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Abstract

A self-organising model of group formation (in three dimensional space) based on
simple rules of avoidance, attraction and alignment is used to examine the spatial
dynamics of animal groups. We discuss the different types of behaviour resulting
from this model due to changes in these rules. In particular, the phenomenon of
honeybee swarms migrating to a new nesting site is examined. The vast majority of
the migrating swarm is uninformed as to the particular location of their new home.
A small number of bees (in the swarm) have prior knowledge of the new location
and guide the rest of the swarm to the new site. The model investigates a hypothesis
of how this guidance procedure occurs. We conclude from the results of the model
that one possible way for this process to occur is for the knowledgeable bees to
guide the other members of the swarm with spatial cues.

Key words: Self-organisation, spherical probability distribution, swarming
behaviour, randomisation tests, Apis mellifera.

1 Introduction

Physical aggregation occurs in a diverse range of animals, from small and
uncomplicated entities such as bacteria, to the larger ones like whales. Aggre-
gation occurs in large and small groups. African army ant colonies (Dorylus
(Anomma) nigricans) raid in swarms composed of millions of workers. Killer
whales (Orcinus orca) tend to hunt in pods of smaller numbers (transient pods
typically contain less than ten individuals). Other animals that congregate in
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this fashion include honeybees (Apis mellifera) and schools of migrating fishes
(such as herring (Clupea harengus)). Further discussion can be found in Parrish
et al. (2002) and Camazine et al. (2001).

Animals form groups for numerous reasons. A large group offers protection
from predators because the larger numbers lower the chances of being caught.
In addition, groups can perform organised evasive manoeuvres to outwit a
predator. These evasive actions include groups splitting up (exploding) into
individuals or forming tightly-knit ball shaped clusters, both designed to con-
fuse predators. Highly coherent, aligned arrangements of individuals offer ob-
vious aerodynamic or hydrodynamic advantages, resulting in energy savings.
Other advantages of groups include socialising and more efficient foraging.

Practically speaking, in many species it is difficult to obtain empirical data on
group behaviour. Models, either mathematical or computational, can provide
useful insights into aggregative behaviour. Mathematical models of social ag-
gregations have used a variety of approaches. Models can be categorised into
either Eulerian or Lagrangian approaches. A Lagrangian approach considers
the position and velocity of each individual within the group. An Eulerian
approach models the density of a population over space at a particular time.
Classically, Eulerian models have been favoured, as they lead to well-studied
partial differential equations (Okubo, 1980). Grünbaum & Okubo (1994) dis-
cuss both possibilities in detail. In this article we will adopt a Lagrangian
modelling approach.

Self-organisation is a process in which the pattern at the global level of a
system emerges solely from numerous interactions among the lower-level com-
ponents of the system. Moreover, the rules specifying interactions among the
systems’ components are executed using only local information, without any
reference to the global pattern (Camazine et al., 2001). With a full knowledge
of the individuals of the group and of the interactions between individuals, the
pattern obtained from the process of self organisation could not be deduced
- implying that there is something more complicated than simple additive
interactions (Anderson, 2002) and that nonlinear effects may be important.

The process of self organisation can be implemented in animal groups by either
direct or indirect social interactions and communications between individual
group members. We develop a model for the movement of animal groups based
on direct social interactions between individual group members. We use this
general model to explore the effects of individual behaviour on group behaviour
and then apply the general model to a specific problem in honeybee groups.
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1.1 Introduction: honeybees

A typical honey bee (Apis mellifera) colony consists of approximately 25,000
adult worker bees, 1000 or more male drones and a single queen. Honeybee
colonies reproduce by splitting into two. One group stays with the original
home, whilst the other moves off to a new location. Typically in spring a
swarm of honey bees leaves the hive and settles in a cluster, whilst scout
bees search for a suitable place for the colonies’ new home. If a scout finds
an appropriate nest site, she returns to the swarm and tries to recruit other
scouts to visit the site via the waggle dance. After some time, one dance is
selected as the most promising and the scouts stimulate the rest of the swarm
group to flight and guide the group to the new home by various signals (Seeley
& Buhrman (1999), Myerscough (2003), Donahoe et al. (2003)).

