REALIZATION OF HOMOTOPY INVARIANTS BY PD3-PAIRS

BEATRICE BLEILE
In Remembrance of 11th September, 1973

Abstract

Up to oriented homotopy equivalence, a $P D^{3}{ }_{-}$pair $(X, \partial X)$ with aspherical boundary components is uniquely determined by the Π_{1}-system $\left\{\kappa_{i}: \Pi_{1}\left(\partial X_{i}, *\right) \rightarrow\right.$ $\left.\Pi_{1}(X, *)\right\}_{i \in J}$, the orientation character $\omega_{X} \in \mathrm{H}^{1}(X ; \mathbb{Z} / 2 \mathbb{Z})$ and the image of the fundamental class $[X, \partial X] \in \mathrm{H}_{3}\left(X, \partial X ; \mathbb{Z}^{\omega}\right)$ under the classifying map [3]. We call the triple $\left(\left\{\kappa_{i}\right\}_{i \in J}, \omega_{X},[X, \partial X]\right)$ the fundamental triple of the $P D^{3}$-pair $(X, \partial X)$.

Using Peter Hilton's homotopy theory of modules, Turaev [12] gave a condition for realization in the absolute case of $P D^{3}$-complexes X with $\partial X=\emptyset$. Given a finitely presentable group G and $\omega \in \mathrm{H}^{1}(G ; \mathbb{Z} / 2 \mathbb{Z})$, he defined a homomorphism $$
\nu: \mathrm{H}_{3}\left(G ; \mathbb{Z}^{\omega}\right) \longrightarrow[F, I]
$$ where F is some $\mathbb{Z}[G]$-module, $I=$ ker aug and $[A, B]$ denotes the group of homotopy classes of $\mathbb{Z}[G]$-morphisms from the $\mathbb{Z}[G]$-module A to the $\mathbb{Z}[G]$-module B. Turaev showed that, given $\mu \in \mathrm{H}_{3}\left(G ; \mathbb{Z}^{\omega}\right)$, the triple (G, ω, μ) is relized by a $P D^{3}$-complex X if and only if $\nu(\mu)$ is a class of homotopy equivalences of $\mathbb{Z}[G]$-modules.

Using Turaev's construction of the homomorphism ν, we generalize the condition for realization to the case of $P D^{3}-$ pairs $(X, \partial X)$, where ∂X is not necessarily empty.

1. Outline

Section 2 is concerned with notation and the existence of Eilenberg-Mac Lane pairs.
Section 3 discusses properties of the relative twisted cap product needed for the formulation of the realization condition and the proof of sufficiency in the Π_{1}-injective case.

In Section 4 we briefly revise the projective homotopy category of modules over a ring, also called the stable category. The final theorem of this section plays a crucial rôle in the construction of a $P D^{3}$-pair from given invariants.

The realization condition is formulated in Section 5 and Section 6 contains the proof of the realization theorem for the Π_{1}-injective case.

2. Preliminaries

Let G be a group, let $\Lambda:=\mathbb{Z}[G]$ be the integral group ring of G and let aug : $\Lambda \rightarrow \mathbb{Z}$ denote the augmentation homomorphism determined by $\operatorname{aug}(g):=1$ for all $g \in G$. The kernel I of the augmentation homomorphism is called the augmentation ideal.

Date: 11th September, 2003.
Key words and phrases. PD^{3}-pairs.

Furthermore, take $\omega \in \mathrm{H}^{1}(G, \mathbb{Z} / 2 \mathbb{Z})$. Since $\mathrm{H}^{1}(G, \mathbb{Z} / 2 \mathbb{Z})$ is naturally isomorphic to $\operatorname{Hom}(G, \mathbb{Z} / 2 \mathbb{Z})$, the cohomology class ω determines a homomorphism from G to the group $\mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$. This homomorphism, in turn, gives rise to the anti-isomorphism

$$
{ }^{-}: \Lambda \longrightarrow \Lambda ; \lambda \longmapsto \bar{\lambda}
$$

determined by

$$
\bar{g}:=(-1)^{\omega(g)} g^{-1} \quad \text { for } g \in G \text {. }
$$

We may associate a left Λ-module with every right Λ-module and vice versa by means of the anti-isomorphism ${ }^{-}$. Namely, given a right Λ-module A and a left Λ-module B, define a left action on the set underlying A and a right action on the set underlying B by

$$
\begin{aligned}
\lambda . a & :=a \cdot \bar{\lambda} \quad \text { for } a \in A, \lambda \in \Lambda ; \\
b . \lambda & :=\bar{\lambda} . b \quad \text { for } b \in B, \lambda \in \Lambda .
\end{aligned}
$$

We denote the modules thus obtained by ${ }^{\omega} A$ and B^{ω} respectively.
Given a short exact sequence $Q \hookrightarrow P \rightarrow D$ of augmented chain complexes of left Λ modules with compatible equivariant diagonals and a "twisting" $\omega \in \mathrm{H}^{1}(G, \mathbb{Z} / 2 \mathbb{Z})$, the relative twisted cap products are defined at the chain level by

$$
\begin{gathered}
\cap: \operatorname{Hom}_{\Lambda}\left(P,{ }^{\omega} M\right)_{-k} \otimes\left(\mathbb{Z}^{\omega} \otimes_{\Lambda} D\right)_{n} \rightarrow\left(M \otimes_{\Lambda} D\right)_{n-k} \\
\varphi \cap(z \otimes d):=\varphi /\left(z \otimes \Delta_{\mathrm{rel}}(d)\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\cap: \operatorname{Hom}_{\Lambda}\left(D,{ }_{2}^{\omega} M\right)_{-k} \otimes\left(\mathbb{Z}^{\omega} \otimes_{\Lambda} D\right)_{n} \rightarrow\left(M \otimes_{\Lambda} P\right)_{n-k} \\
\varphi \cap(z \otimes d):=\varphi /\left(z \otimes \Delta_{\text {rel }}^{\prime}(d)\right) .
\end{gathered}
$$

for any right Λ-module M [3]. Passing to homology we obtain the relative twisted cap products

$$
\cap: \mathrm{H}^{k}\left(P,{ }^{\omega} M\right) \otimes \mathrm{H}_{n}\left(D, \mathbb{Z}^{\omega}\right) \rightarrow \mathrm{H}_{n-k}(D, M)
$$

and

$$
\cap: \mathrm{H}^{k}\left(D,{ }^{\omega} M\right) \otimes \mathrm{H}_{n}\left(D, \mathbb{Z}^{\omega}\right) \rightarrow \mathrm{H}_{n-k}(P, M)
$$

Now let $\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J}$ be a family of group homomorphisms and let (X, Y) be a pair of CW-complexes with Π_{1}-system $\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J}$. Put $\Lambda:=\mathbb{Z}[G]$ and let $p: \tilde{X} \rightarrow X$ be the universal covering of X. Let $C(X)$ denote the cellular chain complex of \tilde{X} viewed as a complex of Λ-modules. We denote the subcomplex of $C(X)$ generated by the cells lying above Y by $C(Y)$ and put $C(X, Y):=C(X) / C(Y)$, so that $C(Y) \mapsto C(X) \rightarrow C(X, Y)$ is a short exact sequence of left Λ-modules. We call $C(X, Y)$ the relative cellular complex and $C(Y) \mapsto C(X) \rightarrow C(X, Y)$ the short exact sequence of cellular chain complexes of the pair (X, Y).

Given a family $\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J}$ of group homomorphisms we may ask whether there is a pair (X, Y) which has Π_{1}-system $\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J}$. The answer is yes, namely, for $i \in J$ take $K\left(G_{i} ; 1\right)$ complexes Y_{i} and a $K(G ; 1)$ complex X. Then the family $\kappa_{i}: G_{i} \rightarrow G$ of homomorphisms determines a map $f: \coprod_{i \in J} Y_{i} \rightarrow X$. Let K be the mapping cylinder
of f and identify $\coprod_{i \in J} Y_{i}$ with its image under the inclusion in K. Then (K, Y) is a pair with Π_{1}-system $\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J}$.

As we do not require the homomorphisms κ_{i} to be injective we will adopt the following non-standard definition for the purpose of this paper.

Definition 2.1. Let $\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J}$ be a family of group homomorphisms. An EilenbergMac Lane pair of type $K\left(\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J} ; 1\right)$ is a pair (X, Y) such that X is an EilenbergMac Lane complex of type $K(G ; 1)$, the connected components $\left\{Y_{i}\right\}_{i \in J}$ of Y are EilenbergMac Lane complexes of type $K\left(G_{i} ; 1\right)$ and the $\Pi_{1}-$ system of (X, Y) is isomorphic to $\left\{\kappa_{i}\right.$: $\left.G_{i} \rightarrow G\right\}_{i \in J}$.
In the standard definition of Eilenberg-Mac Lane pairs given by Bieri-Eckmann in [1] the homomorphisms κ_{i} are required to be injective.
An Eilenberg-Mac Lane pair of type ($G,\left\{G_{i}\right\}_{i \in J} ; 1$) is determined up to homotopy of pairs and we write $K\left(G,\left\{G_{i}\right\}_{i \in J} ; 1\right)$ for any such pair. With this definition we proved the following lemma.
Lemma 2.2. Let $\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J}$ be a family of group homomorphisms. Then there is an Eilenberg-Mac Lane pair (X, Y) of type $\left(G,\left\{G_{i}\right\}_{i \in J} ; 1\right)$.

3. Properties of the Relative Twisted Cap Products

First note that, given a Λ-bimodule M, there is a left action of Λ on $M \otimes_{\Lambda} B$ and a right action of Λ on $\operatorname{Hom}_{\Lambda}(B, M)$ for any left Λ-module B defined by

$$
\lambda .(m \otimes b):=(\lambda \cdot m) \otimes b \quad \text { and } \quad(\varphi \cdot \lambda)(b):=\varphi(b) \cdot \lambda
$$

for $\lambda \in \Lambda, b \in B, m \in M$ and $\varphi \in \operatorname{Hom}_{\Lambda}(B, M)$. In particular, $\operatorname{Hom}_{\Lambda}(B, \Lambda)$ is a right Λ-module. Thus any left Λ-module A gives rise to the functor $\left.\operatorname{Hom}_{\Lambda}\left({ }^{\omega} \operatorname{Hom}_{\Lambda}(-, \Lambda), A\right)\right)$ from the category ${ }_{\Lambda} \mathcal{M}$ of left Λ-modules to the category $\mathcal{A} b$ of abelian groups. This is related to the functor $A^{\omega} \otimes_{\Lambda}-$, by the following lemma.

