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Abstract. Up to oriented homotopy equivalence, a PD3–pair (X, ∂X) with aspheri-
cal boundary components is uniquely determined by the Π1–system {κi : Π1(∂Xi, ∗) →
Π1(X, ∗)}i∈J , the orientation character ωX ∈ H1(X; Z/2Z) and the image of the funda-
mental class [X, ∂X] ∈ H3(X, ∂X; Zω) under the classifying map [3]. We call the triple
({κi}i∈J , ωX , [X, ∂X]) the fundamental triple of the PD3–pair (X, ∂X).

Using Peter Hilton’s homotopy theory of modules, Turaev [12] gave a condition for
realization in the absolute case of PD3–complexes X with ∂X = ∅. Given a finitely
presentable group G and ω ∈ H1(G; Z/2Z), he defined a homomorphism

ν : H3(G; Zω) −→ [F, I]

where F is some Z[G]–module, I = ker aug and [A,B] denotes the group of homotopy
classes of Z[G]–morphisms from the Z[G]–module A to the Z[G]–module B. Turaev showed
that, given µ ∈ H3(G; Zω), the triple (G, ω, µ) is relized by a PD3–complex X if and only
if ν(µ) is a class of homotopy equivalences of Z[G]–modules.

Using Turaev’s construction of the homomorphism ν, we generalize the condition for
realization to the case of PD3–pairs (X, ∂X), where ∂X is not necessarily empty.

1. Outline

Section 2 is concerned with notation and the existence of Eilenberg–MacLane pairs.
Section 3 discusses properties of the relative twisted cap product needed for the formu-

lation of the realization condition and the proof of sufficiency in the Π1–injective case.
In Section 4 we briefly revise the projective homotopy category of modules over a ring,

also called the stable category. The final theorem of this section plays a crucial rôle in the
construction of a PD3–pair from given invariants.

The realization condition is formulated in Section 5 and Section 6 contains the proof of
the realization theorem for the Π1–injective case.

2. Preliminaries

Let G be a group, let Λ := Z[G] be the integral group ring of G and let aug : Λ → Z
denote the augmentation homomorphism determined by aug(g) := 1 for all g ∈ G. The
kernel I of the augmentation homomorphism is called the augmentation ideal.
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Furthermore, take ω ∈ H1(G,Z/2Z). Since H1(G,Z/2Z) is naturally isomorphic to
Hom(G,Z/2Z), the cohomology class ω determines a homomorphism from G to the group
Z/2Z = {0, 1}. This homomorphism, in turn, gives rise to the anti–isomorphism

: Λ −→ Λ; λ 7−→ λ

determined by

g := (−1)ω(g)g−1 for g ∈ G.
We may associate a left Λ–module with every right Λ–module and vice versa by means

of the anti–isomorphism . Namely, given a right Λ–module A and a left Λ–module B,
define a left action on the set underlying A and a right action on the set underlying B by

λ.a := a.λ for a ∈ A, λ ∈ Λ;

b.λ := λ.b for b ∈ B, λ ∈ Λ.

We denote the modules thus obtained by ωA and Bω respectively.
Given a short exact sequence Q � P � D of augmented chain complexes of left Λ–

modules with compatible equivariant diagonals and a “twisting” ω ∈ H1(G,Z/2Z), the
relative twisted cap products are defined at the chain level by

∩ : HomΛ(P,ωM)−k⊗(Zω⊗ΛD)n → (M⊗ΛD)n−k

ϕ ∩ (z⊗d) := ϕ/(z⊗∆rel(d))

and

∩ : HomΛ(D,ωM)−k⊗(Zω⊗ΛD)n → (M⊗ΛP )n−k

ϕ ∩ (z⊗d) := ϕ/(z⊗∆′
rel(d)).

for any right Λ–module M [3]. Passing to homology we obtain the relative twisted cap
products

∩ : Hk(P,ωM)⊗Hn(D,Zω) → Hn−k(D,M)

and

∩ : Hk(D,ωM)⊗Hn(D,Zω) → Hn−k(P,M).

Now let {κi : Gi → G}i∈J be a family of group homomorphisms and let (X, Y ) be a pair
of CW–complexes with Π1–system {κi : Gi → G}i∈J . Put Λ := Z[G] and let p : X̃ → X be
the universal covering of X. Let C(X) denote the cellular chain complex of X̃ viewed as
a complex of Λ–modules. We denote the subcomplex of C(X) generated by the cells lying
above Y by C(Y ) and put C(X, Y ) := C(X)/C(Y ), so that C(Y ) � C(X) � C(X, Y ) is
a short exact sequence of left Λ–modules. We call C(X, Y ) the relative cellular complex
and C(Y ) � C(X) � C(X, Y ) the short exact sequence of cellular chain complexes of the
pair (X, Y ).

Given a family {κi : Gi → G}i∈J of group homomorphisms we may ask whether there
is a pair (X, Y ) which has Π1–system {κi : Gi → G}i∈J . The answer is yes, namely, for
i ∈ J take K(Gi; 1) complexes Yi and a K(G; 1) complex X. Then the family κi : Gi → G
of homomorphisms determines a map f :

∐
i∈J Yi → X. Let K be the mapping cylinder
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of f and identify
∐

i∈J Yi with its image under the inclusion in K. Then (K,Y ) is a pair
with Π1–system {κi : Gi → G}i∈J .

As we do not require the homomorphisms κi to be injective we will adopt the following
non–standard definition for the purpose of this paper.

Definition 2.1. Let {κi : Gi → G}i∈J be a family of group homomorphisms. An Eilenberg–
MacLane pair of type K({κi : Gi → G}i∈J ; 1) is a pair (X, Y ) such that X is an Eilenberg–
MacLane complex of type K(G; 1), the connected components {Yi}i∈J of Y are Eilenberg–
MacLane complexes of type K(Gi; 1) and the Π1–system of (X, Y ) is isomorphic to {κi :
Gi → G}i∈J .

In the standard definition of Eilenberg–Mac Lane pairs given by Bieri–Eckmann in [1]
the homomorphisms κi are required to be injective.

An Eilenberg–Mac Lane pair of type (G, {Gi}i∈J ; 1) is determined up to homotopy of
pairs and we write K(G, {Gi}i∈J ; 1) for any such pair. With this definition we proved the
following lemma.

Lemma 2.2. Let {κi : Gi → G}i∈J be a family of group homomorphisms. Then there is
an Eilenberg–MacLane pair (X, Y ) of type (G, {Gi}i∈J ; 1).

3. Properties of the Relative Twisted Cap Products

First note that, given a Λ–bimodule M , there is a left action of Λ on M⊗ΛB and a right
action of Λ on HomΛ(B,M) for any left Λ–module B defined by

λ.(m⊗b) := (λ.m)⊗b and (ϕ.λ)(b) := ϕ(b).λ

for λ ∈ Λ, b ∈ B,m ∈ M and ϕ ∈ HomΛ(B,M). In particular, HomΛ(B,Λ) is a right
Λ–module. Thus any left Λ–module A gives rise to the functor HomΛ(ωHomΛ(−,Λ), A))
from the category ΛM of left Λ–modules to the category Ab of abelian groups. This is
related to the functor Aω⊗Λ−, by the following lemma.

