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Abstract

We present a non-linear fully adaptive wavelet algorithm which
can recover a blurred image (n x n) observed in white noise with
O(n?(log n)?)-steps. Our method exploits both the natural represen-
tation of the convolution operator in the Fourier domain and the typi-
cal characterisation of Besov classes in the wavelet domain. Particular
feature of our method includes “cycle-spinning” band-limited wavelet
approximations over all circulant shifts. The speed and the accuracy
of the algorithm is illustrated with numerical examples of image de-
blurring. All figures presented in this paper are reproducible using
the WaveD software package.
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1 Introduction

We begin with a function f defined on the unit square 7' = [0,1]?, this
function represents our image. Let g be a blurring kernel also defined on T’
and let

h(az) = f*g(a:) = / f(371 — U, T2 — U2)9(U17U2)duldu2, (1)

T
represent our blurred image. Suppose we observe h with some additive noise
Y, (dx) = h(z)dx + on ‘W (dz), z €T =][0,1]x [0,1], (2)

where ¢ is a positive constant and W(.) is a 2D Wiener process. This model
is illustrated in Figure 3(b) using the well-known ’Camera’, Figure 3(a). Our
goal is to recover the original image f from the noisy blurred observations
(2) using a wavelet thresholding estimator. The model (2) is an idealised
version of the motion blur model for digital images, see [1] for examples and
applications.

In this paper we extend the WaveD paradigm of Johnstone, Kerkyachar-
ian, Picard, and Raimondo [5] to the 2-dimensional setting and propose a
non-linear fully adaptive wavelet estimator of the original image f. We show
that the Translation-Invariant WaveD algorithm of Donoho and Raimondo
[3] extend well to the 2-dimensional setting according to each orientation:
vertical, horizontal and diagonal. This allows fast computation to be per-
formed in the Fourier domain where the convolution operator (1) factorises
nicely. Our paper is organised as follows: in section 2 we review basic ma-
terials on 2-dimensional band-limited wavelet basis and translation invariant
wavelet transforms; in section 3, we present the 2-dimensional WaveD estima-
tor; section 4 is concerned with examples and numerical properties as well as
a comparison with the recent ForWarD algorithm of [9]. A brief description
of the 2-dimensional WaveD algorithm is given in section 5.



2 Preliminaries

2.1 Two-dimensional wavelet basis

Two-dimensional wavelet basis are constructed by tensor products of one-
dimensional wavelet orthogonal systems. We recall the following theorem
taken from [7].

Theorem 1. Let ¢ be a scaling function and 1 be the corresponding wavelet
generating a wavelet orthonormal basis of L*(R). We define three wavelets:

Ui a) = dla)v(ze) . ¥ (2) = d(e1)d(a) , ¥ (2) = Y(z1)Y(22), (3)

and denote for 1 <m < 3,k = (ky,k2),z = (x1,22) and k = (j, k)

V() = U(a) = Py (2 — by P — ). (4)

The wavelet family
{vn vt i} (5)

(keZ3)

is an orthonormal basis of L*(R?).

We illustrate this theorem using the Meyer wavelet, [8]. A Meyer wavelet
¢ is a function whose Fourier transform F' () := ’(z}\ is smooth, see formula for
the construction of ¢ p.247 in [7]. In practice, we use a polynomial function
to define the so-called Meyer window, see [7] p.248. Note that the Meyer
wavelet is band limited and we have Supp(d(w)) = {w : |w| € [0,47/3]} and

Supp(¥(w)) = {w : [w| € [27/3,87/3]}.
Applying Fourier transforms in (3) we construct two-dimensional Meyer
wavelets in the Fourier domain,

-~

@El(wlawz) = p(w1)Y(w2) | @P(wl,wz) = Y(w1)p(w2) , ¢3(w1,w2) = Y(w1)Y(we)
(6)
and ggl(wl, wy) = g/g(wl)g/g(wg) for the two-dimensional scaling function. This
process is illustrated in Figure 1.
The three wavelets defined in Theorem 1 will reveal image details at
different frequencies and orientations. ! will extract vertical details and 1?2
will extract horizontal details whereas 12 will extract diagonal details. This
orientation property is visible in the Fourier domain, for example |1} (wy, ws)|

will be large at low horizontal frequencies and high vertical frequencies, see
Figure 1(b).
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Figure 1: (a) [¢(wy,wa)]; (b) [ (wi, w2)]; (¢) |92 (wr, w2)|5(d) |47 (wr, ws)].

