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Abstract

Analogs of the classical Sylvester theorem have been known for matrices

with entries in noncommutative algebras including the quantized algebra of

functions on GLN and the Yangian for glN . We prove a version of this theorem

for the twisted Yangians Y(gN ) associated with the orthogonal and symplectic

Lie algebras gN = oN or spN . This gives rise to representations of the twisted

Yangian Y(gN−M ) on the space of homomorphisms HomgM (W,V ), where W

and V are finite-dimensional irreducible modules over gM and gN , respectively.

In the symplectic case these representations turn out to be irreducible and

we identify them by calculating the corresponding Drinfeld polynomials. We

also apply the quantum Sylvester theorem to realize the twisted Yangian as a

projective limit of certain centralizers in universal enveloping algebras.
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1 Introduction

Let g be a complex reductive Lie algebra and a ⊂ g a reductive subalgebra. Suppose

that V is a finite-dimensional irreducible g-module and consider its restriction to

the subalgebra a. This restriction is isomorphic to a direct sum of irreducible finite-

dimensional a-modules Wµ with certain multiplicities mµ,

V |a
∼= ⊕

µ
mµWµ.

If each Wµ is provided with a basis and the decomposition is multiplicity-free (i.e.,

mµ 6 1 for all µ) then it can be used to get a basis of V as the union of the bases of

the spaces Wµ which occur in the decomposition. This observation played a key role

in the construction of the Gelfand–Tsetlin bases for the representations of the general

linear and orthogonal Lie algebras. Although the restriction of an irreducible finite-

dimensional representation of the symplectic Lie algebra sp2n to the subalgebra sp2n−2

is not multiplicity-free in general, this approach can be extended to the symplectic

case with the use of the isomorphism

V ∼= ⊕
µ
Uµ ⊗Wµ, (1.1)

where

Uµ = Homa(Wµ, V ), dimUµ = mµ.

The space Uµ is an irreducible module over the algebra C(g, a) = U(g)a, the central-

izer of a in the universal enveloping algebra U(g); see e.g. Dixmier [1, Section 9.1].

Now, if some bases of the spaces Uµ and Wµ are given then the decomposition (1.1)

yields the natural tensor product basis of V . The general difficulty of this approach

is the complicated structure of the algebra C(g, a). For each pair of the classical Lie

algebras

(g, a) = (glN , glM), (oN , oM), (spN , spM),

(with even N andM in the symplectic case), the centralizer C(g, a) and its representa-

tions can be studied with the use of the quantum algebras called Yangians and twisted

Yangians. The Yangian Y(glN) for the general linear Lie algebra glN is a deformation

of the universal enveloping algebra U(glN ⊗ C[x]) in the class of Hopf algebras; see

e.g. Drinfeld [2]. The twisted Yangian Y(gN) for the orthogonal or symplectic Lie

algebra (gN = oN or gN = spN) was introduced by Olshanski [18]. This is a subalge-

bra of Y(glN ) and it can also be presented by generators and defining relations; see

also [13]. Finite-dimensional irreducible representations of the algebras Y(glN ) and

Y(gN ) admit a complete parametrization; see Drinfeld [3] and Tarasov [19] for the
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Yangian case, and the author’s work [9] for the twisted Yangian case. The Olshanski

centralizer construction [17, 18] provides ‘almost surjective’ algebra homomorphisms

Y(glN−M)→ C(glN , glM), Y(gN−M )→ C(gN , gM) (1.2)

which allow one to equip the corresponding C(g, a)-module Uµ in (1.1) with the

structure of a representation of the Yangian or twisted Yangian, respectively. In

particular, in the case N−M = 2 this module over the twisted Yangian Y(g2) admits

a natural basis which leads to a construction of weight bases of Gelfand–Tsetlin type

for the representations of the orthogonal and symplectic Lie algebras; see [12] for a

review of these results.

In this paper we exploit the relationship between the (twisted) Yangians and the

classical Lie algebras in the reverse direction: we use the weight bases constructed

in [12] to investigate the representations of the twisted Yangians Y(gN−M) emerging

from the homomorphisms (1.2).

By the results of [3] and [9] the isomorphism class of each finite-dimensional irre-

ducible representation V of the (twisted) Yangian is determined by its highest weight

which is a tuple of formal series over C in a formal parameter. Moreover, simul-

taneous multiplication of all components of the highest weight by a fixed invertible

formal series corresponds to a representation obtained from V by the composition

with a simple automorphism of the (twisted) Yangian. It is natural to combine these

representations into a single similarity class. In the case of the Yangian Y(glN) these

similarity classes correspond to finite-dimensional irreducible representations of the

Yangian for the special linear Lie algebra slN . Both in the case of the Yangian and the

twisted Yangian the similarity classes are parameterized by families of the Drinfeld

polynomials (P1(u), . . . , Pr(u)) with some additional data in the twisted case. Each

Pi(u) is a monic polynomial in u, and r is the rank of the corresponding Lie algebra.

Given partitions λ = (λ1, . . . , λN) and µ = (µ1, . . . , µM), let V (λ) and V (µ)

be the finite-dimensional irreducible representation of glN and glM with the highest

weights λ and µ, respectively. The space HomglM (V (µ), V (λ)) is then an irreducible

representation of the Yangian Y(glN−M). Its Drinfeld polynomials were calculated by

Nazarov and Tarasov [16]. The result is a simple combinatorial rule which allows one

to ‘read off’ each polynomial Pi(u) from the contents of the cells of the skew diagram

λ/µ. These skew representations of the Yangian (they were called elementary in [16]),

may be regarded as building blocks for the class of tame representations. This class is

characterized by the property that the action of a natural commutative subalgebra of

the Yangian in such a representation is semisimple. By [16], each tame representation

is isomorphic to a tensor product of skew representations.

A different way to define the homomorphism (1.2) in the case of glN is provided

by the quantum Sylvester theorem. Recall that the classical Sylvester theorem is the
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following identity for a numerical N ×N matrix A = (aij):

detB = detA ·
(
am+1···N
m+1···N

)m−1

,

where B = (bij) is the m × m matrix formed by the minors bij = a i,m+1···N
j,m+1···N of A.

The sequences of top and bottom indices indicate the row and column numbers of

the minor, respectively. The most general noncommutative analog of this identity

was given by Gelfand and Retakh in the context of the theory of quasideterminants

originated in their work [5]; see also [4] for a review of this theory. ‘Quantum’ versions

of this identity apply to the matrices formed by the generators of certain quantum

algebras, and the determinants are replaced by appropriate quantum determinants.

In particular, such a version was given by Krob and Leclerc [7] for the quantized

algebra of functions on GLN . Their approach is also applicable to the Yangian

Y(glN). A different proof for the Yangian case is given in [11] where the corresponding

quantum Sylvester theorem was used to give a modified version of the Olshanski

centralizer construction. This provided a new definition of the skew representations

of the Yangian and the calculation of their Drinfeld polynomials.

In this paper we produce a quantum Sylvester theorem for the twisted Yangian

Y(gN ) with the use of the Sklyanin minors of the matrix of generators of Y(gN ).

We first obtain the theorem for the extended twisted Yangian X(gN) (Section 2),

following the approach of [7]. The twisted Yangian Y(gN ) is a quotient of X(gN )

which yields the corresponding result for Y(gN ) (Section 3). In Section 4 we apply the

quantum Sylvester theorem to construct a new homomorphism (1.2) for the twisted

Yangian and introduce the corresponding skew representations. We show that in

the symplectic case each skew representation is irreducible and calculate its highest

weight and the Drinfeld polynomials. The Drinfeld polynomials are found by the

following simple combinatorial rule somewhat analogous to the Yangian case [16]

(see Section 4 below for a detailed formulation). Given a partition ν = (ν1, . . . , νn)

we draw its diagram Γ(ν) as follows. First, place the row with νn unit cells on the

plane in such a way that the center of the leftmost cell coincides with the origin.

Then place the second row with νn−1 − νn cells in such a way that the southwest

corner of this row coincides with the northeast corner of the first row. Continuing in

this manner, we complete this procedure by placing an infinite row of cells in such

a way that its southwest corner coincides with the northeast corner of the row with

ν1 − ν2 cells. The diagram Γ(ν) is obtained as the union of the rows just placed and

their images under the central symmetry with respect to the southwest corner of the

first row. The figure below represents the diagram for the partition ν = (7, 4), where

the dot indicates the origin.
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To each cell of the diagram we attach its diagonal number, where by diagonals we

mean the lines passing northwest-southeast through the integer points of the plane.

The line on the figure indicates the 0-th diagonal and the diagonal numbers are

consecutive integers increasing from right to left. For any nonnegative integer p

denote by Γ(λ)(p) the diagram Γ(λ) lifted p units up.

Suppose now that V (λ) and V (µ) are the irreducible finite-dimensional repre-

sentations of sp2n and sp2m corresponding to partitions λ and µ having n and m

parts, respectively. Then the Drinfeld polynomials P1(u), . . . , Pn−m(u) for the skew

representation Homsp2m
(V (µ), V (λ)) of the twisted Yangian Y(sp2n−2m) can be cal-

culated by the following rule: all roots of the polynomial Pk(u) are simple and they

coincide with the diagonal numbers decreased by 1/2 of the cells of the intersection

Γ(µ) ∩ Γ(λ)(k−1) (see Theorem 4.9 and Example 4.10 below).

Finally, in Section 5 we give a realization of the twisted Yangian Y(gN) as a

projective limit of centralizers in the universal enveloping algebras. This is a new

version of the centralizer construction (cf. [18, 14]) which is based on the quantum

Sylvester theorem.

The recent work of Nazarov [15] is also devoted to the skew representations of the

twisted Yangians although from a different perspective. He uses the classical Weyl’s

approach and gives a realization of the skew representations in the tensor powers of

the vector representation by applying certain generalized Young symmetrizers.

2 Extended twisted Yangian

We start by stating and proving some auxiliary results about the extended twisted

Yangian X(gN ); see [13] for more details.

2.1 Preliminaries

We shall be considering the orthogonal and symplectic cases simultaneously, unless

otherwise stated. Given a positive integer N , we number the rows and columns

of N × N matrices by the indices {−n, . . . ,−1, 0, 1, . . . , n} if N = 2n + 1, and by
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{−n, . . . ,−1, 1, . . . , n} if N = 2n. Similarly, in the latter case the range of summation

indices −n 6 i, j 6 n will usually exclude 0. It will be convenient to use the symbol

θij which is defined by

θij =

{
1 in the orthogonal case,

sgn i · sgn j in the symplectic case.

Throughout the paper, whenever the double sign ± or ∓ occurs, the upper sign

corresponds to the orthogonal case and the lower sign to the symplectic case. By

A 7→ At we will denote the matrix transposition such that (At)ij = θij A−j,−i. Let the

Eij denote the standard basis vectors of the general linear Lie algebra glN . These

vectors may be also regarded as elements of the universal enveloping algebra U(glN ).

