REALIZATION OF HOMOTOPY INVARIANTS BY PD³–PAIRS

BEATRICE BLEILE

In Remembrance of 11th September, 1973

ABSTRACT. Up to oriented homotopy equivalence, a PD^3 -pair $(X, \partial X)$ with aspherical boundary components is uniquely determined by the Π_1 -system $\{\kappa_i : \Pi_1(\partial X_i, *) \to \Pi_1(X, *)\}_{i \in J}$, the orientation character $\omega_X \in \mathrm{H}^1(X; \mathbb{Z}/2\mathbb{Z})$ and the image of the fundamental class $[X, \partial X] \in \mathrm{H}_3(X, \partial X; \mathbb{Z}^{\omega})$ under the classifying map [3]. We call the triple $(\{\kappa_i\}_{i \in J}, \omega_X, [X, \partial X])$ the fundamental triple of the PD^3 -pair $(X, \partial X)$.

Using Peter Hilton's homotopy theory of modules, Turaev [12] gave a condition for realization in the absolute case of PD^3 -complexes X with $\partial X = \emptyset$. Given a finitely presentable group G and $\omega \in \mathrm{H}^1(G; \mathbb{Z}/2\mathbb{Z})$, he defined a homomorphism

 $\nu: \mathrm{H}_3(G; \mathbb{Z}^{\omega}) \longrightarrow [F, I]$

where F is some $\mathbb{Z}[G]$ -module, $I = \ker \operatorname{aug}$ and [A, B] denotes the group of homotopy classes of $\mathbb{Z}[G]$ -morphisms from the $\mathbb{Z}[G]$ -module A to the $\mathbb{Z}[G]$ -module B. Turaev showed that, given $\mu \in \operatorname{H}_3(G; \mathbb{Z}^{\omega})$, the triple (G, ω, μ) is relized by a PD^3 -complex X if and only if $\nu(\mu)$ is a class of homotopy equivalences of $\mathbb{Z}[G]$ -modules.

Using Turaev's construction of the homomorphism ν , we generalize the condition for realization to the case of PD^3 -pairs $(X, \partial X)$, where ∂X is not necessarily empty.

1. Outline

Section 2 is concerned with notation and the existence of Eilenberg–Mac Lane pairs. Section 3 discusses properties of the relative twisted cap product needed for the formulation of the realization condition and the proof of sufficiency in the Π_1 -injective case.

In Section 4 we briefly revise the projective homotopy category of modules over a ring, also called the stable category. The final theorem of this section plays a crucial rôle in the construction of a PD^3 -pair from given invariants.

The realization condition is formulated in Section 5 and Section 6 contains the proof of the realization theorem for the Π_1 -injective case.

2. Preliminaries

Let G be a group, let $\Lambda := \mathbb{Z}[G]$ be the integral group ring of G and let aug : $\Lambda \to \mathbb{Z}$ denote the augmentation homomorphism determined by $\operatorname{aug}(g) := 1$ for all $g \in G$. The kernel I of the augmentation homomorphism is called the augmentation ideal.

Date: 11th September, 2003.

Key words and phrases. PD^3 -pairs.

Furthermore, take $\omega \in H^1(G, \mathbb{Z}/2\mathbb{Z})$. Since $H^1(G, \mathbb{Z}/2\mathbb{Z})$ is naturally isomorphic to $Hom(G, \mathbb{Z}/2\mathbb{Z})$, the cohomology class ω determines a homomorphism from G to the group $\mathbb{Z}/2\mathbb{Z} = \{0, 1\}$. This homomorphism, in turn, gives rise to the anti-isomorphism

$$-: \Lambda \longrightarrow \Lambda; \ \lambda \longmapsto \overline{\lambda}$$

determined by

$$\overline{g} := (-1)^{\omega(g)} g^{-1} \quad \text{for } g \in G.$$

We may associate a left Λ -module with every right Λ -module and vice versa by means of the anti-isomorphism $\bar{}$. Namely, given a right Λ -module A and a left Λ -module B, define a left action on the set underlying A and a right action on the set underlying B by

$$\lambda.a := a.\lambda \quad \text{for } a \in A, \ \lambda \in \Lambda;$$
$$b.\lambda := \overline{\lambda}.b \quad \text{for } b \in B, \ \lambda \in \Lambda.$$

We denote the modules thus obtained by ${}^{\omega}\!A$ and B^{ω} respectively.

Given a short exact sequence $Q \rightarrow P \rightarrow D$ of augmented chain complexes of left Λ modules with compatible equivariant diagonals and a "twisting" $\omega \in \mathrm{H}^1(G, \mathbb{Z}/2\mathbb{Z})$, the relative twisted cap products are defined at the chain level by

$$\cap : \operatorname{Hom}_{\Lambda}(P, {}^{\omega}M)_{-k} \otimes (\mathbb{Z}^{\omega} \otimes_{\Lambda} D)_{n} \to (M \otimes_{\Lambda} D)_{n-k}$$
$$\varphi \cap (z \otimes d) := \varphi/(z \otimes \Delta_{\operatorname{rel}}(d))$$

and

$$\cap : \operatorname{Hom}_{\Lambda}(D, {}^{\omega}M)_{-k} \otimes (\mathbb{Z}^{\omega} \otimes_{\Lambda} D)_{n} \to (M \otimes_{\Lambda} P)_{n-k}$$
$$\varphi \cap (z \otimes d) := \varphi/(z \otimes \Delta'_{\operatorname{rel}}(d)).$$

for any right Λ -module M [3]. Passing to homology we obtain the relative twisted cap products

$$\cap: \mathrm{H}^{k}(P, \mathcal{M}) \otimes \mathrm{H}_{n}(D, \mathbb{Z}^{\omega}) \to \mathrm{H}_{n-k}(D, M)$$

and

$$\cap: \mathrm{H}^{k}(D, {}^{\omega}M) \otimes \mathrm{H}_{n}(D, \mathbb{Z}^{\omega}) \to \mathrm{H}_{n-k}(P, M)$$

Now let $\{\kappa_i : G_i \to G\}_{i \in J}$ be a family of group homomorphisms and let (X, Y) be a pair of CW-complexes with Π_1 -system $\{\kappa_i : G_i \to G\}_{i \in J}$. Put $\Lambda := \mathbb{Z}[G]$ and let $p : \tilde{X} \to X$ be the universal covering of X. Let C(X) denote the cellular chain complex of \tilde{X} viewed as a complex of Λ -modules. We denote the subcomplex of C(X) generated by the cells lying above Y by C(Y) and put C(X, Y) := C(X)/C(Y), so that $C(Y) \to C(X) \to C(X, Y)$ is a short exact sequence of left Λ -modules. We call C(X, Y) the relative cellular complex and $C(Y) \to C(X) \to C(X, Y)$ the short exact sequence of cellular chain complexes of the pair (X, Y).

Given a family $\{\kappa_i : G_i \to G\}_{i \in J}$ of group homomorphisms we may ask whether there is a pair (X, Y) which has Π_1 -system $\{\kappa_i : G_i \to G\}_{i \in J}$. The answer is yes, namely, for $i \in J$ take $K(G_i; 1)$ complexes Y_i and a K(G; 1) complex X. Then the family $\kappa_i : G_i \to G$ of homomorphisms determines a map $f : \coprod_{i \in J} Y_i \to X$. Let K be the mapping cylinder of f and identify $\coprod_{i \in J} Y_i$ with its image under the inclusion in K. Then (K, Y) is a pair with Π_1 -system $\{\kappa_i : G_i \to G\}_{i \in J}$.

As we do not require the homomorphisms κ_i to be injective we will adopt the following non-standard definition for the purpose of this paper.

Definition 2.1. Let $\{\kappa_i : G_i \to G\}_{i \in J}$ be a family of group homomorphisms. An Eilenberg-Mac Lane pair of type $K(\{\kappa_i : G_i \to G\}_{i \in J}; 1)$ is a pair (X, Y) such that X is an Eilenberg-Mac Lane complex of type K(G; 1), the connected components $\{Y_i\}_{i \in J}$ of Y are Eilenberg-Mac Lane complexes of type $K(G_i; 1)$ and the Π_1 -system of (X, Y) is isomorphic to $\{\kappa_i : G_i \to G\}_{i \in J}$.

In the standard definition of Eilenberg–MacLane pairs given by Bieri–Eckmann in [1] the homomorphisms κ_i are required to be injective.

An Eilenberg-Mac Lane pair of type $(G, \{G_i\}_{i \in J}; 1)$ is determined up to homotopy of pairs and we write $K(G, \{G_i\}_{i \in J}; 1)$ for any such pair. With this definition we proved the following lemma.

Lemma 2.2. Let $\{\kappa_i : G_i \to G\}_{i \in J}$ be a family of group homomorphisms. Then there is an Eilenberg-Mac Lane pair (X, Y) of type $(G, \{G_i\}_{i \in J}; 1)$.

3. PROPERTIES OF THE RELATIVE TWISTED CAP PRODUCTS

First note that, given a Λ -bimodule M, there is a left action of Λ on $M \otimes_{\Lambda} B$ and a right action of Λ on $\operatorname{Hom}_{\Lambda}(B, M)$ for any left Λ -module B defined by

 $\lambda (m \otimes b) := (\lambda m) \otimes b$ and $(\varphi \lambda)(b) := \varphi(b) \lambda$

for $\lambda \in \Lambda, b \in B, m \in M$ and $\varphi \in \operatorname{Hom}_{\Lambda}(B, M)$. In particular, $\operatorname{Hom}_{\Lambda}(B, \Lambda)$ is a right Λ -module. Thus any left Λ -module A gives rise to the functor $\operatorname{Hom}_{\Lambda}({}^{\omega}\operatorname{Hom}_{\Lambda}(-, \Lambda), A)$) from the category ${}_{\Lambda}\mathcal{M}$ of left Λ -modules to the category $\mathcal{A}b$ of abelian groups. This is related to the functor $A^{\omega} \otimes_{\Lambda} -$, by the following lemma.