Lemma 3.1. There is a natural transformation

ηB : Aω⊗ΛB −→ HomΛ(ωHomΛ(B,Λ), A)

given by
ηB(a⊗b) :ωHomΛ(B,Λ) −→ A, ϕ 7−→ ϕ(b)a

for every left Λ–module B.

Observation 3.2. When we restrict the functors Aω⊗Λ− and HomΛ(ωHomΛ(−,Λ), A)
to the category of free left Λ–modules, the natural transformation η becomes a natural
equivalence as both Aω⊗ΛΛn and HomΛ(ωHomΛ(Λn,Λ), A) are isomorphic to An as abelian
groups.

If M is a Λ–bimodule, then so is ωMω. Hence ωMω⊗ΛB carries a left Λ–module structure
and HomΛ(B,M) carries a right Λ–module structure for every left Λ–module B. Thus
ωMω⊗Λ− and ωHomΛ(ωHomΛ(−,Λ),M) are functors from the category of left Λ–modules
to itself.
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Observation 3.3. The natural transformation η of Lemma 3.1 respects the additional left
Λ–module structure when A = M is a Λ–bimodule. In other words, given a Λ–bimodule
M , the natural transformation η is in fact a natural transformation from ωMω⊗Λ− to
ωHomΛ(ωHomΛ(−,Λ),M) as functors from the category of left Λ–modules to itself. In
particular, for M = Λ, we may identify the left Λ–module B with ωΛω⊗ΛB by means of
the isomorphism ωΛω⊗ΛB → B, λ⊗b 7→ λb. Then η is the evaluation homomorphism from
B to its double dual ωHomΛ(ωHomΛ(−,Λ),Λ).

The next lemma shows that the chain map given by taking the cap product with a cycle
is almost chain homotopic to its dual. To be more precise, there is a diagram involving
this chain map and its dual which commutes up to chain homotopy.

Lemma 3.4. Let 1⊗x ∈ Zω⊗ΛDn be a cycle. Then the diagram

ωHomΛ(Dk,Λ)
θ //

∩1⊗x
��

ωHomΛ(ωΛω⊗ΛDk,Λ)

(∩1⊗x)∗
��

ωΛω⊗ΛPn−k ηPn−k

// ωHomΛ(ωHomΛ(Pn−k,Λ),Λ)

commutes up to chain homotopy, where η is the natural equivalence of Observation 3.2 and
the isomorphism θ is given by θ(ϕ)(λ⊗d) := λϕ(d) for ϕ ∈ ωHomΛ(Dk,Λ), d ∈ Dk and
λ ∈ Λ.

Proof. Suppose x = π(y) and ∆(y) =
∑
yi⊗y′j. Take ϕ ∈ ωHomΛ(Dk,Λ) and ψ ∈

ωHomΛ(Pn−k,Λ). Then(
(∩1⊗x)∗(θ(ϕ))

)
(ψ) = θ(ϕ)(ψ ∩ 1⊗x)

= θ(ϕ)(ψ(yn−k)⊗π(y′k))

= ψ(yn−k)ϕ(π(y′k))

= η
(
ϕ(π(y′k))⊗yn−k

)
(ψ)

= η
(
/(id⊗id⊗((π⊗id) ◦ T ◦∆))(ϕ⊗1⊗x)

)
(ψ)

where T : P⊗P → P⊗P is defined by T (
∑

i+j=n yi⊗y′j) =
∑

i+j=n y
′
j⊗yi. But T ◦ ∆ is

again a diagonal on P and hence (see [11], p.250) chain homotopic to ∆. As 1⊗x is a cycle,
we obtain

(∩1⊗x)∗ ◦ θ = η ◦
(
/ ◦

(
id⊗id⊗((π⊗id) ◦ T ◦∆)

))
(−⊗1⊗x)

' η ◦
(
/ ◦

(
id⊗id⊗((π⊗id) ◦∆)

))
(−⊗1⊗x)

' η ◦ (∩1⊗x).
�

Suppose that Q
ι

� P
π
� D is a short exact sequence of augmented chain complexes

of free Λ–modules with compatible diagonals. Then Q
ι

� P
π
� D splits and stays split

short exact when we tensor or apply the HomΛ–functor. Given a right Λ–module M ,
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we denote the connecting homomorphisms of Zω⊗ΛQ � Zω⊗ΛP � Zω⊗ΛD, M⊗ΛQ �
M⊗ΛP � M⊗ΛD and ωHomΛ(D,ωM) �ωHomΛ(P,ωM) �ωHomΛ(Q,ωM) by δ∗, δ

′
∗ and δ∗

respectively.

Proposition 3.5. Take x ∈ Hk(D,ωM), y ∈ Hn(D,Zω), z ∈ Hl(P,ωM) and u ∈ Hk−1(Q,ωM).
Then

(i) (id⊗π)∗(x ∩ y) = (π∗x) ∩ y;
(ii) δ′∗(z ∩ y) = (ι∗z) ∩ δ∗y;
(iii) (id⊗ι)∗(u ∩ δ∗y) = (−1)k(δ∗u) ∩ y.

Proof. (i) Take a cocycle ϕ ∈ ωHomΛ(Dk,
ωM) and a cycle n⊗d ∈ Zω⊗ΛDn representing

x and y respectively. Furthermore take p ∈ P with n⊗d = n⊗π(p) and and suppose
∆(p) =

∑
pi⊗p′j. Then

(id⊗π)(ϕ ∩ n⊗d) = (id⊗π)(ϕ/n⊗∆
rel
d) = (id⊗π)(ϕ/n⊗

∑
π(pi)⊗p′j)

= (id⊗π)(nϕ(π(pk))⊗p′n−k) = nϕ(π(pk))⊗π(p′n−k)

= ϕ ◦ π/n⊗
∑

pi⊗π(p′j) = π∗(ϕ) ∩ n⊗d.

As (id⊗π)(ϕ ∩ n⊗d) represents (id⊗π)∗(x ∩ y) and π∗(ϕ) ∩ n⊗d represents (π∗x) ∩ y, we
have thus proved (i).

(ii) Take a cocycle ϕ ∈ ωHomΛ(Pl,
ωM) and a cycle n⊗d ∈ Zω⊗ΛDn representing z

and y respectively. Furthermore take p ∈ P and q ∈ Q such that n⊗d = n⊗π(p) and
n⊗∂p = n⊗ι(q) and suppose ∆(q) =

∑
qi⊗q′j. Then ι∗z ∩ δ∗y is represented by

ϕ ◦ ι/(n⊗∆q) = ϕ ◦ ι/(n⊗
∑

qi⊗q′j) = nϕ(ι(ql))⊗q′n−l

and

(id⊗ι)
(
ϕ ◦ ι/(n⊗∆q)

)
= nϕ(ι(ql))⊗ι(q′n−l) = ϕ/(n⊗(ι⊗ι)∆q)
= ϕ/(n⊗∆ι(q)) = ϕ/(n⊗∆∂p)

= ϕ/(n⊗∂∆p) = ∂(ϕ/(n⊗∆p))

as ϕ is a cocycle. Furthermore z ∩ y is represented by

ϕ/(n⊗∆
rel
d) = ϕ/

(
n⊗(id⊗π)∆p

)
,

so that δ′∗(z ∩ y) is represented by n⊗a where

(id⊗ι)(n⊗a) = ∂
(
ϕ/(n⊗∆p)

)
.