For this reason we want to distinguish the Eij from the standard matrix units eij which

are considered as basis elements of the endomorphism algebra End CN . Introduce the

following elements of the Lie algebra glN :

Fij = Eij − θijE−j,−i, −n 6 i, j 6 n.

The Lie subalgebra gN of glN spanned by the elements Fij is isomorphic to the

orthogonal Lie algebra oN or the symplectic Lie algebra spN (in the latter case N is

even).

The extended twisted Yangian X(gN ) corresponding to the Lie algebra gN is the

associative algebra with generators s
(1)
ij , s

(2)
ij , . . . where −n 6 i, j 6 n, subject to the

defining relations written in terms of the generating series

sij(u) = δij + s
(1)
ij u

−1 + s
(2)
ij u

−2 + · · · ∈ X(gN)[[u−1]]

as follows

(u2 − v2) [sij(u), skl(v)] = (u+ v)
(
skj(u)sil(v)− skj(v)sil(u)

)

− (u− v)
(
θk,−jsi,−k(u)s−j,l(v)− θi,−lsk,−i(v)s−l,j(u)

)

+ θi,−j
(
sk,−i(u)s−j,l(v)− sk,−i(v)s−j,l(u)

)
,

where u and v denote formal variables. The defining relations can also be presented

in a convenient matrix form. Denote by S(u) the N × N matrix whose ij-th entry

is sij(u). We may regard S(u) as an element of the algebra X(gN )[[u−1]] ⊗ End CN

given by

S(u) =
∑

i,j

sij(u)⊗ eij,

where the eij denote the standard matrix units. For any positive integer m we shall

be using the algebras of the form

X(gN )[[u−1]]⊗ End C
N ⊗ · · · ⊗ End C

N , (2.1)
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with m copies of End C
N . For any a ∈ {1, . . . , m} we denote by Sa(u) the matrix

S(u) which acts on the a-th copy of End CN . That is, Sa(u) is an element of the

algebra (2.1) of the form

Sa(u) =
∑

i,j

sij(u)⊗ 1⊗ · · · ⊗ 1⊗ eij ⊗ 1⊗ · · · ⊗ 1,

where the eij belong to the a-th copy of End CN and 1 is the identity matrix. Similarly,

if

C =
∑

i,j,k,l

cijkl eij ⊗ ekl ∈ End C
N ⊗ End C

N ,

then for distinct indices a, b ∈ {1, . . . , m} we introduce the element Cab of the algebra

(2.1) by

Cab =
∑

i,j,k,l

cijkl 1⊗ 1⊗ · · · ⊗ 1⊗ eij ⊗ 1⊗ · · · ⊗ 1⊗ ekl ⊗ 1⊗ · · · ⊗ 1,

where the eij and ekl belong to the a-th and b-th copies of End CN , respectively.

Consider now the permutation operator

P =
∑

i,j

eij ⊗ eji ∈ End C
N ⊗ End C

N .

The rational function R(u) = 1 − Pu−1 with values in the tensor product algebra

End C
N ⊗ End C

N is called the Yang R-matrix . Introduce its transposed R t(u) by

R t(u) = 1−Qu−1, Q =
∑

i,j

θij e−j,−i ⊗ eji. (2.2)

The defining relations for the extended twisted Yangian X(gN ) are equivalent to the

quaternary relation

R(u− v)S1(u)R
t(−u− v)S2(v) = S2(v)R

t(−u− v)S1(u)R(u− v). (2.3)

The matrix S(u) is invertible and we shall denote by S−1(u) the inverse matrix. The

mapping

S(u) 7→ S−1
(
−u−N/2

)
(2.4)

defines an involutive automorphism of the algebra X(gN); see [13, Proposition 6.5].

Let u1, . . . , uk be independent variables. For k > 2 consider the rational function

R(u1, . . . , uk) with values in (End CN)⊗k defined by

R(u1, . . . , uk) = (Rk−1,k)(Rk−2,kRk−2,k−1) · · · (R1k · · ·R12),
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where we abbreviate Rij = Rij(ui − uj). Set

Si = Si(ui), 1 6 i 6 k and R t
ij = R t

ji = R t
ij(−ui − uj), 1 6 i < j 6 k.

For an arbitrary permutation (p1, . . . , pk) of the numbers 1, . . . , k, we abbreviate

〈Sp1, . . . , Spk
〉 = Sp1(R

t
p1p2
· · ·R t

p1pk
)Sp2(R

t
p2p3
· · ·R t

p2pk
) · · ·Spk

.

The identity

R(u1, . . . , uk)〈S1, . . . , Sk〉 = 〈Sk, . . . , S1〉R(u1, . . . , uk) (2.5)

can be deduced from the quaternary relation (2.3); see [13, Proposition 4.2]. Now

specialize the variables ui by setting

ui = u− i + 1, i = 1, . . . , k. (2.6)

It is well known that under this specialization, R(u1, . . . , uk) coincides with the anti-

symmetrization operator Ak on (CN)⊗k, where

Ak =
∑

σ∈Sk

sgn σ · Pσ,

and Pσ denotes the image of σ ∈ Sk under the natural action of Sk on (CN)⊗k; see

e.g. [13, Proposition 2.3]. Hence specializing the variables in (2.5) we get

Ak 〈S1, . . . , Sk〉 = 〈Sk, . . . , S1〉Ak.

This element of the tensor product X(gN )[[u−1]]⊗ (End CN)⊗k can be written as

∑
s a1···ak

b1··· bk
(u)⊗ ea1b1 ⊗ · · · ⊗ eakbk ,

summed over the indices ai, bi ∈ {−n, . . . , n}. We also set sab (u) = sab(u). We call the

elements s a1···ak

b1··· bk
(u) of X(gN)[[u−1]] the Sklyanin minors of the matrix S(u). Clearly,

the Sklyanin minors are skew-symmetric with respect to permutations of the upper

indices and of the lower indices:

s
aσ(1)···aσ(k)

b1··· bk
(u) = sgn σ · s a1···ak

b1··· bk
(u) and s a1···ak

bσ(1)··· bσ(k)
(u) = sgn σ · s a1···ak

b1··· bk
(u)

for any σ ∈ Sk.
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Proposition 2.1. We have the relations

(u2 − v2) [spq(u), s
a1···ak

b1··· bk
(v)]

= (u+ v)

k∑

i=1

(
saiq

(u) s a1··· p ···ak

b1 ··· bk
(v)− s a1 ··· ak

b1··· q ··· bk
(v) spbi(u)

)

− (u− v)
k∑

i=1

(
θai,−q sp,−ai

(u) s a1···−q ···ak

b1 ··· bk
(v)− θp,−bi s

a1 ··· ak

b1···−p ··· bk
(v) s−bi,q(u)

)

+ θp,−q

k∑

i=1

(
sai,−p

(u) s a1···−q ···ak

b1 ··· bk
(v)− s a1 ··· ak

b1···−p ··· bk
(v) s−q,bi(u)

)

+
∑

i6=j

(
θaj ,−q sai,−aj

(u) s a1···p ···−q ···ak

b1 ··· bk
(v)− θp,−bi s

a1 ··· ak

b1···−p ··· q ··· bk
(v) s−bi,bj (u)

)
,

where in the Sklyanin minors the indices p and q replace ai and bi, respectively, in

the first sum; the indices −q and −p replace ai and bi, respectively, in the second and

third sums; in the fourth sum p and −q replace ai and aj, respectively, and −p and q

replace bi and bj, respectively.

Proof. By (2.5), we have the relation

R(u, v, v − 1, . . . , v − k + 1) 〈S0, . . . , Sk〉

= 〈Sk, . . . , S0〉R(u, v, v − 1, . . . , v −m+ 1), (2.7)

where we have used an extra copy of the algebra End CN labelled by 0 and the

parameters are specialized as follows

u0 = u, and ui = v − i + 1 for i = 1, . . . , k.

Then one easily verifies (see e.g. [11]) that the product ofR-matrices in (2.7) simplifies

to

R(u, v, v − 1, . . . , v − k + 1) = Ak

(
1−

1

u− v
(P01 + · · ·+ P0k)

)
.

Applying the transposition over the zeroth copy of End C
N and replacing u by −u

we also deduce that

AkR
t
01 · · ·R

t
0k = Ak

(
1 +

1

u+ v
(Q01 + · · ·+Q0k)

)
. (2.8)

Hence (2.7) takes the form

(
1−

1

u− v
(P01 + · · ·+ P0k)

)
S0(u)

(
1 +

1

u+ v
(Q01 + · · ·+Q0k)

)
Ak 〈S1, . . . , Sk〉

= 〈Sk, . . . , S1〉Ak
(
1+

1

u+ v
(Q01 + · · ·+Q0k)

)
S0(u)

(
1−

1

u− v
(P01 + · · ·+P0k)

)
.

9



It remains to apply both sides to the vector eq ⊗ eb1 ⊗ · · · ⊗ ebk and compare the

coefficients at the vector ep⊗ ea1 ⊗ · · · ⊗ eak
, where the ei denote the canonical basis

vectors of CN .

Corollary 2.2. Suppose that for some indices i, j, l,m ∈ {1, . . . , k} we have ai = −bl
and bj = −am. Then

[saibj (u), s
a1···ak

b1··· bk
(v)] = 0.

Proof. By the skew-symmetry property, the Sklyanin minor is zero if it has two

repeated upper or lower indices. Hence we may assume that i = m if and only if

j = l. Suppose first that i 6= m. Then using the skew-symmetry of Sklyanin minors,

we derive from Proposition 2.1 that

(u− v − 1)(u+ v + 1) [saibj (u), s
a1···ak

b1··· bk
(v)] = θai,−bj [s−bj ,−ai

(u), s a1···ak

b1··· bk
(v)].

The same relation holds with i and j replaced by m and l, respectively, which proves

the claim in the case under consideration. If ai = −bj then Proposition 2.1 immedi-

ately gives

(u− v − 1)(u+ v + 1) [saibj (u), s
a1···ak

b1··· bk
(v)] = 0,

completing the proof.

The series

sdet S(u) = s−n ···n
−n ···n(u) ∈ X(gN)[[u−1]]

is called the Sklyanin determinant of the matrix S(u). Corollary 2.2 implies that all

the coefficients of this series belong to the center of the algebra X(gN); see also [13,

Theorem 4.8] for a slightly different proof. The Sklyanin comatrix Ŝ(u) is defined by

the relation

Ŝ(u)S(u−N + 1) = sdetS(u). (2.9)

Due to (2.4), the mapping

S(u) 7→ Ŝ(−u+N/2− 1) (2.10)

defines a homomorphism of X(gN) into itself. Multiplying both sides of (2.9) by the

inverse to S(u−N + 1) and taking the nn-th entry we get

ŝnn(u) = sdetS(u)
(
S−1(u−N + 1)

)
nn
.