Lemma 3.1. There is a natural transformation

$$\eta_B : A^{\omega} \otimes_{\Lambda} B \longrightarrow \operatorname{Hom}_{\Lambda}({}^{\omega}\operatorname{Hom}_{\Lambda}(B,\Lambda),A)$$

given by

$$\eta_B(a \otimes b) : {}^{\omega} \operatorname{Hom}_{\Lambda}(B, \Lambda) \longrightarrow A, \quad \varphi \longmapsto \varphi(b)a$$

for every left Λ -module B.

Observation 3.2. When we restrict the functors $A^{\omega} \otimes_{\Lambda} -$ and $\operatorname{Hom}_{\Lambda}({}^{\omega}\operatorname{Hom}_{\Lambda}(-,\Lambda), A)$ to the category of free left Λ -modules, the natural transformation η becomes a natural equivalence as both $A^{\omega} \otimes_{\Lambda} \Lambda^n$ and $\operatorname{Hom}_{\Lambda}({}^{\omega}\operatorname{Hom}_{\Lambda}(\Lambda^n, \Lambda), A)$ are isomorphic to A^n as abelian groups.

If M is a Λ -bimodule, then so is ${}^{\omega}M^{\omega}$. Hence ${}^{\omega}M^{\omega} \otimes_{\Lambda}B$ carries a left Λ -module structure and $\operatorname{Hom}_{\Lambda}(B, M)$ carries a right Λ -module structure for every left Λ -module B. Thus ${}^{\omega}M^{\omega} \otimes_{\Lambda}-$ and ${}^{\omega}\operatorname{Hom}_{\Lambda}({}^{\omega}\operatorname{Hom}_{\Lambda}(-, \Lambda), M)$ are functors from the category of left Λ -modules to itself.

Observation 3.3. The natural transformation η of Lemma 3.1 respects the additional left Λ -module structure when A = M is a Λ -bimodule. In other words, given a Λ -bimodule M, the natural transformation η is in fact a natural transformation from ${}^{\omega}M^{\omega}\otimes_{\Lambda}-$ to ${}^{\omega}\text{Hom}_{\Lambda}({}^{\omega}\text{Hom}_{\Lambda}(-,\Lambda),M)$ as functors from the category of left Λ -modules to itself. In particular, for $M = \Lambda$, we may identify the left Λ -module B with ${}^{\omega}\Lambda^{\omega}\otimes_{\Lambda}B$ by means of the isomorphism ${}^{\omega}\Lambda^{\omega}\otimes_{\Lambda}B \to B, \lambda\otimes b \mapsto \overline{\lambda}b$. Then η is the evaluation homomorphism from B to its double dual ${}^{\omega}\text{Hom}_{\Lambda}(-,\Lambda),\Lambda)$.

The next lemma shows that the chain map given by taking the cap product with a cycle is almost chain homotopic to its dual. To be more precise, there is a diagram involving this chain map and its dual which commutes up to chain homotopy.

Lemma 3.4. Let $1 \otimes x \in \mathbb{Z}^{\omega} \otimes_{\Lambda} D_n$ be a cycle. Then the diagram

commutes up to chain homotopy, where η is the natural equivalence of Observation 3.2 and the isomorphism θ is given by $\theta(\varphi)(\lambda \otimes d) := \overline{\lambda}\varphi(d)$ for $\varphi \in {}^{\omega}\operatorname{Hom}_{\Lambda}(D_k, \Lambda), d \in D_k$ and $\lambda \in \Lambda$.

Proof. Suppose $x = \pi(y)$ and $\Delta(y) = \sum y_i \otimes y'_j$. Take $\varphi \in \operatorname{Hom}_{\Lambda}(D_k, \Lambda)$ and $\psi \in \operatorname{Hom}_{\Lambda}(P_{n-k}, \Lambda)$. Then

$$((\cap 1 \otimes x)^*(\theta(\varphi)))(\psi) = \theta(\varphi)(\psi \cap 1 \otimes x)$$

$$= \theta(\varphi)(\psi(y_{n-k}) \otimes \pi(y'_k))$$

$$= \overline{\psi(y_{n-k})}\varphi(\pi(y'_k))$$

$$= \eta(\varphi(\pi(y'_k)) \otimes y_{n-k})(\psi)$$

$$= \eta(/(\operatorname{id} \otimes \operatorname{id} \otimes ((\pi \otimes \operatorname{id}) \circ T \circ \Delta))(\varphi \otimes 1 \otimes x))(\psi)$$

where $T: P \otimes P \to P \otimes P$ is defined by $T(\sum_{i+j=n} y_i \otimes y'_j) = \sum_{i+j=n} y'_j \otimes y_i$. But $T \circ \Delta$ is again a diagonal on P and hence (see [11], p.250) chain homotopic to Δ . As $1 \otimes x$ is a cycle, we obtain

$$(\cap 1 \otimes x)^* \circ \theta = \eta \circ (/ \circ (\mathrm{id} \otimes \mathrm{id} \otimes ((\pi \otimes \mathrm{id}) \circ T \circ \Delta)))(-\otimes 1 \otimes x)$$

$$\simeq \eta \circ (/ \circ (\mathrm{id} \otimes \mathrm{id} \otimes ((\pi \otimes \mathrm{id}) \circ \Delta)))(-\otimes 1 \otimes x)$$

$$\simeq \eta \circ (\cap 1 \otimes x).$$

Suppose that $Q \xrightarrow{\iota} P \xrightarrow{\pi} D$ is a short exact sequence of augmented chain complexes of free Λ -modules with compatible diagonals. Then $Q \xrightarrow{\iota} P \xrightarrow{\pi} D$ splits and stays split short exact when we tensor or apply the Hom_{Λ}-functor. Given a right Λ -module M, we denote the connecting homomorphisms of $\mathbb{Z}^{\omega} \otimes_{\Lambda} Q \rightarrow \mathbb{Z}^{\omega} \otimes_{\Lambda} D$, $M \otimes_{\Lambda} Q \rightarrow M \otimes_{\Lambda} P \twoheadrightarrow M \otimes_{\Lambda} D$ and "Hom_{Λ} $(D, M) \rightarrow Hom_{\Lambda}(P, M) \rightarrow Hom_{\Lambda}(Q, M)$ by δ_*, δ'_* and δ^* respectively.

Proposition 3.5. Take $x \in H^k(D, {}^{\omega}M), y \in H_n(D, \mathbb{Z}^{\omega}), z \in H^l(P, {}^{\omega}M)$ and $u \in H^{k-1}(Q, {}^{\omega}M)$. Then

(i) $(\mathrm{id} \otimes \pi)_*(x \cap y) = (\pi^* x) \cap y;$

(ii)
$$\delta'_*(z \cap y) = (\iota^* z) \cap \delta_* y;$$

(iii) $(\mathrm{id}\otimes\iota)_*(u\cap\delta_*y) = (-1)^k(\delta^*u)\cap y.$

Proof. (i) Take a cocycle $\varphi \in {}^{\omega} \text{Hom}_{\Lambda}(D_k, {}^{\omega}M)$ and a cycle $n \otimes d \in \mathbb{Z}^{\omega} \otimes_{\Lambda} D_n$ representing x and y respectively. Furthermore take $p \in P$ with $n \otimes d = n \otimes \pi(p)$ and and suppose $\Delta(p) = \sum p_i \otimes p'_i$. Then

$$\begin{aligned} (\mathrm{id}\otimes\pi)(\varphi\cap n\otimes d) &= (\mathrm{id}\otimes\pi)(\varphi/n\otimes\Delta_{\mathrm{rel}}d) = (\mathrm{id}\otimes\pi)(\varphi/n\otimes\sum\pi(p_i)\otimes p_j') \\ &= (\mathrm{id}\otimes\pi)(n\varphi(\pi(p_k))\otimes p_{n-k}') = n\varphi(\pi(p_k))\otimes\pi(p_{n-k}') \\ &= \varphi\circ\pi/n\otimes\sum p_i\otimes\pi(p_j') = \pi^*(\varphi)\cap n\otimes d. \end{aligned}$$

As $(id \otimes \pi)(\varphi \cap n \otimes d)$ represents $(id \otimes \pi)_*(x \cap y)$ and $\pi^*(\varphi) \cap n \otimes d$ represents $(\pi^*x) \cap y$, we have thus proved (i).