Lemma 3.1. There is a natural transformation

$$
\eta_{B}: A^{\omega} \otimes_{\Lambda} B \longrightarrow \operatorname{Hom}_{\Lambda}\left({ }^{\omega} \operatorname{Hom}_{\Lambda}(B, \Lambda), A\right)
$$

given by

$$
\eta_{B}(a \otimes b):{ }^{\omega} \operatorname{Hom}_{\Lambda}(B, \Lambda) \longrightarrow A, \quad \varphi \longmapsto \overline{\varphi(b)} a
$$

for every left Λ-module B.
Observation 3.2. When we restrict the functors $A^{\omega} \otimes_{\Lambda}-$ and $\operatorname{Hom}_{\Lambda}\left({ }^{\omega} \operatorname{Hom}_{\Lambda}(-, \Lambda), A\right)$ to the category of free left Λ-modules, the natural transformation η becomes a natural equivalence as both $A^{\omega} \otimes_{\Lambda} \Lambda^{n}$ and $\operatorname{Hom}_{\Lambda}\left({ }^{\omega} \operatorname{Hom}_{\Lambda}\left(\Lambda^{n}, \Lambda\right), A\right)$ are isomorphic to A^{n} as abelian groups.

If M is a Λ-bimodule, then so is ${ }^{\omega} M^{\omega}$. Hence ${ }^{\omega} M^{\omega} \otimes_{\Lambda} B$ carries a left Λ-module structure and $\operatorname{Hom}_{\Lambda}(B, M)$ carries a right Λ-module structure for every left Λ-module B. Thus ${ }^{\omega} M^{\omega} \otimes_{\Lambda}-$ and ${ }^{\omega} \operatorname{Hom}_{\Lambda}\left({ }^{\omega} \operatorname{Hom}_{\Lambda}(-, \Lambda), M\right)$ are functors from the category of left Λ-modules to itself.

Observation 3.3. The natural transformation η of Lemma 3.1 respects the additional left Λ-module structure when $A=M$ is a Λ-bimodule. In other words, given a Λ-bimodule M, the natural transformation η is in fact a natural transformation from ${ }^{\omega} M^{\omega} \otimes_{\Lambda}$ - to ${ }^{\omega} \operatorname{Hom}_{\Lambda}\left({ }^{\omega} \operatorname{Hom}_{\Lambda}(-, \Lambda), M\right)$ as functors from the category of left Λ-modules to itself. In particular, for $M=\Lambda$, we may identify the left Λ-module B with ${ }^{\omega} \Lambda^{\omega} \otimes_{\Lambda} B$ by means of the isomorphism ${ }^{\omega} \Lambda^{\omega} \otimes_{\Lambda} B \rightarrow B, \lambda \otimes b \mapsto \bar{\lambda} b$. Then η is the evaluation homomorphism from B to its double dual ${ }^{\omega} \operatorname{Hom}_{\Lambda}\left({ }^{(} \operatorname{Hom}_{\Lambda}(-, \Lambda), \Lambda\right)$.

The next lemma shows that the chain map given by taking the cap product with a cycle is almost chain homotopic to its dual. To be more precise, there is a diagram involving this chain map and its dual which commutes up to chain homotopy.

Lemma 3.4. Let $1 \otimes x \in \mathbb{Z}^{\omega} \otimes_{\Lambda} D_{n}$ be a cycle. Then the diagram

commutes up to chain homotopy, where η is the natural equivalence of Observation 3.2 and the isomorphism θ is given by $\theta(\varphi)(\lambda \otimes d):=\bar{\lambda} \varphi(d)$ for $\varphi \in{ }^{\omega} \operatorname{Hom}_{\Lambda}\left(D_{k}, \Lambda\right), d \in D_{k}$ and $\lambda \in \Lambda$.

Proof. Suppose $x=\pi(y)$ and $\Delta(y)=\sum y_{i} \otimes y_{j}^{\prime}$. Take $\varphi \in{ }^{\omega} \operatorname{Hom}_{\Lambda}\left(D_{k}, \Lambda\right)$ and $\psi \in$ ${ }^{\omega} \operatorname{Hom}_{\Lambda}\left(P_{n-k}, \Lambda\right)$. Then

$$
\begin{aligned}
\left((\cap 1 \otimes x)^{*}(\theta(\varphi))\right)(\psi) & =\theta(\varphi)(\psi \cap 1 \otimes x) \\
& =\theta(\varphi)\left(\psi\left(y_{n-k}\right) \otimes \pi\left(y_{k}^{\prime}\right)\right) \\
& =\overline{\psi\left(y_{n-k}\right) \varphi\left(\pi\left(y_{k}^{\prime}\right)\right)} \\
& =\eta\left(\varphi\left(\pi\left(y_{k}^{\prime}\right)\right) \otimes y_{n-k}\right)(\psi) \\
& =\eta(/(\operatorname{id} \otimes \mathrm{id} \otimes((\pi \otimes \mathrm{id}) \circ T \circ \Delta))(\varphi \otimes 1 \otimes x))(\psi)
\end{aligned}
$$

where $T: P \otimes P \rightarrow P \otimes P$ is defined by $T\left(\sum_{i+j=n} y_{i} \otimes y_{j}^{\prime}\right)=\sum_{i+j=n} y_{j}^{\prime} \otimes y_{i}$. But $T \circ \Delta$ is again a diagonal on P and hence (see [11], p.250) chain homotopic to Δ. As $1 \otimes x$ is a cycle, we obtain

$$
\begin{aligned}
(\cap 1 \otimes x)^{*} \circ \theta & =\eta \circ(/ \circ(\mathrm{id} \otimes \mathrm{id} \otimes((\pi \otimes \mathrm{id}) \circ T \circ \Delta)))(-\otimes 1 \otimes x) \\
& \simeq \eta \circ(/ \circ(\mathrm{id} \otimes \mathrm{id} \otimes((\pi \otimes \mathrm{id}) \circ \Delta)))(-\otimes 1 \otimes x) \\
& \simeq \eta \circ(\cap 1 \otimes x) .
\end{aligned}
$$

Suppose that $Q \stackrel{\iota}{\mapsto} P \xrightarrow{\pi} D$ is a short exact sequence of augmented chain complexes of free Λ-modules with compatible diagonals. Then $Q \stackrel{\iota}{\mapsto} P \xrightarrow{\pi} D$ splits and stays split short exact when we tensor or apply the $\operatorname{Hom}_{\Lambda}$-functor. Given a right Λ-module M,
we denote the connecting homomorphisms of $\mathbb{Z}^{\omega} \otimes_{\Lambda} Q \rightharpoondown \mathbb{Z}^{\omega} \otimes_{\Lambda} P \rightarrow \mathbb{Z}^{\omega} \otimes_{\Lambda} D, M \otimes_{\Lambda} Q \mapsto$ $M \otimes_{\Lambda} P \rightarrow M \otimes_{\Lambda} D$ and ${ }^{\omega} \operatorname{Hom}_{\Lambda}\left(D,{ }^{\omega} M\right) \mapsto^{\omega} \operatorname{Hom}_{\Lambda}\left(P,{ }^{\omega} M\right) \rightarrow{ }^{\omega} \operatorname{Hom}_{\Lambda}\left(Q,{ }^{\omega} M\right)$ by $\delta_{*}, \delta_{*}^{\prime}$ and δ^{*} respectively.
Proposition 3.5. Take $x \in H^{k}\left(D,{ }^{\omega} M\right), y \in H_{n}\left(D, \mathbb{Z}^{\omega}\right), z \in H^{l}\left(P,{ }^{\omega} M\right)$ and $u \in H^{k-1}\left(Q,{ }^{\omega} M\right)$. Then
(i) $(\mathrm{id} \otimes \pi)_{*}(x \cap y)=\left(\pi^{*} x\right) \cap y$;
(ii) $\delta_{*}^{\prime}(z \cap y)=\left(\iota^{*} z\right) \cap \delta_{*} y$;
(iii) $(\mathrm{id} \otimes \iota)_{*}\left(u \cap \delta_{*} y\right)=(-1)^{k}\left(\delta^{*} u\right) \cap y$.

Proof. (i) Take a cocycle $\varphi \in{ }^{\omega} \operatorname{Hom}_{\Lambda}\left(D_{k},{ }^{\omega} M\right)$ and a cycle $n \otimes d \in \mathbb{Z}^{\omega} \otimes_{\Lambda} D_{n}$ representing x and y respectively. Furthermore take $p \in P$ with $n \otimes d=n \otimes \pi(p)$ and and suppose $\Delta(p)=\sum p_{i} \otimes p_{j}^{\prime}$. Then

$$
\begin{aligned}
(\mathrm{id} \otimes \pi)(\varphi \cap n \otimes d) & =(\mathrm{id} \otimes \pi)\left(\varphi / n \otimes \Delta_{\mathrm{rel}} d\right)=(\mathrm{id} \otimes \pi)\left(\varphi / n \otimes \sum \pi\left(p_{i}\right) \otimes p_{j}^{\prime}\right) \\
& =(\mathrm{id} \otimes \pi)\left(n \varphi\left(\pi\left(p_{k}\right)\right) \otimes p_{n-k}^{\prime}\right)=n \varphi\left(\pi\left(p_{k}\right)\right) \otimes \pi\left(p_{n-k}^{\prime}\right) \\
& =\varphi \circ \pi / n \otimes \sum p_{i} \otimes \pi\left(p_{j}^{\prime}\right)=\pi^{*}(\varphi) \cap n \otimes d .
\end{aligned}
$$