In a swarm of approximately 10,000 bees, approximately 5% are scouts and
these are responsible for guiding the swarm toward the new home. The rest
of the bees are uninformed as to the whereabouts of the new home.

One possible way for scouts to guide the swarm to their new home is to fly con-
tinuously through the swarm, with flight paths aligned toward the direction
of the new home. This follows the observation that some bees have been seen
to fly rapidly through the swarm, “pointing” in the direction of the new home
(Lindauer (1971), Janson et al. (2004)). Having developed a model for honey-
bee swarming, we use this model to investigate this idea of scouts guiding the
rest of the uninformed swarm.

2 Model formulation

Couzin et al. (2002) devised a self-organising model of group formation in
three-dimensional space, with the intention of explaining interactions in ag-
gregative behaviour. We use their model as a base and expand upon it, in
order to apply it to honeybee swarms and attempt to explain how scout bees
may guide the rest of the uninformed swarm to the colonies’ new home.

The model of Couzin et al. (2002) simulates the behaviour of individuals as
the result of local repulsions, alignments and attractive tendencies, based on
the position and orientation of individuals relative to one another.

Within the model, there are N individuals (i = 1, . . . , N), each with a unique
position vector ~ci(t) and unit direction vector ~vi(t) at time t. Time is parti-
tioned into discrete time steps of an equal interval width of τ (defined in the
simulation to be 0.1 time units). Each individual assesses other individuals
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within a local neighbourhood, in order to determine a desired direction vector
(~di(t + τ)) to travel.

An individual attempts to maintain a minimum distance from its immediate
neighbours, who are within a zone of repulsion (modelled as a sphere with
radius rr). If an individual has nr neighbours in the zone of repulsion at
time t, then the direction vector generated by interactions with these other
individuals in the zone of repulsion is defined as:

~dr,i(t + τ) = −

∑nr

j 6=i ~ri,j(t)

|
∑nr

j 6=i ~ri,j(t)|
, where ~ri,j(t) =

(~cj(t) − ~ci(t))

|~cj(t) − ~ci(t)|
. (1)

Here ~ri,j(t) is the unit vector in the direction of neighbour j (j = 1, . . . , N ,
j 6= i). Individuals respond to neighbours in the zone of repulsion with the
highest priority, so if neighbours are present in an individual’s zone of repulsion
(nr > 0), then ~di(t + τ) = ~dr,i(t + τ). The individual’s response is equally
weighted for each neighbour in the zone of repulsion.

If there are no neighbours within the zone of repulsion, individual i then re-
sponds to neighbours within the zone of orientation and zone of attraction.
Both of these zones are spherical (with radii ro and ra, respectively), except
for a blind volume defined behind individual i such that neighbours cannot be
detected. This volume is a cone with interior angle of (360− δ)◦, where δ (de-
grees) is defined as the field of perception. There are no detectable neighbours
present in the zone of orientation, such that rr ≤ |~cj(t) − ~ci(t)| < ro. Simi-
larly, there are na detectable neighbours in the zone of attraction for whom
the condition ro ≤ |~cj(t)−~ci(t)| ≤ ra is satisfied. The desired direction vector
arising from the zone of orientation is defined as:

~do,i(t + τ) =

∑no

j 6=i ~vj(t)

|
∑nr

j 6=i ~vj(t)|
(2)

and the desired direction vector in the zone of attraction is:

~da,i(t + τ) =

∑na

j 6=i ~ri,j(t)

|
∑na

j 6=i ~ri,j(t)|
. (3)

If neighbours are found only in the zone of orientation, then ~di(t+τ) = ~do,i(t+

τ). If the neighbours are only in the zone of attraction, ~di(t + τ) = ~da,i(t + τ).
If neighbours are present in both zones, the desired direction vector becomes
the average of ~da,i(t) and ~do,i(t). In the situation where the social forces cancel
out and give a zero vector as a result or no individuals are detected in any
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of the zones around individual i, then the individual proceeds on its original
course (~di(t + τ) = ~vi(t)).

Once this assessment has been carried out for each individual in the group,
the group members orientate towards their individual desired direction vectors
(~di(t+ τ)) by the turning rate γ. Provided the angle between the vectors ~vi(t)

and ~di(t + τ) is less than the maximum turning angle γτ , then ~vi(t + τ) =
~di(t + τ). If not, the individual rotates by γτ towards the desired direction
vector. This is the approach of Couzin et al. (2002). We now modify the model
for our own purposes.