(ii) Take a cocycle $\varphi \in {}^{\omega} \text{Hom}_{\Lambda}(P_l, {}^{\omega}M)$ and a cycle $n \otimes d \in \mathbb{Z}^{\omega} \otimes_{\Lambda} D_n$ representing zand y respectively. Furthermore take $p \in P$ and $q \in Q$ such that $n \otimes d = n \otimes \pi(p)$ and $n \otimes \partial p = n \otimes \iota(q)$ and suppose $\Delta(q) = \sum q_i \otimes q'_i$. Then $\iota^* z \cap \delta_* y$ is represented by

$$\varphi \circ \iota / (n \otimes \Delta q) = \varphi \circ \iota / (n \otimes \sum q_i \otimes q'_j) = n \varphi(\iota(q_l)) \otimes q'_{n-l}$$

and

$$(\mathrm{id}\otimes\iota)\big(\varphi\circ\iota/(n\otimes\Delta q)\big) = n\varphi(\iota(q_l))\otimes\iota(q'_{n-l}) = \varphi/(n\otimes(\iota\otimes\iota)\Delta q) = \varphi/(n\otimes\Delta\iota(q)) = \varphi/(n\otimes\Delta\partial p) = \varphi/(n\otimes\Delta\Delta p) = \partial(\varphi/(n\otimes\Delta p))$$

as φ is a cocycle. Furthermore $z \cap y$ is represented by

$$\varphi/(n \otimes \Delta_{\mathrm{rel}} d) = \varphi/(n \otimes (\mathrm{id} \otimes \pi) \Delta p),$$

so that $\delta'_*(z \cap y)$ is represented by $n \otimes a$ where

$$(\mathrm{id}\otimes\iota)(n\otimes a) = \partial(\varphi/(n\otimes\Delta p)).$$

As $(\mathrm{id}\otimes\iota)$ is a monomorphism we may conclude that $\delta'_*(z\cap y) = \iota^*z \cap \delta_*y$.

(iii) Take $\varphi \in {}^{\omega} \operatorname{Hom}_{\Lambda}(Q_{k-1}, {}^{\omega}M)$ and $n \otimes d \in \mathbb{Z}^{\omega} \otimes_{\Lambda} D_n$ representing u and y respectively. Take $\psi \in {}^{\omega} \operatorname{Hom}_{\Lambda}(P_{k-1}, {}^{\omega}M)$ with $\varphi = \iota^* \psi$ and $\eta \in {}^{\omega} \operatorname{Hom}_{\Lambda}(D_k, {}^{\omega}M)$ with $\pi^* \eta = \partial^* \psi$. Then $\delta^* u$ is represented by η . Further, take $p \in P_n$ with $\pi p = d$ and $q \in Q_{n-1}$ with $\iota q = \partial p$, so that $\delta'_* y$ is represented by $n \otimes q$, and suppose $\Delta p = \sum p_i \otimes p'_j$ and $\Delta q = \sum q_i \otimes q'_j$. Then $(\mathrm{id}\otimes\iota)_*(u\cap\delta_*y)$ is represented by

$$(\mathrm{id}\otimes\iota)\big(\varphi\cap n\otimes q\big) = (\mathrm{id}\otimes\iota)\big(\varphi/n\otimes\Delta q\big) = (\mathrm{id}\otimes\iota)\big(\varphi/n\otimes\sum q_i\otimes q'_j\big)$$
$$= (\mathrm{id}\otimes\iota)\big(n\varphi(q_{k-1})\otimes q'_{n-k-1}\big) = n\varphi(q_{k-1})\otimes\iota(q'_{n-k-1})$$
$$= n\iota^*\psi(q_{k-1})\otimes\iota(q'_{n-k-1}) = \psi/n\otimes(\iota\otimes\iota)\Delta q$$
$$= \psi/n\otimes\Delta\iota(q) = \psi/n\otimes\Delta\partial p$$
$$= \psi/n\otimes\partial\Delta p.$$

Since / is a chain map, we obtain

$$\partial(\psi/n \otimes \Delta p) = (\partial^* \psi)/n \otimes \Delta p + (-1)^{k-1} \psi/n \otimes \partial \Delta p.$$

On the other hand

$$\partial^* \psi / n \otimes \Delta p = \pi^* \eta / n \otimes \Delta p = \pi^* \eta / n \otimes \sum p_i \otimes p'_j$$

= $n \eta(\pi(p_k)) \otimes p'_{n-k} = \eta / n \otimes \Delta'_{rel} d$
= $\eta \cap n \otimes d$,

which shows that $\partial^* \psi/n \otimes \Delta p$ represents $(\delta^* u) \cap y$. As $\partial(\psi/n \otimes \Delta p)$ is a boundary, we may conclude that

$$(\mathrm{id}\otimes\iota)_*(u\cap\delta_*y)=(-1)^k(\delta^*u)\cap y.$$

Proposition 3.5 allows us to prove commutativity of a diagram, also called a cap product ladder, which involves long exact homology and co-homology sequences arising from $Q \rightarrow P \rightarrow D$ and the cap product with a homology class $y \in H_n(D; \mathbb{Z}^{\omega})$.

Theorem 3.6 (Cap Product Ladder). Let $Q \xrightarrow{\iota} P \xrightarrow{\pi} D$ be a short exact sequence of augmented chain complexes of free Λ -modules with compatible diagonals. Then, given $y \in H_n(D; \mathbb{Z}^{\omega})$, the diagram

commutes, up to sign.

Proof. Given $x \in \mathrm{H}^r(D, {}^{\omega}M)$, Property (i) of Proposition 3.5 implies $(\pi^*x) \cap y = (\mathrm{id} \otimes \pi)_*(x \cap y)$. *y*). For $z \in \mathrm{H}^r(P, {}^{\omega}M)$ we have $\iota^*z \cap \delta^*y = \delta'_*(z \cap y)$ by (ii). Finally, (iii) yields $(\mathrm{id} \otimes \iota)_*(u \cap \delta_*y) = (-1)^k(\delta^*u) \cap y$ for $u \in \mathrm{H}^r(Q, {}^{\omega}M)$. Hence the first two squares commute and the third commutes up to sign.

4. PROJECTIVE HOMOTOPY THEORY OF MODULES

In this section Λ may be any ring with unit. Unless otherwise specified, A, B, \ldots will denote left Λ -modules and φ, ψ, \ldots will denote Λ -morphisms.

Definition 4.1. The Λ -morphism $\varphi : A \to B$ is nullhomotopic, written as $\varphi \simeq 0$, if there is a commutative diagram

where P is a projective Λ -module.

As every projective Λ -module is a direct summand of a free Λ -module the existence of Diagram (1) is equivalent to the existence of a diagram of the form

If $\varepsilon : PA \to A$ is an epimorphism and PA is projective then PA is called a path space over A (in analogy to topological homotopy theory). Since the category of left Λ -modules has enough projectives, every Λ -module A has a path space. It is not difficult to show that a Λ -morphism $\varphi : A \to B$ is nullhomotopic if and only if it factors through a given path space $\varepsilon : PB \to B$ of B, that is, if and only if there is a commutative diagram

Thus, if $\varphi : A \to B$ factors through one particular path space of B, it factors through any path space of B. Hence

$$Nhom_{\Lambda}(A, B) := \{ \varphi : A \to B \mid \varphi \simeq 0 \}$$

is a subgroup of $\text{Hom}_{\Lambda}(A, B)$.

Definition 4.2. Two Λ -morphisms φ and ψ are homotopic if $\varphi - \psi \simeq 0$. Furthermore the group

$$[A, B] := \operatorname{Hom}_{\Lambda}(A, B) / \operatorname{Nhom}_{\Lambda}(A, B)$$

of homotopy classes of Λ -morphisms is called the homotopy group from A to B.

It is not difficult to show that homotopy respects composition of Λ -morphisms. Thus we obtain a category, called the projective homotopy category (PHOM) or the stable category whose objects are left Λ -modules and whose morphisms are homotopy classes of Λ -morphisms. Furthermore [A, B] is functorial in both variables and preserves direct products.

As in topological homotopy theory, we say that $\varphi : A \to B$ is a homotopy equivalence if and only if there is a Λ -morphism $\psi : B \to A$ such that $\varphi \psi \simeq id_B$ and $\psi \varphi \simeq id_A$. If there is a homotopy equivalence $\varphi : A \to B$ then A and B are said to be homotopy equivalent and we denote the set of homotopy equivalences from A to B by Equi(A, B).

Lemma 4.3. A Λ -module A is projective if and only if [X, A] = 0 for every Λ -module X.

Proof. We only need to show that [X, A] = 0 for every Λ -module X implies that A is projective. So assume that [X, A] = 0 for every Λ -module X. Then [A, A] = 0 which implies $\mathrm{id}_A \simeq 0$, that is, id_A factors through a path space $PA \twoheadrightarrow A$ of A. Thus there is a commutative diagram

Now let $\varphi : A \to B$ be a Λ -morphism and let $\varepsilon : C \to B$ be an epimorphism. Since PA is projective there is a Λ -morphism $\psi : PA \to C$ such that $\varepsilon \psi = \varphi \pi$. Hence $\varepsilon \psi \iota = \varphi \pi \iota = \varphi$, showing that A is projective.

Given a path space $\varepsilon : PB \twoheadrightarrow B$, any $\varphi : A \to B$ factors as

$$A \xrightarrow{\iota} A \oplus PB \xrightarrow{\varphi'} B,$$

where φ' is defined by $\varphi'(a, p) = \varphi(a) + \varepsilon(p)$ for $a \in A$ and $p \in PB$.

The statement as well as the proof of the following theorem are dual to Theorem 13.7 in [8] and its proof.

Theorem 4.4. A homotopy equivalence $\varphi : A \to B$ factors as

$$A \xrightarrow{\iota} A \oplus P \xrightarrow{\tilde{\varphi}} B \oplus Q \xrightarrow{\pi} B$$

where P and Q are projective and ι and π are the natural inclusion and projection respectively.