As (id⊗ι) is a monomorphism we may conclude that δ′∗(z ∩ y) = ι∗z ∩ δ∗y.
(iii) Take ϕ ∈ ωHomΛ(Qk−1,

ωM) and n⊗d ∈ Zω⊗ΛDn representing u and y respectively.
Take ψ ∈ ωHomΛ(Pk−1,

ωM) with ϕ = ι∗ψ and η ∈ ωHomΛ(Dk,
ωM) with π∗η = ∂∗ψ. Then

δ∗u is represented by η. Further, take p ∈ Pn with πp = d and q ∈ Qn−1 with ιq = ∂p,
so that δ′∗y is represented by n⊗q, and suppose ∆p =

∑
pi⊗p′j and ∆q =

∑
qi⊗q′j. Then
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(id⊗ι)∗(u ∩ δ∗y) is represented by

(id⊗ι)
(
ϕ ∩ n⊗q

)
= (id⊗ι)

(
ϕ/n⊗∆q

)
= (id⊗ι)

(
ϕ/n⊗

∑
qi⊗q′j

)
= (id⊗ι)

(
nϕ(qk−1)⊗q′n−k−1

)
= nϕ(qk−1)⊗ι(q′n−k−1)

= nι∗ψ(qk−1)⊗ι(q′n−k−1) = ψ/n⊗(ι⊗ι)∆q
= ψ/n⊗∆ι(q) = ψ/n⊗∆∂p

= ψ/n⊗∂∆p.

Since / is a chain map, we obtain

∂(ψ/n⊗∆p) = (∂∗ψ)/n⊗∆p+ (−1)k−1ψ/n⊗∂∆p.

On the other hand

∂∗ψ/n⊗∆p = π∗η/n⊗∆p = π∗η/n⊗
∑

pi⊗p′j
= nη(π(pk))⊗p′n−k = η/n⊗∆′

rel
d

= η ∩ n⊗d,

which shows that ∂∗ψ/n⊗∆p represents (δ∗u)∩ y. As ∂(ψ/n⊗∆p) is a boundary, we may
conclude that

(id⊗ι)∗(u ∩ δ∗y) = (−1)k(δ∗u) ∩ y.

�

Proposition 3.5 allows us to prove commutativity of a diagram, also called a cap prod-
uct ladder, which involves long exact homology and co–homology sequences arising from
Q�P�D and the cap product with a homology class y ∈ Hn(D; Zω).

Theorem 3.6 (Cap Product Ladder). Let Q
ι

� P
π
� D be a short exact sequence of

augmented chain complexes of free Λ–modules with compatible diagonals. Then, given
y ∈ Hn(D; Zω), the diagram

· · · // Hr(D,ωM)
π∗ //

∩y
��

Hr(P,ωM)
ι∗ //

∩y
��

Hr(Q,ωM)
δ∗ //

∩δ∗y
��

Hr+1(D,ωM) //

∩y
��

· · ·

· · · // Hn−r(P,M) // Hn−r(D,M) // Hn−r−1(Q,M) // Hn−r−1(P,M) // · · ·

commutes, up to sign.

Proof. Given x ∈ Hr(D,ωM), Property (i) of Proposition 3.5 implies (π∗x)∩y = (id⊗π)∗(x∩
y). For z ∈ Hr(P,ωM) we have ι∗z ∩ δ∗y = δ′∗(z ∩ y) by (ii). Finally, (iii) yields (id⊗ι)∗(u∩
δ∗y) = (−1)k(δ∗u) ∩ y for u ∈ Hr(Q,ωM). Hence the first two squares commute and the
third commutes up to sign. �
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4. Projective Homotopy Theory of Modules

In this section Λ may be any ring with unit. Unless otherwise specified, A,B, . . . will
denote left Λ–modules and ϕ, ψ, . . . will denote Λ–morphisms.

Definition 4.1. The Λ–morphism ϕ : A→ B is nullhomotopic, written as ϕ ' 0, if there
is a commutative diagram

A

��@
@@

@@
@@

ϕ // B

P

??~~~~~~~

(1)

where P is a projective Λ–module.

As every projective Λ–module is a direct summand of a free Λ–module the existence of
Diagram (1) is equivalent to the existence of a diagram of the form

A

!!CC
CC

CC
CC

ϕ // B

Λm.

=={{{{{{{{

If ε : PA � A is an epimorphism and PA is projective then PA is called a path space over
A (in analogy to topological homotopy theory). Since the category of left Λ–modules has
enough projectives, every Λ–module A has a path space. It is not difficult to show that
a Λ–morphism ϕ : A → B is nullhomotopic if and only if it factors through a given path
space ε : PB � B of B, that is, if and only if there is a commutative diagram

A

!!DD
DD

DD
DD

ϕ // B

PB.

<< <<zzzzzzzz

Thus, if ϕ : A→ B factors through one particular path space of B, it factors through any
path space of B. Hence

NhomΛ(A,B) := {ϕ : A → B | ϕ ' 0 }
is a subgroup of HomΛ(A,B).

Definition 4.2. Two Λ–morphisms ϕ and ψ are homotopic if ϕ − ψ ' 0. Furthermore
the group

[A,B] := HomΛ(A,B)/NhomΛ(A,B)

of homotopy classes of Λ–morphisms is called the homotopy group from A to B.

It is not difficult to show that homotopy respects composition of Λ–morphisms. Thus
we obtain a category, called the projective homotopy category (PHOM) or the stable
category whose objects are left Λ–modules and whose morphisms are homtopy classes
of Λ–morphisms. Furthermore [A,B] is functorial in both variables and preserves direct
products.
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As in topological homotopy theory, we say that ϕ : A→ B is a homotopy equivalence if
and only if there is a Λ–morphism ψ : B → A such that ϕψ ' idB and ψϕ ' idA. If there
is a homotopy equivalence ϕ : A → B then A and B are said to be homotopy equivalent
and we denote the set of homotopy equivalences from A to B by Equi(A,B).

Lemma 4.3. A Λ–module A is projective if and only if [X,A] = 0 for every Λ–module X.

Proof. We only need to show that [X,A] = 0 for every Λ–module X implies that A is
projective. So assume that [X,A] = 0 for every Λ–module X. Then [A,A] = 0 which
implies idA ' 0, that is, idA factors through a path space PA � A of A. Thus there is a
commutative diagram

A
idA //

!!

ι !!DD
DD

DD
DD

A

PA.

π

== ==zzzzzzzz

Now let ϕ : A→ B be a Λ–morphism and let ε : C � B be an epimorphism. Since PA is
projective there is a Λ–morphism ψ : PA→ C such that εψ = ϕπ. Hence εψι = ϕπι = ϕ,
showing that A is projective.