2.2 Translation Invariant wavelet transforms

In this section we recall the formal definition of cycle-spinning a generic (two-
dimensional) wavelet thresholding estimator and we define the Translation
Invariant (TI) WaveD estimator. We refer to [2] and references therein for a
more general discussion. A wavelet thresholding estimator can be described
as follows:

Space domain Wavelet domain
Y(x) — (Be)
ln thresholding

f(x) — T n(Bx)

where WT, IW'T" denotes a generic wavelet transform and its inverse. For
any space shift h = (hy, he), we let Ty f(z) = f(x + h) := f(z1 + hy, 22 + ha)
denote the shift operator. For an arbitrary shift h we define one cycle-spin
of the estimator f(t) as follows

Space domain Wavelet domain
Y(x)
shift i
1Y () —Wr )
ln thresholding
fu(t) — I (B
unshift i
T n(fn)(2)



The idea behind cycle-spinning is to correct possible mis-alignments between
features in the image and features in the basis. Of course, if the image is
unknown there is little hope to find the best value of h. A well established
approach to solve this problem is to apply a range of shifts and average over
all several results [2]. Let H be a set of shifts, cycle-spinning the WaveD
estimator over H yields a new estimator:

Fir = AvenenT-a(f) = 77 32 Toalh). (")

heH

where |H| denotes the cardinality of H. Yet again the problem of choosing
the best H may arise. In fact, it is clear that the bigger is H the better
since we take into account more possible mis-alignments. Assuming that
the observed data y = (y(1,1); ---¥(1,5)s ---» Y(mn)) are sampled at a discrete set
of equally spaced points y;j) = Y (i/n,j/n),i,7 = 1,...,n; we define H; =
{1/n,2/n,...,n—1/n,1} and Hy = Hy x H; to be set of all possible circulant
shifts. The Translation Invariant WaveD estimator is defined by

fri = Avenem, T n(fr)- (8)

We refer to section 4 of [2] for a discussion of the improvement provided
by the cycle spinning process. This includes for example improvement in
approximation, suppression of Gibbs phenomenon as well as improvement in
de-noising.

2.3 Periodised Meyer wavelets

We start with a 1-dimensional Meyer orthogonal system ¢, ¢ and let

U(z) = d(x+k), Uju(x) =202z — k) (9)

keZ

with a similar formula for the periodised scaling function ® in terms of the
Meyer scaling function ¢. It is easy to check that (®, V) are periodic and
yields an orthonormal basis of L*(T), see e.g. [4]. The next step is to
apply Theorem 1 to the periodised pair (®, ¥) which gives a two-dimensional
periodised wavelet basis of L*(T):

{on vl w2 v} (10)

(r€Z3)



3 The two-dimensional WaveD-method

3.1 Fourier transforms

For | = (I1,ly) € Z% and v = (v1,79) € T, let I'z = ly.x1 + lr.w5 and
ei(z) = exp(2mil'z),l € Z* denote the Fourier basis of L?(T)). For periodic
functions (images) of L*(T'), the Fourier coefficients are given by

1l
fl = <f’ el> = / / f(l‘1,$2)61($1,$2)d$1d$2. (11)
o Jo
For blurred images h = f * g, we have the nice formula

hl = <h7 el> = <f*g,€l> = <f> €l>-<g,€l> = fl'gl7 (12>

for noisy images Y,,(z) and Wiener process W (z) the Fourier coefficients are

defined by
1,1
y = (Yo, er) ::/ / ei(wy, w2)dY, (71, 12), (13)
0o Jo

= (We) = /01 /01 ex(r, 22) AW (21, 22). (14)

Applying the two-dimensional Fourier transform to the data (2) yields the
sequence model
=h+onty, leZ% (15)

The WaveD paradigm of [5] combines Fourier and wavelet transforms. For
periodised wavelets (10), the Fourier coefficients are given by

U= (U, ) = // (21, 22) €)1, z2)dx1dzs, (16)

it is straightforward to check that the latter Fourier coefficients can be com-
puted from the Fourier transform of the original wavelet (evaluated on a
dyadic grid). For example,

U0 = (W o, ) = 27791/ (2 27)). (17)

Hence, using the construction formula for 1/1, see e.g. [7] p.247, we can com-

pute the Fourier coefficients of W’ ; at any resolution level j. This is illus-

trated on Figure 2 with j = 3 and m = 2.