As $(\mathrm{id} \otimes \pi)(\varphi \cap n \otimes d)$ represents $(\mathrm{id} \otimes \pi)_{*}(x \cap y)$ and $\pi^{*}(\varphi) \cap n \otimes d$ represents $\left(\pi^{*} x\right) \cap y$, we have thus proved (i).
(ii) Take a cocycle $\varphi \in{ }^{\omega} \operatorname{Hom}_{\Lambda}\left(P_{l},{ }^{\omega} M\right)$ and a cycle $n \otimes d \in \mathbb{Z}^{\omega} \otimes_{\Lambda} D_{n}$ representing z and y respectively. Furthermore take $p \in P$ and $q \in Q$ such that $n \otimes d=n \otimes \pi(p)$ and $n \otimes \partial p=n \otimes \iota(q)$ and suppose $\Delta(q)=\sum q_{i} \otimes q_{j}^{\prime}$. Then $\iota^{*} z \cap \delta_{*} y$ is represented by

$$
\varphi \circ \iota /(n \otimes \Delta q)=\varphi \circ \iota /\left(n \otimes \sum q_{i} \otimes q_{j}^{\prime}\right)=n \varphi\left(\iota\left(q_{l}\right)\right) \otimes q_{n-l}^{\prime}
$$

and

$$
\begin{aligned}
(\mathrm{id} \otimes \iota)(\varphi \circ \iota /(n \otimes \Delta q)) & =n \varphi\left(\iota\left(q_{l}\right)\right) \otimes \iota\left(q_{n-l}^{\prime}\right)=\varphi /(n \otimes(\iota \otimes \iota) \Delta q) \\
& =\varphi /(n \otimes \Delta \iota(q))=\varphi /(n \otimes \Delta \partial p) \\
& =\varphi /(n \otimes \partial \Delta p)=\partial(\varphi /(n \otimes \Delta p))
\end{aligned}
$$

as φ is a cocycle. Furthermore $z \cap y$ is represented by

$$
\varphi /\left(n \otimes \Delta_{\mathrm{rel}} d\right)=\varphi /(n \otimes(\mathrm{id} \otimes \pi) \Delta p)
$$

so that $\delta_{*}^{\prime}(z \cap y)$ is represented by $n \otimes a$ where

$$
(\mathrm{id} \otimes \iota)(n \otimes a)=\partial(\varphi /(n \otimes \Delta p))
$$

As $(\mathrm{id} \otimes \iota)$ is a monomorphism we may conclude that $\delta_{*}^{\prime}(z \cap y)=\iota^{*} z \cap \delta_{*} y$.
(iii) Take $\varphi \in{ }^{\omega} \operatorname{Hom}_{\Lambda}\left(Q_{k-1},{ }^{\omega} M\right)$ and $n \otimes d \in \mathbb{Z}^{\omega} \otimes_{\Lambda} D_{n}$ representing u and y respectively. Take $\psi \in{ }^{\omega} \operatorname{Hom}_{\Lambda}\left(P_{k-1},{ }^{\omega} M\right)$ with $\varphi=\iota^{*} \psi$ and $\eta \in{ }^{\omega} \operatorname{Hom}_{\Lambda}\left(D_{k},{ }^{\omega} M\right)$ with $\pi^{*} \eta=\partial^{*} \psi$. Then $\delta^{*} u$ is represented by η. Further, take $p \in P_{n}$ with $\pi p=d$ and $q \in Q_{n-1}$ with $\iota q=\partial p$, so that $\delta_{*}^{\prime} y$ is represented by $n \otimes q$, and suppose $\Delta p=\sum p_{i} \otimes p_{j}^{\prime}$ and $\Delta q=\sum q_{i} \otimes q_{j}^{\prime}$. Then
$(\mathrm{id} \otimes \iota)_{*}\left(u \cap \delta_{*} y\right)$ is represented by

$$
\begin{aligned}
(\mathrm{id} \otimes \iota)(\varphi \cap n \otimes q) & =(\mathrm{id} \otimes \iota)(\varphi / n \otimes \Delta q)=(\mathrm{id} \otimes \iota)\left(\varphi / n \otimes \sum q_{i} \otimes q_{j}^{\prime}\right) \\
& =(\mathrm{id} \otimes \iota)\left(n \varphi\left(q_{k-1}\right) \otimes q_{n-k-1}^{\prime}\right)=n \varphi\left(q_{k-1}\right) \otimes \iota\left(q_{n-k-1}^{\prime}\right) \\
& =n \iota^{*} \psi\left(q_{k-1}\right) \otimes \iota\left(q_{n-k-1}^{\prime}\right)=\psi / n \otimes(\iota \otimes \iota) \Delta q \\
& =\psi / n \otimes \Delta \iota(q)=\psi / n \otimes \Delta \partial p \\
& =\psi / n \otimes \partial \Delta p .
\end{aligned}
$$

Since / is a chain map, we obtain

$$
\partial(\psi / n \otimes \Delta p)=\left(\partial^{*} \psi\right) / n \otimes \Delta p+(-1)^{k-1} \psi / n \otimes \partial \Delta p
$$

On the other hand

$$
\begin{aligned}
\partial^{*} \psi / n \otimes \Delta p & =\pi^{*} \eta / n \otimes \Delta p=\pi^{*} \eta / n \otimes \sum \sum_{i} \otimes p_{j}^{\prime} \\
& =n \eta\left(\pi\left(p_{k}\right)\right) \otimes p_{n-k}^{\prime}=\eta / n \otimes \Delta_{\mathrm{rel}}^{\prime} d \\
& =\eta \cap n \otimes d,
\end{aligned}
$$

which shows that $\partial^{*} \psi / n \otimes \Delta p$ represents $\left(\delta^{*} u\right) \cap y$. As $\partial(\psi / n \otimes \Delta p)$ is a boundary, we may conclude that

$$
(\mathrm{id} \otimes \iota)_{*}\left(u \cap \delta_{*} y\right)=(-1)^{k}\left(\delta^{*} u\right) \cap y
$$

Proposition 3.5 allows us to prove commutativity of a diagram, also called a cap product ladder, which involves long exact homology and co-homology sequences arising from $Q \hookrightarrow P \rightarrow D$ and the cap product with a homology class $y \in \mathrm{H}_{n}\left(D ; \mathbb{Z}^{\omega}\right)$.

Theorem 3.6 (Cap Product Ladder). Let $Q \stackrel{\iota}{\curvearrowleft} P \xrightarrow{\pi} D$ be a short exact sequence of augmented chain complexes of free Λ-modules with compatible diagonals. Then, given $y \in H_{n}\left(D ; \mathbb{Z}^{\omega}\right)$, the diagram

commutes, up to sign.
Proof. Given $x \in \mathrm{H}^{r}\left(D,{ }^{\omega} M\right)$, Property (i) of Proposition 3.5 implies $\left(\pi^{*} x\right) \cap y=(\mathrm{id} \otimes \pi)_{*}(x \cap$ y). For $z \in \mathrm{H}^{r}\left(P{ }^{\omega} M\right)$ we have $\iota^{*} z \cap \delta^{*} y=\delta_{*}^{\prime}(z \cap y)$ by (ii). Finally, (iii) yields (id $\left.\otimes \iota\right)_{*}(u \cap$ $\left.\delta_{*} y\right)=(-1)^{k}\left(\delta^{*} u\right) \cap y$ for $u \in \mathrm{H}^{r}\left(Q,{ }^{\omega} M\right)$. Hence the first two squares commute and the third commutes up to sign.

4. Projective Homotopy Theory of Modules

In this section Λ may be any ring with unit. Unless otherwise specified, A, B, \ldots will denote left Λ-modules and φ, ψ, \ldots will denote Λ-morphisms.
Definition 4.1. The Λ-morphism $\varphi: A \rightarrow B$ is nullhomotopic, written as $\varphi \simeq 0$, if there is a commutative diagram

where P is a projective Λ-module.
As every projective Λ-module is a direct summand of a free Λ-module the existence of Diagram (1) is equivalent to the existence of a diagram of the form

If $\varepsilon: P A \rightarrow A$ is an epimorphism and $P A$ is projective then $P A$ is called a path space over A (in analogy to topological homotopy theory). Since the category of left Λ-modules has enough projectives, every Λ-module A has a path space. It is not difficult to show that a Λ-morphism $\varphi: A \rightarrow B$ is nullhomotopic if and only if it factors through a given path space $\varepsilon: P B \rightarrow B$ of B, that is, if and only if there is a commutative diagram

Thus, if $\varphi: A \rightarrow B$ factors through one particular path space of B, it factors through any path space of B. Hence

$$
\operatorname{Nhom}_{\Lambda}(\mathrm{A}, \mathrm{~B}):=\{\varphi: \mathrm{A} \rightarrow \mathrm{~B} \mid \varphi \simeq 0\}
$$

is a subgroup of $\operatorname{Hom}_{\Lambda}(\mathrm{A}, \mathrm{B})$.
Definition 4.2. Two Λ-morphisms φ and ψ are homotopic if $\varphi-\psi \simeq 0$. Furthermore the group

$$
[A, B]:=\operatorname{Hom}_{\Lambda}(\mathrm{A}, \mathrm{~B}) / \operatorname{Nhom}_{\Lambda}(\mathrm{A}, \mathrm{~B})
$$

of homotopy classes of Λ-morphisms is called the homotopy group from A to B.
It is not difficult to show that homotopy respects composition of Λ-morphisms. Thus we obtain a category, called the projective homotopy category (PHOM) or the stable category whose objects are left Λ-modules and whose morphisms are homtopy classes of Λ-morphisms. Furthermore $[A, B]$ is functorial in both variables and preserves direct products.

As in topological homotopy theory, we say that $\varphi: A \rightarrow B$ is a homotopy equivalence if and only if there is a Λ-morphism $\psi: B \rightarrow A$ such that $\varphi \psi \simeq \operatorname{id}_{B}$ and $\psi \varphi \simeq \mathrm{id}_{A}$. If there is a homotopy equivalence $\varphi: A \rightarrow B$ then A and B are said to be homotopy equivalent and we denote the set of homotopy equivalences from A to B by Equi (A, B).

Lemma 4.3. $A \Lambda$-module A is projective if and only if $[X, A]=0$ for every Λ-module X.
Proof. We only need to show that $[X, A]=0$ for every Λ-module X implies that A is projective. So assume that $[X, A]=0$ for every Λ-module X. Then $[A, A]=0$ which implies $\operatorname{id}_{A} \simeq 0$, that is, id_{A} factors through a path space $P A \rightarrow A$ of A. Thus there is a commutative diagram

Now let $\varphi: A \rightarrow B$ be a Λ-morphism and let $\varepsilon: C \rightarrow B$ be an epimorphism. Since $P A$ is projective there is a Λ-morphism $\psi: P A \rightarrow C$ such that $\varepsilon \psi=\varphi \pi$. Hence $\varepsilon \psi \iota=\varphi \pi \iota=\varphi$, showing that A is projective.

Given a path space $\varepsilon: P B \rightarrow B$, any $\varphi: A \rightarrow B$ factors as

$$
A>\quad{ }^{\prime}, A \oplus P B \xrightarrow{\varphi^{\prime}} B,
$$

where φ^{\prime} is defined by $\varphi^{\prime}(a, p)=\varphi(a)+\varepsilon(p)$ for $a \in A$ and $p \in P B$.
The statement as well as the proof of the following theorem are dual to Theorem 13.7 in [8] and its proof.