Therefore,

sdet S(u) = ŝnn(u) ·
∣∣S(u−N + 1)

∣∣
nn
, (2.11)
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where we have used the notation |A|ij for the ij-th quasideterminant of a matrix A

over a ring; see [5, 6]. By definition, |A|ij equals the inverse of the matrix element

(A−1)ji provided that the matrix A and the element (A−1)ji are invertible.

We shall also use the auxiliary minors š a1···ak

b1··· bk−1,c
(u) ∈ X(gN )[[u−1]] defined by

Ak 〈S1, . . . , Sk−1〉R
t
1k · · ·R

t
k−1,k

=
∑

š a1···ak

b1··· bk−1,c
(u)⊗ ea1b1 ⊗ · · · ⊗ eak−1bk−1

⊗ eakc, (2.12)

summed over ai, bi, c ∈ {−n, . . . , n}. Since

Ak 〈S1, . . . , Sk−1〉R
t
1k · · ·R

t
k−1,k Sk = Ak 〈S1, . . . , Sk〉,

we immediately obtain the relation

s a1 ···ak

b1··· bk
(u) =

n∑

c=−n

š a1···ak

b1··· bk−1,c
(u) scbk(u− k + 1). (2.13)

We obviously have

š
aσ(1)···aσ(k)

b1··· bk−1,c
(u) = sgn σ · š a1 ···ak

b1··· bk−1,c
(u)

for any σ ∈ Sk. Also,

š a1···ak

bσ(1)··· bσ(k−1),c
(u) = sgn σ · š a1 ···ak

b1··· bk−1,c
(u)

for any σ ∈ Sk−1; see [8]. Furthermore, it is straightforward to obtain the following

property of the auxiliary minors from their definition (cf. [8, Proposition 4.4]): if

c /∈ {a1, . . . , ak−1} and c /∈ {−b1, . . . ,−bk−1} then

š a1···ak

b1··· bk−1,c
(u) = 0 (2.14)

if c 6= ak, while

š
a1···ak−1, c

b1··· bk−1, c
(u) = s

a1···ak−1

b1··· bk−1
(u). (2.15)

Set (a1, . . . , aN) = (−n, . . . , n). Then the matrix elements ŝaiaj
(u) of the Sklyanin

comatrix Ŝ(u) are given by

ŝaiaj
(u) = (−1)N−i š a1···aN

a1··· âi ···aN , aj
(u), (2.16)

where the hat on the right hand side indicates the index to be omitted; see [8,

Section 6].
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2.2 Sylvester theorem

Fix a nonnegative integer m < n and set M = 2m or M = 2m + 1 if N = 2n or

N = 2n + 1, respectively, so that N −M = 2n − 2m. Set B = {−m, . . . ,m} and

denote by SBB(u) the submatrix of S(u) whose rows and columns are numbered by the

elements of B. It follows from the defining relations for the extended twisted Yangian

that the subalgebra of X(gN) generated by the elements s
(r)
ij with i, j ∈ B can be

regarded as a natural homomorphic image of the extended twisted Yangian X(gM ).

The homomorphism takes the generators s
(r)
ij of X(gM ) to the elements of X(gN ) with

the same name. This makes the Sklyanin determinant of the matrix SBB(u) well-

defined. Denote by A the complement of the subset B in the set {−n, . . . , n} and

let X(gN−M) denote the extended twisted Yangian whose generator series sab(u) are

enumerated by elements a, b ∈ A. For any such a, b set

s̃ab(u) = s−m···m,a
−m···m,b (u+M/2) (2.17)

and denote by S̃(u) the (N −M)× (N −M) matrix whose ab-entry is s̃ab(u).

Theorem 2.3. The mapping

sab(u) 7→ s̃ab(u) (2.18)

defines an algebra homomorphism X(gN−M)→ X(gN ). Moreover,

sdet S̃(u) = sdet S(u+M/2)

× sdetSBB(u+M/2− 1) · · · sdet SBB(u+M/2−N +M + 1).

Proof. We follow the approach of [7] based on complimentary minor identities. By

the definition of the Sklyanin determinant,

AN 〈S1, . . . , SN〉 = AN sdetS(u).

This implies the relation

AN 〈S1, . . . , SM+1〉
→∏

i=1,...,M

(R t
i,M+2 · · ·R

t
iN)

= AN sdet S(u)S−1
N (R t

N−1,N )−1 S−1
N−1 · · · S

−1
M+2(R

t
M+1,N)−1 · · · (R t

M+1,M+2)
−1. (2.19)

Note that since Q2 = NQ we find from (2.2) that

R t(u)−1 = R t(−u +N).

Therefore, the right hand side of (2.19) can be written as

AN sdetS(u)S ◦
NR

◦
N−1,N S

◦
N−1 · · · S

◦
M+2R

◦
M+1,N · · ·R

◦
M+1,M+2,
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where we have used the notation S ◦(u) = S−1(−u−N/2) and

S ◦
i = S ◦

i (u ◦
i ), R ◦

ij = R t
ij(−u

◦
i − u

◦
j ), u ◦

i = −ui −N/2 (2.20)

with the ui are specialized as in (2.6). Let us set

(a1, . . . , aN−M) = (−n, . . . ,−m− 1, m+ 1, . . . , n)

and apply both sides of (2.19) to the vector

vij = e−m ⊗ · · · ⊗ em ⊗ eaj
⊗ ea1 ⊗ · · · ⊗ êai

⊗ · · · ⊗ eaN−M
,

where the er denote the canonical basis vectors of CN and i, j ∈ {1, . . . , N −M}.

Comparing the coefficients at the vector AN v11 we come to the relation

s−m ···m, ai

−m ···m, aj
(u) = (−1)N−M−i sdet S(u) · š ◦ a1···aN−M

a1··· âi ···aN−M , aj
(u ◦

N), (2.21)

where the auxiliary minors on the right hand side correspond to the matrix S ◦(u).

They are well-defined, since by (2.4) S ◦(u) satisfies the quaternary relation (2.3).

Now observe that we may regard these auxiliary minors as those for the submatrix

S ◦
AA(u) of S ◦(u) whose row and column indices belong to the setA = {a1, . . . , aN−M}.

Indeed, we have the following identity analogous to (2.8) which is verified in the same

way:

Ak−1R
t
1k · · ·R

t
k−1,k = Ak−1

(
1 +

Q1k + · · ·+Qk−1,k

2u− k + 1

)
. (2.22)

Therefore the left hand side of (2.12) with S(u) replaced by S ◦(u) can be written as

Ak S
◦
1

(
1 +

Q12

2u− 1

)
S ◦

2

(
1 +

Q13 +Q23

2u− 2

)
· · ·S ◦

k−1

(
1 +

Q1k + · · ·+Qk−1,k

2u− k + 1

)
.

If we now put k = N −M and apply this operator to the vector

ea1 ⊗ · · · ⊗ êai
⊗ · · · ⊗ eaN−M

⊗ eaj

then the coefficient at the vector ea1 ⊗ · · · ⊗ eaN−M
will be an expression involving

only the entries of the submatrix S ◦
AA(u) of S ◦(u). Furthermore, by (2.16),

(−1)N−M−i š ◦ a1···aN−M

a1··· âi ···aN−M , aj
(u ◦

N) = ŝ ◦
aiaj

(u ◦
N),

where by ŝ ◦
ab(u) we denote the entries of the Sklyanin comatrix corresponding to the

matrix S ◦
AA(u). Recalling that u ◦

N = −u+N/2− 1 and N −M = 2n− 2m, we derive

from (2.21) that

s−m ···m, ai

−m ···m, aj
(u+M/2) = sdetS(u+M/2) · ŝ ◦

aiaj
(−u+ n−m− 1). (2.23)
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By (2.10), the mapping saiaj
(u) 7→ ŝ ◦

aiaj
(−u + n −m − 1) defines a homomorphism

X(gN−M)→ X(gN ), and hence so does the mapping (2.18) since the coefficients of the

Sklyanin determinant are central in X(gN). This proves the first part of the theorem.

Applying the relation (2.23) to the matrix S ◦(u) we obtain for any elements

a, b ∈ A

s ◦−m ···m,a
−m ···m, b (u+M/2) = sdetS ◦(u+M/2) · ŝ ′

ab(−u + n−m− 1), (2.24)

where the ŝ ′
ab(u) denote the entries of the Sklyanin comatrix corresponding to the

matrix SAA(u). Denote by S](u) the inverse matrix to SAA(−u − n + m). Due to

(2.9) we have

ŜAA(−u+ n−m− 1) = sdetSAA(−u+ n−m− 1) · S](u).

Combining this with (2.24) and using the notation (2.17) for the matrix S ◦(u) we

come to

s̃ ◦
ab(u) = sdet S ◦(u+M/2) · sdet SAA(−u+ n−m− 1) · s]ab(u).

By [13, Theorem 7.6] applied to the matrix S ◦(u) we have

sdet S ◦(u) · sdet SAA

(
−u+N/2− 1

)
= sdet S ◦

BB(u). (2.25)

Together with the previous relation this gives

s]ab(u) = sdet S ◦
BB

(
u+M/2

)−1
· s̃ ◦

ab(u). (2.26)

Note that sdetS ◦
BB(u) commutes with s̃ ◦

ab(v). Indeed, this follows from Corollary 2.2

and the fact that the expansion of sdet S ◦
BB(u) in terms of the matrix elements of

S ◦(u) only involves the series s ◦
ij(u) with i, j ∈ B. The latter is easily deduced from

the definition of the Sklyanin minors and with the assistance of (2.22).

On the other hand, the particular case of (2.25) with B = ∅ yields

sdetS ◦(u) · sdetS
(
−u+N/2− 1

)
= 1.

Hence,

sdet S](u) · sdetSAA(−u+ n−m− 1) = 1

and so by (2.25),

sdet S](u) = sdet S ◦
(
u+M/2

)
· sdet S ◦

BB

(
u+M/2

)−1
. (2.27)
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Finally, write down the expansion of sdet S](u) in terms of the matrix elements s]ab(u)

which is implied by the definition of the Sklyanin determinant. The expansion has

the form of a linear combination of products

s]a1b1(u) s
]
a2b2

(u− 1) · · · s]aN−M bN−M
(u−N +M + 1),

the coefficients being rational functions in u. Using the relation (2.26) we obtain

sdet S̃ ◦(u) = sdet S](u) · sdet S ◦
BB(u+M/2) · · · sdet S ◦

BB(u+M/2−N +M + 1).

Taking into account (2.27) we derive the desired formula for the matrix S ◦(u). Since

S(u) 7→ S ◦(u) is an involutive automorphism of X(gN), the formula holds for the

matrix S(u) as well.