To introduce speed into the model, we update the array of position coordinates
with the new positions of the individuals (we assume that speeds of the system
components are constant). Suppose at time t, individual i with position ~ci(t),
travels with speed si in the direction ~vi(t + τ). Between time t and t + τ ,
individual i travels a distance ∆i = τsi. The individual travels in the direction
~vi(t + τ) × ∆i. The updated position at time t + τ is:

~ci(t + τ) = ~ci(t) + ~vi(t + τ) × ∆i . (4)

2.1 Simulating the scout guidance hypothesis

Let the number of scouts in the model be Nscouts and the number of workers
is Nworkers = N − Nscouts. The scouts fly with a given speed from random
starting positions within the swarm, towards the goal (the new home). For
convenience, this direction is assumed to coincide with the positive x-axis
direction. To update the scouts position at each time step τ , we can use (4).

We need to introduce a condition to allow the scouts to fly back through the
swarm when they fly past the swarm front. We assume that the swarm is
approximately spherical in shape. We define the centre of the group as the
mean of the individual position vectors:

~cgroup(t)=
1

Nworkers

Nworkers
∑

i=1

~ci(t) . (5)

Let the origin of our coordinate system coincide with the centre of the group.
We assume scouts fly in the x-direction, hence the location of the front of
the swarm becomes the maximum of the x-coordinates of the workers. Let
~cscout,x(t) denote the x-coordinate of the scout in question at time t and
~cgroup,x(t) be the x-coordinate of the centre of the group of workers. If the dis-
tance between the scouts’ position and the centre of the group is larger than
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the distance between the centre of the group and the maximum x-coordinate
(provided ~cscout,x(t)−~cgroup,x(t) > 0), then the scout is assumed to have flown
beyond the limits of the swarm. If so, the scout is then moved to a correspond-
ing position at the rear of the swarm and flies through the swarm again, in
the direction of the goal.

2.2 Random errors in decision making

Decision making in animal groups is subject to error. To simulate this, the
individual worker’s desired direction vector calculated previously is modified
by an angle drawn at random from a spherical probability distribution.

Spherical probability distributions are characterised by their probability den-
sity, which is defined as the probability per unit area on the surface of a unit
sphere.

We commence by defining a coordinate system. We define the point P =
(λ, µ, ν) in terms of three dimensional Cartesian co-ordinates and let O be the
origin. The point P can also be determined by its polar coordinates in the
following fashion. Let longitude be measured in the anticlockwise sense from
the x-axis and be denoted by φ. The distance from O (or the length of OP )
is denoted by r. The value of r is 1 (a unit sphere). Instead of latitude (the
angular distance from the equator), we use the colatitude (the complement to
90◦), denoted θ. The relationships follow λ = cos(φ)sin(θ), µ = sin(φ)sin(θ),
ν = cos(θ). Let colatitude and longitude be independently distributed random
variables, such that θ ∈ [0, π] and φ ∈ [0, 2π).

We perturb the desired direction vector by an angle drawn at random from
the Fisher distribution. This distribution closely approximates the spherically
wrapped Gaussian distribution (Roberts & Ursell, 1960). We define the proba-
bility density function of the Fisher distribution, F ((α, β), κ), on a unit sphere
as:

f(θ, φ)=CF sin θeκ(sin θsin αcos (φ−β)+cos θcos α) (6)

such that CF =
κ

2π(eκ − e−κ)
,

where (α,β) is the mean direction (in polar coordinates) and κ is the con-
centration parameter, such that κ ≥ 0 (Fisher et al., 1987). The angle φ is
uniformly distributed on the interval [0, 2π). The parameter κ controls the
spread of the distribution. The larger the value of κ, the more the probability
density function is concentrated towards the direction of (α,β). Fisher et al.
(1987) give an algorithm for generating a random sample from a Fisher dis-
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tribution. We simulate error by modifying each individuals’ desired direction
vector by rotating it by a random angle from a Fisher probability distribution.