Theorem 4.4. A homotopy equivalence $\varphi: A \rightarrow B$ factors as

$$
A>\xrightarrow{\iota} A \oplus P \xrightarrow{\tilde{\varphi}} B \oplus Q \xrightarrow{\pi} B
$$

where P and Q are projective and ι and π are the natural inclusion and projection respectively.

Proof. First assume that φ is an epimorphism. Let $\psi: B \rightarrow A$ be a homotopy inverse of φ and let $\varepsilon: P A \rightarrow A$ be a path space of A. Then $\varphi \varepsilon: P A \rightarrow B$ is a path space of B and hence $\varphi \psi-\operatorname{id}_{B} \simeq 0$ implies that there is a Λ-morphism $\eta: B \rightarrow P A$ such that the
diagram

commutes. Put $\tilde{\psi}:=\psi-\varepsilon \eta$. Then $\tilde{\psi} \simeq \psi$ and

$$
\varphi \tilde{\psi}=\varphi(\psi-\varepsilon \eta)=\varphi \psi-\varphi \varepsilon \eta=\varphi \psi-\varphi \psi+\operatorname{id}_{B}=\operatorname{id}_{B}
$$

Hence $\tilde{\psi}$ is a monomorphism and the short exact sequence

$$
B \xrightarrow{\tilde{\psi}} A \xrightarrow{\pi^{\prime}} \operatorname{coker} \tilde{\psi}
$$

splits so that $A=\tilde{\psi}(B) \oplus Q$ where $Q=\operatorname{coker} \tilde{\psi}$. In order to show that Q is projective it is enough to show that $[X, Q]=0$ for all X. So take any Λ-module X. Then

$$
[X, B] \longrightarrow \psi^{\psi_{*}}[X, \tilde{\psi}(B) \oplus Q] \longrightarrow[X, \tilde{\psi}(B)] \oplus[X, Q] \longrightarrow[X, Q]
$$

is onto. But what does this homomorphism do to the homotopy class of a Λ-morphism $\nu: X \rightarrow B$?

$$
[\nu] \mapsto[\psi \nu]=[\tilde{\psi} \nu] \mapsto\left[\pi^{\prime} \tilde{\psi} \nu\right]=0 .
$$

Hence $[X, Q]=0$ showing that Q is projective.
Thus φ factors as

$$
A=\tilde{\psi}(B) \oplus Q \gg B \oplus Q \longrightarrow B
$$

Given an arbitrary homotopy equivalence $\varphi: A \rightarrow B$ we obtain

Observation 4.5. If the Λ-modules A and B in Theorem 4.4 are finitely generated, then the projective Λ-modules P and Q are also finitely generated. Thus there is a finitely generated projective Λ-module \tilde{P} such that $P \oplus \tilde{P} \cong \Lambda^{n}$ for some $n \in \mathbb{N}$. Hence φ factors as

$$
A>A \oplus(P \oplus \tilde{P}) \longrightarrow B \oplus(Q \oplus \tilde{P}) \longrightarrow B
$$

or

$$
A \longrightarrow A \oplus \Lambda^{n} \longrightarrow B \oplus \tilde{Q} \longrightarrow B
$$

where $\tilde{Q}=Q \oplus \tilde{P}$ is finitely generated projective.

5. Formulation of the Realization Condition

We have seen in [3] that, up to oriented homotopy equivalence, a $P D^{3}$-pair $(X, \partial X)$ with aspherical boundary components is uniquely determined by the Π_{1}-system $\left\{\kappa_{i}\right.$: $\left.\Pi_{1}\left(\partial X_{i}, *\right) \rightarrow \Pi_{1}(X, *)\right\}_{i \in J}$, the orientation character $\omega_{X} \in \mathrm{H}^{1}(X ; \mathbb{Z} / 2 \mathbb{Z})$ and the image of the fundamental class $[X, \partial X] \in \mathrm{H}_{3}\left(X, \partial X ; \mathbb{Z}^{\omega}\right)$ under the classifying map

$$
c:(X, \partial X) \longrightarrow K\left(\left\{\kappa_{i}\right\}_{i \in J} ; 1\right) .
$$

In other words, the triple $\left(\left\{\kappa_{i}\right\}_{i \in J}, \omega_{X}, c_{*}([X, \partial X])\right)$ forms a complete set of homotopy invariants for $P D^{3}-$ pairs, also called the fundamental triple of $(X, \partial X)$. We say that $(X, \partial X)$ realizes $\left(\left\{\kappa_{i}\right\}_{i \in J}, \omega, \mu\right)$.
Question 5.1. Given a Π_{1}-system $\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J}, \omega \in \mathrm{H}^{1}(G ; \mathbb{Z} / 2 \mathbb{Z})$ and a homology class $\mu \in \mathrm{H}_{3}\left(G,\left\{G_{i}\right\}_{i \in J} ; \mathbb{Z}^{\omega}\right)$, is there a $P D^{3}$-pair $(X, \partial X)$ realizing $\left(\left\{\kappa_{i}\right\}_{i \in J}, \omega, \mu\right)$?
Turaev [12] gave a condition for realization in the absolute case of $P D^{3}$-complexes X with $\partial X=\emptyset$. Given a finitely presentable group G and $\omega \in \mathrm{H}^{1}(G ; \mathbb{Z} / 2 \mathbb{Z})$, he defined a homomorphism

$$
\nu: \mathrm{H}_{3}\left(G ; \mathbb{Z}^{\omega}\right) \longrightarrow[F, I]
$$

where F is some $\mathbb{Z}[G]$-module, $I=$ ker aug and $[A, B]$ denotes the group of homotopy classes of $\mathbb{Z}[G]$-morphisms from the $\mathbb{Z}[G]$-module A to the $\mathbb{Z}[G]$-module B. Turaev showed that, given $\mu \in \mathrm{H}_{3}\left(G ; \mathbb{Z}^{\omega}\right)$, the triple (G, ω, μ) is relized by a $P D^{3}$-complex X if and only if $\nu(\mu)$ is a class of homotopy equivalences of $\mathbb{Z}[G]$-modules.

Using Turaev's construction of the homomorphism ν, we generalize the condition for realization to the case of $P D^{3}$-pairs $(X, \partial X)$, where ∂X is not necessarily empty.

First we introduce two functors from the category of left Λ-modules to itself, where Λ is the integral group ring of the group H.

We take $\omega \in \mathrm{H}^{1}(H, \mathbb{Z} / 2 \mathbb{Z})$ and use the notation of Chapter 1.
Given a chain complex $\ldots \rightarrow C_{r+1} \xrightarrow{\partial_{r}} C_{r} \rightarrow \ldots$ of left Λ-modules, put

$$
\mathrm{G}_{r}(C):=\operatorname{coker} \partial_{r}=C_{r} / \operatorname{im} \partial_{r} .
$$

If $f: C \rightarrow D$ is a chain map then $f_{r}\left(\operatorname{im} \partial_{r}^{C}\right) \subseteq \operatorname{im} \partial_{r}^{D}$. Hence there is an induced $\Lambda-$ morphism of cokernels $\mathrm{G}_{r}(f): \mathrm{G}_{r}(C) \rightarrow \mathrm{G}_{r}(D)$ such that the diagram

commutes. It is not difficult to check that $G=G_{*}$ is a functor from the category of chain complexes of left Λ-modules to itself.

Following Turaev we write C^{*} for ${ }^{\omega} \operatorname{Hom}_{\Lambda}(C, \Lambda)$ and compose the two functors G and ${ }^{\omega} \operatorname{Hom}_{\Lambda}(-, \Lambda)$ to obtain the functor F (see [12] p.265) given by

$$
\begin{equation*}
F^{r}(C)=G_{-r}\left(C^{*}\right)=C^{r} / \mathrm{im} \partial_{r-1}^{*} \tag{2}
\end{equation*}
$$

The following lemma allows us to pass from the category of chain complexes of left Λ modules to the stable category, that is, the category of left Λ-modules and homotopy classes of Λ-morphisms.
Lemma 5.2. Let $f, g: C \rightarrow D$ be chain homotopic maps of chain complexes over Λ. If D_{n} is projective, then $G_{n}(f) \simeq G_{n}(g)$ as Λ-morphisms.
Proof. Let χ be a chain homotopy from f to g. Observe that, for all $n \in \mathbb{Z}$, the boundary operators ∂_{n-1}^{C} and ∂_{n-1}^{D} factor as

respectively. Then

$$
\begin{aligned}
\sigma_{n-1}^{D}\left(f_{n}-g_{n}\right) & =\sigma_{n-1}^{D}\left(\chi_{n-1} \partial_{n-1}^{C}+\partial_{n}^{D} \chi_{n}\right) \\
& =\sigma_{n-1}^{D} \chi_{n-1} \rho_{n-1}^{C} \sigma_{n-1}^{C}+\sigma_{n-1}^{D} \partial_{n}^{D} \chi_{n} \\
& =\sigma_{n-1}^{D} \chi_{n-1} \rho_{n-1}^{C} \sigma_{n-1}^{C}
\end{aligned}
$$

Thus the diagram

commutes. As the induced map of cokernels is uniquely determined, this implies

$$
G_{n}(f)-G_{n}(g)=G_{n}(f-g)=\sigma_{n-1}^{D} \chi_{n-1} \rho_{n-1}^{C} \simeq 0
$$

as D_{n} is projective.
Corollary 5.3. Let $f: C \rightarrow D$ be a homotopy equivalence of chain complexes over Λ. If C_{n} and D_{n} are projective, then $G_{n}(f)$ is a homotopy equivalence of Λ-modules.