C

ε
����

PA
π // //

ψ

33hhhhhhhhhhhhhhhhhhhhhhhhhhh
A

ϕ //

ψι

88qqqqqqqqqqqqq
B

�

Given a path space ε : PB � B, any ϕ : A→ B factors as

A // ι // A⊕ PB
ϕ′ // // B,

where ϕ′ is defined by ϕ′(a, p) = ϕ(a) + ε(p) for a ∈ A and p ∈ PB.
The statement as well as the proof of the following theorem are dual to Theorem 13.7

in [8] and its proof.

Theorem 4.4. A homotopy equivalence ϕ : A→ B factors as

A // ι // A⊕ P
ϕ̃ // // B ⊕Q

π // // B

where P and Q are projective and ι and π are the natural inclusion and projection respec-
tively.

Proof. First assume that ϕ is an epimorphism. Let ψ : B → A be a homotopy inverse of
ϕ and let ε : PA � A be a path space of A. Then ϕε : PA � B is a path space of B
and hence ϕψ − idB ' 0 implies that there is a Λ–morphism η : B → PA such that the
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diagram

PA
ε // // A

ϕ // // B

B

η

OO

ϕψ−idB

66nnnnnnnnnnnnnnnn

commutes. Put ψ̃ := ψ − εη. Then ψ̃ ' ψ and

ϕψ̃ = ϕ(ψ − εη) = ϕψ − ϕεη = ϕψ − ϕψ + idB = idB.

Hence ψ̃ is a monomorphism and the short exact sequence

B // ψ̃ // A
π′// // cokerψ̃

splits so that A = ψ̃(B) ⊕ Q where Q = cokerψ̃. In order to show that Q is projective it
is enough to show that [X,Q] = 0 for all X. So take any Λ–module X. Then

[X,B] // ψ∗// // [X, ψ̃(B)⊕Q] // // // [X, ψ̃(B)]⊕ [X,Q] // // [X,Q]

is onto. But what does this homomorphism do to the homotopy class of a Λ–morphism
ν : X → B?

[ν] 7→ [ψν] = [ψ̃ν] 7→ [π′ψ̃ν] = 0.

Hence [X,Q] = 0 showing that Q is projective.
Thus ϕ factors as

A = ψ̃(B)⊕Q // // // B ⊕Q // // B.

Given an arbitrary homotopy equivalence ϕ : A→ B we obtain

A // ι // A⊕ PB&&

&& &&MMMMMMMMMM

ϕ′ // // B

B ⊕Q

;; ;;xxxxxxxxx
.

�

Observation 4.5. If the Λ–modules A and B in Theorem 4.4 are finitely generated, then
the projective Λ–modules P and Q are also finitely generated. Thus there is a finitely
generated projective Λ–module P̃ such that P ⊕ P̃ ∼= Λn for some n ∈ N. Hence ϕ factors
as

A // // A⊕ (P ⊕ P̃ ) // // B ⊕ (Q⊕ P̃ ) // // B

or

A // // A⊕ Λn // // B ⊕ Q̃ // // B

where Q̃ = Q⊕ P̃ is finitely generated projective.
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5. Formulation of the Realization Condition

We have seen in [3] that, up to oriented homotopy equivalence, a PD3–pair (X, ∂X)
with aspherical boundary components is uniquely determined by the Π1–system {κi :
Π1(∂Xi, ∗) → Π1(X, ∗)}i∈J , the orientation character ωX ∈ H1(X; Z/2Z) and the image of
the fundamental class [X, ∂X] ∈ H3(X, ∂X; Zω) under the classifying map

c : (X, ∂X) −→ K({κi}i∈J ; 1).
In other words, the triple ({κi}i∈J , ωX , c∗([X, ∂X])) forms a complete set of homotopy
invariants for PD3–pairs, also called the fundamental triple of (X, ∂X). We say that
(X, ∂X) realizes ({κi}i∈J , ω, µ).

Question 5.1. Given a Π1–system {κi : Gi → G}i∈J , ω ∈ H1(G; Z/2Z) and a homology
class µ ∈ H3(G, {Gi}i∈J ; Zω), is there a PD3–pair (X, ∂X) realizing ({κi}i∈J , ω, µ)?

Turaev [12] gave a condition for realization in the absolute case of PD3–complexes X
with ∂X = ∅. Given a finitely presentable group G and ω ∈ H1(G; Z/2Z), he defined a
homomorphism

ν : H3(G; Zω) −→ [F, I]

where F is some Z[G]–module, I = ker aug and [A,B] denotes the group of homotopy
classes of Z[G]–morphisms from the Z[G]–module A to the Z[G]–module B. Turaev showed
that, given µ ∈ H3(G; Zω), the triple (G,ω, µ) is relized by a PD3–complex X if and only
if ν(µ) is a class of homotopy equivalences of Z[G]–modules.

Using Turaev’s construction of the homomorphism ν, we generalize the condition for
realization to the case of PD3–pairs (X, ∂X), where ∂X is not necessarily empty.

First we introduce two functors from the category of left Λ–modules to itself, where Λ
is the integral group ring of the group H.

We take ω ∈ H1(H,Z/2Z) and use the notation of Chapter 1.

Given a chain complex . . .→ Cr+1
∂r→ Cr → . . . of left Λ–modules, put

Gr(C) := coker∂r = Cr/im∂r.

If f : C → D is a chain map then fr(im∂
C
r ) ⊆ im∂Dr . Hence there is an induced Λ–

morphism of cokernels Gr(f) : Gr(C) → Gr(D) such that the diagram

im∂Cr
// //

��

Cr // //

fr

��

Gr(C)

Gr(f)

��
im∂Dr

// // Dr
// // Gr(D)

commutes. It is not difficult to check that G = G∗ is a functor from the category of chain
complexes of left Λ–modules to itself.

Following Turaev we write C∗ for ωHomΛ(C,Λ) and compose the two functors G and
ωHomΛ(−,Λ) to obtain the functor F (see [12] p.265) given by

F r(C) = G−r(C
∗) = Cr/im∂∗r−1. (2)
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The following lemma allows us to pass from the category of chain complexes of left Λ–
modules to the stable category, that is, the category of left Λ–modules and homotopy
classes of Λ–morphisms.

Lemma 5.2. Let f, g : C → D be chain homotopic maps of chain complexes over Λ. If
Dn is projective, then Gn(f) ' Gn(g) as Λ–morphisms.