Denote by σ̂ab(u) the entries of the Sklyanin comatrix corresponding to the matrix

S̃(u).

Proposition 2.4. For any a, b ∈ A we have the relation

σ̂ab(u) = ŝab(u+M/2)

× sdetSBB(u+M/2− 1) · · · sdet SBB(u+M/2−N +M + 2).

Proof. The defining relations for X(gN) imply that

[s
(1)
ab , sij(u)] = δib saj(u)− δaj sib(u)− θi,−b δa,−i s−b,j(u) + θa,−j δ−j,b si,−a(u). (2.28)

Hence, the elements s
(1)
ab with a, b ∈ A commute with sdet SBB(v) (this also follows

from Proposition 2.1). On the other hand, it is straightforward to verify with the use

of (2.22) that s
(1)
ab with a 6= b is stable under both the homomorphism (2.10) and the

homomorphism which takes SAA(u) to the Sklyanin comatrix
[
σ̂ab(−u+n−m− 1)

]
.

Therefore, it is sufficient to prove the relation in the particular case a = b = n. Taking

subsequent commutators with appropriate elements s
(1)
ab will yield the relation in the

general case.

Using the notation of the proof of Theorem 2.3 we can write the following relations

implied by (2.11),

sdet S ◦(u+M/2) = ŝ ◦
nn(u+M/2) ·

∣∣S ◦(u+M/2−N + 1)
∣∣
nn

and

sdet S](u) = ŝ ]nn(u) ·
∣∣S](u−N +M + 1)

∣∣
nn
,

where the ŝ ]ij(u) denote the entries of the Sklyanin comatrix corresponding to the

matrix S](u). The definition of quasideterminants implies that
∣∣S ◦(u+M/2−N + 1)

∣∣
nn

=
∣∣S](u−N +M + 1)

∣∣
nn
.
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Therefore, the above relations together with (2.27) yield

ŝ ]nn(u) = ŝ ◦
nn

(
u+M/2

)
· sdet S ◦

BB

(
u+M/2

)−1
. (2.29)

Now we conclude the argument in the same way as in the proof of Theorem 2.3. Using

(2.16) write down the expansion of ŝ ]nn(u) in terms of the matrix elements s]ab(u). It

has the form of a linear combination of products

s]a1b1(u) s
]
a2b2

(u− 1) · · · s]aN−M bN−M
(u−N +M + 2),

the coefficients being rational functions in u. Now (2.26) implies

σ̂ ◦
nn(u) = ŝ ]nn(u) · sdet S ◦

BB(u+M/2) · · · sdet S ◦
BB(u+M/2−N +M + 2),

where by σ̂ ◦
ab(u) we denote the entries of the Sklyanin comatrix corresponding to the

matrix S̃ ◦(u). Using (2.29) we derive the desired formula for the matrix S ◦(u) and

hence it holds for the matrix S(u) as well.

Interchanging the roles of the sets A and B in the above arguments one can easily

derive the corresponding dual versions of Theorem 2.3 and Proposition 2.4. Here we

only record the counterpart of the first part of Theorem 2.3 which will be used below.

Proposition 2.5. The mapping

sij(u) 7→ s−n ···−m−1, i,m+1···n
−n ···−m−1, j,m+1···n (u+ n−m), −m 6 i, j 6 m

defines an algebra homomorphism X(gM)→ X(gN ).

3 Sylvester theorem for the twisted Yangian

The twisted Yangian Y(gN ) corresponding to the Lie algebra gN is the quotient of

the extended twisted Yangian X(gN ) by the following symmetry relation

θijs−j,−i(−u) = sij(u)±
sij(u)− sij(−u)

2u
, (3.1)

or, in the matrix form,

St(−u) = S(u)±
S(u)− S(−u)

2u
.

From now on, we shall mainly work with the twisted Yangian and so we keep the

same notation s
(r)
ij for the generators of the algebra Y(gN). Note that for any even

series g(u) ∈ 1 + C[[u−2]] u−2 the mapping

sij(u) 7→ g(u) sij(u) (3.2)
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defines an automorphism of Y(gN ).

As we shall see below, the homomorphism of Theorem 2.3 respects the symmetry

relation in the orthogonal case, while in the symplectic case a minor correction is

needed to obtain a corresponding homomorphism of the twisted Yangians. In order

to treat both cases simultaneously, introduce the following notation

αp(u) =





1 in the orthogonal case

u+ 1/2

u− p+ 1/2
in the symplectic case.

The image of the Sklyanin determinant in the twisted Yangian Y(gN) acquires

the following symmetry property

αn(u)
−1 · sdetS(u) = αn(−u+N − 1)−1 · sdet S(−u+N − 1), (3.3)

see [13, Section 4.11]. Moreover, the mapping

S(u) 7→ αn(u) · Ŝ(−u+N/2− 1) (3.4)

defines a homomorphism of Y(gN) into itself; see [9, Proposition 2.1].

We can now prove a quantum Sylvester theorem for the twisted Yangian Y(gN ).

We use the notation of the previous section. In particular, recall that s̃ab(u) denotes

the quantum minor as in (2.17) for any a, b ∈ A.

Theorem 3.1. The mapping

sab(u) 7→ α−m(u) s̃ab(u) (3.5)

defines an algebra homomorphism Y(gN−M)→ Y(gN ). Moreover,

sdet
[
α−m(u) S̃(u)

]
= α(u) · sdetS(u+M/2)

× sdetSBB(u+M/2− 1) · · · sdet SBB(u+M/2−N +M + 1),

where

α(u) = α−m(u)α−m(u− 1) · · ·α−m(u−N +M + 1).

Proof. Denote by S∗(u) the matrix which occurs on the right hand side of (3.4).

Then by (3.3) we have

S ◦(u) =
αn(u+N/2)

c (u+N/2)
· S∗(u),
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where we have put c(u) = sdetS(u) for brevity. Due to (2.16) and the definition of

the auxiliary minors, the relation (2.23) can be written as

s−m ···m,ai

−m ···m,aj
(u+M/2) = c (u+M/2)

×
N−M−1∏

i=1

αn(−u+ n−m+N/2− i)

c (−u+ n−m+N/2− i)
· ŝ ∗

aiaj
(−u+ n−m− 1), (3.6)

where we have also used the fact that the coefficients of the Sklyanin determinant

are central in the twisted Yangian Y(gN ), and by ŝ ∗
ab(u) we denote the entries of the

Sklyanin comatrix corresponding to the matrix S∗
AA(u). Observe that by (3.3) we

have

c (u+M/2) ·
αn(−u+ n−m+N/2− 1)

c (−u+ n−m+N/2− 1)
= αn(u+M/2).

Therefore, (3.6) takes the form

s−m ···m, ai

−m ···m, aj
(u+M/2) = αn(u+M/2) · ϕ(u) · ŝ ∗

aiaj
(−u+ n−m− 1),

where

ϕ(u) =
N−M−1∏

i=2

αn(−u+ n−m+N/2− i)

c (−u+ n−m +N/2− i)
.

By the symmetry property (3.3) we have ϕ(u) = ϕ(−u), and so the multiplication of

the generator series sij(u) by ϕ(u) preserves the twisted Yangian defining relations.

Furthermore, by (3.4), the mapping

sab(u) 7→ αn−m(u) ŝ ∗
ab(−u+ n−m− 1), a, b ∈ A

defines a homomorphism Y(gN−M) 7→ Y(gN−M). Thus, we may conclude that the

mapping

sab(u) 7→ αn−m(u)αn(u+M/2)−1 s−m ···m, ai

−m ···m, aj
(u+M/2)

defines a homomorphism Y(gN−M ) 7→ Y(gN−M ). To complete the proof, observe that

αn−m(u)αn(u+M/2)−1 = α−m(u).

The formula for the Sklyanin determinant of the matrix α−m(u)S̃(u) is immediate

from Theorem 2.3 and the definition of sdet S̃(u).

The corresponding version of Proposition 2.5 for the twisted Yangian has the

following form.

Proposition 3.2. The mapping

sij(u) 7→ αm−n(u) · s
−n ···−m−1, i,m+1···n
−n ···−m−1, j,m+1···n (u+ n−m), −m 6 i, j 6 m

defines an algebra homomorphism Y(gM)→ Y(gN ).
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Now we shall demonstrate that in the case of the twisted Yangian the entries of

the Sklyanin comatrix can be expressed in terms of Sklyanin minors; cf. (2.16). We

need the following lemma.

Lemma 3.3. For the twisted Yangian Y(gN ) we have

AN S1(u)R
t
12(−2u+ 1) · · ·R t

1N (−2u+N − 1) =
2u+ 1

2u± 1
AN S

t
1(−u). (3.7)

Proof. We have (N − 1)!AN = AN A
′
N−1, where A′

N−1 denotes the anti-symmetrizer

corresponding to the subset of indices {2, . . . , N}. By (2.8),

A′
N−1R

t
12(−2u+ 1) · · ·R t

1N (−2u+N − 1) = A′
N−1

(
1 +

Q12 + · · ·+Q1N

2u− 1

)
.

Therefore, the left hand side of (3.7) takes the form

AN S1(u)
(
1 +

Q12 + · · ·+Q1N

2u− 1

)
.

Apply this operator to a basis vector

vij = eaj
⊗ ea1 ⊗ · · · ⊗ êai

⊗ · · · ⊗ eaN
, i, j ∈ {1, . . . , N},

where (a1, . . . , aN) = (−n, . . . , n). The coefficient at AN vii will be equal to saiaj
(u)

if aj = −ai, and equal to the expression

2u

2u− 1
saiaj

(u)∓
1

2u− 1
θaiaj

s−aj ,−ai
(u)

if aj 6= −ai. In both cases the coefficient coincides with

2u+ 1

2u± 1
staiaj

(−u)

due to the symmetry relation (3.1).

As before, we set (a1, . . . , aN) = (−n, . . . , n).

Proposition 3.4. For any i, j ∈ {1, . . . , N} we have the relation

ŝ taiaj
(u) = (−1)i+j · αN−1(u) · s

a1 ··· âj ···aN

a1 ··· âi···aN
(−u+N − 2).

Proof. The relations (2.9) and (2.19) with M = N − 2 imply that

AN 〈S1, . . . , SN−1〉 = AN ŜN(u) (R t
N−1,N)−1 · · · (R t

1,N)−1. (3.8)
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Using the notation (2.20) and the definition of the matrix S∗(u) we can write Ŝ(u) =

αn(u)S
∗(u ◦

N) so that (3.8) becomes

AN 〈S1, . . . , SN−1〉 = αn(u)AN S
∗
N(u ◦

N)R ◦
N−1,N · · ·R

◦
1N . (3.9)

However, S(u) 7→ S∗(u) defines a homomorphism Y(gN ) → Y(gN ). Therefore, writ-

ing AN = sgn σ · AN Pσ, where σ = (1N)(2, N − 1) · · · , and applying Lemma 3.3 we

can simplify the right hand side of (3.9) as

αn(u)AN S
∗
N(u ◦

N)R ◦
N−1,N · · ·R

◦
1N = αn(u)

2u ◦
N + 1

2u ◦
N ± 1

AN S∗t
N (−u ◦

N).