Proof. First assume that φ is an epimorphism. Let $\psi : B \to A$ be a homotopy inverse of φ and let $\varepsilon : PA \twoheadrightarrow A$ be a path space of A. Then $\varphi \varepsilon : PA \twoheadrightarrow B$ is a path space of B and hence $\varphi \psi - \mathrm{id}_B \simeq 0$ implies that there is a Λ -morphism $\eta : B \to PA$ such that the

diagram

commutes. Put $\tilde{\psi} := \psi - \varepsilon \eta$. Then $\tilde{\psi} \simeq \psi$ and

$$\varphi \psi = \varphi (\psi - \varepsilon \eta) = \varphi \psi - \varphi \varepsilon \eta = \varphi \psi - \varphi \psi + \mathrm{id}_B = \mathrm{id}_B.$$

Hence $\tilde{\psi}$ is a monomorphism and the short exact sequence

$$B \xrightarrow{\tilde{\psi}} A \xrightarrow{\pi'} \operatorname{coker} \tilde{\psi}$$

splits so that $A = \tilde{\psi}(B) \oplus Q$ where $Q = \operatorname{coker} \tilde{\psi}$. In order to show that Q is projective it is enough to show that [X, Q] = 0 for all X. So take any Λ -module X. Then

$$[X,B] \xrightarrow{\psi_*} [X,\tilde{\psi}(B) \oplus Q] \xrightarrow{} [X,\tilde{\psi}(B)] \oplus [X,Q] \xrightarrow{} [X,Q]$$

is onto. But what does this homomorphism do to the homotopy class of a Λ -morphism $\nu: X \to B$?

$$[\nu] \mapsto [\psi\nu] = [\tilde{\psi}\nu] \mapsto [\pi'\tilde{\psi}\nu] = 0.$$

Hence [X, Q] = 0 showing that Q is projective.

Thus φ factors as

$$A = \tilde{\psi}(B) \oplus Q \longrightarrow B \oplus Q \longrightarrow B.$$

Given an arbitrary homotopy equivalence $\varphi: A \to B$ we obtain

1		
		L
		L

Observation 4.5. If the Λ -modules A and B in Theorem 4.4 are finitely generated, then the projective Λ -modules P and Q are also finitely generated. Thus there is a finitely generated projective Λ -module \tilde{P} such that $P \oplus \tilde{P} \cong \Lambda^n$ for some $n \in \mathbb{N}$. Hence φ factors as

$$A \rightarrowtail A \oplus (P \oplus \tilde{P}) \longrightarrow B \oplus (Q \oplus \tilde{P}) \longrightarrow B$$

or

 $A {\rightarrowtail} A \oplus \Lambda^n {\longrightarrow} B \oplus \tilde{Q} {\longrightarrow} B$

where $\tilde{Q} = Q \oplus \tilde{P}$ is finitely generated projective.

5. Formulation of the Realization Condition

We have seen in [3] that, up to oriented homotopy equivalence, a PD^3 -pair $(X, \partial X)$ with aspherical boundary components is uniquely determined by the Π_1 -system { $\kappa_i : \Pi_1(\partial X_i, *) \to \Pi_1(X, *)$ }_{$i \in J$}, the orientation character $\omega_X \in \mathrm{H}^1(X; \mathbb{Z}/2\mathbb{Z})$ and the image of the fundamental class $[X, \partial X] \in \mathrm{H}_3(X, \partial X; \mathbb{Z}^{\omega})$ under the classifying map

 $c: (X, \partial X) \longrightarrow K(\{\kappa_i\}_{i \in J}; 1).$

In other words, the triple $(\{\kappa_i\}_{i\in J}, \omega_X, c_*([X, \partial X]))$ forms a complete set of homotopy invariants for PD^3 -pairs, also called the *fundamental triple* of $(X, \partial X)$. We say that $(X, \partial X)$ realizes $(\{\kappa_i\}_{i\in J}, \omega, \mu)$.

Question 5.1. Given a Π_1 -system $\{\kappa_i : G_i \to G\}_{i \in J}, \omega \in \mathrm{H}^1(G; \mathbb{Z}/2\mathbb{Z})$ and a homology class $\mu \in \mathrm{H}_3(G, \{G_i\}_{i \in J}; \mathbb{Z}^{\omega})$, is there a PD^3 -pair $(X, \partial X)$ realizing $(\{\kappa_i\}_{i \in J}, \omega, \mu)$?

Turaev [12] gave a condition for realization in the absolute case of PD^3 -complexes X with $\partial X = \emptyset$. Given a finitely presentable group G and $\omega \in H^1(G; \mathbb{Z}/2\mathbb{Z})$, he defined a homomorphism

$$\nu: \mathrm{H}_3(G; \mathbb{Z}^{\omega}) \longrightarrow [F, I]$$

where F is some $\mathbb{Z}[G]$ -module, $I = \ker \operatorname{aug}$ and [A, B] denotes the group of homotopy classes of $\mathbb{Z}[G]$ -morphisms from the $\mathbb{Z}[G]$ -module A to the $\mathbb{Z}[G]$ -module B. Turaev showed that, given $\mu \in \operatorname{H}_3(G; \mathbb{Z}^{\omega})$, the triple (G, ω, μ) is relized by a PD^3 -complex X if and only if $\nu(\mu)$ is a class of homotopy equivalences of $\mathbb{Z}[G]$ -modules.

Using Turaev's construction of the homomorphism ν , we generalize the condition for realization to the case of PD^3 -pairs $(X, \partial X)$, where ∂X is not necessarily empty.

First we introduce two functors from the category of left Λ -modules to itself, where Λ is the integral group ring of the group H.

We take $\omega \in \mathrm{H}^1(H, \mathbb{Z}/2\mathbb{Z})$ and use the notation of Chapter 1.

Given a chain complex $\ldots \to C_{r+1} \xrightarrow{\partial_r} C_r \to \ldots$ of left Λ -modules, put

$$G_r(C) := \operatorname{coker} \partial_r = C_r / \operatorname{im} \partial_r.$$

If $f: C \to D$ is a chain map then $f_r(\operatorname{im}\partial_r^C) \subseteq \operatorname{im}\partial_r^D$. Hence there is an induced Λ -morphism of cokernels $G_r(f): G_r(C) \to G_r(D)$ such that the diagram

commutes. It is not difficult to check that $G = G_*$ is a functor from the category of chain complexes of left Λ -modules to itself.

Following Turaev we write C^* for "Hom_{Λ} (C, Λ) and compose the two functors G and "Hom_{Λ} $(-, \Lambda)$ to obtain the functor F (see [12] p.265) given by

$$F^{r}(C) = G_{-r}(C^{*}) = C^{r}/\mathrm{im}\partial_{r-1}^{*}.$$
 (2)

The following lemma allows us to pass from the category of chain complexes of left Λ -modules to the stable category, that is, the category of left Λ -modules and homotopy classes of Λ -morphisms.

Lemma 5.2. Let $f, g : C \to D$ be chain homotopic maps of chain complexes over Λ . If D_n is projective, then $G_n(f) \simeq G_n(g)$ as Λ -morphisms.

Proof. Let χ be a chain homotopy from f to g. Observe that, for all $n \in \mathbb{Z}$, the boundary operators ∂_{n-1}^{C} and ∂_{n-1}^{D} factor as

respectively. Then

$$\sigma_{n-1}^{D}(f_{n} - g_{n}) = \sigma_{n-1}^{D}(\chi_{n-1}\partial_{n-1}^{C} + \partial_{n}^{D}\chi_{n})$$

= $\sigma_{n-1}^{D}\chi_{n-1}\rho_{n-1}^{C}\sigma_{n-1}^{C} + \sigma_{n-1}^{D}\partial_{n}^{D}\chi_{n}$
= $\sigma_{n-1}^{D}\chi_{n-1}\rho_{n-1}^{C}\sigma_{n-1}^{C}$

Thus the diagram

$$\begin{array}{c|c} C_{n+1} & \xrightarrow{f_{n+1}-g_{n+1}} & D_{n+1} \\ \hline \partial_n^C & & & \partial_n^D \\ C_n & & & & & \\ & & & & & \\ \sigma_{n-1}^C & & & & & \\ \sigma_n(C) & \xrightarrow{\rho_{n-1}^C} & C_{n-1} & \xrightarrow{\chi_{n-1}} & D_n & \xrightarrow{\sigma_{n-1}^D} & \\ \end{array}$$

commutes. As the induced map of cokernels is uniquely determined, this implies

$$G_n(f) - G_n(g) = G_n(f - g) = \sigma_{n-1}^D \chi_{n-1} \rho_{n-1}^C \simeq 0$$

as D_n is projective.

Corollary 5.3. Let $f : C \to D$ be a homotopy equivalence of chain complexes over Λ . If C_n and D_n are projective, then $G_n(f)$ is a homotopy equivalence of Λ -modules.

Corollary 5.3 is crucial for the formulation of the condition for realization.

Observation 5.4. Lemma 5.2 shows that we may view G_n as a functor from the category of chain complexes of projective left Λ -modules and homotopy classes of chain maps to the stable category.

Lemma 5.5. Let (X, Y) be a pair of CW-complexes with X connected and $\omega \in H^1(X; \mathbb{Z}/2\mathbb{Z})$ such that $H_n(X, Y; \mathbb{Z}^{\omega}) \cong \mathbb{Z}$ with generator $[1 \otimes x]$. Then there is a chain $w_1 \in C_1(X)$ such that the Λ -morphism $\cap 1 \otimes x : C^*(X, Y) \to {}^{\omega} \Lambda^{\omega} \otimes_{\Lambda} C(X) \cong C(X)$ is given by

$$\varphi \cap 1 \otimes x = \varphi(x) \cdot (1 + \partial_0 w_1)$$

for every cocycle $\varphi \in C^*(X,Y)$, where we identify $\lambda \otimes c \in {}^{\omega}\Lambda^{\omega} \otimes_{\Lambda} C(X)$ with $\overline{\lambda} . c \in C(X)$.