Proof. Let χ be a chain homotopy from f to g. Observe that, for all n ∈ Z, the boundary
operators ∂Cn−1 and ∂Dn−1 factor as

Cn

σC
n−1 ����

∂C
n−1 // Cn−1

Gn(C)
ρC

n−1

::vvvvvvvvv

and Dn

σD
n−1 ����

∂D
n−1 // Dn−1

Gn(D)
ρD

n−1

::uuuuuuuuu

respectively. Then

σDn−1(fn − gn) = σDn−1(χn−1∂
C
n−1 + ∂Dn χn)

= σDn−1χn−1ρ
C
n−1σ

C
n−1 + σDn−1∂

D
n χn

= σDn−1χn−1ρ
C
n−1σ

C
n−1

Thus the diagram

Cn+1

fn+1−gn+1 //

∂C
n

��

Dn+1

∂D
n

��
Cn

fn−gn //

σC
n−1

��

Dn

σD
n−1

��
Gn(C)

ρC
n−1 // Cn−1

χn−1 // Dn

σD
n−1// Gn(D)

commutes. As the induced map of cokernels is uniquely determined, this implies

Gn(f)−Gn(g) = Gn(f − g) = σDn−1χn−1ρ
C
n−1 ' 0

as Dn is projective. �

Corollary 5.3. Let f : C → D be a homotopy equivalence of chain complexes over Λ. If
Cn and Dn are projective, then Gn(f) is a homotopy equivalence of Λ–modules.

Corollary 5.3 is crucial for the formulation of the condition for realization.

Observation 5.4. Lemma 5.2 shows that we may view Gn as a functor from the category
of chain complexes of projective left Λ–modules and homotopy classes of chain maps to
the stable category.

Lemma 5.5. Let (X, Y ) be a pair of CW–complexes with X connected and ω ∈ H1(X; Z/2Z)
such that Hn(X, Y ; Zω) ∼= Z with generator [1⊗x]. Then there is a chain w1 ∈ C1(X) such
that the Λ–morphism ∩1⊗x : C∗(X, Y ) →ωΛω⊗ΛC(X) ∼= C(X) is given by

ϕ ∩ 1⊗x = ϕ(x).(1 + ∂0w1)
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for every cocycle ϕ ∈ C∗(X, Y ), where we identify λ⊗c ∈ ωΛω⊗ΛC(X) with λ.c ∈ C(X).

Proof. Take y ∈ Cn(X) with π(y) = x, where π : C(X) � C(X, ∂X) is the natural
projection, and assume ∆y =

∑
yi⊗zn−i with yi, zi ∈ Ci(X). Then (id⊗ε)∆(y) = y

implies yn.ε(z0) = y. As [1⊗x] is a generator, x and thus y are indivisible so that y = yn
and ε(z0) = 1 up to sign. As X is connected, we may assume C0(X) = Λ and identify im∂1

with I = ker ε. Then ε(z0) = 1 implies z0 = 1 +w0 where w0 ∈ I, and hence z0 = 1 + ∂0w1

for some w1 ∈ C1(X). Hence

ϕ ∩ 1⊗x = ϕ/1⊗(π⊗id)(
∑

yi⊗zn−i) = ϕ(π(yn))⊗z0

= ϕ(π(yn)).z0 = ϕ(x).(1 + ∂0w1).

�

Now let (X, ∂X) be a PD3–pair and take a cycle 1⊗x ∈ Zω⊗ΛC3(X, ∂X) representing
[X, ∂X]. Then

∩1⊗x : C∗(X, Y ) →ωΛω⊗ΛC(X) ∼= C(X)

is a chain homotopy equivalence. As both C∗
2(X, Y ) and C1(X) are free and hence projec-

tive, Corollary 5.3 implies that

G−2(∩1⊗x) : F 2(C(X, ∂X)) = G−2(C
∗(X, Y )) → G1(C(X))

is a homotopy equivalence of Λ–modules.
Since C(X) is the cellular chain complex of the universal covering space ofX, H1(C(X)) =

0 so that

G1(C(X)) = C1(X)/im∂1 = C1(X)/ ker ∂0
∼= im∂0 = ker aug = I,

that is, there is an isomorphism

ϑ : G1(C(X)) → I given by ϑ([c]) := ∂0(c).

Then ϑ◦G−2(∩1⊗x) is also a homotopy equivalence of Λ–modules, and the fact that ∩1⊗x
is a chain map together with Lemma 5.5 yields

(ϑ ◦G−2(∩1⊗x))([ϕ]) = ϑ([ϕ ∩ 1⊗x]) = ∂0(ϕ ∩ 1⊗x)
= (∂∗2ϕ) ∩ 1⊗x = (∂∗2ϕ)(x).(1 + ∂0w1)

= (∂∗2ϕ)(x) + (∂∗2ϕ)(x)∂0w1

for ϕ ∈ C∗
2(X, ∂X) and some w1 ∈ C1(X). Observe that the Λ–morphism

F 2(C(X, ∂X)) −→ I, [ϕ] 7−→ (∂∗2ϕ)(x)∂0w1

is null–homotopic since it factors through the Λ–module C1(X), namely as

[ϕ] 7−→ (∂∗2ϕ)(x)w1 7−→ ∂0((∂∗2ϕ)(x)w1) = (∂∗2ϕ)(x)∂0w1.

Thus
F 2(C(X, ∂X)) −→ I, [ϕ] 7−→ (∂∗2ϕ)(x) (3)

is a homotopy equivalence of Λ–modules.
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Now attach cells of dimension three and larger to (X, ∂X) in order to obtain an Eilenberg–
MacLane pair (K, ∂X) of type K({κi : Π1(∂Xi, ∗) → Π1(X, ∗)}i∈J ; 1). Then the classi-
fying map ι : (X, ∂X) → (K, ∂X) is cellular and we may identify the cellular chain
complexes of the pair (X, ∂X) with their image under the chain map induced by ι.
In particular, we obtain Ci(K) = Ci(X), Ci(K, ∂X) = Ci(X, ∂X) for i = 0, 1, 2 and
[1⊗x] = [X, ∂X] = ι∗([X, ∂X]). Thus (3) yields

Lemma 5.6. The Λ–morphism

F 2(C(K, ∂X)) −→ I, [ϕ] 7−→ (∂∗2ϕ)(x). (4)

is a homotopy equivalence of Λ–modules.

Given a chain complex C of free left Λ–modules, Turaev constructed a group homomor-
phism

νC,r : Hr+1(Zω⊗ΛC) −→ [F r, I]

such that νC(X,∂X),2([1⊗x]) = νC(K,∂X),2(ι∗([X, ∂X])) is the homotopy class of the homotopy
equivalence (4).

We revise Turaev’s construction and some of its properties. Given a chain complex C of
free left Λ–modules, note that I is the kernel of the Λ–morphism Λ → Zω⊗ΛΛ, λ 7→ 1⊗λ,
so that I � Λ � Zω⊗ΛΛ is short exact. As C is free, the sequence IC � C � Zω⊗ΛC
of chain complexes is also short exact, yielding the connecting homomorphism

δ : Hr+1(Zω⊗ΛC) −→ Hr(IC). (5)

Identifying c ∈ Cr with 1⊗c ∈ Λω⊗ΛC, the natural equivalence η of Lemma 3.1 yields the
Λ–morphism

η : Cr −→ (C∗
r )
∗, c 7−→ η(c)

given by

η(c)(ϕ) = ϕ(c).