Hence, we come to the identity

AN 〈S1, . . . , SN−1〉 = αn−1(u)AN S∗t
N(−u ◦

N).

Applying both sides to the basis vector ea1 ⊗ · · · ⊗ êai
⊗ · · · ⊗ eaN

⊗ eaj
we get

αn−1(u) s
∗ t
aiaj

(u−N/2 + 1) = (−1)i+j s
a1 ··· âj ···aN

a1 ··· âi···aN
(u).

The argument is completed by using the definition of S∗(u).

Suppose now that m = n − 1. As before, we identify the subalgebra of Y(gN )

generated by the elements s
(r)
ab for a, b ∈ {−n, n} with the twisted Yangian Y(g2).

The restriction of the homomorphism (3.4) to the subalgebra Y(g2) defines the ho-

momorphism

φ : Y(g2)→ Y(gN ).

The defining relations of the twisted Yangian imply that the map

sab(u) 7→ sgn a · sgn b · sab(u), a, b ∈ {−n, n}

defines an automorphism ψ : Y(g2)→ Y(g2).

Corollary 3.5. The homomorphism φ coincides with the homomorphism (3.5) in the

symplectic case, while in the orthogonal case the homomorphism (3.5) coincides with

the composition φ ◦ ψ.

Proof. This is immediate from Proposition 3.4 and the skew-symmetry of the Sklyanin

minors.

The symmetry relation (3.1) allows one to obtain the following expansion of

the auxiliary minors (see [8, Proposition 4.4]): if −b1 ∈ {a1, . . . , ak−1, c} and c /∈

{−b2, . . . ,−bk−1} then

š
a1···ak−1, c

b1··· bk−1, c
(u) =

2u+ 1

2u± 1

k−1∑

i=1

(−1)i−1 staib1
(−u) s

a1 ··· âi ···ak−1

b2 ··· bk−1
(u− 1). (3.10)
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Using this relation together with (2.13) and (2.14) one can derive explicit formulas

for the Sklyanin determinant and some Sklyanin minors. The formulas use a special

map

ωN : SN → SN , p 7→ p′ (3.11)

from the symmetric group SN into itself which is defined by the following inductive

procedure. Given a set of positive integers c1 < · · · < cN we regard SN as the group

of their permutations. If N = 2 we define ω2 as the map S2 → S2 whose image

is the identity permutation. For N > 2 define a map from the set of ordered pairs

(ck, cl) with k 6= l into itself by the rule

(ck, cl) 7→ (cl, ck), k, l < N,

(ck, cN) 7→ (cN−1, ck), k < N − 1,

(cN , ck) 7→ (ck, cN−1), k < N − 1,

(cN−1, cN) 7→ (cN−1, cN−2),

(cN , cN−1) 7→ (cN−1, cN−2).

(3.12)

Let p = (p1, . . . , pN) be a permutation of the indices c1, . . . , cN . Its image under the

map ωN is the permutation p ′ = (p ′
1, . . . , p

′
N−1, cN), where the pair (p ′

1, p
′
N−1) is the

image of the ordered pair (p1, pN) under the map (3.12). Then the pair (p ′
2, p

′
N−2)

is found as the image of (p2, pN−1) under the map (3.12) which is defined on the set

of ordered pairs of elements obtained from (c1, . . . , cN) by deleting p1 and pN . The

procedure is completed in the same manner by determining consequently the pairs

(p ′
i , p

′
N−i).

Now suppose that M is a positive integer and M = 2m or M = 2m + 1. For the

proof of the following formula for the Sklyanin minor in the twisted Yangian Y(gN )

see [8].

Proposition 3.6. Suppose that a1, . . . , aM , bM are arbitrary indices from the set

{−n, . . . , n}. We have

s −a1 ···−aM

a1 ···aM−1,bM
(u) = αm(u)

∑

p∈SM

sgn pp′ · s t−ap(1),ap′(1)
(−u) · · · s t−ap(m),ap′(m)

(−u+m− 1)

× s−ap(m+1),ap′(m+1)
(u−m) · · · s−ap(M),bp′(M)

(u−M + 1),

where the stij(u) denote the entries of the matrix St(u).

Remark 3.7. Although this determinant-like formula does not apply to arbitrary

Sklyanin minors s a1···ak

b1··· bk
(u), it provides explicit formulas for the Sklyanin determinant

sdet S(u) and the matrix elements ŝij(u) of the Sklyanin comatrix; see Proposition 3.4.
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For the use in Section 5 we shall prove the following simple property of the map

(3.11).

Lemma 3.8. The map SN → SN defined by p 7→ p (p′)−1is bijective.

Proof. Suppose that p and q are two elements of SN such that p (p ′)−1 = q (q ′)−1.

It suffices to show that p = q. By definition of the map ωN we have p ′
N = q ′

N = N

which implies that pN = qN . Then, due to the formulas (3.12), we have p ′
1 = q ′

1.

Hence, p1 = q1. Now, since the pairs (p1, pN) and (q1, qN) coincide, so do their images

under the map (3.12). In particular, p ′
N−1 = q ′

N−1. This implies that pN−1 = qN−1

and the proof is completed by repeating this argument for the pairs (pi+1, pN−i) and

(qi+1, qN−i) with i = 1, 2, . . . .

4 Skew representations

As before, we suppose that N = 2n or N = 2n+ 1 so that

gN = o2n+1, sp2n, or o2n. (4.1)

The finite-dimensional irreducible representations of gN are in a one-to-one correspon-

dence with n-tuples λ = (λ1, . . . , λn) where the numbers λi satisfy the conditions

λi − λi+1 ∈ Z+ for i = 1, . . . , n− 1,

and

−2λ1 ∈ Z+ for gN = o2n+1,

−λ1 ∈ Z+ for gN = sp2n,

−λ1 − λ2 ∈ Z+ for gN = o2n.

Such an n-tuple λ is called the highest weight1 of the corresponding representation

which we shall denote by V (λ). It contains a unique, up to a constant factor, nonzero

vector ξ (the highest vector) such that

Fii ξ = λi ξ for i = 1, . . . , n,

Fij ξ = 0 for − n 6 i < j 6 n.

Let M be a nonnegative integer such that N−M is even and positive. So, M = 2m or

M = 2m+1 for some m < n. We shall identify the Lie algebra gM with the subalgebra

1In a more common notation, the highest weight is the n-tuple (−λn, . . . ,−λ1). In particular, in

the symplectic case this n-tuple is a partition.
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of gN spanned by the elements Fij with the indices satisfying −m 6 i, j 6 m. Denote

by V (λ)+ the subspace of gM -highest vectors in V (λ):

V (λ)+ = {η ∈ V (λ) | Fij η = 0, −m 6 i < j 6 m}.

Given a gM -weight µ = (µ1, . . . , µm) we denote by V (λ)+
µ the corresponding weight

subspace in V (λ)+:

V (λ)+
µ = {η ∈ V (λ)+ | Fii η = µi η, i = 1, . . . , m}.

We have a natural vector space isomorphism V (λ)+
µ
∼= Homg

M
(V (µ), V (λ)).

For any i, j ∈ {−n, . . . , n} introduce the series in u−1 with coefficients in the

universal enveloping algebra U(gN) by

fij(u) = δij + Fij

(
u±

1

2

)−1

.

The mapping

π : sij(u) 7→ fij(u) (4.2)

defines a surjective homomorphism Y(gN )→ U(gN ) called the evaluation homomor-

phism; see [18] and [13, Proposition 3.11]. Let F (u) denote the N ×N matrix whose

ij-th entry is the series fij(u). We may introduce the Sklyanin minors f a1···ak

b1··· bk
(u) of

this matrix as the images of the corresponding minors of the matrix S(u) with respect

to the evaluation homomorphism,

π : s a1···ak

b1··· bk
(u) 7→ f a1···ak

b1··· bk
(u).

By Theorem 3.1, we have a homomorphism Y(gN−M)→ U(gN) given by

ρ : sab(u) 7→ α−m(u) f −m···m, a
−m···m, b (u+M/2). (4.3)

Due to Corollary 2.2, the image of this homomorphism is contained in the central-

izer U(gN)gM of the subalgebra gM in the universal enveloping algebra U(gN ). On

the other hand, the vector space V (λ)+
µ is obviously a representation of U(gN)gM .

Thus, V (λ)+
µ becomes equipped with the Y(gN−M)-module structure defined via the

homomorphism ρ. We call this module the skew representation of Y(gN−M). In the

particular case M = 0 (with even N) the skew representation is just the evaluation

module V (λ) over Y(gN) defined via the evaluation homomorphism (4.2).

The universal enveloping algebra U(gN−M ) can be identified with a subalgebra

of the twisted Yangian Y(gN−M) via the embedding Fab 7→ s
(1)
ab , see [13, Proposi-

tion 3.12]. The elements Fab are stable under the composition of this embedding

with the homomorphism ρ. Indeed, if a 6= b then this is verified directly from the
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definition of the Sklyanin minors with the use of (2.22). If a = b then we may as-

sume without loss of generality that m = n − 1 and a = ±n. So, the claim follows

from Corollary 3.5 and (3.3). In other words, the restriction of the Y(gN−M )-module

V (λ)+
µ to the subalgebra U(gN−M ) coincides with its natural action defined by the

U(gN )-action on V (λ).

We shall now concentrate on the symplectic case gN = spN where N = 2n. Our

next goal is to prove that the skew representations of Y(spN−M) are irreducible. First

we show the following.

Proposition 4.1. The centralizer U(spN)spM is generated by the image of the homo-

morphism ρ and the center of U(spN).

Proof. For a different homomorphism ρ′ : Y(spN−M)→ U(spN)spM given by

sab(u) 7→ αn(u) f̂ab(−u+ n− 1), a, b ∈ A, (4.4)

where f̂ab(u) is the image of ŝab(u) under the evaluation homomorphism (4.2), this

statement was proved in [14, Section 4]. Denote by U′ the subalgebra of U(spN)spM

generated by the center of U(spN) and the coefficients of the series f −m···m, a
−m···m, b (u)

with a, b ∈ A. It is sufficient to prove that all the coefficients of the series f̂ab(u)

belong to U′. However, the center of U(spN ) is generated by the coefficients of the

Sklyanin determinant sdetF (u), i.e., the image of sdet S(u) under the evaluation

homomorphism (4.2); see [8, Theorem 5.2]. Then by Theorem 3.1 the coefficients of

the series sdetFBB(u) belong to U′. Due to Proposition 2.4, the coefficients of the

series f̂ab(u) also belong to U′.

