,
and let P2 be the (infinite cyclic) subgroup generated by b. The following is from [6] where
similar results are proved for other types.

Proposition 6 UI is freely generated by a1, . . . , ap−1. Further, PI = UI oP2. The action of
b on the ai is given by

baib
−1 = (ap−1 · · · a1)

−1ai(ap−1 · · · a1) for i = 1, . . . , p− 1,

and these are defining relations for PI . 2

For example, when p = 3, the classical three-string pure braid group P3 = PI2(3) has a
presentation

P3 = 〈a1, a2, b | ba1b
−1 = (a2a1)

−1a1(a2a1) , ba2b
−1 = a−1

1 a2a1〉

in terms of generators a1 = σ2
1 , a2 = σ1σ

2
2σ

−1
1 , and b = σ2

2 .
Let VI be the submonoid of SP I generated by a±1

i , yi (i = 1, . . . , p−1). By Propositions 5
and 6, we have

byib
−1 = (ap−1 · · · a1)

−1yi(ap−1 · · · a1) for i = 1, . . . , p− 1.

Thus, if w is a word in the generators of SP I with no occurrence of the letter z, then we may
write w = vp where v ∈ VI and p ∈ P2. To see that this expression is unique (up to equivalence
of words), suppose that w = v′p′ is also such an expression. Then φ(v)p = φ(w) = φ(v ′)p′.
Since φ(v), φ(v′) ∈ UI and p, p′ ∈ P2, we see that p = p′, and consequently v = v′.

Let β ∈ VI . Since ai and yi commute for each i, we may assume that in β, no a±1
i

immediately precedes a yi. Thus β may be written as a product of words of the form a`
i (with

0 6= ` ∈ Z), and ym
i a

n
i (with 1 ≤ m ∈ Z and n ∈ Z). We call these words simple words. We

may also assume that the subscripts appearing in adjacent simple words are different. As
in [10], we call this a freely reduced form of β, which we will shortly see is unique.
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3 The Proof of the Conjecture for Type I2(p)

We begin this section by stating some results which are proved in [10]. There they are proved
for type An, but the proofs work unmodified for any Γ.

Define a homomorphism ψ : SBΓ → ZBΓ by ψ(σ±1
i ) = σ±1

i and ψ(τi) = σi + σ−1
i .

Lemma 7 (i) If β, γ ∈ SBΓ, then η(β) = η(γ) ⇐⇒ ψ(β) = ψ(γ). Thus η is injective if
and only if ψ is injective.

(ii) The image of SBΓ under ψ contains no zero divisors. Thus, if β, γ, δ ∈ SBΓ, then
ψ(βδ) = ψ(γδ) ⇐⇒ ψ(β) = ψ(γ) ⇐⇒ ψ(δβ) = ψ(δγ). 2

Lemma 8 The map ψ is injective if and only if the restriction of ψ to SPΓ is injective.

Proof Suppose ψ|SPΓ
is injective, and take β, γ ∈ SBΓ with ψ(β) = ψ(γ). By looking at the

nonzero terms in ψ(β) =
∑

x∈BΓ
cxx = ψ(γ), we see that π(β) = π(γ). Choose δ ∈ BΓ such

that π(δ) = π(β). Then ψ(βδ−1) = ψ(γδ−1). But βδ−1, γδ−1 ∈ SPΓ, so that βδ−1 = γδ−1

and β = γ. 2

The following was proved as part of Theorem 3 in [10].

Theorem 9 Let C = {c1, . . . , cn} and D = {d1, . . . , dn}. Denote by F (C) the free group
(freely) generated by C. Suppose that M is a monoid generated by C ∪ C−1 ∪ D and that
cidi = dici in M for all i. Suppose also that there is a well defined monoid homomorphism
ξ : M → ZF (C) such that ξ(c±1

i ) = c±1
i and ξ(di) = ci + 1. Then ξ is injective. 2

We again restrict our attention to Γ = I2(p). Notice that ψ(a±1
i ) = a±1

i and that ψ(yi) =
ai +1. So VI is an example of a monoid satisfying the assumptions of the theorem. The proof
of Theorem 9 given in [10] makes use of a freely reduced form for elements of M which is
defined analogously to that defined above for VI . There it is shown that the freely reduced
form of m ∈M may be constructed simply by knowing ξ(m) =

∑

x∈F (C) cxx.

Corollary 10 The restriction of ψ to VI is injective. Further, the freely reduced form of an
element of VI is unique. 2

So far we know that if ψ(β) = ψ(γ) where β, γ ∈ SP I do not involve b or z, then β = γ.
We now allow b to appear, but not z.

Corollary 11 If ψ(β) = ψ(γ) where β, γ ∈ SP I have no appearances of z, then β = γ.