2.3 Descriptive statistics

To analyse the collective behaviour of the model, a variety of descriptive
statistics are employed. The group polarisation (pgroup(t)) measures the de-
gree of alignment amongst individuals within the group. Angular momentum
(mgroup(t)) is a measure of the degree of rotation of the group around the
group centre. The group centre (~cgroup(t)) is calculated as the mean of the
individual position vectors (5). These statistics are defined by Couzin et al.
(2002) in the following way:

pgroup(t) =
1

Nworkers

∣

∣

∣

∣

∣

∣

Nworkers
∑

i=1

~vi(t)

∣

∣

∣

∣

∣

∣

(7)

mgroup(t) =
1

Nworkers

∣

∣

∣

∣

∣

∣

Nworkers
∑

i=1

~ri,c(t) × ~vi(t)

∣

∣

∣

∣

∣

∣

(8)

where ~ri,c(t) =
~ci(t) − ~cgroup(t)

|~ci(t) − ~cgroup|
.

These statistics are useful in characterising the different types of collective be-
haviour emerging from the model. Couzin et al. (2002) identifies four distinct
types of behaviour of particular interest. A swarm is an unorganised group of
individuals with low polarisation and momentum. A torus arrangement can
occur when individuals rotate indefinitely around an empty core; polarisation
is low, but group momentum is large. A dynamic parallel group is a loosely
aligned group of individuals, with a large polarisation and low group momen-
tum. Lastly, a highly parallel group is an extremely aligned arrangement where
individual members are travelling in the same direction, the group has a very
large polarisation and small momentum.

In addition, we also require a measure of average direction of the group. Let
the direction cosines (λi, µi, νi) be N observation vectors (i = 1, . . . , N). Define

Rλ =
N

∑

i=1

λi , Rµ =
N

∑

i=1

µi , Rν =
N

∑

i=1

νi . (9)

The spherical mean is:

(

λ̄, µ̄, ν̄
)

=
1

R
(Rλ, Rµ, Rν) (10)

7



where R2 = R2
λ + R2

µ + R2
ν. If the observations are clustered around a partic-

ular direction, the value that R takes must be close to N . Conversely, if the
observations are dispersed (such as in the uniform case), the value of R will
be small. R is a measure of concentration about the mean direction and we
may define the spherical variance as:

S = 1 −
R

N
(11)

where 0 ≤ S ≤ 1 (Mardia, 1971).

2.4 Randomisation tests

When a model of interest is investigated using a classical hypothesis test, we
can regard it as alternative to a null hypothesis of randomness. That is, the
model under investigation suggests that there will be a tendency for a certain
type of pattern to appear in the data and the null hypothesis says that if
this pattern is present, then it is due to a random effect of observations in a
random order.

Randomisation testing is a way of determining whether the null hypothesis
is reasonable in this type of situation. A test statistic is selected to measure
the extent to which the data shows the pattern in question. The observed test
statistic value is compared with the distribution of the test statistics obtained
by randomly reordering the data. If the null hypothesis is true then all possible
orders of the data are equally likely to have occurred. The observed data order
is one of the equally likely orderings and the test statistic from the observed
data should appear as a typical value from the randomisation distribution of
test statistics obtained by randomly reordering the data. If this is not the case,
the test statistic for the observed data is “significant”. The null hypothesis is
discredited and the alternative hypothesis is considered the more reasonable
(Manly, 1997).

In the context of the self-organising model, randomisation tests have an advan-
tage over standard statistical methods: with the former, it is relatively simple
to take into account the peculiarities of the situation using non-standard test
statistics. This advantage will be applied in Section 3.2.
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3 Results and discussion