Remark 1. The Fourier coefficients whose modulus are depicted on Figure
2(b) play a key role in the WaveD algorithm. In fact, at resolution level j

we only need the Fourier coefficients of W’ 5 to compute both the wavelet

transform and its inverse, see proposition 1 section 5.

6
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Figure 2: (a) The continuous surface depicts w — |¢%(w)| and points are sampling
at w; = /(27.2m),l € Z, with resolution level j = 3; (b) Modulus of Fourier
coefficients W)"7%0 = )2(w;)/8, with m = 2 and j = 3, see (17).

3.2 The WaveD paradigm

For periodic images in L?*(T'), the wavelet coefficients are given by

ﬁ;n = <f, \If;n> = /(; /(; f(Il,SUz) \I/Zl(lCl,SCz)dxld.TQ. (18)

For blurred images h = f % g, we can compute the wavelet transform via the

Plancherel formula:
(h, U™ Zhl LS (19)

the WaveD paradigm stipulates that we can perform wavelet transform and
deconvolution simultaneously since by (12) and Plancherel’s equality,

WaveD(h, g, V") := Z (hl

gl) v =N fat =g (20)
l l

In the case of noisy images, we define the (unbiased) Waved estimator by

B = WaveD(Y, g, UT") : Z % e (21)

leCcy

where C7" = {l : U;™" # 0}. In the light of the above WaveD formula, we
see that band-limited wavelets (e.g. Meyer) are very attractive since only a
finite number of terms is used in the sum (21).

7



3.3 The WaveD estimator

After performing deconvolution and wavelet transform, simultaneously, ac-
cording to (21), we define the WaveD estimator by

3
F= 2 anliautzrg O + D D B gy Wi (22)

rk€ly m=1 k€l

where Iy, I} are set of indices; Iy = {(jo, k1, k2) : 0 < ky < 200 — 1,4 = 1,2}
corresponds to a coarse resolution level jo and Iy = {(j,k1,k2) : 0 < k; <
20 —1,1=1,2, jo < j < ji} indexes details up to a fine resolution level j; .
To specify the thresholds A}*, we extend the definition of [5] and set

B B 1/2
o=l Y el 2) (23)
lect

where |C7"| denotes the cardinality of C}". The WaveD (level-by-level) thresh-
olds are defined according to each orientation (m = 1,2, 3) by

Ajt = o1 (logn)/n, (24)
where v is a constant and the finest scale j; is determined from
21 = (n/ logn)Y/1+%), (25)

Here v is a decay parameter which depends on the Degree of Ill-Posedness
of the convolution model (2); for example the WaveD asymptotic theory
as prescribed in [5] (extended here to the 2D-setting) includes convolution

kernel ¢ such that
B S N1/2 .
(o773 Jal2) =2,
lecy

Condition (C,) typically holds for ordinary “smooth” convolution where
lgi] ~ (Jl1] + |l2])7", and in the 1-dimensional setting it has been shown
to hold for certain oscillatory cases, such as arise with irrational boxcar blur

6].

4 Examples

4.1 WaveD Software

The WaveD2.0 software package used to prepare all figures and table in this
paper is available at http://www.maths.usyd.edu.au:8000/u/marcr/. The

8



2D-WaveD algorithm as described in section 5 is implemented in matlab and
is based on the repeated application of appropriate discrete Fourier transform
at each resolution level (and orientation) as illustrated on the diagram p.9.
For an nxn image there are at most J = log,(n)—1 resolution levels and each
2D-Fourier transform takes O(n?logn)-steps. Hence, in total the 2D-WaveD
algorithm requires only O(n?(logn)?)-steps for an n x n image.

4.2 Image deblurring using WaveD

We have tested finite sample properties of the WaveD algorithm using a wide
range of images at various Signal-to-Noise-Ratios. We illustrate our findings
using the well-known 'Camera’ image, see e.g. [9]. The original image (256 x
256) is depicted in Figure 3(a). In Figure 3(b) we illustrate the white noise
model (2) with medium noise level 0,,.4 = 0.002 and a smooth blurring kernel
g with DIP v = 1. In Figure (b) the Blurred-Signal-to-Noise-Ratio (BSNR)
is 40dB as in the default setting of [9] . In our study (summarised in Table 1)
we also report performances for low noise level g, = 0.0006 (BSNR=50dB)
and high noise level 0y;,, = 0.065 (BSNR=10dB).