Proof Suppose ψ(β) = ψ(γ) where β = v1p1 and γ = v2p2 with v1, v2 ∈ VI and p1, p2 ∈ P2.
Since φ(β) and φ(γ) are the unique monomials of maximal exponent sum in ψ(β) and ψ(γ)
respectively, we see that φ(β) = φ(γ). That is, φ(v1)p1 = φ(v2)p2. As before, we conclude
that p1 = p2. But then ψ(v1) = ψ(βp−1

1 ) = ψ(γp−1
1 ) = ψ(v2). By Corollary 10, v1 = v2 and

so β = γ. 2

We now proceed to words which may involve z, but not as their first singular generators.
Define ε(b) = 1 and ε(ai) = 0 for i = 1, . . . , p− 1. As a consequence of the defining relations
in Proposition 6, ε extends to a well defined homomorphism.
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Lemma 12 Suppose that β, γ ∈ SP I with ψ(β) = ψ(γ). Suppose also that N(β) = N(γ) ≥ 1
and that the first singular generator in a word over A ∪A−1 ∪ Y representing β (resp. γ) is
yi (resp. yj).Then i = j and there exists α ∈ SP I with N(α) = 1, and β ′, γ′ ∈ SPI such that
β = αβ′ and γ = αγ′.

Proof Write

β = β0yiβ
′, (1)

γ = γ0yjγ
′, (2)

where β0, γ0 ∈ PI and β′, γ′ ∈ SPI . By Proposition 6 and the comments following it, we may
assume that β0, γ0 ∈ UI . We may also assume that any power of ai (resp. aj) at the end of β0

(resp. γ0) has been absorbed by β ′ (resp. γ′). Replace all generators z appearing in β ′ and γ′

by b, and denote the resulting words by β ′
+ and γ′+. Also, let β+ = β0yiβ

′
+ and γ+ = γ0yjγ

′
+.

Write ψ(β) =
∑

x∈PI
cxx. We group terms according to their image under ε to obtain

ψ(β) =
∑

r∈Z

(

∑

x∈PI

ε(x)=r

cxx
)

.

The inner sum corresponding to the maximal value of r is precisely ψ(β+). Since ψ(β) = ψ(γ),
we see that this sum is also ψ(γ+) so that ψ(β+) = ψ(γ+). This implies that β+ = γ+ by
Corollary 11. Now

β0yiβ
′
+ = β+ = γ+ = γ0yjγ

′
+.

Since both sides do not contain any generator z, we may write

β′+ = β′′+p1

γ′+ = γ′′+p2,

where β′′
+, γ

′′
+ ∈ VI are in freely reduced form, and p1, p2 ∈ P2. So

β0yiβ
′′
+p1 = γ0yjγ

′′
+p2.

As before, p1 = p2 and β0yiβ
′′
+ = γ0yjγ

′′
+. By the uniqueness of the freely reduced form, i = j

and β0 = γ0 since yi and yj are the first singular generators appearing on both sides. Now
put α = β0yi. Then equations (1) and (2) give the statement in the lemma. 2

Lemma 13 If j ∈ {1, . . . , p− 1}, then σ2yjσ
−1
2 = (ap−j−1 · · · a1)

−1yp−j(ap−j−1 · · · a1).

Proof To see this it is most convenient to consider separate cases depending on the parity of
p and j. Here we treat the case when p and j are both even, the others being similar. Now

σ2yjσ
−1
2 = σ2〈σ1σ2〉

j−1σ2τ2〈σ1σ2〉
−(j−1)σ−1

2

= 〈σ2σ1〉
jσ2τ2〈σ2σ1〉

−j

= 〈σ1σ2〉
−(p−j−1)〈σ1σ2〉

p−j−1〈σ2σ1〉
jσ2τ2〈σ2σ1〉

−j〈σ1σ2〉
−(p−j−1)〈σ1σ2〉

p−j−1

= 〈σ1σ2〉
−(p−j−1)〈σ1σ2〉

pτ2〈σ1σ2〉
−(p−1)〈σ1σ2〉

p−j−1

= 〈σ1σ2〉
−(p−j−1)〈σ2σ1〉

p〈σ1σ2〉
−(p−1)τ2〈σ1σ2〉

p−j−1

= 〈σ1σ2〉
−(p−j−1)σ2τ2〈σ1σ2〉

p−j−1

= 〈σ1σ2〉
−(p−j−1)〈σ1σ2〉

−(p−j−1)〈σ1σ2〉
p−j−1σ2τ2〈σ1σ2〉

−(p−j−1)〈σ1σ2〉
p−j−1〈σ1σ2〉

p−j−1

=
(

〈σ1σ2〉
p−j−1

)−2
yp−j

(

〈σ1σ2〉
p−j−1

)2
.
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We now prove by induction that
(

〈σ1σ2〉
k
)2

= ak · · · a1 (∗)

for any odd integer 1 ≤ k ≤ p− 1. This is clear when k = 1. Suppose (∗) holds for some odd
integer 1 ≤ k ≤ p− 3. Then

ak+2ak+1ak · · · a1 = 〈σ1σ2〉
k+1σ2

1〈σ1σ2〉
−(k+1)〈σ1σ2〉

kσ2
2〈σ1σ2〉

−k
(

〈σ1σ2〉
k
)2

= 〈σ1σ2〉
k+1σ2

1σ2〈σ1σ2〉
k

=
(

〈σ1σ2〉
k+2

)2
.