Corollary 5.3 is crucial for the formulation of the condition for realization.
Observation 5.4. Lemma 5.2 shows that we may view G_{n} as a functor from the category of chain complexes of projective left Λ-modules and homotopy classes of chain maps to the stable category.
Lemma 5.5. Let (X, Y) be a pair of $C W$-complexes with X connected and $\omega \in H^{1}(X ; \mathbb{Z} / 2 \mathbb{Z})$ such that $H_{n}\left(X, Y ; \mathbb{Z}^{\omega}\right) \cong \mathbb{Z}$ with generator $[1 \otimes x]$. Then there is a chain $w_{1} \in C_{1}(X)$ such that the Λ-morphism $\cap 1 \otimes x: C^{*}(X, Y) \rightarrow^{\omega} \Lambda^{\omega} \otimes_{\Lambda} C(X) \cong C(X)$ is given by

$$
\varphi \cap 1 \otimes x=\overline{\varphi(x)} \cdot\left(1+\partial_{0} w_{1}\right)
$$

for every cocycle $\varphi \in C^{*}(X, Y)$, where we identify $\lambda \otimes c \in{ }^{\omega} \Lambda^{\omega} \otimes_{\Lambda} C(X)$ with $\bar{\lambda} . c \in C(X)$.
Proof. Take $y \in C_{n}(X)$ with $\pi(y)=x$, where $\pi: C(X) \rightarrow C(X, \partial X)$ is the natural projection, and assume $\Delta y=\sum y_{i} \otimes z_{n-i}$ with $y_{i}, z_{i} \in C_{i}(X)$. Then $(\mathrm{id} \otimes \varepsilon) \Delta(y)=y$ implies $y_{n} . \varepsilon\left(z_{0}\right)=y$. As $[1 \otimes x]$ is a generator, x and thus y are indivisible so that $y=y_{n}$ and $\varepsilon\left(z_{0}\right)=1$ up to sign. As X is connected, we may assume $C_{0}(X)=\Lambda$ and identify im ∂_{1} with $I=\operatorname{ker} \varepsilon$. Then $\varepsilon\left(z_{0}\right)=1$ implies $z_{0}=1+w_{0}$ where $w_{0} \in I$, and hence $z_{0}=1+\partial_{0} w_{1}$ for some $w_{1} \in C_{1}(X)$. Hence

$$
\begin{aligned}
\varphi \cap 1 \otimes x & =\varphi / 1 \otimes(\pi \otimes \mathrm{id})\left(\sum y_{i} \otimes z_{n-i}\right)=\varphi\left(\pi\left(y_{n}\right)\right) \otimes z_{0} \\
& =\overline{\varphi\left(\pi\left(y_{n}\right)\right)} \cdot z_{0}=\overline{\varphi(x)} \cdot\left(1+\partial_{0} w_{1}\right) .
\end{aligned}
$$

Now let $(X, \partial X)$ be a $P D^{3}$-pair and take a cycle $1 \otimes x \in \mathbb{Z}^{\omega} \otimes_{\Lambda} C_{3}(X, \partial X)$ representing $[X, \partial X]$. Then

$$
\cap 1 \otimes x: C^{*}(X, Y) \rightarrow^{\omega} \Lambda^{\omega} \otimes_{\Lambda} C(X) \cong C(X)
$$

is a chain homotopy equivalence. As both $C_{2}^{*}(X, Y)$ and $C_{1}(X)$ are free and hence projective, Corollary 5.3 implies that

$$
G_{-2}(\cap 1 \otimes x): F^{2}(C(X, \partial X))=G_{-2}\left(C^{*}(X, Y)\right) \rightarrow G_{1}(C(X))
$$

is a homotopy equivalence of Λ-modules.
Since $C(X)$ is the cellular chain complex of the universal covering space of $X, \mathrm{H}_{1}(C(X))=$ 0 so that

$$
G_{1}(C(X))=C_{1}(X) / \operatorname{im} \partial_{1}=C_{1}(X) / \operatorname{ker} \partial_{0} \cong \operatorname{im} \partial_{0}=\text { ker aug }=I,
$$

that is, there is an isomorphism

$$
\vartheta: G_{1}(C(X)) \rightarrow I \quad \text { given by } \quad \vartheta([c]):=\partial_{0}(c) .
$$

Then $\vartheta \circ G_{-2}(\cap 1 \otimes x)$ is also a homotopy equivalence of Λ-modules, and the fact that $\cap 1 \otimes x$ is a chain map together with Lemma 5.5 yields

$$
\begin{aligned}
\left(\vartheta \circ G_{-2}(\cap 1 \otimes x)\right)([\varphi]) & =\vartheta([\varphi \cap 1 \otimes x])=\partial_{0}(\varphi \cap 1 \otimes x) \\
& =\left(\partial_{2}^{*} \varphi\right) \cap 1 \otimes x=\overline{\left(\partial_{2}^{*} \varphi\right)(x)} \cdot\left(1+\partial_{0} w_{1}\right) \\
& =\overline{\left(\partial_{2}^{*} \varphi\right)(x)}+\overline{\left(\partial_{2}^{*} \varphi\right)(x)} \partial_{0} w_{1}
\end{aligned}
$$

for $\varphi \in C_{2}^{*}(X, \partial X)$ and some $w_{1} \in C_{1}(X)$. Observe that the Λ-morphism

$$
F^{2}(C(X, \partial X)) \longrightarrow I,[\varphi] \longmapsto \overline{\left(\partial_{2}^{*} \varphi\right)(x)} \partial_{0} w_{1}
$$

is null-homotopic since it factors through the Λ-module $C_{1}(X)$, namely as

$$
[\varphi] \longmapsto \overline{\left(\partial_{2}^{*} \varphi\right)(x)} w_{1} \longmapsto \partial_{0}\left(\overline{\left(\partial_{2}^{*} \varphi\right)(x)} w_{1}\right)=\overline{\left(\partial_{2}^{*} \varphi\right)(x)} \partial_{0} w_{1} .
$$

Thus

$$
\begin{equation*}
F^{2}(C(X, \partial X)) \longrightarrow I,[\varphi] \longmapsto \overline{\left(\partial_{2}^{*} \varphi\right)(x)} \tag{3}
\end{equation*}
$$

is a homotopy equivalence of Λ-modules.

Now attach cells of dimension three and larger to $(X, \partial X)$ in order to obtain an EilenbergMac Lane pair $(K, \partial X)$ of type $K\left(\left\{\kappa_{i}: \Pi_{1}\left(\partial X_{i}, *\right) \rightarrow \Pi_{1}(X, *)\right\}_{i \in J} ; 1\right)$. Then the classifying map $\iota:(X, \partial X) \rightarrow(K, \partial X)$ is cellular and we may identify the cellular chain complexes of the pair $(X, \partial X)$ with their image under the chain map induced by ι. In particular, we obtain $C_{i}(K)=C_{i}(X), C_{i}(K, \partial X)=C_{i}(X, \partial X)$ for $i=0,1,2$ and $[1 \otimes x]=[X, \partial X]=\iota_{*}([X, \partial X])$. Thus (3) yields
Lemma 5.6. The Λ-morphism

$$
\begin{equation*}
F^{2}(C(K, \partial X)) \longrightarrow I,[\varphi] \longmapsto \overline{\left(\partial_{2}^{*} \varphi\right)(x)} \tag{4}
\end{equation*}
$$

is a homotopy equivalence of Λ-modules.
Given a chain complex C of free left Λ-modules, Turaev constructed a group homomorphism

$$
\nu_{C, r}: \mathrm{H}_{r+1}\left(\mathbb{Z}^{\omega} \otimes_{\Lambda} C\right) \longrightarrow\left[F^{r}, I\right]
$$

such that $\nu_{C(X, \partial X), 2}([1 \otimes x])=\nu_{C(K, \partial X), 2}\left(\iota_{*}([X, \partial X])\right)$ is the homotopy class of the homotopy equivalence (4).

We revise Turaev's construction and some of its properties. Given a chain complex C of free left Λ-modules, note that \bar{I} is the kernel of the Λ-morphism $\Lambda \rightarrow \mathbb{Z}^{\omega} \otimes_{\Lambda} \Lambda, \lambda \mapsto 1 \otimes \lambda$, so that $\bar{I} \hookrightarrow \Lambda \rightarrow \mathbb{Z}^{\omega} \otimes_{\Lambda} \Lambda$ is short exact. As C is free, the sequence $\bar{I} C \hookrightarrow C \rightarrow \mathbb{Z}^{\omega} \otimes_{\Lambda} C$ of chain complexes is also short exact, yielding the connecting homomorphism

$$
\begin{equation*}
\delta: \mathrm{H}_{r+1}\left(\mathbb{Z}^{\omega} \otimes_{\Lambda} C\right) \longrightarrow \mathrm{H}_{r}(\bar{I} C) \tag{5}
\end{equation*}
$$

Identifying $c \in C_{r}$ with $1 \otimes c \in \Lambda^{\omega} \otimes_{\Lambda} C$, the natural equivalence η of Lemma 3.1 yields the Λ-morphism

$$
\eta: C_{r} \longrightarrow\left(C_{r}^{*}\right)^{*}, c \longmapsto \eta(c)
$$

given by

$$
\eta(c)(\varphi)=\overline{\varphi(c)}
$$

For a cycle $c \in C_{r}$ we obtain

$$
\left.\eta(c)\left(\partial_{r-1}^{*} \varphi\right)=\overline{\left(\partial_{r-1}^{*} \varphi\right)(c)}=\varphi\left(\partial_{r-1} c\right)\right)=0
$$

for every $\varphi \in C_{r-1}^{*}$. Thus $\eta(c)$ factors through the cokernel $F^{r}(C)$ of ∂_{r-1}^{*}, that is, there is a Λ-morphism $\eta(c)$ such that

commutes. If $c=\bar{\lambda} . d \in \bar{I} C$ is a cycle with $\lambda \in I$ and $d \in C_{r}$, then

$$
\begin{aligned}
\operatorname{aug}(\eta(c)([\varphi])) & =\operatorname{aug}(\overline{\varphi(c)})=\operatorname{aug}(\overline{\varphi(\bar{\lambda} \cdot d)}) \\
& =\operatorname{aug}(\overline{\varphi(d)} \cdot \lambda)=\overline{\varphi(d)} \operatorname{aug}(\lambda) \\
& =0
\end{aligned}
$$

for every $[\varphi] \in F^{r}(C)$. Hence the image of $\eta(c)$ is contained in I and there is a well-defined Λ-morphism

$$
\hat{\eta(c)}: F^{r}(C) \longrightarrow I,[\varphi] \longmapsto \overline{\varphi(c)}
$$