Proof. Take $y \in C_n(X)$ with $\pi(y) = x$, where $\pi : C(X) \twoheadrightarrow C(X, \partial X)$ is the natural projection, and assume $\Delta y = \sum y_i \otimes z_{n-i}$ with $y_i, z_i \in C_i(X)$. Then $(\mathrm{id} \otimes \varepsilon) \Delta(y) = y$ implies $y_n.\varepsilon(z_0) = y$. As $[1 \otimes x]$ is a generator, x and thus y are indivisible so that $y = y_n$ and $\varepsilon(z_0) = 1$ up to sign. As X is connected, we may assume $C_0(X) = \Lambda$ and identify $\mathrm{im}\partial_1$ with $I = \ker \varepsilon$. Then $\varepsilon(z_0) = 1$ implies $z_0 = 1 + w_0$ where $w_0 \in I$, and hence $z_0 = 1 + \partial_0 w_1$ for some $w_1 \in C_1(X)$. Hence

$$\varphi \cap 1 \otimes x = \varphi/1 \otimes (\pi \otimes \mathrm{id}) (\sum y_i \otimes z_{n-i}) = \varphi(\pi(y_n)) \otimes z_0$$
$$= \overline{\varphi(\pi(y_n))} \cdot z_0 = \overline{\varphi(x)} \cdot (1 + \partial_0 w_1) \cdot \Box$$

Now let $(X, \partial X)$ be a PD^3 -pair and take a cycle $1 \otimes x \in \mathbb{Z}^{\omega} \otimes_{\Lambda} C_3(X, \partial X)$ representing $[X, \partial X]$. Then

$$\cap 1 \otimes x : C^*(X, Y) \to^{\omega} \Lambda^{\omega} \otimes_{\Lambda} C(X) \cong C(X)$$

is a chain homotopy equivalence. As both $C_2^*(X, Y)$ and $C_1(X)$ are free and hence projective, Corollary 5.3 implies that

$$G_{-2}(\cap 1 \otimes x) : F^2(C(X, \partial X)) = G_{-2}(C^*(X, Y)) \to G_1(C(X))$$

is a homotopy equivalence of Λ -modules.

Since C(X) is the cellular chain complex of the universal covering space of X, $H_1(C(X)) = 0$ so that

$$G_1(C(X)) = C_1(X)/\operatorname{im}\partial_1 = C_1(X)/\operatorname{ker}\partial_0 \cong \operatorname{im}\partial_0 = \operatorname{ker}\operatorname{aug} = I,$$

that is, there is an isomorphism

$$\vartheta: G_1(C(X)) \to I$$
 given by $\vartheta([c]) := \partial_0(c)$

Then $\vartheta \circ G_{-2}(\cap 1 \otimes x)$ is also a homotopy equivalence of Λ -modules, and the fact that $\cap 1 \otimes x$ is a chain map together with Lemma 5.5 yields

$$\begin{aligned} (\vartheta \circ G_{-2}(\cap 1 \otimes x))([\varphi]) &= \vartheta([\varphi \cap 1 \otimes x]) = \partial_0(\varphi \cap 1 \otimes x) \\ &= (\partial_2^* \varphi) \cap 1 \otimes x = \overline{(\partial_2^* \varphi)(x)}.(1 + \partial_0 w_1) \\ &= \overline{(\partial_2^* \varphi)(x)} + \overline{(\partial_2^* \varphi)(x)} \partial_0 w_1 \end{aligned}$$

for $\varphi \in C_2^*(X, \partial X)$ and some $w_1 \in C_1(X)$. Observe that the Λ -morphism

$$F^2(C(X,\partial X)) \longrightarrow I, \ [\varphi] \longmapsto \overline{(\partial_2^*\varphi)(x)}\partial_0 w_1$$

is null-homotopic since it factors through the Λ -module $C_1(X)$, namely as

$$[\varphi] \longmapsto \overline{(\partial_2^* \varphi)(x)} w_1 \longmapsto \partial_0(\overline{(\partial_2^* \varphi)(x)} w_1) = \overline{(\partial_2^* \varphi)(x)} \partial_0 w_1.$$

Thus

$$F^{2}(C(X,\partial X)) \longrightarrow I, \ [\varphi] \longmapsto \overline{(\partial_{2}^{*}\varphi)(x)}$$

$$(3)$$

is a homotopy equivalence of Λ -modules.

Now attach cells of dimension three and larger to $(X, \partial X)$ in order to obtain an Eilenberg-Mac Lane pair $(K, \partial X)$ of type $K(\{\kappa_i : \Pi_1(\partial X_i, *) \to \Pi_1(X, *)\}_{i \in J}; 1)$. Then the classifying map $\iota : (X, \partial X) \to (K, \partial X)$ is cellular and we may identify the cellular chain complexes of the pair $(X, \partial X)$ with their image under the chain map induced by ι . In particular, we obtain $C_i(K) = C_i(X), C_i(K, \partial X) = C_i(X, \partial X)$ for i = 0, 1, 2 and $[1 \otimes x] = [X, \partial X] = \iota_*([X, \partial X])$. Thus (3) yields

Lemma 5.6. The Λ -morphism

$$F^2(C(K,\partial X)) \longrightarrow I, \ [\varphi] \longmapsto \overline{(\partial_2^*\varphi)(x)}.$$
 (4)

is a homotopy equivalence of Λ -modules.

Given a chain complex C of free left $\Lambda-\mathrm{modules},$ Turaev constructed a group homomorphism

$$\nu_{C,r}: \mathrm{H}_{r+1}(\mathbb{Z}^{\omega} \otimes_{\Lambda} C) \longrightarrow [F^r, I]$$

such that $\nu_{C(X,\partial X),2}([1\otimes x]) = \nu_{C(K,\partial X),2}(\iota_*([X,\partial X]))$ is the homotopy class of the homotopy equivalence (4).

We revise Turaev's construction and some of its properties. Given a chain complex C of free left Λ -modules, note that \overline{I} is the kernel of the Λ -morphism $\Lambda \to \mathbb{Z}^{\omega} \otimes_{\Lambda} \Lambda$, $\lambda \mapsto 1 \otimes \lambda$, so that $\overline{I} \to \Lambda \twoheadrightarrow \mathbb{Z}^{\omega} \otimes_{\Lambda} \Lambda$ is short exact. As C is free, the sequence $\overline{I}C \to C \twoheadrightarrow \mathbb{Z}^{\omega} \otimes_{\Lambda} C$ of chain complexes is also short exact, yielding the connecting homomorphism

$$\delta: \mathrm{H}_{r+1}(\mathbb{Z}^{\omega} \otimes_{\Lambda} C) \longrightarrow \mathrm{H}_{r}(IC).$$
(5)

Identifying $c \in C_r$ with $1 \otimes c \in \Lambda^{\omega} \otimes_{\Lambda} C$, the natural equivalence η of Lemma 3.1 yields the Λ -morphism

$$\eta: C_r \longrightarrow (C_r^*)^*, c \longmapsto \eta(c)$$

given by

$$\eta(c)(\varphi) = \overline{\varphi(c)}.$$

For a cycle $c \in C_r$ we obtain

$$\eta(c)(\partial_{r-1}^*\varphi) = \overline{(\partial_{r-1}^*\varphi)(c)} = \varphi(\partial_{r-1}c)) = 0$$

for every $\varphi \in C^*_{r-1}$. Thus $\eta(c)$ factors through the cokernel $F^r(C)$ of ∂^*_{r-1} , that is, there is a Λ -morphism $\eta(c)$ such that

commutes. If $c = \overline{\lambda} \cdot d \in \overline{I}C$ is a cycle with $\lambda \in I$ and $d \in C_r$, then

$$\operatorname{aug}(\eta(c)([\varphi])) = \operatorname{aug}(\overline{\varphi(c)}) = \operatorname{aug}(\overline{\varphi(\overline{\lambda}.d)})$$
$$= \operatorname{aug}(\overline{\varphi(d)}.\lambda) = \overline{\varphi(d)}\operatorname{aug}(\lambda)$$
$$= 0$$

for every $[\varphi] \in F^r(C)$. Hence the image of $\eta(c)$ is contained in I and there is a well-defined Λ -morphism

$$\hat{\eta(c)}: F^r(C) \longrightarrow I, \ [\varphi] \longmapsto \overline{\varphi(c)}.$$

Given a boundary $c = \partial_r(\overline{\mu}.e) \in \overline{I}C$ with $\mu \in I$ and $e \in C_{r+1}$, the Λ -morphism $\eta(c)$ is null-homotopic since it factors through Λ , namely as

$$F^r(C) \longrightarrow \Lambda \longrightarrow I$$

 $\lambda \longmapsto \overline{\mu}.\lambda.$

Thus the homotopy class of $\eta(c)$ depends on the homology class of the cycle $c \in \overline{I}C$ only and the homomorphism

$$H(\overline{I}C) \longrightarrow [F^{r}(C), I], [c] \longmapsto [\eta(c)]$$
(6)

is well–defined. Composing (6) with the connecting homomorphism (5), Turaev obtains the homomorphism

$$\nu_{C,r}: \mathcal{H}_{r+1}(\mathbb{Z}^{\omega} \otimes_{\Lambda} C) \longrightarrow [F^r(C), I]$$
(7)

given by

$$\nu_{C,r}([1 \otimes c]) := [\eta(c)].$$

Lemma 5.7. Given $[1 \otimes x] \in H_{r+1}(\mathbb{Z}^{\omega} \otimes_{\Lambda} C)$ and $[\varphi] \in F^r(C)$, the homotopy class $\nu_{C,r}([1 \otimes x])$ is represented by the Λ -morphism

 $F^r(C) \longrightarrow I, \ [\varphi] \longmapsto \overline{\varphi(\partial_r(x))}.$

Proof. Take $[1 \otimes x] \in H_{r+1}(\mathbb{Z}^{\omega} \otimes_{\Lambda} C)$ and $[\varphi] \in F^r(C)$. Then $\delta([1 \otimes x]) = \partial_r x$ and $\nu_{C,r}([1 \otimes x])$ is represented by

$$\eta(\hat{\partial}_r x): F^r(C) \longrightarrow I, \ [\varphi] \longmapsto \overline{\varphi(\partial_r(x))}.$$

Lemma 5.8. Let $f: C \to D$ be a chain map of chain complexes of Λ -modules. Then the diagram

commutes for every $\mu \in H_{r+1}(\mathbb{Z}^{\omega} \otimes_{\Lambda} C)$.