For a cycle c ∈ Cr we obtain

η(c)(∂∗r−1ϕ) = (∂∗r−1ϕ)(c) = ϕ(∂r−1c)) = 0

for every ϕ ∈ C∗
r−1. Thus η(c) factors through the cokernel F r(C) of ∂∗r−1, that is, there is

a Λ–morphism ˜η(c) such that

C∗
r

η(c)
//

����

Λ

F r(C)

˜η(c)

<<zzzzzzzzz

commutes. If c = λ.d ∈ IC is a cycle with λ ∈ I and d ∈ Cr, then

aug
(
η(c)([ϕ])

)
= aug(ϕ(c)) = aug(ϕ(λ.d))

= aug(ϕ(d).λ) = ϕ(d)aug(λ)

= 0
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for every [ϕ] ∈ F r(C). Hence the image of ˜η(c) is contained in I and there is a well–defined
Λ–morphism

ˆη(c) : F r(C) −→ I, [ϕ] 7−→ ϕ(c).

Given a boundary c = ∂r(µ.e) ∈ IC with µ ∈ I and e ∈ Cr+1, the Λ–morphism ˆη(c) is
null–homotopic since it factors through Λ, namely as

F r(C) // Λ // I

λ
� // µ.λ.

Thus the homotopy class of ˆη(c) depends on the homology class of the cycle c ∈ IC only
and the homomorphism

H(IC) −→ [F r(C), I], [c] 7−→ [ ˆη(c)] (6)

is well–defined. Composing (6) with the connecting homomorphism (5), Turaev obtains
the homomorphism

νC,r : Hr+1(Zω⊗ΛC) −→ [F r(C), I] (7)

given by

νC,r([1⊗c]) := [ ˆη(c)].

Lemma 5.7. Given [1⊗x] ∈ Hr+1(Zω⊗ΛC) and [ϕ] ∈ F r(C), the homotopy class νC,r([1⊗x])
is represented by the Λ–morphism

F r(C) −→ I, [ϕ] 7−→ ϕ(∂r(x)).

Proof. Take [1⊗x] ∈ Hr+1(Zω⊗ΛC) and [ϕ] ∈ F r(C). Then δ([1⊗x]) = ∂rx and νC,r([1⊗x])
is represented by

ˆη(∂rx) : F r(C) −→ I, [ϕ] 7−→ ϕ(∂r(x)).

�

Lemma 5.8. Let f : C → D be a chain map of chain complexes of Λ–modules. Then the
diagram

F r(D)

F r(f)
��

νD,r(f∗µ)
// I

F r(C)
νC,r(µ)

// I

commutes for every µ ∈ Hr+1(Zω⊗ΛC).

Proof. Take µ ∈ Hr+1(Zω⊗ΛC) and x ∈ Cr with µ = [1⊗x]. Then, for [ϕ] ∈ F r(C),

νC,r(µ)
(
F r(f)([ϕ])

)
= νC,r(µ)

(
[ϕ ◦ f ]

)
= ϕ ◦ f

(
∂r(x)

)
= ϕ

(
∂r(f(x))

)
= νD,r(f∗µ)

(
[ϕ]

)
.

�
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Lemma 5.9. Suppose that C is a chain complex of free left Λ–modules such that Cr is
finitely generated and Hr(C) = Hr+1(C) = 0. Then νC,r is an isomorphism.

Proof. Cf. [12], Lemma 2.5. �

We are now able to provide a necessary condition for a Π1–system {κi : Gi → G}i∈J , ω ∈
H1(G; Z/2Z) and µ ∈ H3(G, {Gi}i∈J ; Zω) to be realized by a PD3–pair (X, ∂X).

Theorem 5.10. Given a Π1–system {κi : Gi → G}i∈J , ω ∈ H1(G; Z/2Z) and µ ∈
H3(G, {Gi}i∈J ; Zω), let (K, ∂K) be an Eilenberg–MacLane pair of type K({κi}i∈J ; 1). If
({κi}i∈J , ω, µ) is the fundamental triple of a PD3–pair, then νC(K,∂K),2(µ) is a homotopy
equivalence of Λ–modules.

Proof. Take a Π1–system {κi : Gi → G}i∈J , ω ∈ H1(G; Z/2Z), µ ∈ H3(G, {Gi}i∈J ; Zω) and
suppose ({κi}i∈J , ω, µ) is the fundamental triple of the PD3–pair (X, ∂X). Attaching cells
of dimension three and larger to X we obtain an Eilenberg–Mac Lane pair (K, ∂X) of type
K({κi}i∈J ; 1). Take 1⊗x ∈ Zω⊗ΛC3(X, ∂X) ⊆ Zω⊗ΛC3(K, ∂X) with [1⊗x] = µ. Then

F 2(C(K, ∂X)) −→ I, [ϕ] 7−→ ϕ(∂2(x))

is a homotopy equivalence of Λ–modules by Lemma 5.6 and represents νC(K,∂X),2(µ) by
Lemma 5.7.

It remains to show that νC(L,∂L),2(µ) is a homotopy equivalence of Λ–modules for any
Eilenberg–Mac Lane pair (L, ∂L). But given any Eilenberg–MacLane pair (L, ∂L) of type
K({κi}i∈J ; 1), there is a homotopy equivalence f : (K, ∂X) → (L, ∂L) of pairs of CW
complexes inducing a chain homotopy equivalence g : C(K, ∂X) −→ C(L, ∂L). Hence
g∗ : C∗(K, ∂X) −→ C∗(L, ∂L) is also a chain homotopy equivalence and Corollary 5.3
implies that F 2(g) = G−2(g

∗) is a homotopy equivalence of Λ–modules. By Lemma 5.8,
the diagram

F 2(C(L, ∂L))

F 2(g)
��

νC(L,∂L),2(f∗µ)
// I

F 2(C(K, ∂K))
νC(K,∂K),2(µ)

// I

commutes and hence νC(L,∂L),2(f∗µ) is a homotopy equivalence of Λ–modules if and only if
νC(K,∂K),2(µ) is one. �

In the final section of this paper we show that the necessary condition of Theorem 5.10
is sufficient in the Π1–injective case.

6. The Π1–Injective Case

For {κi : Gi → G}i∈J to be the Π1–system of a PD3–pair (X, ∂X), the groups Gi must be
surface groups for all i ∈ J as the components of ∂X are PD2–complexes by definition and
thus homotopy equivalent to closed surfaces. Furthermore, G must be finitely presentable,
as X must, by definition, be dominated by a finite CW complex. Now we restrict attention
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to Π1–systems {κi : Gi → G}i∈J which are Π1–injective, that is, κi is injective for every
i ∈ J .

So let {κi : Gi → G}i∈J be a Π1–system such that G is finitely presentable, Gi is a
surface group and κi is injective for every i ∈ J . Then there is an Eilenberg–MacLane pair
(K, ∂X) of type K({κi}i∈J ; 1) and by the mapping cylinder construction we may assume
that the components ∂Xi of ∂X are all surfaces. Since G is finitely presentable, we may
also assume that K has finite 2–skeleton K [2].

Take ω ∈ H1(K; Z/2Z) and µ ∈ H3(K, ∂X; Zω) such that νC(K,∂X),2(µ) is a class of
homotopy eqivalences and δ∗µ = [∂X] where [∂X] is the fundamental class of the PD2–
complex ∂X and δ∗ is the connecting homomorphism of C(∂X) � C(K) � C(K, ∂X).