Corollary 4.2. The skew representation V (λ)+
µ of the twisted Yangian Y(spN−M) is

irreducible.

Proof. Since the representation V (λ)+
µ of U(spN)spM is irreducible [1, Section 9.1],

the statement follows from Proposition 4.1 as the central elements of U(spN) act on

V (λ)+
µ by scalar operators.

Remark 4.3. In general, the corresponding statement for the orthogonal twisted Yan-

gian Y(oN−M) is false; see [12] for the particular case N −M = 2. If N is even, then

the Y(o2)-module V (λ)+
µ is still irreducible. If N is odd, then for general parameters λ

and µ the Y(o2)-module V (λ)+
µ is isomorphic to the direct sum of two irreducibles. It

looks plausible that, in general, the Y(oN−M)-module V (λ)+
µ is completely reducible.

It would be interesting to obtain its irreducible decomposition.
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Now recall the classification results for representations of the twisted Yangian

Y(spN); see [9]. If V is a finite-dimensional irreducible representation of Y(spN) then

V contains a unique, up to a scalar factor, vector ξ 6= 0 such that

sii(u) ξ = µi(u) ξ for i = 1, . . . , n,

sij(u) ξ = 0 for − n 6 i < j 6 n,

where each µi(u) is a formal series in u−1 with coefficients in C. Moreover, there exist

monic polynomials P1(u), . . . , Pn(u) in u with P1(u) = P1(−u+ 1) such that

µi−1(u)

µi(u)
=
Pi(u+ 1)

Pi(u)
, i = 2, . . . , n (4.5)

and
µ1(−u)

µ1(u)
=
P1(u+ 1)

P1(u)
. (4.6)

The n-tuple µ(u) = (µ1(u), . . . , µn(u)) is called the highest weight and the Pi(u) are

called the Drinfeld polynomials of the representation V . Furthermore, given an n-

tuple (P1(u), . . . , Pn(u)) of monic polynomials with P1(u) = P1(−u+1) there exists a

finite-dimensional irreducible representation V of Y(spN) having this n-tuple as the

family of its Drinfeld polynomials. The isomorphism class of such representation V is

determined uniquely, up to the twisting by an automorphism of Y(spN) of the form

sij(u) 7→ g(u) sij(u),

where g(u) is a series in u−2 with constant term 1.

Since the Sklyanin determinant sdetS(u) is central in Y(spN), it acts on V by

scalar multiplication. The scalar can be calculated with the use of Proposition 3.6;

see also [8]. We have

sdet S(u)|V = αn(u)
n∏

i=1

µi(−u+ i− 1)µi(u−N + i). (4.7)

Proposition 4.4. With the above notation, for any k = 1, . . . , n in the representation

V we have

s −k+1 ···k
−k+1 ···k(u) ξ = µk(u− 2k + 2) s −k+1 ···k−1

−k+1 ···k−1(u) ξ.

Proof. By (2.13) we can write

s−k+1 ···k
−k+1 ···k(u) =

n∑

c=−n

š −k+1 ···k
−k+1 ···k−1,c(u) sck(u− 2k + 2).
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Apply both sides to the highest vector ξ. We have sck(u− 2k+ 2) ξ = 0 if c < k. On

the other hand, if c > k then š −k+1 ···k
−k+1 ···k−1,c(u) = 0 by (2.14). Finally, if c = k then

(2.15) gives

š−k+1 ···k
−k+1 ···k−1,c(u) = s −k+1 ···k−1

−k+1 ···k−1(u)

completing the proof.

Our aim now is to identify the representation V (λ)+
µ of Y(spN−M) by calculating

its highest weight and Drinfeld polynomials. Note that for the evaluation module

V (λ) over Y(spN) these can be immediately found from (4.2). In particular, the i-th

component of the highest weight is given by

u+ λi − 1/2

u− 1/2
, i = 1, . . . , n. (4.8)

In the case M > 0 we employ the basis in the spN -module V (λ) constructed in

[10]. This basis is parameterized by the patterns Λ which are arrays of non-positive

integers of the form

λn1 λn2 · · · λnn

λ′n1 λ′n2 · · · λ′nn

λn−1,1 · · · λn−1,n−1

λ′n−1,1 · · · λ′n−1,n−1

· · · · · ·

λ11

λ′11

where λ = (λn1, . . . , λnn) is the top row of Λ and the following betweenness conditions

hold

0 > λ′k1 > λk1 > λ′k2 > λk2 > · · · > λ′k,k−1 > λk,k−1 > λ′kk > λkk

for k = 1, . . . , n, and

0 > λ′k1 > λk−1,1 > λ′k2 > λk−1,2 > · · · > λ′k,k−1 > λk−1,k−1 > λ′kk

for k = 2, . . . , n. The representation V (λ) admits a basis ζΛ parameterized by all

patterns Λ. The formulas for the matrix elements of a family of generators of the Lie

algebra spN in this basis can be explicitly written down; see [10]. We shall only need

these formulas for the generators Fkk. We have

Fkk ζΛ =

(
2

k∑

i=1

λ′ki −
k∑

i=1

λki −
k−1∑

i=1

λk−1,i

)
ζΛ, k = 1, . . . , n. (4.9)
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Given a highest weight µ = (µ1, . . . , µm) for spM , a basis of the space V (λ)+
µ is

formed by those vectors ζΛ for which the row (λm1, . . . , λmm) of Λ coincides with µ

and

λki = λ′ki = µi, 1 6 i 6 k 6 m.

Omitting the same triangle part below the m-th row of all such patterns Λ we get

trapezium-like patterns (still denoted by Λ) with the top row λ and the bottom row

µ, as illustrated:

λ1 λ2 · · · λn

λ′n1 λ′n2 · · · λ′nn

· · · · · ·

λ′m+1,1 λ′m+1,2 · · · λ′m+1,m+1

µ1 µ2 · · · µm

Due to the betweenness conditions, the space V (λ)+
µ is nonzero if and only if

µi > λi+n−m, i = 1, . . . , m,

and

λi > µi+n−m, i = 1, . . . , n,

assuming µi = −∞ for i > m. We also set µi = 0 for i 6 0. In what follows we

suppose that V (λ)+
µ is nonzero.

Denote by h the diagonal Cartan subalgebra of spN−M spanned by the basis

vectors Fkk with k = m+1, . . . , n. Let the εk ∈ h∗ with k = m+1, . . . , n be the dual

basis vectors of h∗. Consider the root system for spN−M with respect to h where the

basis vectors Fij with i < j are positive root vectors so that the positive roots are

−2εk with k = m + 1, . . . , n and ± εi − εj with m + 1 6 i < j 6 n. By (4.9), the

weight w(Λ) = (wm+1, . . . , wn) of a trapezium pattern Λ with respect to h is given by

wk = 2

k∑

i=1

λ′ki −
k∑

i=1

λki −
k−1∑

i=1

λk−1,i, k = m+ 1, . . . , n.

We shall need the standard partial ordering on the set of weights of an spN−M -

module V . We shall write w 4 w′ for two weights w and w′ of V if w′ − w is a

linear combination of positive roots with nonnegative integral coefficients. Since the

vectors ζΛ corresponding to the trapezium patterns Λ form a basis of the spN−M -

module V (λ)+
µ , the set of weights of this module is comprised by the weights w(Λ)

for all possible patterns Λ.
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Given three integers i, j, k we shall denote by mid{i, j, k} that of the three which

is between the two others. If one of the indices, say, k is the symbol −∞ then

mid{i, j, k} is understood as min{i, j}. Consider the trapezium array Λ0 whose entries

are determined by

λki = mid{λi, µi+k−m, µi+m−k} (4.10)

and

λ′ki = mid{λi, µi+k−m−1, µi+m−k}

for all possible values of i and k. One easily verifies that Λ0 is a pattern.

Proposition 4.5. The spN−M -module V (λ)+
µ has a unique maximal weight. This

weight coincides with w(Λ0).

Proof. Suppose that w(Λ) is a maximal weight of V (λ)+
µ for some pattern Λ. Then

the entries of Λ should satisfy

λ′ki = max{λki, λk−1,i} (4.11)

for all k = m + 1, . . . , n− 1 and i = 1, . . . , k, where we assume λki = −∞ for i > k.

Indeed, if the equality is not attained for some k and i then by the betweenness

conditions we have λ′
ki > max{λki, λk−1,i}. Therefore, decreasing the entry λ′

ki by 1

we get a pattern of greater weight than w(Λ) which contradicts the maximality of

w(Λ). Thus, the weight w(Λ) = (wm+1, . . . , wn) can now be written as

wk =
k−1∑

i=1

|λki − λk−1,i|+ λkk, k = m+ 1, . . . , n.

We shall argue by induction on n−m to show that the λki must be given by (4.10).

This will imply the statement since the entries of Λ0 do satisfy (4.11) which is easily

seen. In the case n − m = 1 there is nothing to prove. Suppose that n − m = 2.

Omitting the primed entries, we can depict Λ as

λ1 λ2 · · · λn−2 λn−1 λn

ρ1 ρ2 · · · ρn−2 ρn−1

µ1 µ2 · · · µn−2

where we have put ρi = λn−1,i. The weight w(Λ) = (wn−1, wn) is given by

wn−1 =
n−2∑

i=1

|ρi − µi|+ ρn−1,

wn =

n−1∑

i=1

|λi − ρi|+ λn.

(4.12)
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Suppose that (4.10) is violated for some i so that ρi 6= mid{λi, µi+1, µi−1}. Observe

that by the betweenness conditions we have

ρi+1 6 mid{λi, µi+1, µi−1} 6 ρi−1.

Hence, if ρi < mid{λi, µi+1, µi−1} (respectively, ρi > mid{λi, µi+1, µi−1}) then we can

increase (respectively, decrease) the value of ρi by 1 without violating the betweenness

conditions and thus to get another pattern Λ′. Due to the formulas (4.12), we have

w(Λ) ≺ w(Λ′) which contradicts the maximality of w(Λ). This proves the statement

in the case under consideration.

Suppose now that n −m > 2. Let us set ρi = λn−1,i as above, and consider the

set of patterns having ρ = (ρ1, . . . , ρn−1) as the top row and µ as the bottom row.

Then, by the maximality of w(Λ), the trapezium subpattern of Λ with the top row

ρ and bottom row µ will clearly be of a maximal weight amongst all patterns of this

set. By the induction hypothesis, we must have

λki = mid{ρi, µi+k−m, µi+m−k} (4.13)

for all k = m + 1, . . . , n − 2 and i = 1, . . . , k. Similarly, the subpattern of Λ having

the top row λ and the bottom row σ = (σ1, . . . , σn−2) is of a maximal weight amongst

all patterns of this form, where we have put σi = λn−2,i. By the statement for the

case n−m = 2, we must have

ρi = mid{λi, σi+1, σi−1}, i = 1, . . . , n− 1.