The reader is invited to consider the three other cases. 2

We are now ready to prove our main result.

Theorem 14 The map ψ : SBI → ZBI is injective.

Proof Suppose that β, γ ∈ SP I with ψ(β) = ψ(γ) but β 6= γ. Suppose also that the number
N = N(β) is minimal among all such counterexamples. In particular we must have N ≥ 1.
Write

β = β1xβ2

γ = γ1x
′γ2

where β1, γ1 ∈ PI , β2, γ2 ∈ SPI , and x and x′ are the first singular generators appearing in
β and γ respectively. We break the proof up into a number of cases.

Case 1 Suppose x = yi and x′ = yj for some i, j. We apply Lemma 12. Write β = αβ ′

and γ = αγ′ in the notation of the lemma. Then by Lemma 7 Part (ii), ψ(β ′) = ψ(γ′). But
β′ 6= γ′, contradicting the minimality of N .

Case 2 Suppose x = x′ = z. Note that σ1zσ
−1
1 = y2. Now ψ(σ1βσ

−1
1 ) = ψ(σ1γσ

−1
1 ), and

σ1βσ
−1
1 = (σ1β1σ

−1
1 )(σ1zσ

−1
1 )(σ1β2σ

−1
1 ) = β′1y2β

′
2,

where β′
1 = σ1β1σ

−1
1 ∈ PI and β′

2 = σ1β2σ
−1
1 ∈ SPI . Similarly, σ1γσ

−1
1 = γ′1y2γ

′
2 with

γ′1 ∈ PI and γ′2 ∈ SPI . By Case 1 we have σ1βσ
−1
1 = σ1γσ

−1
1 and so β = γ, a contradiction.

Case 3 We now consider the case in which x = z and x′ = yi for some i 6= 2. If i = 1, then
note that σ1y1σ

−1
1 = y1 and, as in Case 2, we see that

σ1βσ
−1
1 = β′1y2β

′
2

σ1γσ
−1
1 = γ′1y1γ

′
2,

and we are done by Case 1. Suppose i ≥ 3. Then, again using the notation d = 1 if i is odd,
while d = 2 if i is even, we have

σ1yiσ
−1
1 = σ1〈σ1σ2〉

i−1σdτd〈σ1σ2〉
−(i−1)σ−1

1

= σ2
1σ2〈σ1σ2〉

i−3σdτd〈σ1σ2〉
−(i−3)σ−1

2 σ−2
1

= a1σ2yi−2σ
−1
2 a−1

1

= a1(ap−i+1 · · · a1)
−1yp−i+2(ap−i+1 · · · a1)a

−1
1 by Lemma 13.
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Thus, with notation as in Case 2,

σ1βσ
−1
1 = β′1y2β

′
2

σ1γσ
−1
1 = γ′1(ap−i−1 · · · a2)yp−i+2(ap−i+1 · · · a2)γ

′
2,

and we are done again by Case 1.

Case 4 Finally we consider the case in which x = z and x′ = y2. Let κ be the automorphism
of the graph I2(p) which switches the two vertices. Then κ induces automorphisms of ZBI

and SBI both of which we denote simply by κ, and the following diagram commutes:

SBI SBI

ZBI ZBI

κ

κ

ψψ

So ψ(κ(β)) = κ(ψ(β)) = κ(ψ(γ)) = ψ(κ(γ)). Notice that κ(z) = y1. But then κ(β) =
κ(β1)y1κ(β2), and so the first singular generator of κ(β) is y1. Similarly, κ(y2) = σ2y1σ

−1
2 =

(ap−2 · · · a1)
−1yp−1(ap−2 · · · a1), so the first singular generator in κ(γ) is yp−1. By Case 1, we

have κ(β) = κ(γ) and β = γ. 2

Finally we remark that Case 4 may almost be proved by reduction to Case 3. Notice that
σ1zσ

−1
1 = y2 and σ1y2σ

−1
1 = a1za

−1
1 so conjugation by σ1 does not help. However σ2zσ

−1
2 = z,

while σ2y2σ
−1
2 = (ap−3 · · · a1)

−1yp−2(ap−3 · · · a1) by Lemma 13, and we may reduce to Case 3
unless p− 2 = 2 (ie. p = 4).
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