3.1 General model

To analyse the collective behaviour of the model, we examine the result of al-
tering the width of the zones of attraction and orientation, and how they affect
the behaviour of the group. We refer to the types of group behaviour discussed
in Section 2.3. Figures 1 and 2 show the effects of altering the width of the
zones of attraction and orientation on group polarisation and momentum. De-
fine the width of the zone of attraction as ∆ra = ra − ro and the width of the
zone of orientation as ∆ro = ro − rr. Fragmentary or explosion-like behaviour
(indicated by the region marked (a) in Figures 1 and 2) results in low momen-
tum and polarisations: this occurs when ∆ra and ∆ro are both relatively small.
The repulsive forces dominate the behaviour of individuals, forcing them apart
from one another. The effectiveness of this behaviour has been demonstrated
in aquatic animals. The aim of this behaviour is to present a predator with
multiple moving targets, making it difficult to single out solitary vulnerable
prey (Wittenberger, 1981). Individuals can form a single cluster when ∆ra is
relatively large, whilst ∆ro is of a medium size (region (c)). The strong at-
tractive forces dominate and keep the individuals together as a whole. Several
unorganised clusters of individuals are formed when ∆ra and ∆ro are small,
but not small enough to cause fragmentary behaviour (region (g)). Swarm
behaviour (indicated by region (b)) occurs when ∆ra is a medium to large
size and ∆ro is small. The individuals do not have the opportunity to align
themselves and their respective attractive and repulsive tendencies balance
out to create unorganised behaviour. This formation is used by terrestrial,
aquatic and airbourne animals alike, for predator evasion. The motivation
for this behaviour is that individuals can gain protection from predators by
heading toward the center of the group and thereby shielding themselves us-
ing other individuals. An example of this behaviour occurs in starling flocks,
where individual starlings employ this tactic when under attack from falcons
(Wittenberger, 1981).

Dynamic parallel behaviour is typical when both ∆ra and ∆ro are medium
sized (region (d)). If the attraction zone decreases, several groups of aligned
individuals are created. An optimal hydrodynamic arrangement is not neces-
sarily effective for predator evasion. Predation has the effect of causing fish to
organise themselves in a less hydrodynamically efficient arrangement (a dy-
namic parallel group) that is more likely to reduce predator risk (Krause &
Ruxton, 2002). As the size of ∆ro increases, the group of individuals form a
more cohesive arrangement as a highly parallel group (region (e)). Migratory
fish have a tendency to travel in this fashion (seabass, Centropristis striata
and tuna species) to take advantage of energy savings (Krause & Ruxton,
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2002). As the size of ∆ra decreases, there is a disincentive for individuals to
stay together, should they become separated from the main group (region (f)).

3.2 Scout model

Now the combinations of parameters which give rise to aligned groups are
known, we use these to generate parallel behaviour and use this to test the
scout guidance hypothesis.

We need to choose how to distribute the scouts amongst the swarm. One
arrangement is to allow the scouts to fly along the same flight path (one after
another). This may be interpreted as the scouts following one another closely,
pointing in the direction of the goal and moving with a velocity larger than
that of the workers. Figure 3 illustrates an example of this situation. There are
5 scouts present in the model, flying one behind the other and these scouts
are available to influence the group from the outset of the simulation. The
graphs of the centre of the group’s travel path (through the time period of
the simulation) show that the group’s general direction of travel is consistent
with the scouts’ flight path. The graphs of the y-x and z-x components of
the centre of the group travel path show a distinct drift along the x-axis. The
z-y plane shows some oscillation in the plane. This oscillation is negligible in
comparison with the movement in the z-x and y-x planes. The mean direction
components over time show a tendency for the group average direction to align
with the direction of the scouts’ path (along the x-axis). The x-component
quickly tends towards the value of 1, whilst the z- and y-components oscillate
around the zero value. Further evidence is provided when the polarisation and
spherical variance over the time period are examined. Both graphs suggest
a highly polarised cohesive group (with low rotational movement) moving
throughout the simulation. Given that the groups’ travel path is generally in
the x-direction towards the goal and the group is highly ordered, it leads to
the conclusion that the individual workers have been influenced by the scouts
(rather than heading off in an arbitrary direction).

An arrangement of scouts distributed around the perimeter of the group is also
useful to enable scouts to influence workers, by enabling any stragglers from
the workers to be redirected by the scouts. Figure 4 shows the results of a sim-
ulation with this arrangement. An examination of the x-, y-, z- components of
the mean direction and the centre of the groups’ travel show a tendency for the
group to move in the positive x-direction. The centre of groups’ travel path
oscillates between the scouts’ positions in the y-z plane. The arrangement
of scouts’ distributed around the outside of the group of workers has effec-
tively contained the workers. The graphs of polarisation, spherical variance
and momentum suggest an organised, cohesive group structure is maintained
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throughout the simulation.