Proof. Take
$$\mu \in H_{r+1}(\mathbb{Z}^{\omega} \otimes_{\Lambda} C)$$
 and $x \in C_r$ with $\mu = [1 \otimes x]$. Then, for $[\varphi] \in F^r(C)$,

$$\nu_{C,r}(\mu) \left(F^r(f)([\varphi]) \right) = \nu_{C,r}(\mu) \left([\varphi \circ f] \right) = \overline{\varphi \circ f(\partial_r(x))}$$
$$= \overline{\varphi(\partial_r(f(x)))} = \nu_{D,r}(f_*\mu) ([\varphi]).$$

Lemma 5.9. Suppose that C is a chain complex of free left Λ -modules such that C_r is finitely generated and $H_r(C) = H_{r+1}(C) = 0$. Then $\nu_{C,r}$ is an isomorphism.

Proof. Cf. [12], Lemma 2.5.

We are now able to provide a necessary condition for a Π_1 -system $\{\kappa_i : G_i \to G\}_{i \in J}, \omega \in H^1(G; \mathbb{Z}/2\mathbb{Z})$ and $\mu \in H_3(G, \{G_i\}_{i \in J}; \mathbb{Z}^{\omega})$ to be realized by a PD^3 -pair $(X, \partial X)$.

Theorem 5.10. Given a Π_1 -system $\{\kappa_i : G_i \to G\}_{i \in J}, \omega \in H^1(G; \mathbb{Z}/2\mathbb{Z}) \text{ and } \mu \in H_3(G, \{G_i\}_{i \in J}; \mathbb{Z}^{\omega}), \text{ let } (K, \partial K) \text{ be an Eilenberg-Mac Lane pair of type } K(\{\kappa_i\}_{i \in J}; 1).$ If $(\{\kappa_i\}_{i \in J}, \omega, \mu)$ is the fundamental triple of a PD^3 -pair, then $\nu_{C(K,\partial K),2}(\mu)$ is a homotopy equivalence of Λ -modules.

Proof. Take a Π_1 -system $\{\kappa_i : G_i \to G\}_{i \in J}, \omega \in \mathrm{H}^1(G; \mathbb{Z}/2\mathbb{Z}), \mu \in \mathrm{H}_3(G, \{G_i\}_{i \in J}; \mathbb{Z}^{\omega})$ and suppose $(\{\kappa_i\}_{i \in J}, \omega, \mu)$ is the fundamental triple of the PD^3 -pair $(X, \partial X)$. Attaching cells of dimension three and larger to X we obtain an Eilenberg-Mac Lane pair $(K, \partial X)$ of type $K(\{\kappa_i\}_{i \in J}; 1)$. Take $1 \otimes x \in \mathbb{Z}^{\omega} \otimes_{\Lambda} C_3(X, \partial X) \subseteq \mathbb{Z}^{\omega} \otimes_{\Lambda} C_3(K, \partial X)$ with $[1 \otimes x] = \mu$. Then

$$F^2(C(K,\partial X)) \longrightarrow I, \ [\varphi] \longmapsto \overline{\varphi(\partial_2(x))}$$

is a homotopy equivalence of Λ -modules by Lemma 5.6 and represents $\nu_{C(K,\partial X),2}(\mu)$ by Lemma 5.7.

It remains to show that $\nu_{C(L,\partial L),2}(\mu)$ is a homotopy equivalence of Λ -modules for any Eilenberg-Mac Lane pair $(L,\partial L)$. But given any Eilenberg-Mac Lane pair $(L,\partial L)$ of type $K(\{\kappa_i\}_{i\in J}; 1)$, there is a homotopy equivalence $f : (K,\partial X) \to (L,\partial L)$ of pairs of CW complexes inducing a chain homotopy equivalence $g : C(K,\partial X) \longrightarrow C(L,\partial L)$. Hence $g^* : C^*(K,\partial X) \longrightarrow C^*(L,\partial L)$ is also a chain homotopy equivalence and Corollary 5.3 implies that $F^2(g) = G_{-2}(g^*)$ is a homotopy equivalence of Λ -modules. By Lemma 5.8, the diagram

$$\begin{array}{c|c} F^2(C(L,\partial L)) \xrightarrow{\nu_{C(L,\partial L),2}(f_*\mu)} & I \\ F^2(g) & & \\ F^2(C(K,\partial K)) \xrightarrow{\nu_{C(K,\partial K),2}(\mu)} & I \end{array}$$

commutes and hence $\nu_{C(L,\partial L),2}(f_*\mu)$ is a homotopy equivalence of Λ -modules if and only if $\nu_{C(K,\partial K),2}(\mu)$ is one.

In the final section of this paper we show that the necessary condition of Theorem 5.10 is sufficient in the Π_1 -injective case.

6. The Π_1 -Injective Case

For $\{\kappa_i : G_i \to G\}_{i \in J}$ to be the Π_1 -system of a PD^3 -pair $(X, \partial X)$, the groups G_i must be surface groups for all $i \in J$ as the components of ∂X are PD^2 -complexes by definition and thus homotopy equivalent to closed surfaces. Furthermore, G must be finitely presentable, as X must, by definition, be dominated by a finite CW complex. Now we restrict attention

to Π_1 -systems $\{\kappa_i : G_i \to G\}_{i \in J}$ which are Π_1 -injective, that is, κ_i is injective for every $i \in J$.

So let $\{\kappa_i : G_i \to G\}_{i \in J}$ be a Π_1 -system such that G is finitely presentable, G_i is a surface group and κ_i is injective for every $i \in J$. Then there is an Eilenberg-Mac Lane pair $(K, \partial X)$ of type $K(\{\kappa_i\}_{i \in J}; 1)$ and by the mapping cylinder construction we may assume that the components ∂X_i of ∂X are all surfaces. Since G is finitely presentable, we may also assume that K has finite 2-skeleton $K^{[2]}$.

Take $\omega \in \mathrm{H}^1(K; \mathbb{Z}/2\mathbb{Z})$ and $\mu \in \mathrm{H}_3(K, \partial X; \mathbb{Z}^{\omega})$ such that $\nu_{C(K,\partial X),2}(\mu)$ is a class of homotopy equvalences and $\delta_*\mu = [\partial X]$ where $[\partial X]$ is the fundamental class of the PD^2 complex ∂X and δ_* is the connecting homomorphism of $C(\partial X) \to C(K) \to C(K, \partial X)$.

Following Turaev's construction in the absolute case, we now construct a PD^3 -pair realizing $(\{\kappa_i\}_{i\in J}, \omega, \mu)$.

Since we have assumed that K has finite 2-skeleton $K^{[2]}$, the Λ -modules $C_2(K, \partial X)$ and thus $F^2(C(K, \partial X))$ are finitely generated. Let $h : F^2(C(K, \partial X)) \to I$ be a Λ -morphism representing $\nu_{C(K,\partial X),2}(\mu)$. Then h is a homotopy equivalence of Λ -modules and thus factors as

$$F^{2}(C(K,\partial X)) \rightarrowtail F^{2}(C(K,\partial X)) \oplus \Lambda^{m} \rightarrowtail I \oplus P \longrightarrow I$$

where P is finitely generated and projective, by Theorem 4.4.

Let $B = (e^0 \vee e^2) \cup e^3$ be a three dimensional ball. If we replace K by $K \vee (\vee_{i=1}^m B)$, then $K^{[2]}$ is replaced by $K^{[2]} \vee (\vee_{i=1}^m e^2)$ and $F^2(C(K, \partial X))$ is replaced by $F^2(C(K, \partial X)) \oplus \Lambda^m$. Thus we may assume without loss of generality that h factors as

$$F^2(C(K,\partial X)) \xrightarrow{j} I \oplus P \longrightarrow I$$
 (8)

where P is finitely generated and projective.

First we consider the case where P is free, that is, $P \cong \Lambda^n$ for some $n \in \mathbb{N}$. Let $\pi : C^2(K, \partial X) \to F^2(C(K, \partial X))$ and $\iota : I \to \Lambda$ be the natural projection and inclusion respectively and use the natural equivalence η to identify $(A^*)^*$ with A for a left Λ -module A. Consider the Λ -morphism

$$\varphi: C^2(K, \partial X) \xrightarrow{\pi} F^2(C(K, \partial X)) \xrightarrow{j} I \oplus P \xrightarrow{\begin{bmatrix} \iota & 0 \\ 0 & 1 \end{bmatrix}} \Lambda \oplus P.$$
(9)

It follows from the definition of φ that $\varphi \circ \partial_1^* = 0$. Hence $(\partial_1 \circ \varphi^*)^* = \varphi \circ \partial_1^* = 0$ so that $\operatorname{im} \varphi^* \subseteq \ker \partial_1$.