Given a boundary $c=\partial_{r}(\bar{\mu} . e) \in \bar{I} C$ with $\mu \in I$ and $e \in C_{r+1}$, the Λ-morphism $\eta \hat{(c)}$ is null-homotopic since it factors through Λ, namely as

$$
F^{r}(C) \longrightarrow \Lambda \longrightarrow I
$$

$$
\lambda \longmapsto \bar{\mu} \cdot \lambda .
$$

Thus the homotopy class of $\eta \hat{(c)}$ depends on the homology class of the cycle $c \in \bar{I} C$ only and the homomorphism

$$
\begin{equation*}
\mathrm{H}(\bar{I} C) \longrightarrow\left[F^{r}(C), I\right],[c] \longmapsto[\eta \hat{(c)}] \tag{6}
\end{equation*}
$$

is well-defined. Composing (6) with the connecting homomorphism (5), Turaev obtains the homomorphism

$$
\begin{equation*}
\nu_{C, r}: \mathrm{H}_{r+1}\left(\mathbb{Z}^{\omega} \otimes_{\Lambda} C\right) \longrightarrow\left[F^{r}(C), I\right] \tag{7}
\end{equation*}
$$

given by

$$
\nu_{C, r}([1 \otimes c]):=[\eta \hat{\eta}(c)] .
$$

Lemma 5.7. Given $[1 \otimes x] \in H_{r+1}\left(\mathbb{Z}^{\omega} \otimes_{\Lambda} C\right)$ and $[\varphi] \in F^{r}(C)$, the homotopy class $\nu_{C, r}([1 \otimes x])$ is represented by the Λ-morphism

$$
F^{r}(C) \longrightarrow I,[\varphi] \longmapsto \overline{\varphi\left(\partial_{r}(x)\right)}
$$

Proof. Take $[1 \otimes x] \in \mathrm{H}_{r+1}\left(\mathbb{Z}^{\omega} \otimes_{\Lambda} C\right)$ and $[\varphi] \in F^{r}(C)$. Then $\delta([1 \otimes x])=\partial_{r} x$ and $\nu_{C, r}([1 \otimes x])$ is represented by

$$
\eta\left(\hat{\partial_{r}} x\right): F^{r}(C) \longrightarrow I,[\varphi] \longmapsto \overline{\varphi\left(\partial_{r}(x)\right)} .
$$

Lemma 5.8. Let $f: C \rightarrow D$ be a chain map of chain complexes of Λ-modules. Then the diagram

commutes for every $\mu \in H_{r+1}\left(\mathbb{Z}^{\omega} \otimes_{\Lambda} C\right)$.
Proof. Take $\mu \in \mathrm{H}_{r+1}\left(\mathbb{Z}^{\omega} \otimes_{\Lambda} C\right)$ and $x \in C_{r}$ with $\mu=[1 \otimes x]$. Then, for $[\varphi] \in F^{r}(C)$,

$$
\begin{aligned}
\nu_{C, r}(\mu)\left(F^{r}(f)([\varphi])\right) & =\nu_{C, r}(\mu)([\varphi \circ f])=\overline{\varphi \circ f\left(\partial_{r}(x)\right)} \\
& =\overline{\varphi\left(\partial_{r}(f(x))\right)}=\nu_{D, r}\left(f_{*} \mu\right)([\varphi])
\end{aligned}
$$

Lemma 5.9. Suppose that C is a chain complex of free left Λ-modules such that C_{r} is finitely generated and $H_{r}(C)=H_{r+1}(C)=0$. Then $\nu_{C, r}$ is an isomorphism.

Proof. Cf. [12], Lemma 2.5.
We are now able to provide a necessary condition for a Π_{1}-system $\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J}, \omega \in$ $\mathrm{H}^{1}(G ; \mathbb{Z} / 2 \mathbb{Z})$ and $\mu \in \mathrm{H}_{3}\left(G,\left\{G_{i}\right\}_{i \in J} ; \mathbb{Z}^{\omega}\right)$ to be realized by a $P D^{3}$-pair $(X, \partial X)$.

Theorem 5.10. Given a Π_{1}-system $\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J}, \omega \in H^{1}(G ; \mathbb{Z} / 2 \mathbb{Z})$ and $\mu \in$ $H_{3}\left(G,\left\{G_{i}\right\}_{i \in J} ; \mathbb{Z}^{\omega}\right)$, let $(K, \partial K)$ be an Eilenberg-Mac Lane pair of type $K\left(\left\{\kappa_{i}\right\}_{i \in J} ; 1\right)$. If $\left(\left\{\kappa_{i}\right\}_{i \in J}, \omega, \mu\right)$ is the fundamental triple of a $P D^{3}$-pair, then $\nu_{C(K, \partial K), 2}(\mu)$ is a homotopy equivalence of Λ-modules.

Proof. Take a Π_{1}-system $\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J}, \omega \in \mathrm{H}^{1}(G ; \mathbb{Z} / 2 \mathbb{Z}), \mu \in \mathrm{H}_{3}\left(G,\left\{G_{i}\right\}_{i \in J} ; \mathbb{Z}^{\omega}\right)$ and suppose $\left(\left\{\kappa_{i}\right\}_{i \in J}, \omega, \mu\right)$ is the fundamental triple of the $P D^{3}-$ pair $(X, \partial X)$. Attaching cells of dimension three and larger to X we obtain an Eilenberg-Mac Lane pair ($K, \partial X$) of type $K\left(\left\{\kappa_{i}\right\}_{i \in J} ; 1\right)$. Take $1 \otimes x \in \mathbb{Z}^{\omega} \otimes_{\Lambda} C_{3}(X, \partial X) \subseteq \mathbb{Z}^{\omega} \otimes_{\Lambda} C_{3}(K, \partial X)$ with $[1 \otimes x]=\mu$. Then

$$
F^{2}(C(K, \partial X)) \longrightarrow I,[\varphi] \longmapsto \overline{\varphi\left(\partial_{2}(x)\right)}
$$

is a homotopy equivalence of Λ-modules by Lemma 5.6 and represents $\nu_{C(K, \partial X), 2}(\mu)$ by Lemma 5.7.
It remains to show that $\nu_{C(L, \partial L), 2}(\mu)$ is a homotopy equivalence of Λ-modules for any Eilenberg-Mac Lane pair $(L, \partial L)$. But given any Eilenberg-Mac Lane pair $(L, \partial L)$ of type $K\left(\left\{\kappa_{i}\right\}_{i \in J} ; 1\right)$, there is a homotopy equivalence $f:(K, \partial X) \rightarrow(L, \partial L)$ of pairs of CW complexes inducing a chain homotopy equivalence $g: C(K, \partial X) \longrightarrow C(L, \partial L)$. Hence $g^{*}: C^{*}(K, \partial X) \longrightarrow C^{*}(L, \partial L)$ is also a chain homotopy equivalence and Corollary 5.3 implies that $F^{2}(g)=G_{-2}\left(g^{*}\right)$ is a homotopy equivalence of Λ-modules. By Lemma 5.8, the diagram

commutes and hence $\nu_{C(L, \partial L), 2}\left(f_{*} \mu\right)$ is a homotopy equivalence of Λ-modules if and only if $\nu_{C(K, \partial K), 2}(\mu)$ is one.

In the final section of this paper we show that the necessary condition of Theorem 5.10 is sufficient in the Π_{1}-injective case.

6. The Π_{1}-Injective Case

For $\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J}$ to be the Π_{1}-system of a $P D^{3}$-pair $(X, \partial X)$, the groups G_{i} must be surface groups for all $i \in J$ as the components of ∂X are $P D^{2}$-complexes by definition and thus homotopy equivalent to closed surfaces. Furthermore, G must be finitely presentable, as X must, by definition, be dominated by a finite CW complex. Now we restrict attention
to Π_{1}-systems $\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J}$ which are Π_{1}-injective, that is, κ_{i} is injective for every $i \in J$.

So let $\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J}$ be a Π_{1}-system such that G is finitely presentable, G_{i} is a surface group and κ_{i} is injective for every $i \in J$. Then there is an Eilenberg-Mac Lane pair ($K, \partial X$) of type $K\left(\left\{\kappa_{i}\right\}_{i \in J} ; 1\right)$ and by the mapping cylinder construction we may assume that the components ∂X_{i} of ∂X are all surfaces. Since G is finitely presentable, we may also assume that K has finite 2 -skeleton $K^{[2]}$.

Take $\omega \in \mathrm{H}^{1}(K ; \mathbb{Z} / 2 \mathbb{Z})$ and $\mu \in \mathrm{H}_{3}\left(K, \partial X ; \mathbb{Z}^{\omega}\right)$ such that $\nu_{C(K, \partial X), 2}(\mu)$ is a class of homotopy eqivalences and $\delta_{*} \mu=[\partial X]$ where $[\partial X]$ is the fundamental class of the $P D^{2}-$ complex ∂X and δ_{*} is the connecting homomorphism of $C(\partial X) \mapsto C(K) \rightarrow C(K, \partial X)$.
Following Turaev's construction in the absolute case, we now construct a $P D^{3}$-pair realizing $\left(\left\{\kappa_{i}\right\}_{i \in J}, \omega, \mu\right)$.

Since we have assumed that K has finite 2 -skeleton $K^{[2]}$, the Λ-modules $C_{2}(K, \partial X)$ and thus $F^{2}(C(K, \partial X))$ are finitely generated. Let $h: F^{2}(C(K, \partial X)) \rightarrow I$ be a Λ-morphism representing $\nu_{C(K, \partial X), 2}(\mu)$. Then h is a homotopy equivalence of Λ-modules and thus factors as

$$
F^{2}(C(K, \partial X))>F^{2}(C(K, \partial X)) \oplus \Lambda^{\underline{m}} \gg I \oplus P \longrightarrow I
$$

where P is finitely generated and projective, by Theorem 4.4.
Let $B=\left(e^{0} \vee e^{2}\right) \cup e^{3}$ be a three dimensional ball. If we replace K by $K \vee\left(\vee_{i=1}^{m} B\right)$, then $K^{[2]}$ is replaced by $K^{[2]} \vee\left(\vee_{i=1}^{m} e^{2}\right)$ and $F^{2}(C(K, \partial X))$ is replaced by $F^{2}(C(K, \partial X)) \oplus \Lambda^{m}$. Thus we may assume without loss of generality that h factors as

$$
\begin{equation*}
F^{2}(C(K, \partial X)) \stackrel{j}{\longrightarrow} I \oplus P \longrightarrow I \tag{8}
\end{equation*}
$$

where P is finitely generated and projective.
First we consider the case where P is free, that is, $P \cong \Lambda^{n}$ for some $n \in \mathbb{N}$. Let $\pi: C^{2}(K, \partial X) \rightarrow F^{2}(C(K, \partial X))$ and $\iota: I \rightharpoondown \Lambda$ be the natural projection and inclusion respectively and use the natural equivalence η to identify $\left(A^{*}\right)^{*}$ with A for a left Λ-module A. Consider the Λ-morphism

$$
\varphi: C^{2}(K, \partial X) \xrightarrow{\pi} F^{2}(C(K, \partial X)) \stackrel{j}{\longrightarrow} I \oplus P \stackrel{\left[\begin{array}{ll}
\iota & 0 \tag{9}\\
0 & 1
\end{array}\right]}{\longrightarrow} \Lambda \oplus P .
$$