Previously, scouts have been present to influence the group from the beginning
of the simulation. In Figures 5 and 6, the workers are allowed to form an
organised group, free from any influence of scouts. Once this group has been
formed, scouts are introduced to see if the workers alter their behaviour to
align with the scouts flight paths. The flight paths of the scouts in these
two simulations have the same configurations of the previous ones (Figures
3 and 4, respectively). In both simulations, the workers’ direction of travel
has changed from an arbitrary direction, to be aligned with the flight path of
the scouts. The addition of scouts to a cohesive group of workers travelling in
an arbitrary direction will cause the group to change their behaviour. These
two simulations provide evidence that scouts are able to guide an uninformed
group by flying through the group, in a straight line in the direction of the
goal. Janson et al. (2004) also address the problem of scout guidance. They use
more complicated rules which, among other things, allow the scouts to get an
errant swarm back on track to the nest site. They do not consider the general
case of animal movement and their use of conventional statistical techniques
may lead to paradoxical results. We have recognised that our data consists of
directions. The methods we present here, using spherical probability theory,
better reflects the physical situation being modelled.

The concept of a randomisation test (discussed in Section 2.4) is applied to
the results of the simulations incorporating the scout guidance hypothesis. We
aim to evaluate how our data has evolved in time and gain some indication
as to whether or not the scouts have been able to influence the group during
the time period of the simulations. The null hypothesis is that the sample of
spherical means of the orientations of the workers is random. Effectively, the
alternative is that the workers general direction of travel coincides with the
flight paths of the scouts.

Once we have the sample of mean orientations, the spherical mean of this sam-
ple is calculated. Define the angle between the spherical mean of the sample
and the x-axis, as δ. The angle δ can be calculated using the scalar product of
vectors (where δ ∈ [0, π]). The observed angle δobs is calculated directly from
the sample. We define the test statistic, T, as:

T =
δ

pgroup

, (12)

where pgroup is the polarisation of the sample of mean orientations. A cohesive
group (pgroup → 1) heading towards the direction of the x-axis (δ → 0) will
lead to low values of the test statistic. As the group becomes more disorganised,
the value of the test statistic will increase.
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Permutations of the data are generated from the polar coordinates θi and φi

(i = 1, ..., 1000) of the sample. These polar coordinates are randomised 999
times (θi and φi separately, as they have different ranges). From these ran-
domised samples, 999 test statistics are calculated to generate the empirical
reference distribution. The observed value of T is compared with this distribu-
tion, to decide if T is a typical value from the reference distribution. A p-value
can be calculated, the probability that a test statistic at least as extreme as
that already observed will occur (assuming that the null hypothesis is correct).
Small p-values lead to the conclusion that the pattern in the data is unlikely
to have arisen by chance alone. In this case, we have a one-sided test, as values
of δ close to zero support the alternative alignment hypothesis.

Figure 7 shows histograms of randomised test statistics for the simulations in
Figures 3, 4, 5 and 6. The observed test statistics are 0.01255, 0.05352, 0.03748
and 0.13978 for these simulations, respectively. In each case, comparison with
the appropriate histogram in Figure 7 leads to the conclusion that the observed
test statistics are not typical values from the randomisation distributions. The
p-values in each case are low, giving strong evidence against the null hypothesis
and leading us to conclude that the current arrangements have not arisen due
to chance alone.

Statistics Prior Concentrated Scouts Dispersed Scouts

1st Quartile 1.6230 0.3383 0.9811

Median 1.7840 0.5210 1.1790

3rd Quartile 1.9510 0.6281 1.4190

Mean 1.7720 0.4819 1.1600

std. dev. 0.3365 0.2160 0.3656

N 399 1600 1600

Table 1
Summary statistics for angles of the mean orientation, before and after introduction
of scouts (concentrated and dispersed flight paths).