Let $p: \tilde{K} \to K$ be the universal covering. Since κ_i is injective for every $i \in J$, the components of $p^{-1}(\partial X)$ are universal covering spaces of Eilenberg–Mac Lane complexes, so that $H_2(p^{-1}(\partial X)) = H_1(p^{-1}(\partial X)) = 0$. Thus the long exact homology sequence of the pair $(p^{-1}(K^{[2]}), p^{-1}(\partial X))$ yields

$$H_2(p^{-1}(K^{[2]})) \cong H_2(p^{-1}(K^{[2]}), p^{-1}(\partial X)).$$

The Hurewicz Isomorphism Theorem implies $\Pi_2(p^{-1}(K^{[2]})) \cong H_2(p^{-1}(K^{[2]}))$ and thus

$$\operatorname{im} \varphi^* \subseteq \ker \partial_1 = \operatorname{H}_2(p^{-1}(K^{[2]}), p^{-1}(\partial X))$$
$$\cong \operatorname{H}_2(p^{-1}(K^{[2]}))$$
$$\cong \operatorname{\Pi}_2(p^{-1}(K^{[2]})).$$

We may thus attach (n + 1) three–dimensional cells to $K^{[2]}$ to obtain a pair $(X, \partial X)$ of CW–complexes whose relative cellular chain complex is given by

$$D: 0 \longrightarrow (\Lambda \oplus P)^* \xrightarrow{\varphi^*} C_2(K, \partial X) \longrightarrow C_1(K, \partial X) \longrightarrow C_0(K, \partial X).$$

As $\Pi_2(K) = 0$, the inclusion $(K^{[2]}, \partial X) \to (K, \partial X)$ extends to a map

$$f: (X, \partial X) \longrightarrow (K, \partial X) \tag{10}$$

which induces an isomorphism of Π_1 -systems. Thus we may view ω as an element of $\mathrm{H}^1(X;\mathbb{Z}/2\mathbb{Z})$.

Proposition 6.1. $(X, \partial X)$ is a PD^3 -pair realizing $(\{\kappa_i\}_{i \in J}, \omega, \mu)$.

Proof. We must show that

- (i) $H_3(X, \partial X; \mathbb{Z}^{\omega}) \cong \mathbb{Z};$
- (ii) $f_*([X, \partial X]) = \mu$ where $[X, \partial X]$ generates $H_3(X, \partial X; \mathbb{Z}^{\omega})$;
- (iii) $\delta_*[X, \partial X] = [\partial X]$ where $[\partial X]$ is the fundamental class of the PD^2 -complex ∂X and δ_* is the connecting homomorphism of the short exact sequence $C(\partial X) \rightarrow C(X) \rightarrow C(X, \partial X)$;
- (iv) $\cap [X, \partial X] : \mathrm{H}^{r}(X; {}^{\omega}\Lambda^{\omega}) \to \mathrm{H}_{r-3}(X, \partial X; \Lambda)$ is an isomorphism for every $r \in \mathbb{Z}$.

(i) As $C(X, \partial X)$ is a chain complex of free Λ -modules, $\mathbb{Z}^{\omega} \otimes_{\Lambda} C(X, \partial X) \cong \operatorname{Hom}_{\Lambda}(C^*(X, \partial X), \mathbb{Z})$ by Observation 3.2 and $C^*(X, \partial X) \cong C(X, \partial X)$. Thus

$$\begin{aligned} \mathrm{H}_{3}(X,\partial X;\mathbb{Z}^{\omega}) &= \mathrm{H}_{3}(\mathbb{Z}^{\omega}\otimes_{\Lambda}C(X,\partial X)) \\ &\cong \mathrm{H}^{3}({}^{\omega}\mathrm{Hom}_{\Lambda}(C^{*}(X,\partial X),\mathbb{Z})) \\ &\cong \mathrm{ker}\left((\varphi^{*})^{*}\right)^{\dagger} \\ &\cong \mathrm{ker}\,\varphi^{\dagger} \end{aligned}$$

where φ^{\dagger} arises by applying $\operatorname{Hom}_{\Lambda}(-,\mathbb{Z})$. Recall that $\varphi = \begin{bmatrix} \iota & 0 \\ 0 & 1 \end{bmatrix} \circ j \circ \pi$. As π and j are surjective, π^{\dagger} and j^{\dagger} are injective. Hence $\ker \varphi^{\dagger} = \ker \begin{bmatrix} \iota^{\dagger} & 0 \\ 0 & 1 \end{bmatrix} = \ker \iota^{\dagger}$. But I is generated by elements $1 - g, g \in G$, and $\psi \circ \iota(1 - g) = \psi(1) - g\psi(1) = 0$ for every $\psi \in C^2(K, \partial X)$, so that $\ker \iota^{\dagger} = \operatorname{Hom}_{\Lambda}(\Lambda, \mathbb{Z}) \cong \mathbb{Z}$. Thus

$$\mathrm{H}_3(X, \partial X; \mathbb{Z}^\omega) \cong \ker \varphi^\dagger \cong \ker \iota^\dagger \cong \mathbb{Z}.$$

(ii) $H_3(X, \partial X; \mathbb{Z}^{\omega}) \cong \mathbb{Z}$ is generated by $[X, \partial X] = [1 \otimes x]$ where $x = (1, 0) \in \Lambda^* \bigoplus P^* = (\Lambda \bigoplus P)^* = C_3(X, \partial X)$ is the projection onto the first factor. By Lemma 5.7, $\nu_{C(X,\partial X),2}([1 \otimes x])$ is represented by

 $F^2(C(X,\partial X)) \longrightarrow I, \ [\psi] \longmapsto \overline{\psi(\partial_2(x))}.$

But, again identifying free Λ -modules and Λ -morphisms between them with their double dual, we obtain, for $\psi \in C^2(X, \partial X) = C^2(K, \partial X)$,

$$\overline{\psi(\partial_2(x))} = \overline{\psi(\varphi^*(x))} = \overline{\psi \circ \varphi^*(x)} = \overline{(\varphi^*)^*(\psi)(x)}$$
$$= x(\varphi(\psi)) = x \circ \begin{bmatrix} \iota & 0\\ 0 & 1 \end{bmatrix} \circ j \circ \pi(\psi) = h([\psi]).$$

Thus $\nu_{C(X,\partial X),2}([X,\partial X])$ is the homotopy class of h, so that $\nu_{C(K,\partial X),2}(\mu) = \nu_{C(X,\partial X),2}([X,\partial X])$. Lemma 5.8 implies $\nu_{C(K,\partial X),2}(\mu) = \nu_{C(X,\partial X),2}([X,\partial X]) = \nu_{C(K,\partial X),2}(f_*[X,\partial X])$. As $\nu_{C(K,\partial X),2}$ is injective by Lemma 5.9, we may conclude $\mu = f_*[X,\partial X]$.

(iii) The map $f: (X, \partial X) \to (K, \partial X)$ gives rise to the commutative diagram

Hence $\delta_*([X, \partial X]) = \delta_*(f_*([X, \partial X])) = \delta_*(\mu) = [\partial X].$

(iv) First observe that the definition of $(X, \partial X)$ implies

$$\mathrm{H}^{2}(X,\partial X;^{\omega}\Lambda^{\omega}) = \mathrm{H}_{-2}(^{\omega}\mathrm{Hom}_{\Lambda}(C(X,\partial X);^{\omega}\Lambda^{\omega})) = 0.$$

Since $H_1(X, \Lambda) = H_1(C(X)) = 0$ as well, the homomorphism

 $\cap [X, \partial X] : \mathrm{H}^{2}(X, \partial X; {}^{\omega} \Lambda^{\omega}) \to \mathrm{H}_{1}(X; \Lambda)$

is an isomorphism.

As $\Lambda \otimes P$ is free, we may use the natural transformation η to identify "Hom_{Λ}(($\Lambda \oplus P$)^{*}, " Λ^{ω}) with $\Lambda \oplus P$ and (φ^{*})^{*} with φ . Then

$$\begin{aligned} \mathrm{H}^{3}(X,\partial X;^{\omega}\Lambda^{\omega}) &= H_{-3}(^{\omega}\mathrm{Hom}_{\Lambda}(C(X,\partial X),^{\omega}\Lambda^{\omega})) \\ &= {}^{\omega}\mathrm{Hom}_{\Lambda}((\Lambda\oplus P)^{*},{}^{\omega}\Lambda^{\omega})/\mathrm{im}(\varphi^{*})^{*} \\ &\cong (\Lambda\oplus P)/\mathrm{im}\varphi \\ &\cong \Lambda/I \cong \mathbb{Z}. \end{aligned}$$