Combining this with the relations σi = mid{ρi, µi+n−m−2, µi+m−n+2} implied by

(4.13), we get the desired relation for the row ρ of Λ,

ρi = mid{λi, µi+n−m−1, µi+m−n+1}, i = 1, . . . , n− 1.

Indeed, this is easily verified by looking at all possible combinations of the three

values of each of σi−1 and σi+1. Finally, substituting these values of ρi into (4.13) we

conclude that (4.10) holds for all possible k and i. Thus, Λ coincides with Λ0.

Corollary 4.6. The vector ζΛ0
is the highest vector of the Y(spN−M)-module V (λ)+

µ .

Proof. It suffices to demonstrate that ζΛ0
is annihilated by all generators sab(u) of

Y(spN−M) with a < b, since by [9, Remark 4.4] the vector ζΛ0
will then have to be

an eigenvector for all saa(u) with a = m + 1, . . . , n.

Recall that sab(u) acts on V (λ)+
µ as a Sklyanin minor which is a series in u−1

with coefficients in the universal enveloping algebra U(spN); see (4.3). By (2.28),

the weight of all these coefficients coincides with the weight of the element Fab with
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respect to the adjoint action of the Cartan subalgebra h of spN−M . Therefore, if a < b

then the vector sab(u) ζΛ0
has the weight w(Λ0) + α for a positive root α. Now the

claim follows from Proposition 4.5.

Corollary 4.6 implies that the highest weight µ(u) = (µm+1(u), . . . , µn(u)) of the

Y(spN−M)-module V (λ)+
µ is determined by the relations

saa(u) ζΛ0
= µa(u) ζΛ0

, a = m + 1, . . . , n.

In order to calculate µ(u) we shall use the results of [10], where the particular casem =

n− 1 was considered. In [10] the vector space V (λ)+
µ was endowed with the Y(sp2)-

module structure defined by the composition of an automorphism of the type (3.2)

and the homomorphism (4.4). Therefore, using Corollary 3.5, we can reformulate the

result for the Y(sp2)-module structure on V (λ)+
µ defined by the homomorphism (4.3)

to obtain the following.

Proposition 4.7. For m = n− 1 in the Y(sp2)-module V (λ)+
µ we have

α−n+1(u) f
−n+1 ···n
−n+1 ···n (u+ n− 1) ζΛ0

=

n∏

i=2

u−min{λi−1, µi−1}+ i− 1/2

u+ i− 1/2
·

n∏

i=1

u+ max{λi, µi} − i+ 1/2

u− i + 1/2
ζΛ0

.

In the case of arbitrary m < n introduce the following notation:

ν(u) =
m∏

i=1

(u+ µi − i + 1/2) (u− µi + i+ 1/2)

(u− i+ 1/2) (u+ i+ 1/2)
. (4.14)

Theorem 4.8. The highest weight µ(u) = (µm+1(u), . . . , µn(u)) of the Y(spN−M)-

module V (λ)+
µ is given by the formulas

µk(u) = ν(u) ·
k−1∏

i=1
λi<µi+k−m−1

u−max{λi, µi+k−m}+ k −m+ i− 1/2

u− µi+k−m−1 + k −m+ i− 1/2

×
k−1∏

i=1
λi>µi+m−k+1

u+ min{λi, µi+m−k}+ k −m− i− 1/2

u+ µi+m−k+1 + k −m− i− 1/2

×
u+ min{λk, µm} −m− 1/2

u−m− 1/2
,

where k = m+ 1, . . . , n.
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Proof. Let us denote by ϕab(u) the image of the series sab(u) under the homomorphism

ρ defined in (4.3), that is,

ϕab(u) = α−m(u) f −m···m, a
−m···m, b (u+M/2). (4.15)

Combine these series into the (N −M) × (N −M) matrix Φ(u). We shall use the

usual notation for the Sklyanin comatrix and the Sklyanin minors of Φ(u). Applying

Proposition 2.4, we obtain the following expression for the nn-th entry of the Sklyanin

comatrix Φ̂(u),

ϕ̂nn(u) = α−m(u) f̂nn(u+M/2) · fB(u− 1) · · · fB(u−N +M + 2), (4.16)

where we have put fB(u) = α−m(u) sdetFBB(u + M/2). On the other hand, by

Proposition 3.4, we have

ϕ̂nn(u) = αN−M−1(u)ϕ
−n+1 ···−m−1,m+1···n
−n+1 ···−m−1,m+1···n (−u+N −M − 2)

and

f̂nn(u) = αN−1(u) f
−n+1 ···n
−n+1 ···n (−u+N − 2).

Therefore, by (4.16),

αN−M−1(u)ϕ
−n+1 ···−m−1,m+1···n
−n+1 ···−m−1,m+1···n (−u+N −M − 2) =

αN−1(u+M/2) f −n+1 ···n
−n+1 ···n (−u+N −M/2− 2)

× α−m(u) fB(u− 1) · · · fB(u−N +M + 2). (4.17)

Similarly, applying Theorem 3.1, we derive the identity

αN−M(u)ϕ−n ···−m−1,m+1···n
−n ···−m−1,m+1···n (−u+N −M − 1) =

αN (u+M/2) f −n ···n
−n ···n (−u+N −M/2− 1)

× α−m(u) fB(u− 1) · · · fB(u−N +M + 1).

Replacing here n by n− 1 and u by u− 1 we get

αN−M−2(u− 1)ϕ−n+1 ···−m−1,m+1···n−1
−n+1 ···−m−1,m+1···n−1 (−u+N −M − 2) =

αN−2(u+M/2− 1) f −n+1 ···n−1
−n+1 ···n−1 (−u+N −M/2− 2)

× α−m(u− 1) fB(u− 2) · · · fB(u−N +M + 2). (4.18)

Due to Proposition 4.4, in V (λ)+
µ we have

ϕ−n+1 ···−m−1,m+1···n
−n+1 ···−m−1,m+1···n (v) ζΛ0

= µn(v −N +M + 2)ϕ −n+1 ···−m−1,m+1···n−1
−n+1 ···−m−1,m+1···n−1 (v) ζΛ0

.

31



Hence, comparing (4.17) and (4.18) we come to the relation

fB(u−1) f −n+1 ···n
−n+1 ···n (−u+2n−m−2) ζΛ0

= µn(−u) f
−n+1 ···n−1
−n+1 ···n−1 (−u+2n−m−2) ζΛ0

.

Therefore, for each k = m + 1, . . . , n the corresponding component of the highest

weight of the Y(spN−M)-module V (λ)+
µ can be found from the relation

fB(−u− 1) f −k+1 ···k
−k+1 ···k (u+ 2k −m− 2) ζΛ0

= µk(u) f
−k+1 ···k−1
−k+1 ···k−1 (u+ 2k −m− 2) ζΛ0

. (4.19)

Observe that each of the Sklyanin minors f −k+1 ···k
−k+1 ···k (v) and f −k+1 ···k−1

−k+1 ···k−1 (v) commutes

with all elements of the subalgebra sp2k−2 by Corollary 2.2. Therefore, since the basis

{ζΛ} of V (λ) is consistent with the embeddings sp2k−2 ⊂ sp2k [10], the vector ζΛ0
is

an eigenvector for each of these minors. The corresponding eigenvalue for the first

minor can be calculated from Proposition 4.7, which gives

α−k+1(u) f
−k+1 ···k
−k+1 ···k (u+ k − 1) ζΛ0

=

k∏

i=2

u−min{λk,i−1, λk−1,i−1}+ i− 1/2

u+ i− 1/2
·

k∏

i=1

u+ max{λki, λk−1,i} − i+ 1/2

u− i+ 1/2
ζΛ0

,

(4.20)

where the λki are the entries of Λ0. The second minor coincides with the image of

the Sklyanin determinant for Y(sp2k−2) under the evaluation homomorphism (4.2).

Hence the corresponding eigenvalue can be found from (4.7) and (4.8) which gives

α−k+1(u) f
−k+1 ···k−1
−k+1 ···k−1 (u+ k − 1) ζΛ0

=
k∏

i=2

u− λk−1,i−1 + i− 1/2

u+ i− 1/2
·
k−1∏

i=1

u+ λk−1,i − i+ 1/2

u− i + 1/2
ζΛ0

;

see also [8]. Note that since fB(u) = α−m(u) f −m ···m
−m ···m (u +m), the last formula with

k = m + 1 also applies for the calculation of fB(u) ζΛ0
. Hence,

fB(−u− 1) ζΛ0
= ν(u) ζΛ0

(4.21)

with ν(u) defined in (4.14). Furthermore, the formulas (4.10) for the entries of Λ0

imply that

max{λki, λk−1,i} = mid{λi, µi+k−m−1, µi+m−k} (4.22)

and

min{λki, λk−1,i} = mid{λi, µi+k−m, µi+m−k+1}. (4.23)
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Using (4.19) we obtain the following expression for µk(u):

µk(u) = ν(u)

k∏

i=2

u−mid{λi−1, µi+k−m−1, µi+m−k}+ k −m + i− 3/2

u−mid{λi−1, µi+k−m−2, µi+m−k}+ k −m + i− 3/2

×
k−1∏

i=1

u+ mid{λi, µi+k−m−1, µi+m−k}+ k −m− i− 1/2

u+ mid{λi, µi+k−m−1, µi+m−k+1}+ k −m− i− 1/2

×
u+ min{λk, µm} −m− 1/2

u−m− 1/2
.

Finally, replace the index i in the first product by i + 1 and note that if λi >

µi+k−m−1 then the corresponding factor equals 1. Similarly, if λi 6 µi+m−k+1 then

the corresponding factor in the second product equals 1. This brings the expression

for µk(u) to the required form.

We can now compute the Drinfeld polynomials for the Y(spN−M)-module V (λ)+
µ

by using Theorem 4.8. Given any sp2n-highest weight λ = (λ1, . . . , λn), set λ−i = −λi
for i = 1, . . . , n. We also assume that λ0 = 0 while λk = −∞ and λ−k = +∞ for

k > n. Introduce the diagram Γ(λ) as a certain infinite set of unit squares (cells) on

the plane whose centers have integer coordinates. The coordinates (i, j) of a cell are

interpreted as the row and column number so that i increases from top to bottom

and j increases from left to the right. With these assumptions2,

Γ(λ) = {(i, j) ∈ Z
2 | −n 6 i 6 n+ 1, λi 6 j < λi−1}.

The diagram has a central symmetry, as illustrated below for λ = (−4,−7) and n = 2:

�

-

?