Table 1: Monte-Carlo approximations to RMISE=1\/E||f — f||3 with N = 100

replications.

| Method | Time (100 repl.) | Low noise | Medium noise | High noise |

WaveD 4.5 min 0.1854 0.1886 0.2442
ForWaRD 55.8 min 0.1581 0.1812 0.2953

4.3 Results

For each combination of noise level (low, medium and high) we compute
the Monte Carlo approximation to the Root-Mean-Integrated-Square-Error
(RMISE) with N = 100 replications. For comparison purposes, we included
the results of the recently developed ForWard algorithm, see [9].

The general pattern seen in Table 1 suggests that for high noise level
WaveD outperforms ForWarD whereas for low noise level ForWarD outper-
forms WaveD. For medium noise level both WaveD and ForWaRD are very
close. A comparison of Figure 3(c) and 3(d) suggests that the image details
(e.g. eyes, mouth) are more visible on the WaveD estimation than in the
ForWarD image which remains a little blurred due to the regularisation. On



Figure 3: (a) Original image; (b) blurred and noisy image; (c¢) ForWard;(d)
WaveD.

the other hand the general appearance of the ForWarD estimates is slightly
smoother than the WaveD image.

4.4 Discussion

These preliminary results are very encouraging given that the ForWarD
method is known to have very good numerical properties and outperforms
classical deblurring methods based on Wiener filtering. A key feature of the
WaveD method is that it is fairly simple and with fast computation (nearly
as fast as the fast Fourier Transform). We are confident that the WaveD de-
blurring algorithm as presented here could further be improved using more
elaborate thresholding devices, see e.g. the discussion in [5]. Our numerical
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study seems to suggest that diagonal coefficients at large resolution level are
harder to recover than horizontal or vertical components. This is confirmed
by the theory since an inspection of the WaveD paradigm (21) shows that
for diagonal coefficients (m = 3) the support of U3 is wider than that of
™ om = 1,2 (see also Figure 2). This yields larger variances for diagonal
coefficients estimates. This results in a lack of diagonal coefficients for the
WaveD image (Figure 3 (d)). There is a similar phenomenon in ForWarD
images (Figure 3(c)) but the regularisation tends to minimise this effect al-
though this also erases some details in the image. We are confident that
the general aspect of the WaveD images could further be improved by us-
ing more elaborated thresholding strategires. A promising future research
project would be to improve the general (diagonal) appearance of WaveD
while keeping its fine details along horizontal and vertical axis.

5 Algorithm

Our algorithm is a based on a mathematical idea introduced in [3] for the 1-
dimensional setting. The idea is that, at a given resolution level, both wavelet
transform and inverse wavelet transform can be expressed as convolutions
with certain wavelet functions. The WaveD algorithm takes full advantage
of the Fast Fourier Transform to compute those convolutions. Below we
present an extension of the WaveD algorithm to the 2-dimensional setting
where we take care of the 3 possible orientations: horizontal, vertical and
diagonal.

e Averaging shifts can be done level by level according to given orienta-
tion m = 1,2 and 3. To simplify the presentation we omit the scaling
term m = 0. Recalling the multi-resolution structure of a generic
wavelet estimator we have

T = Y S i - Y e

Jj=jo—1lkell Jj=jo—1

fi(x) = Avepen (T i (x Z AveheHP Z me
Jj=jo—1 Jj=jo—1
(26)
and finally we sum the horizontal, vertical and diagonal contributions:



e For the Tl-estimator the approximations f;”’H (m = 1,2,3) can be
expressed in terms of convolutions with certain wavelet functions. The
following result is a direct extension of proposition 1 of [3].

Proposition 1. Let k = (ky, ko) and \i/;”k(:p) = U7 (—x). For any
resolution level j and shift h = (hy, hy) we have, for m = 1,2 and 3,

B = (Fx W) (AL) = AT (AD), (27)

where A = k/2I+h, and for H = {1/n,2/n, ..., (n—1)/n}x{1/n,2/n, ..., (n—

1)/n} we have
FM (@) = (27/n®) x (B * W) (x), (28)
where
By'(A}) = n;(AT(A})) = AT (AR L(JAT(AD)] > A7), (29)

and f % g denotes the circular convolution product.

For Meyer wavelets which have compact supports in the Fourier domain
(see Figure 1), the convolution representations (27) and (28) can be
computed in the Fourier domain:

Wavelet domain Time domain Fourier domain
f —F f
T, *
i xWj6,0
Am — Am
J J
lnj )
B™ —F B™
J j .
l x W
m,H F-1 rm, H y ’2
fj — f ; x27 /n

In the previous diagram F, F~! denotes the Fourier transform and its
inverse.
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