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Abstract

We present an empirical study of high frequency Australian equity

data examining the behaviour of distribution tails and the existence of

long memory. A method is presented that allows us to deal with Aus-

tralian Stock Exchange data by splitting it into two separate data series

representing an intraday and overnight component. Power law exponents

for the empirical density functions are estimated and compared with re-

sults from other studies. Using the autocorrelation and variance plots we

find there to be a strong indication of long memory type behaviour in the

absolute return, volume and transaction frequency.

1 Introduction

The past decade has seen an explosion in the popularity of financial mod-
elling. Covering a rich variety of disciplines, mathematicians and physicists,
have brought together many techniques and constructions from their fields of
study to investigate and classify the behaviour of financial markets. Recent
advances in the availability of high frequency data has opened the door to an
increasing number of empirical studies into these complex systems, with the aim
of gaining a better understanding of the true nature of the market’s behaviour
leading to more advanced and realistic models.

This paper contributes to this aim through an empirical examination of the
behaviour of a large collection of high frequency equity data on the Australian
Stock Exchange (ASX) spanning the period January 1993 through July 2002.
The fundamental rules of the ASX will be shown to influence the price dy-
namics of the securities that trade on it. Markets such as the ASX allow for
price development during non-trading periods, such as after hours trading and
dual-listed stocks. A new approach for working with securities that trade on
exchanges similar to the ASX will be introduced. This approach amounts to
representing the stock returns as two separate stochastic processes, a ‘discontin-
uous’ overnight return process and a ‘continuous’ intraday return process. We
examine the distributional properties of the returns, trade volume, and trans-
action frequency, estimating the tail indicies empirically. Using the method of
variance plots described in [10] we detect the existence of long memory in the
absolute return, trading volume and transaction frequency. Our analyses are
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compared to results found in studies by [2], [3] and [7] and indicate that
the behaviour of Australian equities is significantly different from the reported
behaviour of other financial markets.

The rest of the paper is organised as follows. Section 2 describes the data,
operations of the ASX and how these operations influence the behaviour of the
data. This section contains a new approach for the analysis and modelling of
financial data, which provides greater insight when dealing with ASX stock data.
Section 3 contains an empirical investigation of the distributional properties of
the ASX data. We examine the tails of the distributions for returns, absolute
returns, volume and number of transactions. Section 4 examines the correlation
structure of the returns, volume and transactions. We use variance plots to
detect and estimate long memory in the studied series. Section 5 reviews the
results and concludes.

2 Data

The data set contains a record of every transaction that took place over the
period January 1993 to July 2002, for each of the 200 most actively traded 1

stocks on the ASX. If pt represents the price of a stock at time t then we define
the return over interval size τ as

rt = log(pt) − log(pt−τ ). (1)

We also define Vt to be the volume traded in the interval (t − τ, t] and Nt to
be the transaction frequency in (t − τ, t]. The ASX operates using the Stock
Exchange Automated Trading System (SEATS). SEATS is an electronic order
book that trades continuously between the hours of 10am and 4pm Monday to
Friday. Before the opening and after the close, the market enters a special ‘pre

open’ mode, where orders may be entered, adjusted and cancelled but not exe-
cuted until a fixed time determined by the ASX. In the morning this starts at
07:00, giving three hours for traders to adjust trades to compensate for overnight
information flow . A similar process occurs after the close at 16:00 until a ran-
dom time between 16:05 and 16:06,when a single market auction takes place to
clear the order book and set the official closing price. This is performed in order
to reduce the end of day volatility and the possibility of market manipulation
by large market participants. The ASX allows for after hours trades between
brokers, requiring that they report their activities to the ASX. Further, the ex-
change contains several dual listed stocks trading on exchanges such as London
or New York. These ASX operations clearly impact on the price forming process
over non-trading hours. This is significant as it affects the way we analyse and
model our data. In Fig. 1 we show a typical month of trading for Rio Tinto
sampled every 10 minutes. The price shows large changes occurring during the
overnight/closed interval. If we compare the time series for the 10 minute re-
turns over the whole period 1993-2002, as seen in Fig. 2, with the returns where
the overnight price jumps have been removed, we immediately see the impact
the overnight returns have on the series as a whole and can speculate about the
large effect they must have on a stock’s volatility. This leads to the interesting
notion of treating the stock price as two separate processes: an intraday process
and an overnight process.