Following Turaev’s construction in the absolute case, we now construct a PD3–pair
realizing ({κi}i∈J , ω, µ).

Since we have assumed that K has finite 2–skeleton K [2], the Λ–modules C2(K, ∂X) and
thus F 2(C(K, ∂X)) are finitely generated. Let h : F 2(C(K, ∂X)) → I be a Λ–morphism
representing νC(K,∂X),2(µ). Then h is a homotopy equivalence of Λ–modules and thus
factors as

F 2(C(K, ∂X)) // // F 2(C(K, ∂X))⊕ Λm //j // // I ⊕ P // // I

where P is finitely generated and projective, by Theorem 4.4.
Let B = (e0∨ e2)∪ e3 be a three dimensional ball. If we replace K by K ∨ (∨mi=1B), then

K [2] is replaced by K [2] ∨ (∨mi=1e
2) and F 2(C(K, ∂X)) is replaced by F 2(C(K, ∂X))⊕ Λm.

Thus we may assume without loss of generality that h factors as

F 2(C(K, ∂X)) //j // // I ⊕ P // // I (8)

where P is finitely generated and projective.
First we consider the case where P is free, that is, P ∼= Λn for some n ∈ N. Let

π : C2(K, ∂X) � F 2(C(K, ∂X)) and ι : I � Λ be the natural projection and inclusion
respectively and use the natural equivalence η to identify (A∗)∗ with A for a left Λ–module
A. Consider the Λ–morphism

ϕ : C2(K, ∂X)
π // // F 2(C(K, ∂X)) //j // // I ⊕ P //

24ι 0
0 1

35
// Λ⊕ P. (9)

It follows from the definition of ϕ that ϕ ◦ ∂∗1 = 0. Hence (∂1 ◦ ϕ∗)∗ = ϕ ◦ ∂∗1 = 0 so that
imϕ∗ ⊆ ker ∂1.

Let p : K̃ → K be the universal covering. Since κi is injective for every i ∈ J , the
components of p−1(∂X) are universal covering spaces of Eilenberg–MacLane complexes,
so that H2(p

−1(∂X)) = H1(p
−1(∂X)) = 0. Thus the long exact homology sequence of the

pair (p−1(K [2]), p−1(∂X)) yields

H2(p
−1(K [2])) ∼= H2(p

−1(K [2]), p−1(∂X)).
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The Hurewicz Isomorphism Theorem implies Π2(p
−1(K [2])) ∼= H2(p

−1(K [2])) and thus

imϕ∗ ⊆ ker ∂1 = H2(p
−1(K [2]), p−1(∂X))

∼= H2(p
−1(K [2]))

∼= Π2(p
−1(K [2])).

We may thus attach (n + 1) three–dimensonal cells to K [2] to obtain a pair (X, ∂X) of
CW–complexes whose relative cellular chain complex is given by

D : 0 −→ (Λ⊕ P )∗
ϕ∗−→ C2(K, ∂X) −→ C1(K, ∂X) −→ C0(K, ∂X).

As Π2(K) = 0, the inclusion (K [2], ∂X) → (K, ∂X) extends to a map

f : (X, ∂X) −→ (K, ∂X) (10)

which induces an isomorphism of Π1–systems. Thus we may view ω as an element of
H1(X; Z/2Z).

Proposition 6.1. (X, ∂X) is a PD3–pair realizing ({κi}i∈J , ω, µ).

Proof. We must show that

(i) H3(X, ∂X; Zω) ∼= Z;
(ii) f∗([X, ∂X]) = µ where [X, ∂X] generates H3(X, ∂X; Zω);
(iii) δ∗[X, ∂X] = [∂X] where [∂X] is the fundamental class of the PD2–complex ∂X

and δ∗ is the connecting homomorphism of the short exact sequence C(∂X) �
C(X) � C(X, ∂X);

(iv) ∩[X, ∂X] : Hr(X;ωΛω) → Hr−3(X, ∂X; Λ) is an isomorphism for every r ∈ Z.

(i) As C(X, ∂X) is a chain complex of free Λ–modules, Zω⊗ΛC(X, ∂X) ∼= HomΛ(C∗(X, ∂X),Z)
by Observation 3.2 and C∗(X, ∂X) ∼= C(X, ∂X). Thus

H3(X, ∂X; Zω) = H3(Zω⊗ΛC(X, ∂X))
∼= H3(ωHomΛ(C∗(X, ∂X),Z))

∼= ker
(
(ϕ∗)∗

)†
∼= kerϕ†

where ϕ† arises by applying HomΛ(−,Z). Recall that ϕ =

[
ι 0
0 1

]
◦ j ◦ π. As π and j are

surjective, π† and j† are injective. Hence kerϕ† = ker

[
ι† 0
0 1

]
= ker ι†. But I is generated

by elements 1 − g, g ∈ G, and ψ ◦ ι(1 − g) = ψ(1) − gψ(1) = 0 for every ψ ∈ C2(K, ∂X),
so that ker ι† = HomΛ(Λ,Z) ∼= Z. Thus

H3(X, ∂X; Zω) ∼= kerϕ† ∼= ker ι† ∼= Z.
(ii) H3(X, ∂X; Zω) ∼= Z is generated by [X, ∂X] = [1⊗x] where x = (1, 0) ∈ Λ∗ ⊕

P ∗ =
(Λ

⊕
P )∗ = C3(X, ∂X) is the projection onto the first factor. By Lemma 5.7, νC(X,∂X),2([1⊗x])

is represented by
F 2(C(X, ∂X)) −→ I, [ψ] 7−→ ψ(∂2(x)).
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But, again identifying free Λ–modules and Λ–morphisms between them with their double
dual, we obtain, for ψ ∈ C2(X, ∂X) = C2(K, ∂X),

ψ(∂2(x)) = ψ(ϕ∗(x)) = ψ ◦ ϕ∗(x) = (ϕ∗)∗(ψ)(x)

= x(ϕ(ψ)) = x ◦
[
ι 0
0 1

]
◦ j ◦ π(ψ) = h([ψ]).

Thus νC(X,∂X),2([X, ∂X]) is the homotopy class of h, so that νC(K,∂X),2(µ) = νC(X,∂X),2([X, ∂X]).
Lemma 5.8 implies νC(K,∂X),2(µ) = νC(X,∂X),2([X, ∂X]) = νC(K,∂X),2(f∗[X, ∂X]). As νC(K,∂X),2

is injective by Lemma 5.9, we may conclude µ = f∗[X, ∂X].
(iii) The map f : (X, ∂X) → (K, ∂X) gives rise to the commutative diagram

· · · // H3(C(X, ∂X); Zω)

f∗
��

δ∗ // H2(C(∂X); Zω)

f∗=id

��

// · · ·

· · · // H3(C(K, ∂X); Zω)
δ∗ // H2(C(∂X); Zω) // · · · .

Hence δ∗([X, ∂X]) = δ∗(f∗([X, ∂X])) = δ∗(µ) = [∂X].
(iv) First observe that the definition of (X, ∂X) implies

H2(X, ∂X;ωΛω) = H−2(
ωHomΛ(C(X, ∂X);ωΛω)) = 0.