It follows from the definition of φ that $\varphi \circ \partial_{1}^{*}=0$. Hence $\left(\partial_{1} \circ \varphi^{*}\right)^{*}=\varphi \circ \partial_{1}^{*}=0$ so that $\operatorname{im} \varphi^{*} \subseteq \operatorname{ker} \partial_{1}$.
Let $p: \tilde{K} \rightarrow K$ be the universal covering. Since κ_{i} is injective for every $i \in J$, the components of $p^{-1}(\partial X)$ are universal covering spaces of Eilenberg-Mac Lane complexes, so that $\mathrm{H}_{2}\left(p^{-1}(\partial X)\right)=\mathrm{H}_{1}\left(p^{-1}(\partial X)\right)=0$. Thus the long exact homology sequence of the pair $\left(p^{-1}\left(K^{[2]}\right), p^{-1}(\partial X)\right)$ yields

$$
\mathrm{H}_{2}\left(p^{-1}\left(K^{[2]}\right)\right) \cong \mathrm{H}_{2}\left(p^{-1}\left(K^{[2]}\right), p^{-1}(\partial X)\right) .
$$

The Hurewicz Isomorphism Theorem implies $\Pi_{2}\left(p^{-1}\left(K^{[2]}\right)\right) \cong \mathrm{H}_{2}\left(p^{-1}\left(K^{[2]}\right)\right)$ and thus

$$
\begin{aligned}
\operatorname{im} \varphi^{*} \subseteq \operatorname{ker} \partial_{1} & =\mathrm{H}_{2}\left(p^{-1}\left(K^{[2]}\right), p^{-1}(\partial X)\right) \\
& \cong \mathrm{H}_{2}\left(p^{-1}\left(K^{[2]}\right)\right) \\
& \cong \Pi_{2}\left(p^{-1}\left(K^{[2]}\right)\right)
\end{aligned}
$$

We may thus attach $(n+1)$ three-dimensonal cells to $K^{[2]}$ to obtain a pair $(X, \partial X)$ of CW-complexes whose relative cellular chain complex is given by

$$
D: 0 \longrightarrow(\Lambda \oplus P)^{*} \xrightarrow{\varphi^{*}} C_{2}(K, \partial X) \longrightarrow C_{1}(K, \partial X) \longrightarrow C_{0}(K, \partial X) .
$$

As $\Pi_{2}(K)=0$, the inclusion $\left(K^{[2]}, \partial X\right) \rightarrow(K, \partial X)$ extends to a map

$$
\begin{equation*}
f:(X, \partial X) \longrightarrow(K, \partial X) \tag{10}
\end{equation*}
$$

which induces an isomorphism of Π_{1}-systems. Thus we may view ω as an element of $\mathrm{H}^{1}(X ; \mathbb{Z} / 2 \mathbb{Z})$.
Proposition 6.1. $(X, \partial X)$ is a $P D^{3}$-pair realizing $\left(\left\{\kappa_{i}\right\}_{i \in J}, \omega, \mu\right)$.
Proof. We must show that
(i) $\mathrm{H}_{3}\left(X, \partial X ; \mathbb{Z}^{\omega}\right) \cong \mathbb{Z}$;
(ii) $f_{*}([X, \partial X])=\mu$ where $[X, \partial X]$ generates $\mathrm{H}_{3}\left(X, \partial X ; \mathbb{Z}^{\omega}\right)$;
(iii) $\delta_{*}[X, \partial X]=[\partial X]$ where $[\partial X]$ is the fundamental class of the $P D^{2}$-complex ∂X and δ_{*} is the connecting homomorphism of the short exact sequence $C(\partial X) \mapsto$ $C(X) \rightarrow C(X, \partial X) ;$
(iv) $\cap[X, \partial X]: \mathrm{H}^{r}\left(X ;^{\omega} \Lambda^{\omega}\right) \rightarrow \mathrm{H}_{r-3}(X, \partial X ; \Lambda)$ is an isomorphism for every $r \in \mathbb{Z}$.
(i) As $C(X, \partial X)$ is a chain complex of free Λ-modules, $\mathbb{Z}^{\omega} \otimes_{\Lambda} C(X, \partial X) \cong \operatorname{Hom}_{\Lambda}\left(C^{*}(X, \partial X), \mathbb{Z}\right)$
by Observation 3.2 and $C^{*}(X, \partial X) \cong C(X, \partial X)$. Thus

$$
\begin{aligned}
\mathrm{H}_{3}\left(X, \partial X ; \mathbb{Z}^{\omega}\right) & =\mathrm{H}_{3}\left(\mathbb{Z}^{\omega} \otimes_{\Lambda} C(X, \partial X)\right) \\
& \cong \mathrm{H}^{3}\left({ }^{(} \operatorname{Hom}_{\Lambda}\left(C^{*}(X, \partial X), \mathbb{Z}\right)\right) \\
& \cong \operatorname{ker}\left(\left(\varphi^{*}\right)^{*}\right)^{\dagger} \\
& \cong \operatorname{ker} \varphi^{\dagger}
\end{aligned}
$$

where φ^{\dagger} arises by applying $\operatorname{Hom}_{\Lambda}(-, \mathbb{Z})$. Recall that $\varphi=\left[\begin{array}{ll}\iota & 0 \\ 0 & 1\end{array}\right] \circ j \circ \pi$. As π and j are surjective, π^{\dagger} and j^{\dagger} are injective. Hence $\operatorname{ker} \varphi^{\dagger}=\operatorname{ker}\left[\begin{array}{cc}\iota^{\dagger} & 0 \\ 0 & 1\end{array}\right]=\operatorname{ker} \iota^{\dagger}$. But I is generated by elements $1-g, g \in G$, and $\psi \circ \iota(1-g)=\psi(1)-g \psi(1)=0$ for every $\psi \in C^{2}(K, \partial X)$, so that $\operatorname{ker} \iota^{\dagger}=\operatorname{Hom}_{\Lambda}(\Lambda, \mathbb{Z}) \cong \mathbb{Z}$. Thus

$$
\mathrm{H}_{3}\left(X, \partial X ; \mathbb{Z}^{\omega}\right) \cong \operatorname{ker} \varphi^{\dagger} \cong \operatorname{ker} \iota^{\dagger} \cong \mathbb{Z}
$$

(ii) $\mathrm{H}_{3}\left(X, \partial X ; \mathbb{Z}^{\omega}\right) \cong \mathbb{Z}$ is generated by $[X, \partial X]=[1 \otimes x]$ where $x=(1,0) \in \Lambda^{*} \bigoplus P^{*}=$ $(\Lambda \bigoplus P)^{*}=C_{3}(X, \partial X)$ is the projection onto the first factor. By Lemma 5.7, $\nu_{C(X, \partial X), 2}([1 \otimes x])$ is represented by

$$
F^{2}(C(X, \partial X)) \longrightarrow I,[\psi] \longmapsto \overline{\psi\left(\partial_{2}(x)\right)} .
$$

But, again identifying free Λ-modules and Λ-morphisms between them with their double dual, we obtain, for $\psi \in C^{2}(X, \partial X)=C^{2}(K, \partial X)$,

$$
\begin{aligned}
\overline{\psi\left(\partial_{2}(x)\right)} & =\overline{\psi\left(\varphi^{*}(x)\right)}=\overline{\psi \circ \varphi^{*}(x)}=\overline{\left(\varphi^{*}\right)^{*}(\psi)(x)} \\
& =x(\varphi(\psi))=x \circ\left[\begin{array}{cc}
\iota & 0 \\
0 & 1
\end{array}\right] \circ j \circ \pi(\psi)=h([\psi]) .
\end{aligned}
$$

Thus $\nu_{C(X, \partial X), 2}([X, \partial X])$ is the homotopy class of h, so that $\nu_{C(K, \partial X), 2}(\mu)=\nu_{C(X, \partial X), 2}([X, \partial X])$. Lemma 5.8 implies $\nu_{C(K, \partial X), 2}(\mu)=\nu_{C(X, \partial X), 2}([X, \partial X])=\nu_{C(K, \partial X), 2}\left(f_{*}[X, \partial X]\right)$. As $\nu_{C(K, \partial X), 2}$ is injective by Lemma 5.9 , we may conclude $\mu=f_{*}[X, \partial X]$.
(iii) The map $f:(X, \partial X) \rightarrow(K, \partial X)$ gives rise to the commutative diagram

$$
\begin{gathered}
\cdots \longrightarrow \mathrm{H}_{3}\left(C(X, \partial X) ; \mathbb{Z}^{\omega}\right) \xrightarrow{\delta_{*}} \mathrm{H}_{2}\left(C(\partial X) ; \mathbb{Z}^{\omega}\right) \longrightarrow \cdots \\
f_{*} \longrightarrow \begin{array}{r}
f_{*}=\mathrm{id} \\
\downarrow
\end{array} \\
\cdots \longrightarrow \mathrm{H}_{3}\left(C(K, \partial X) ; \mathbb{Z}^{\omega}\right) \xrightarrow{\delta_{*}} \mathrm{H}_{2}\left(C(\partial X) ; \mathbb{Z}^{\omega}\right) \longrightarrow \cdots .
\end{gathered}
$$

Hence $\delta_{*}([X, \partial X])=\delta_{*}\left(f_{*}([X, \partial X])\right)=\delta_{*}(\mu)=[\partial X]$.
(iv) First observe that the definition of $(X, \partial X)$ implies

$$
\mathrm{H}^{2}\left(X, \partial X ;{ }^{\omega} \Lambda^{\omega}\right)=\mathrm{H}_{-2}\left({ }^{\omega} \operatorname{Hom}_{\Lambda}\left(C(X, \partial X) ;{ }^{\omega} \Lambda^{\omega}\right)\right)=0 .
$$