1Stocks were ranked by total turnover during the studied period.
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Figure 1: Month of trading of Rio Tinto (RIO). The dashed lines correspond
to the opening and closing times. Apparent in this plot are the large jumps in
price taking place between the close and open of consecutive days.
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Figure 2: The return process rt for Rio Tinto (RIO) from 1993 to 2002 calculated
in for 10 minute intervals. The top picture shows the return process including
the overnight return, while the bottom picture has had the overnight return
removed.

We propose that an equity return on the Australian Stock Exchange consists
of two processes, one that drives the stock during trading times and another that
operates during non-trading times. The implication is that because Australia
is a relatively small market, then the general behaviour of the ASX will be
influenced mainly by the overnight values since any major market shifting in-
formation will arrive from the large markets of US and Europe while Australian
markets are closed. It is apparent that the overnight process is discrete and
should no longer be modelled by a continuous process. We term this process
of overnight jumps the ‘Jump Process’. In comparison to the Jump Process,
the intraday traded process is more like a continuous time process. It has a
multitude of scales and looks more like a classical random noise process. Conse-
quently we term it the ‘Noise Process’. Hence when we look at daily price series
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we see the total stock price consisting of mainly the overnight jump process plus
a smaller contribution due to the intraday noise.
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Figure 3: The average absolute value of Commonwealth Bank (CBA) returns,
rt, averaged over 10 years (≈ 2500 days). The pattern shows a deterministic
pattern of behaviour of ASX traders.

Turning our attention to the Noise Process, we find that this process contains
some remarkably consistent behaviour. Averaging |rt| at each intraday interval
gives us a measure of the intraday volatility over a day. We find that a well de-
fined intraday volatility pattern emerges, shown in Fig. 3. The volatility starts
high at the opening and drops off rapidly over the morning as fund managers
move quickly to correct their positions due to the overnight jump in informa-
tion. Conversely, in the afternoon the volatility rapidly increases in anticipation
of the close. The above pattern will also be reinforced by the presence of the
many so called ‘day traders’ on the ASX, whose practice is to close out all their
positions at the end of each trading day and reopen their positions the following
morning. The rationale of day traders is to avoid overnight exposure to risk.
Interestingly this plot also provides us with a picture of the social behaviour of
ASX equity traders. The volatility can be seen to drop off suddenly after the
interval 12.20-12.30pm and pick up again on the interval 14.00-14.10pm. These
times correspond to the close of options trading on the ASX and is typically the
preferred lunchtime of most traders. Examination of the average volume traded
or the average transaction frequency during each intraday interval yields similar
measures for the intraday trading activity, shown in Fig. 4. The data must be
corrected for these intraday trends as any failure to do so will result in the anal-
ysis of correlation and dependence structure being dominated by these strong
periodic trends. We have found that the intraday trend can be successfully
removed by using the methods described in [1]. Choosing a suitable measure
for the intraday trading activity, a new time scale T (t) is constructed such that
the activity level is on average a constant for all intervals in T (t). Data is then
sampled at the new constantly spaced intervals of T (t), to provide a time series
with the intraday activity spread evenly through each day.
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Figure 4: The average value of both volume, Vt, and transactions, Nt, averaged
over 10 years (≈ 2500 days) of Commonwealth Bank (CBA) data. The pattern
shows a deterministic pattern of behaviour of ASX traders.