Since H1(X,Λ) = H1(C(X)) = 0 as well, the homomorphism

∩[X, ∂X] : H2(X, ∂X;ωΛω) → H1(X; Λ)

is an isomorphism.
As Λ⊗P is free, we may use the natural transformation η to identify ωHomΛ((Λ ⊕

P )∗,ωΛω) with Λ⊕ P and (ϕ∗)∗ with ϕ. Then

H3(X, ∂X;ωΛω) = H−3(
ωHomΛ(C(X, ∂X),ωΛω))

= ωHomΛ((Λ⊕ P )∗,ωΛω)/im(ϕ∗)∗

∼= (Λ⊕ P )/imϕ
∼= Λ/I ∼= Z.

Clearly, H3(X, ∂X;ωΛω) is generated by ψ = (1, 0) ∈ (Λ∗)∗⊕(P ∗)∗ = C∗
3(X, ∂X) = C∗

3(X).
By Lemma 5.5,

[ψ] ∩ [X, ∂X] = [ψ] ∩ [1⊗x] = ψ(x) = 1,

that is, ∩[X, ∂X] maps ψ to a generator of H0(X; Λ). Hence

∩[X, ∂X] : H3(X, ∂X;ωΛω) → H0(X; Λ)

is an isomorphism. Since ∂X is a PD2–complex,

∩[∂X] : Hr(∂X;ωΛω) −→ H2−r(∂X; Λ)

is an isomorphism for every r ∈ Z. Thus the Cap Product Ladder (cf. 3.6) of (X, ∂X)
with y = [X, ∂X] and the Five Lemma imply that

∩[X, ∂X] : Hr(X;ωΛω) → Hr−3(X, ∂X; Λ)
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is an isomorphism for r = 2 and r = 3. Therefore ∩1⊗x gives rise to the chain homotopy
equivalence

0 //

��

im∂∗1 // //

��

ωHomΛ(C2(X),ωΛω) //

∩1⊗x
��

ωHomΛ(C3(X),ωΛω) //

∩1⊗x
��

0

��
0 // Λ⊗Λim∂1

// // Λ⊗ΛC1(X, ∂X) // Λ⊗ΛC0(X, ∂X) // 0

of chain complexes of left Λ–modules. Identifying Λ⊗ΛA with A for left Λ–modules A and
applying ωHomΛ(−,ωΛω) we obtain the chain homotopy equivalence

0 ωHomΛ(im∂∗1 ,
ωΛω)oo ωHomΛ(ωHomΛ(C2(X),ωΛω),ωΛω)oo oo

0 ωHomΛ(im∂1,
ωΛω)oo

OO

ωHomΛ(C1(X, ∂X),ωΛω)oo

(∩1⊗x)∗
OO

oo

ωHomΛ(ωHomΛ(C3(X),ωΛω),ωΛω) 0oo

ωHomΛ(C0(X, ∂X),ωΛω)

(∩1⊗x)∗
OO

0,oo

OO

which shows that (∩[1⊗x])∗ induces homology isomorphisms. But Lemma 3.4 shows that
∩(1⊗x) induces isomorphisms in homology if and only if (∩1⊗x)∗ does. Thus

∩[X, ∂X] = ∩[1⊗x] : Hk(X, ∂X;ωΛω) −→ H3−k(X; Λ)

is an isomorphism for k = 0 and k = 1.
The Cap Product Ladder of (X, ∂X) with y = [X, ∂X] and the Five Lemma imply that

∩[X, ∂X] : Hr(X;ωΛω) −→ H3−k(X, ∂X; Λ)

is an isomorphism for r = 0 and r = 1 and hence for every r ∈ Z. �

It remains to investigate the general case where the module P in the factorization (8)
of the homotopy equivalence h is finitely generated projective, but not necessarily free.
Then there is a finitely generated projective Λ–module Q such that P ∗ ⊕Q = Λn and we
may attach infinitely many 3–cells to K [2] ∨

(
∨∞i=1 e

2
)

in order to obtain a pair (X, ∂X) of
CW–complexes whose relative cellular chain complex is given by

D : 0 // (Λ⊗ P )∗ ⊕ Λ∞

24ϕ∗ 0
0 1

35
// C2(K, ∂X)⊕ Λ∞

h
∂1 0

i
// C1(K, ∂X) // C0(K, ∂X).
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As (Λ⊕ P )∗ ⊕ Λ∞ ∼= Λ∗ ⊕ P ∗ ⊕ (Q⊕ P ∗ ⊕Q⊕ . . .) ∼= Λ∞ is free, the proof that (X, ∂X)
realizes ({κi}i∈J , ω, µ) is analogous to the proof of Proposition 6.1. It only remains to
verify that X is in fact dominated by a finite cell–complex.

We follow Turaev’s argument for the absolute case which uses Wall’s results on finiteness
conditions for CW–complexes. Since X is a finite dimensional cell–complex (of dimension
three), Theorem F together with Theorems A and E of [14] imply that in order to show
that X is finitely dominated, it is sufficient to show that X is homotopy equivalent to a
CW–complex with finite skeleta.

Consider the cellular chain complex of X,

C(X) : 0 // (Λ⊗ P )∗ ⊕ Λ∞ // C2(K, ∂X)⊕ Λ∞ ⊕ C2(∂X)

// C1(K, ∂X)⊕ C1(∂X) // C0(K, ∂X)⊕ C0(∂X),

and note that it is chain homotopy equivalent to the chain complex

E : . . . // Λn
pr // Λn

pr′ // Λn

q // (Λ⊕ P )∗ ⊕Q

24ϕ∗ 0
0 0

35
// C2(K, ∂X)⊕ C2(∂X) // C1(K, ∂X)⊕ C1(∂X)

// C0(K, ∂X)⊕ C0(∂X),

where pr : Λn = P ∗ ⊕ Q → Q and pr′ : Λn = P ∗ ⊕ Q → P ∗ are the canonical projections
and q(x) = (0, 0, pr(x)) ∈ (Λ⊕P )∗⊕Q for x ∈ Λn. By Theorem 2 of [15], there is a CW–
complex Y with cellular chain complex E which is homotopy equivalent to X. Clearly, Y
has finite skeleta and we may conclude that X is finitely dominated.

Theorem 6.2. Let {κi : Gi → G}i∈J be a Π1–system such that G is finitely presentable,
Gi is a surface group and κi is injective for every i ∈ J . Let (K, ∂X) be an Eilenberg–
MacLane pair of type K({κi}i∈J ; 1) such that the components ∂Xi of ∂X are all surfaces.
Take ω ∈ H1(K; Z/2Z) and µ ∈ H3(K, ∂X; Zω) such that δ∗µ = [∂X] where [∂X] is the
fundamental class of the PD2–complex ∂X and δ∗ is the connecting homomorphism of
C(∂X) � C(X) � C(X, ∂X). Then ({κi}i∈J , ω, µ) is realized by a PD3–pair (X, ∂X) if
and only if νC(K,∂X),2(µ) is a class of homotopy eqivalences.
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