Table 3.2 and Figure 8 represent the values of the angles of the mean orienta-
tions (relative to the x-axis) for the data prior to the scouts being introduced
to the swarm, and after (calculated at each timestep of the simulation). The
data appear in Figures 5 and 6. A comparison of the two distributions of the
angles, reveals that the scouts have had a significant impact on the orienta-
tions of the groups of workers. The boxplots of angles (post introduction of
scouts) show a shift towards the lower end of the scale of angles, in comparison
to the distribution of angles before the scouts are present. The distribution of
angles of workers who have had the opportunity to be influenced by scouts fly-
ing in an arrangement dispersed around the group also shows a less dramatic,
but still noticeable, shift towards the lower values of angles. Specifically, the

12



upper and lower quartiles are distinct from the unguided group’s distribution
of angles. There are only 72 angles (4.5 %) in the sample from the time period
before the scouts were introduced that have angles greater than the first quar-
tile of the distribution of angles of the unguided workers. There is evidence
that the scouts have had some influence over the swarm.

How fast (relative to the workers) do the scouts have to fly before the workers
pay attention to them? To answer the question, we set the speeds of all workers
to 1 distance unit/time unit and simulate the scout guidance model for varying
scout speeds. The results are shown in Figure 9, where the median of the mean
angle between the directions of the workers at each timestep of the simulation
(the median of δ) and the x-axis is plotted. An abrupt change in the angles
are seen once the speed of the scouts coincides with that of the workers. We
conclude that the scouts can influence the workers, provided their speed is at
least as large as that of the workers. If the scouts are slower than the workers,
the group of workers ignore the scouts. Presumably, the group of workers leave
the scouts behind.

3.3 Errors in decision making

We consider the impact of allowing individuals to make errors in their decisions
by introducing random angles. As mentioned in Section 2.2, small values of
the concentration parameter κ lead to a Uniform spherical model and large
values of κ will cause the Fisher distribution to collapse to a point distribution
and tend to the deterministic model. Figure 10 where κ is set to 1000, shows
what appears to be typical unorganised swarm-like behaviour. The plots of
the components of the mean direction of the group show large oscillations and
the graphs of the group centres show less of a tendency to move in a similar
direction to the scouts (compared with the deterministic models).

How is the influence of the scouts altered by introducing errors in individ-
uals decision making? We simulated the model for various values of κ (κ =
0.5, 1, 10, 100, 1000, 10, 000 and 100, 000). The mean components were smoothed
by a moving average filter (with a window of size 10) to reveal general trends.
The randomisation test was applied to the smoothed data. Simulations with
values of κ = 0.5 and 1 yielded p-values of 0.198 and 0.136, respectively. All
other simulations gave extremely small p-values. Hence, the group of workers
were influenced by the scouts (to some extent) for values of κ being 10 and
larger.
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4 Conclusion

The purpose of this investigation was to construct a model for group interac-
tions and use this to consider how scout honeybees with knowledge of the lo-
cation of the new home guide a swarm of uninformed workers towards the new
site. A three-dimensional model based on simple rules of avoidance, attraction
and alignment was formulated and implemented to investigate a hypothesis of
guidance; namely that scouts fly continuously through the swarm “pointing”
in the direction of the goal or new home.

The behaviour of the general model in relation to the relative sizes of the
zones of orientation and attraction has been discussed and we considered the
different types of group behaviour arising due to the relationships between
the sizes of these zones. Simulations of the scout bee guidance hypothesis
have been presented, showing that the group of uninformed workers have a
tendency to drift towards the direction of the goal as indicated by the scouts.
Notably, if scouts are introduced to an already organised parallel group of
workers, the scouts are able to exert enough influence to guide the workers
from an arbitrary path to the goal. A statistical test has been formulated to
determine whether the scouts have had some influence over the swarm.

The results of these models show that it is plausible that the scouts can guide
the uninformed swarm by using spatial cues in this way. This may not be the
only way in that scouts guide workers, but it is a reasonable suggestion as a
mechanism for guiding a swarm.
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Fig. 1. Effects on group polarisation (pgroup) from altering the width of the zones of
attraction and orientation. Region (a) corresponds to fragmentary behaviour, (b) to
swarm behaviour, (c) to a single distinct cluster, (d) to dynamic parallel behaviour,
(e) to highly parallel behaviour, (f) to seperate independent groups of highly aligned
members and (g) to several unorganised clusters of individuals forming. Values of
parameters used are: N = 100; rr = 1; T = 200; τ = 0.1; γ = 400◦; δ = 330◦.
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