3 Distributional properties

Distributional properties of financial data have been studied in many forms over
the past 50 years. Mandelbrot [9] and Fama [11] were early challengers to the
assumption of the normality of returns, introducing Lévy stable distributions.
The drift away from Gaussian behaviour was continued by authors such as Clark
[6], Praetz [8], and more recently authors such as Gopikrishnan et.al. [4] and
Gorski et.al. [7] have found tails of financial data corresponding to power-
law behaviour with exponent exceeding that of the Lévy regime. Studying the
empirical distributions of ASX data has revealed that the returns series contains
an unusually high proportion of zero values. This behaviour was also reported
by [7] who termed the effect ‘zero return enhancement’. We have found that
this effect is produced in three ways: no trade taking place in the sampling
interval, trading at a constant price across the interval, and starting and ending
the interval at the same price (with a deviation in price in between). Currently
this effect is the subject of ongoing research and is not examined in this study
where we focus on the distribution tails. In this section we examine the tails of
the cumulative distribution function for the returns rt ∼ x−αrt , absolute returns
|rt| ∼ x−α|rt| , volume Vt ∼ x−αVt and transaction frequency Nt ∼ x−αNt .

In Fig. 5 we show the left and right tails of the intraday returns rt for
two typical stocks in the data set, Commonwealth Bank (CBA) and Rio Tinto
(RIO), sampled with τ = 10 minutes. Estimates for the power-law index for
our data set yields values in the range αrt

≈ 3.6. This value is well outside
that of the Lévy Stable Distributions. Table 1 shows the estimated power-law
values for 10 stocks in the dataset. Least squares fitting was performed over
different tail ranges (measured in standard deviations). The best power-law
behaviour, measured using Pearsons correlation coefficient, was found by fitting
the distribution tails across the range of 3 < σ < 15 standard deviations as
shown in Table 1. Increasing the sampling time, τ , we find that the power-
law index remains unchanged as shown in Fig. 6. This result shows the scale
invariance of the ASX data and conflicts with the findings of studies such as [7]
that find tail exponents do change with τ in DAX returns. For the overnight
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St.Dev: 1 < σ < 15 2 < σ < 15 3 < σ < 15 4 < σ < 15 5 < σ < 15

Security

ANZ -3.0 -3.4 -3.6 -3.8 -3.9
(0.989) (0.994) (0.995) (0.995) (0.994)

AGL -2.9 -3.2 -3.4 -3.6 -3.2
(0.987) (0.990) (0.990) (0.987) (0.983)

CBA -2.9 -3.2 -3.4 -3.4 -3.3
(0.992) (0.997) (0.997) (0.994) (0.990)

RIO -3.1 -3.6 -3.9 -4.2 -4.4
(0.983) (0.989) (0.990) (0.989) (0.985)

NCP -2.7 -3.1 -3.3 -3.6 -3.9
(0.984) (0.989) (0.987) (0.987) (0.982)

WBC -3.2 -3.6 -3.9 -4.3 -4.5
(0.986) (0.992) (0.993) (0.995) (0.993)

FGL -3.5 -4.0 -4.4 -4.7 -5.1
(0.977) (0.982) (0.982) (0.980) (0.976)

CSR -2.9 -3.3 -3.5 -3.6 -3.8
(0.988) (0.992) (0.991) (0.987) (0.986)

BIL -2.7 -3.0 -3.2 -3.4 -3.4
(0.989) (0.994) (0.994) (0.995) (0.993)

SGB -3.0 -3.3 -3.5 -3.5 -3.3
(0.990) (0.994) (0.994) (0.987) (0.984)

Av.Value: −3.0± 0.2 −3.4± 0.2 −3.6± 0.3 −3.8± 0.4 −3.9± 0.5

Table 1: Estimates of the tail index, αrt
, for rt, taken over different ranges

of standard deviation with corresponding values for Pearsons r in brackets.
Average values for αrt

were calculated over the total data set and are shown
with 99% error bars.
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Figure 5: The above plots show the left and right tails for CBA and RIO, along
with estimates for the power law index. The plot for CBA, on the left, shows
the left tail decreasing much more rapidly than the right tail.

jump process we cannot estimate the distribution tails as the number of data
points in this series is of the order ∼ 2000 samples and is too low.