Clearly, $\mathrm{H}^{3}(X, \partial X; {}^{\omega}\Lambda^{\omega})$ is generated by $\psi = (1, 0) \in (\Lambda^{*})^{*} \oplus (P^{*})^{*} = C_{3}^{*}(X, \partial X) = C_{3}^{*}(X)$. By Lemma 5.5,

$$[\psi] \cap [X, \partial X] = [\psi] \cap [1 \otimes x] = \overline{\psi(x)} = 1$$

that is, $\cap [X, \partial X]$ maps ψ to a generator of $H_0(X; \Lambda)$. Hence

$$\cap [X, \partial X] : \mathrm{H}^{3}(X, \partial X; {}^{\omega}\Lambda^{\omega}) \to \mathrm{H}_{0}(X; \Lambda)$$

is an isomorphism. Since ∂X is a PD^2 -complex,

$$\cap [\partial X] : \mathrm{H}^{r}(\partial X; {}^{\omega}\Lambda^{\omega}) \longrightarrow \mathrm{H}_{2-r}(\partial X; \Lambda)$$

is an isomorphism for every $r \in \mathbb{Z}$. Thus the Cap Product Ladder (cf. 3.6) of $(X, \partial X)$ with $y = [X, \partial X]$ and the Five Lemma imply that

$$\cap [X, \partial X] : \mathrm{H}^{r}(X; {}^{\omega} \Lambda^{\omega}) \to \mathrm{H}_{r-3}(X, \partial X; \Lambda)$$

is an isomorphism for r = 2 and r = 3. Therefore $\cap 1 \otimes x$ gives rise to the chain homotopy equivalence

of chain complexes of left Λ -modules. Identifying $\Lambda \otimes_{\Lambda} A$ with A for left Λ -modules A and applying ${}^{\omega}\operatorname{Hom}_{\Lambda}(-,{}^{\omega}\!\Lambda^{\omega})$ we obtain the chain homotopy equivalence

$$0 \longleftarrow {}^{\omega} \operatorname{Hom}_{\Lambda}(\operatorname{im}\partial_{1}^{*}, {}^{\omega}\Lambda^{\omega}) \longleftarrow {}^{\omega} \operatorname{Hom}_{\Lambda}({}^{\omega}\operatorname{Hom}_{\Lambda}(C_{2}(X), {}^{\omega}\Lambda^{\omega}), {}^{\omega}\Lambda^{\omega}) \longleftarrow {}^{(\cap 1 \otimes x)^{*}} \bigwedge^{\uparrow} \\ 0 \longleftarrow {}^{\omega} \operatorname{Hom}_{\Lambda}(\operatorname{im}\partial_{1}, {}^{\omega}\Lambda^{\omega}) \longleftarrow {}^{\omega} \operatorname{Hom}_{\Lambda}(C_{1}(X, \partial X), {}^{\omega}\Lambda^{\omega}) \longleftarrow$$

which shows that $(\cap [1 \otimes x])^*$ induces homology isomorphisms. But Lemma 3.4 shows that $\cap (1 \otimes x)$ induces isomorphisms in homology if and only if $(\cap 1 \otimes x)^*$ does. Thus

$$\cap [X, \partial X] = \cap [1 \otimes x] : \mathrm{H}^{k}(X, \partial X; {}^{\omega} \Lambda^{\omega}) \longrightarrow \mathrm{H}_{3-k}(X; \Lambda)$$

is an isomorphism for k = 0 and k = 1.

The Cap Product Ladder of $(X, \partial X)$ with $y = [X, \partial X]$ and the Five Lemma imply that

$$\cap [X, \partial X] : \mathrm{H}^{r}(X; {}^{\omega} \Lambda^{\omega}) \longrightarrow \mathrm{H}_{3-k}(X, \partial X; \Lambda)$$

is an isomorphism for r = 0 and r = 1 and hence for every $r \in \mathbb{Z}$.

It remains to investigate the general case where the module P in the factorization (8) of the homotopy equivalence h is finitely generated projective, but not necessarily free. Then there is a finitely generated projective Λ -module Q such that $P^* \oplus Q = \Lambda^n$ and we may attach infinitely many 3-cells to $K^{[2]} \vee (\bigvee_{i=1}^{\infty} e^2)$ in order to obtain a pair $(X, \partial X)$ of CW-complexes whose relative cellular chain complex is given by

$$D: 0 \longrightarrow (\Lambda \otimes P)^* \oplus \Lambda^{\infty} \xrightarrow{\begin{bmatrix} \varphi^* & 0 \\ 0 & 1 \end{bmatrix}} C_2(K, \partial X) \oplus \Lambda^{\infty}$$
$$\xrightarrow{\begin{bmatrix} \partial_1 & 0 \end{bmatrix}} C_1(K, \partial X) \longrightarrow C_0(K, \partial X).$$

As $(\Lambda \oplus P)^* \oplus \Lambda^{\infty} \cong \Lambda^* \oplus P^* \oplus (Q \oplus P^* \oplus Q \oplus \ldots) \cong \Lambda^{\infty}$ is free, the proof that $(X, \partial X)$ realizes $(\{\kappa_i\}_{i \in J}, \omega, \mu)$ is analogous to the proof of Proposition 6.1. It only remains to verify that X is in fact dominated by a finite cell-complex.

We follow Turaev's argument for the absolute case which uses Wall's results on finiteness conditions for CW-complexes. Since X is a finite dimensional cell-complex (of dimension three), Theorem F together with Theorems A and E of [14] imply that in order to show that X is finitely dominated, it is sufficient to show that X is homotopy equivalent to a CW-complex with finite skeleta.

Consider the cellular chain complex of X,

$$C(X): 0 \longrightarrow (\Lambda \otimes P)^* \oplus \Lambda^{\infty} \longrightarrow C_2(K, \partial X) \oplus \Lambda^{\infty} \oplus C_2(\partial X)$$

$$\longrightarrow C_1(K,\partial X) \oplus C_1(\partial X) \longrightarrow C_0(K,\partial X) \oplus C_0(\partial X),$$

and note that it is chain homotopy equivalent to the chain complex

$$E: \dots \longrightarrow \Lambda^{n} \xrightarrow{\operatorname{pr}} \Lambda^{n} \xrightarrow{\operatorname{pr}'} \Lambda^{n} \xrightarrow{\operatorname{pr}'} \Lambda^{n}$$

$$\xrightarrow{q} (\Lambda \oplus P)^{*} \oplus Q \xrightarrow{\begin{array}{c} \varphi^{*} & 0 \\ 0 & 0 \end{array}} C_{2}(K, \partial X) \oplus C_{2}(\partial X) \longrightarrow C_{1}(K, \partial X) \oplus C_{1}(\partial X)$$

$$\longrightarrow C_0(K, \partial X) \oplus C_0(\partial X),$$

where $\operatorname{pr} : \Lambda^n = P^* \oplus Q \to Q$ and $\operatorname{pr}' : \Lambda^n = P^* \oplus Q \to P^*$ are the canonical projections and $q(x) = (0, 0, \operatorname{pr}(x)) \in (\Lambda \oplus P)^* \oplus Q$ for $x \in \Lambda^n$. By Theorem 2 of [15], there is a CWcomplex Y with cellular chain complex E which is homotopy equivalent to X. Clearly, Y has finite skeleta and we may conclude that X is finitely dominated.

Theorem 6.2. Let $\{\kappa_i : G_i \to G\}_{i \in J}$ be a Π_1 -system such that G is finitely presentable, G_i is a surface group and κ_i is injective for every $i \in J$. Let $(K, \partial X)$ be an Eilenberg-Mac Lane pair of type $K(\{\kappa_i\}_{i \in J}; 1)$ such that the components ∂X_i of ∂X are all surfaces. Take $\omega \in H^1(K; \mathbb{Z}/2\mathbb{Z})$ and $\mu \in H_3(K, \partial X; \mathbb{Z}^{\omega})$ such that $\delta_*\mu = [\partial X]$ where $[\partial X]$ is the fundamental class of the PD^2 -complex ∂X and δ_* is the connecting homomorphism of $C(\partial X) \to C(X) \twoheadrightarrow C(X, \partial X)$. Then $(\{\kappa_i\}_{i \in J}, \omega, \mu)$ is realized by a PD^3 -pair $(X, \partial X)$ if and only if $\nu_{C(K,\partial X),2}(\mu)$ is a class of homotopy eqivalences.

References

- R. Bieri and B. Eckmann, Relative Homology and Poincaré Duality for Pairs, J. Pure Applied Algebra, 13 (1978), 277–319
- [2] B. Bleile, *Homotopy Theory of Modules*, Masters Thesis UNE 1999
- [3] B. Bleile, Homotopy Classification of PD³-Pairs, Research Report, School of Mathematics, Statistics and Computer Science, UNE (2002)
- [4] A. Dold, Lectures on Algebraic Topology, 2nd edition, Springer Verlag, 1980.

- [5] B. Eckmann and P. Linnell, Poincaré Duality Groups of Dimension Two, II, Comment. Math. Helvetici, 58 (1983), 111–114
- [6] B. Eckmann and H. Mueller Poincaré Duality Groups of Dimension Two, Comment. Math. Helvetici, 55 (1980), 510–520
- [7] H. Hendriks, Obstruction Theory in 3-dimensional Topology: An Extension Theorem, J. London Math. Soc. (2), 16 (1990)
- [8] P.J. Hilton, Homotopy Theory and Duality, Gordon and Breach (1963)
- [9] P. Hilton and U. Stammbach, A Course in Homological Algebra, 2nd edition, Springer Verlag 1996.
- [10] R.C. Kirby and L.C. Siebenmann, Foundational Essays on Topological Manifolds, Smoothings and Triangulations, Annals of Mathematics Studies, Princeton University Press (1977)
- [11] E.H. Spanier, Algebraic Topology, Springer Verlag (1966)
- [12] V.G. Turaev, Three Dimensional Poincaré Complexes: Homotopy Classification and Splitting, Math. USSR Sbornik, Vol. 67 (1990), No. 1
- [13] C.T.C. Wall, Poincaré Complexes: I, Ann. of Math. 2nd series, 86 (1967), 213-245
- [14] C.T.C. Wall, Finiteness Conditions for CW-Complexes, Ann. of Math. 2nd series, 81 (1965), 56-69
- [15] C.T.C. Wall, Finiteness Conditions for CW-Complexes, II, Proc. Roy. Soc. Ser. A, 295 (1966), 129– 139

School of Mathematics and Statistics, The University of Sydney, Sydney, 2006 New South Wales, Australia