Since $\mathrm{H}_{1}(X, \Lambda)=\mathrm{H}_{1}(C(X))=0$ as well, the homomorphism

$$
\cap[X, \partial X]: \mathrm{H}^{2}\left(X, \partial X ;{ }^{\omega} \Lambda^{\omega}\right) \rightarrow \mathrm{H}_{1}(X ; \Lambda)
$$

is an isomorphism.
As $\Lambda \otimes P$ is free, we may use the natural transformation η to identify ${ }^{\omega} \operatorname{Hom}_{\Lambda}((\Lambda \oplus$ $\left.P)^{*},{ }^{\omega} \Lambda^{\omega}\right)$ with $\Lambda \oplus P$ and $\left(\varphi^{*}\right)^{*}$ with φ. Then

$$
\begin{aligned}
\mathrm{H}^{3}\left(X, \partial X ;{ }^{\omega} \Lambda^{\omega}\right) & =H_{-3}\left({ }^{\omega} \operatorname{Hom}_{\Lambda}\left(C(X, \partial X),{ }^{\omega} \Lambda^{\omega}\right)\right) \\
& ={ }^{\omega} \operatorname{Hom}_{\Lambda}\left((\Lambda \oplus P)^{*},{ }^{\omega} \Lambda^{\omega}\right) / \operatorname{im}\left(\varphi^{*}\right)^{*} \\
& \cong(\Lambda \oplus P) / \operatorname{im} \varphi \\
& \cong \Lambda / I \cong \mathbb{Z} .
\end{aligned}
$$

Clearly, $\mathrm{H}^{3}\left(X, \partial X ;^{\omega} \Lambda^{\omega}\right)$ is generated by $\psi=(1,0) \in\left(\Lambda^{*}\right)^{*} \oplus\left(P^{*}\right)^{*}=C_{3}^{*}(X, \partial X)=C_{3}^{*}(X)$.
By Lemma 5.5,

$$
[\psi] \cap[X, \partial X]=[\psi] \cap[1 \otimes x]=\overline{\psi(x)}=1,
$$

that is, $\cap[X, \partial X]$ maps ψ to a generator of $\mathrm{H}_{0}(X ; \Lambda)$. Hence

$$
\cap[X, \partial X]: \mathrm{H}^{3}\left(X, \partial X ;{ }^{\omega} \Lambda^{\omega}\right) \rightarrow \mathrm{H}_{0}(X ; \Lambda)
$$

is an isomorphism. Since ∂X is a $P D^{2}$-complex,

$$
\cap[\partial X]: \mathrm{H}^{r}\left(\partial X ;{ }^{\omega} \Lambda^{\omega}\right) \longrightarrow \mathrm{H}_{2-r}(\partial X ; \Lambda)
$$

is an isomorphism for every $r \in \mathbb{Z}$. Thus the Cap Product Ladder (cf. 3.6) of ($X, \partial X$) with $y=[X, \partial X]$ and the Five Lemma imply that

$$
\cap[X, \partial X]: \mathrm{H}^{r}\left(X ;{ }^{\omega} \Lambda^{\omega}\right) \rightarrow \mathrm{H}_{r-3}(X, \partial X ; \Lambda)
$$

is an isomorphism for $r=2$ and $r=3$. Therefore $\cap 1 \otimes x$ gives rise to the chain homotopy equivalence

of chain complexes of left Λ-modules. Identifying $\Lambda \otimes_{\Lambda} A$ with A for left Λ-modules A and applying ${ }^{\omega} \operatorname{Hom}_{\Lambda}\left(-,{ }^{\omega} \Lambda^{\omega}\right)$ we obtain the chain homotopy equivalence

which shows that $(\cap[1 \otimes x])^{*}$ induces homology isomorphisms. But Lemma 3.4 shows that $\cap(1 \otimes x)$ induces isomorphisms in homology if and only if $(\cap 1 \otimes x)^{*}$ does. Thus

$$
\cap[X, \partial X]=\cap[1 \otimes x]: \mathrm{H}^{k}\left(X, \partial X ;{ }^{\omega} \Lambda^{\omega}\right) \longrightarrow \mathrm{H}_{3-k}(X ; \Lambda)
$$

is an isomorphism for $k=0$ and $k=1$.
The Cap Product Ladder of $(X, \partial X)$ with $y=[X, \partial X]$ and the Five Lemma imply that

$$
\cap[X, \partial X]: \mathrm{H}^{r}\left(X ;{ }^{\omega} \Lambda^{\omega}\right) \longrightarrow \mathrm{H}_{3-k}(X, \partial X ; \Lambda)
$$

is an isomorphism for $r=0$ and $r=1$ and hence for every $r \in \mathbb{Z}$.
It remains to investigate the general case where the module P in the factorization (8) of the homotopy equivalence h is finitely generated projective, but not necessarily free. Then there is a finitely generated projective Λ-module Q such that $P^{*} \oplus Q=\Lambda^{n}$ and we may attach infinitely many 3-cells to $K^{[2]} \vee\left(\vee_{i=1}^{\infty} e^{2}\right)$ in order to obtain a pair $(X, \partial X)$ of $C W$-complexes whose relative cellular chain complex is given by

$$
\begin{aligned}
D: 0 & \longrightarrow(\Lambda \otimes P)^{*} \oplus \Lambda^{\infty} \xrightarrow{\left[\begin{array}{cc}
\varphi^{*} & 0 \\
0 & 1
\end{array} C_{2}(K, \partial X) \oplus \Lambda^{\infty}\right.} \\
& \xrightarrow{\left[\begin{array}{ll}
\partial_{1} & 0
\end{array}\right]} C_{1}(K, \partial X) \xrightarrow{ } C_{0}(K, \partial X) .
\end{aligned}
$$

As $(\Lambda \oplus P)^{*} \oplus \Lambda^{\infty} \cong \Lambda^{*} \oplus P^{*} \oplus\left(Q \oplus P^{*} \oplus Q \oplus \ldots\right) \cong \Lambda^{\infty}$ is free, the proof that $(X, \partial X)$ realizes $\left(\left\{\kappa_{i}\right\}_{i \in J}, \omega, \mu\right)$ is analogous to the proof of Proposition 6.1. It only remains to verify that X is in fact dominated by a finite cell-complex.

We follow Turaev's argument for the absolute case which uses Wall's results on finiteness conditions for $C W$-complexes. Since X is a finite dimensional cell-complex (of dimension three), Theorem F together with Theorems A and E of [14] imply that in order to show that X is finitely dominated, it is sufficient to show that X is homotopy equivalent to a $C W$-complex with finite skeleta.

Consider the cellular chain complex of X,

$$
\begin{aligned}
& C(X): 0 \longrightarrow(\Lambda \otimes P)^{*} \oplus \Lambda^{\infty} \longrightarrow C_{2}(K, \partial X) \oplus \Lambda^{\infty} \oplus C_{2}(\partial X) \\
& \longrightarrow C_{1}(K, \partial X) \oplus C_{1}(\partial X) \longrightarrow C_{0}(K, \partial X) \oplus C_{0}(\partial X),
\end{aligned}
$$

and note that it is chain homotopy equivalent to the chain complex

$$
\longrightarrow C_{0}(K, \partial X) \oplus C_{0}(\partial X),
$$

where pr : $\Lambda^{n}=P^{*} \oplus Q \rightarrow Q$ and $\mathrm{pr}^{\prime}: \Lambda^{n}=P^{*} \oplus Q \rightarrow P^{*}$ are the canonical projections and $q(x)=(0,0, \operatorname{pr}(x)) \in(\Lambda \oplus P)^{*} \oplus Q$ for $x \in \Lambda^{n}$. By Theorem 2 of [15], there is a $C W-$ complex Y with cellular chain complex E which is homotopy equivalent to X. Clearly, Y has finite skeleta and we may conclude that X is finitely dominated.
Theorem 6.2. Let $\left\{\kappa_{i}: G_{i} \rightarrow G\right\}_{i \in J}$ be a $\Pi_{1}-$ system such that G is finitely presentable, G_{i} is a surface group and κ_{i} is injective for every $i \in J$. Let $(K, \partial X)$ be an EilenbergMac Lane pair of type $K\left(\left\{\kappa_{i}\right\}_{i \in J} ; 1\right)$ such that the components ∂X_{i} of ∂X are all surfaces. Take $\omega \in H^{1}(K ; \mathbb{Z} / 2 \mathbb{Z})$ and $\mu \in H_{3}\left(K, \partial X ; \mathbb{Z}^{\omega}\right)$ such that $\delta_{*} \mu=[\partial X]$ where $[\partial X]$ is the fundamental class of the $P D^{2}$-complex ∂X and δ_{*} is the connecting homomorphism of $C(\partial X) \mapsto C(X) \rightarrow C(X, \partial X)$. Then $\left(\left\{\kappa_{i}\right\}_{i \in J}, \omega, \mu\right)$ is realized by a $P D^{3}-$ pair $(X, \partial X)$ if and only if $\nu_{C(K, \partial X), 2}(\mu)$ is a class of homotopy eqivalences.

References

[1] R. Bieri and B. Eckmann, Relative Homology and Poincaré Duality for Pairs, J. Pure Applied Algebra, 13 (1978), 277-319
[2] B. Bleile, Homotopy Theory of Modules, Masters Thesis UNE 1999
[3] B. Bleile, Homotopy Classification of PD ${ }^{3}$-Pairs, Research Report, School of Mathematics, Statistics and Computer Science, UNE (2002)
[4] A. Dold, Lectures on Algebraic Topology, 2nd edition, Springer Verlag, 1980.
[5] B. Eckmann and P. Linnell, Poincaré Duality Groups of Dimension Two, II, Comment. Math. Helvetici, 58 (1983), 111-114
[6] B. Eckmann and H. Mueller Poincaré Duality Groups of Dimension Two, Comment. Math. Helvetici, 55 (1980), 510-520
[7] H. Hendriks, Obstruction Theory in 3-dimensional Topology: An Extension Theorem, J. London Math. Soc. (2), 16 (1990)
[8] P.J. Hilton, Homotopy Theory and Duality, Gordon and Breach (1963)
[9] P. Hilton and U. Stammbach, A Course in Homological Algebra, 2nd edition, Springer Verlag 1996.
[10] R.C. Kirby and L.C. Siebenmann, Foundational Essays on Topological Manifolds, Smoothings and Triangulations, Annals of Mathematics Studies, Princeton University Press (1977)
[11] E.H. Spanier, Algebraic Topology, Springer Verlag (1966)
[12] V.G. Turaev, Three Dimensional Poincaré Complexes: Homotopy Classification and Splitting, Math. USSR Sbornik, Vol. 67 (1990), No. 1
[13] C.T.C. Wall, Poincaré Complexes: I, Ann. of Math. 2nd series, 86 (1967), 213-245
[14] C.T.C. Wall, Finiteness Conditions for CW-Complexes, Ann. of Math. 2nd series, 81 (1965), 56-69
[15] C.T.C. Wall, Finiteness Conditions for CW-Complexes, II, Proc. Roy. Soc. Ser. A, 295 (1966), 129139

School of Mathematics and Statistics, The University of Sydney, Sydney, 2006 New South Wales, Australia