Of more interest to financial researchers is the behaviour of |rt|, Vt and Nt

as these series are proxies for the volatility, and hence measures of risk for the
market. For |rt|, Vt and Nt we find power-law index values of α|rt| ≈ 3.6,
αVt

≈ 3.4 and αNt
≈ 3.0, as shown in Fig. 7 and Table 2. Interestingly the

observed values for the ASX data disagree with values observed in other data
sets [3], [4]. As a result, a recent explanation of financial power-law behaviour
proposed in [2], based on the behaviour of heterogeneous agents, is not validated
by our analysis. In particular, that study hypothesises that for large trading
volumes it holds that rt ' k

√
Vt, with k a constant. This is clearly not in

agreement with the behaviour detected on the ASX. We feel this finding to be
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Figure 6: This plot shows the distribution tails for CBA for different time
interval lengths τ . We can see that there is little change in the distributional
properties over sampling interval.

7



Tail Index: α|rt| αVt
αNt

Security

ANZ -3.6 -3.9 -3.3
(0.995) (0.999) (0.999)

AGL -3.4 -2.6 -2.7
(0.990) (0.997) (0.999)

CBA -3.4 -3.8 -3.2
(0.996) (0.999) (0.999)

RIO -3.9 -3.7 -4.4
(0.990) (0.997) (0.998)

NCP -3.3 -3.6 -2.9
(0.987) (0.999) (0.998)

WBC -3.9 -2.9 -4.0
(0.993) (0.996) (0.999)

FGL -4.4 -2.8 -2.7
(0.982) (0.999) (0.999)

CSR -3.5 -2.8 -4.0
(0.991) (0.999) (0.999)

BIL -3.2 -2.1 -2.9
(0.994) (0.995) (0.998)

SGB -3.5 -2.5 -3.8
(0.994) (0.998) (0.999)

Av.Value: −3.6± 0.3 −3.1± 0.5 −3.4± 0.5

Table 2: Estimates of the tail indexes for |rt|,Vt and Nt Calculated over the
range of standard deviation 3 < σ < 15 with corresponding values for Pearsons
r in brackets. Average values were calculated over the total data set and are
shown with 99% error bars.
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Figure 7: The above plots show the tails for |rt|, Vt, Nt for both CBA and RIO.
These series are proxies for the market volatility and all show strong power law
type behaviour.

significant and worthy of further investigation.

4 Time Correlation

The analysis of a process’ time correlations is necessary in order to properly
classify its behaviour. Fig. 8 shows the autocorrelation of overnight and intraday
returns for a typical stock in the data set. From these results we may be drawn
to conclude stock returns are independent as proposed in [11]. However as
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Figure 8: Autocorrelations for the Intraday (top) and Overnight (bottom) pro-
cesses rt. These both indicate the absence of any first order correlation structure.

mentioned in [4], the observed distributions appear to be scale invariant while
lying outside the regime of Stable processes. This implies that the assumptions
of the Central Limit Theorem are being violated in some way. Looking at
autocorrelations of |rt| for the overnight and intraday data (Fig. 9) we find
a strong positive autocorrelation in both series. This indicates that the stock
returns though uncorrelated are not independent. For intraday values of Vt and
Nt the autocorrelation shows similar positive values to that of |rt|.

A process with long or infinite memory is defined as having autocorrelation
function,

ρ(k) ∼ cρ|k|−β (2)

with cρ a constant and k is the lag. A process with this correlation structure
indicates the dependence between far apart events diminishes very slowly with
increasing lag. A process can be tested for such a correlation structure by
examining the variance of the process’ sample mean [10].

Recall that the variance of the sample mean of a time series X can be
represented in terms of its auto-correlation,

V(X̄) = n−2σ2

n
∑

i,j=1

ρ(i, j) (3)

where n is the length of X , σ = V(X) and ρ(i, j) is the auto-correlation matrix
of X . If ρ(i, j) only depends on k = |i − j| then the process is said to be
stationary and we may write

V(X̄) = n−1σ2

[

1 + 2
n−1
∑

k=1

(

1 − k

n

)

ρ(k)

]

(4)
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Figure 9: Autocorrelations for the absolute Intraday (top) and Overnight (bot-
tom) processes |rt|. In contrast to the returns process, these series show a strong
correlation structure.

=
σ2

n
+

σ2

nβ
nβ−12

n−1
∑

k=1

(

1 − k

n

)

ρ(k) (5)

For large n with ρ(k) ∼ cρ|k|−β this becomes

V(X̄) ∼ σ2c(ρ)n−β with c > 0 (6)

As a test for long memory we have plotted the variance of the sample mean for
different lengths n in Fig. 10 for ANZ Bank (ANZ). From these plots we are
able to estimate values for the long memory parameter β for rt, |rt|, Vt and Nt

using least-squares. In Table 3 we present the estimates of β for 10 stocks in
the data set. For the returns process, rt, we find a the value β ∼ 1, indicating
a lack of long memory in this process. However, the β values for |rt|, Vt and Nt

provide a strong indication of the presence of long memory in these processes.

5 Summary

This study has carried out an empirical investigation of high frequency equity
data for the Australian Stock Exchange over the period January 1993 to July
2002. We examined the return series, its absolute value, the volume traded
and the transaction frequency for both previously reported and unreported be-
haviour. This behaviour was compared to that found to exist in other studies.

It was demonstrated how, due to the time-zone of the Australian market,
the ASX returns can be represented as two separate processes for the overnight
and intraday periods. Further, it was found that while the intraday returns
themselves contained no seasonal trend, the absolute return, volume and number
of transactions all display strong periodic behaviour. This periodic behaviour is
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Figure 10: The variance plots shown above give estimates for the long memory
parameter, β for rt, |rt|, Vt and Nt with ANZ Bank (ANZ) data. The top left
plot shows β ≈ 1 for rt, which corresponds to an uncorrelated/short memory
process. The other plots are indicative of the presence of long memory type
behaviour.

due in part to microstructure effects unique to the ASX. Thus, we would expect
studies on different exchanges to yield different results as no two exchanges
operate under the same conditions. The extent to which market regulations
affect the results of the commonly performed analysis can only be determined
by a wider study across several markets.

We examined the tail behaviour of the empirical distributions of the data and
found that ASX equities appear to possess power law type behaviour, consistent
with that found in other studies. The estimated power law exponents were
found to be significantly different from those presented in the literature [3], [4]
on other markets. Of particular note, the traded volume was found to possess
a tail index of more than twice the value reported for the S&P500. Also, the
relative values of the estimated tail indicies for rt, |rt|, Vt and Nt were found to
be different than those found in previous studies making the ASX incompatible
with the explanation of the so-called cubic and half-cubic laws as proposed in
[2]. It remains to be seen if the different power law behaviour found on the ASX
is market/regional specific.

The correlation structure of the ASX data was investigated for long-memory
behaviour using the property that the variance of the sample mean for such a
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βrt
β|rt| βVt

βNt

Security

ANZ 1.001 0.525 0.326 0.215
AGL 0.842 0.480 0.301 0.215
CBA 0.900 0.533 0.392 0.280
RIO 0.926 0.497 0.506 0.302
NCP 0.967 0.395 0.340 0.308
WBC 0.950 0.515 0.454 0.246
FGL 0.931 0.501 0.424 0.330
CSR 1.031 0.506 0.502 0.301
BIL 1.030 0.430 0.484 0.255
SGB 0.923 0.521 0.419 0.371

Av.Value: 0.950± 0.048 0.490± 0.037 0.415± 0.060 0.282± 0.040

Table 3: Values for long memory parameter β for rt, |rt|, Vt and Nt.

process decays faster than n−1, n being the length of the sample. Results showed
that while the return process appeared to be uncorrelated with exponent βrt

≈ 1
the absolute returns, volume and number of transaction all displayed behaviour
consistent with that of a long memory process.
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