-

i

j

2

3

−1

−2

2 3 4 5 6 7

−3−4−5−6−7−8

Note that in the case n = 0 the definition of the diagram formally makes sense with

λ considered to be empty. Thus, Γ(∅) consists of two infinite rows of cells:

2This definition of Γ(λ) corresponds to the one outlined in the Introduction for the partition

(λ
−n, . . . , λ

−1).
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�
-

?

-

i

j

2

−1

2 3 4 5 6 7

−3−4−5−6−7−8

By the content of a cell α = (i, j) with coordinates i and j we shall mean the

number c(α) = j − i. For any nonnegative integer p we shall denote by Γ(λ)(p) the

image of Γ(λ) with respect to the shift operator (i, j) 7→ (i − p, j). In other words,

Γ(λ)(p) is obtained from the diagram Γ(λ) by lifting each cell p units up.

We let P1(u), . . . , Pn−m(u) denote the Drinfeld polynomials corresponding to the

Y(spN−M)-module V (λ)+
µ .

Theorem 4.9. For each k = 1, . . . , n−m the Drinfeld polynomial Pk(u) is given by

Pk(u) =
∏

α

(u+ c(α) + 1/2),

where α runs over the cells of the intersection Γ(µ) ∩ Γ(λ)(k−1).

Example 4.10. Let λ = (−2,−8,−10,−13) and µ = (−4,−7) so that n = 4 and

m = 2. (In a more standard notation, λ and µ can be thought of as the partitions

(13, 10, 8, 2) and (7, 4), respectively). The polynomial P1(u) is calculated from the

figure:

?

-

i

j

2

3

−1

−2

−4

3 9

−4−7−10−13

The horizontal and vertical shadings indicate the diagrams Γ(λ) and Γ(µ), respec-

tively. The cells belonging to the intersection Γ(µ) ∩ Γ(λ) have the coordinates

(3,−10), (3,−9), (2,−7), (2,−6), (2,−5), (1,−2), (1,−1), (0, 0), (0, 1), (−1, 4),

(−1, 5), (−1, 6), (−2, 8), (−2, 9). Hence,

P1(u) = (u− 25/2)(u− 23/2)(u− 17/2)(u− 15/2)(u− 13/2)(u− 5/2)(u− 3/2)

(u+ 1/2)(u+ 3/2)(u+ 11/2)(u+ 13/2)(u+ 15/2)(u+ 21/2)(u+ 23/2).
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Note that the property P1(u) = P1(−u + 1) is implied by the central symmetry of

the set Γ(µ) ∩ Γ(λ).

The polynomial P2(u) is calculated from the figure:

?

-

i

j

2

3

−4

−2

−1

3 7

−4−8−13

The cells which belong to the intersection Γ(µ)∩Γ(λ)(1) have the coordinates (3,−13),

(3,−12), (3,−11), (1,−4), (1,−3), (−2, 7). Hence,

P2(u) = (u− 31/2)(u− 29/2)(u− 27/2)(u− 9/2)(u− 7/2)(u+ 19/2).

Example 4.11. In the case m = 0 the vector space V (λ)+
µ can be identified with V (λ)

and the corresponding Y(sp2n)-module coincides with the evaluation module defined

by the evaluation homomorphism (4.2). Applying Theorem 4.9 to the diagrams Γ(λ)

and Γ(∅) we obtain

P1(u) = (u+ λ1 − 1/2)(u+ λ1 + 1/2) · · · (u− 3/2)

× (u+ 1/2)(u+ 3/2) · · · (u− λ1 − 1/2)

and

Pk(u) = (u+ λk − 1/2)(u+ λk + 1/2) · · · (u+ λk−1 − 3/2), k = 2, . . . , n.

On the other hand, the highest weight of this module is given by (4.8). Due to (4.5)

and (4.6) this obviously agrees with the above calculation of the Pk(u).

Proof of Theorem 4.9. We shall derive the statement from Theorem 4.8 and the defi-

nition of the Drinfeld polynomials (4.5) and (4.6). In order to calculate P1(u) observe

that the component µm+1(u) of the highest weight can also be found from the formula

ϕm+1,m+1(u) ζΛ0
= µm+1(u) ζΛ0

;
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see (4.15). Hence, applying (4.20) with k = m+1 and using (4.22) and (4.23) we get

µm+1(u) =

m+1∏

i=1

u−mid{λi−1, µi−1, µi}+ i− 1/2

u+ i− 1/2

×
m+1∏

i=1

u+ mid{λi, µi−1, µi} − i+ 1/2

u− i + 1/2
.

Therefore, by (4.6),

P1(u+ 1)

P1(u)
=

m+1∏

i=1

u+ mid{λi−1, µi−1, µi} − i + 1/2

u+ mid{λi, µi−1, µi} − i + 1/2

×
m+1∏

i=1

u−mid{λi, µi−1, µi}+ i− 1/2

u−mid{λi−1, µi−1, µi}+ i− 1/2
.

This gives P1(u) = Q(u)Q(−u+ 1) (−1)degQ, where

Q(u) =
m+1∏

i=1

(u+ βi)(u+ βi + 1) · · · (u+ αi − 1) (4.24)

with

αi = mid{λi−1, µi−1, µi} − i+ 1/2 and βi = mid{λi, µi−1, µi} − i+ 1/2.

Thus, the factor corresponding to the index i in the product in (4.24) can be in-

terpreted as the product
∏

α(u + c(α) + 1/2), where α runs over the cells of the

intersection of the diagrams Γ(λ) ∩ Γ(µ) whose first coordinate is i. Taking into

account the central symmetry of Γ(λ)∩Γ(µ), we derive the desired formula for P1(u).

Now using (4.5) and replacing the index k by r = k−m in Theorem 4.8 we derive

the following expression for the Drinfeld polynomial Pr+1(u) with 1 6 r < n−m:

Pr+1(u+ 1)

Pr+1(u)
=

r+m−2∏

i=1
λi<µi+r

u−max{λi+1, µi+r+1}+ r + i+ 1/2

u−max{λi, µi+r+1}+ r + i+ 1/2

×
r+m−1∏

i=1
λi<µi+r−16λi−1

u−max{λi, µi+r}+ r + i− 1/2

u− µi+r−1 + r + i− 1/2

×
r+m+1∏

i=2
λi>µi−r

u+ min{λi−1, µi−r−1}+ r − i+ 1/2

u+ min{λi, µi−r−1}+ r − i + 1/2

×
r+m−1∏

i=1
λi+16µi−r+1<λi

u+ min{λi, µi−r}+ r − i− 1/2

u+ µi−r+1 + r − i+ 1/2
.

(4.25)
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Note that the expression has the form

Pr+1(u+ 1)

Pr+1(u)
=
∏

j

u+ αj
u + βj

for some parameters αj and βj with αj − βj ∈ Z+. This implies that Pr+1(u) is given

by

Pr+1(u) =
∏

j

(u+ βj)(u+ βj + 1) · · · (u+ αj − 1). (4.26)

It is straightforward to verify that this product coincides with
∏

α(u + c(α) + 1/2),

where α runs over the cells of the intersection Γ(µ)∩Γ(λ)(r−1). Indeed, changing the

product index i respectively by i−r and by i−r+1 in the third and fourth products

in (4.25) we bring these products to the form

m+1∏

i=1
λi+r>µi

u+ min{λi+r−1, µi−1} − i+ 1/2

u+ min{λi+r−1, µi−1} − i+ 1/2

×
m∏

i=1
λi+r6µi<λi+r−1

u+ min{λi+r−1, µi−1} − i + 1/2

u+ µi − i + 1/2
. (4.27)

Therefore, the factor corresponding to the index i contributes into (4.26) the product∏
α(u+ c(α) + 1/2), where α runs over the cells of the intersection Γ(µ) ∩ Γ(λ)(r−1)

whose first coordinate is i. Note that writing

−max{λi, µi+r+1} = min{λ−i, µ−i−r−1}

we can similarly bring the first and second products in (4.25) to the form (4.27), where

the product is taken over negative indices. This contributes
∏

α(u+ c(α) + 1/2) into

(4.26), where α runs over the cells of the intersection Γ(µ) ∩ Γ(λ)(r−1) whose first

coordinate is non-positive.

5 Centralizer construction

We now return to our general situation so that gN denotes either the orthogonal

or symplectic Lie algebra; see (4.1). We start by recalling the construction of the

Olshanski algebra AM ; see [18, 14]. Fix a nonnegative integer M such that N −M

is even. So, if N = 2n or N = 2n + 1 then M = 2m or M = 2m + 1, respectively,

for some m 6 n. Denote by g′
N−M the subalgebra of gN spanned by the elements Fij

subject to the condition m + 1 ≤ |i|, |j| ≤ n. Let AM(N) denote the centralizer of
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g′
N−M in the universal enveloping algebra U(gN). Let U(gN )0 denote the centralizer

of Fnn in U(gN) and let I(N) be the left ideal in U(gN) generated by the elements

Fin, i = −n, . . . , n. Then I(N)0 = I(N)∩U(gN )0 is a two-sided ideal in U(gN)0 which

coincides with the intersection J(N)∩U(gN )0, where J(N) is the right ideal in U(gN )

generated by the elements Fni, i = −n, . . . , n. One has a vector space decomposition

U(gN)0 = I(N)0 ⊕ U(gN−2).

Therefore the projection of U(gN)0 onto U(gN−2) with the kernel I(N)0 is an alge-

bra homomorphism. Its restriction to the subalgebra AM(N) defines a filtration-

preserving homomorphism

πN : AM(N)→ AM(N − 2) (5.1)

so that one can define the algebra AM as the projective limit with respect to this

sequence of homomorphisms in the category of filtered algebras; see [14] for more

details.

Taking the composition of the homomorphism Y(gM)→ Y(gN ) defined in Propo-

sition 3.2 and the evaluation homomorphism (4.2) we obtain another homomorphism

ψN : Y(gM)→ U(gN ) which takes sij(u) to the series

αm−n(u) · f
−n ···−m−1, i,m+1···n
−n ···−m−1, j,m+1···n (u+ n−m), −m 6 i, j 6 m, (5.2)

where we have used the notation of Section 4 for the images of the Sklyanin minors

with respect to (4.2). Observe now that by Corollary 2.2 the image of ψN is contained

in the centralizer AM(N), so that ψN : Y(gM )→ AM(N).

Proposition 5.1. The sequence of homomorphisms (ψN | N = M + 2k, k = 0, 1, . . . )

defines a homomorphism

ψ : Y(gM)→ AM .

Proof. We have to verify that the homomorphisms ψN are compatible with the se-

quence of homomorphisms (5.1), that is, the following diagram is commutative:

Y(gM ) Y(gM ) · · · Y(gM) · · ·

ψM

y ψM+2

y ψN

y
AM(M) ←−−−

πM+2

AM(M + 2) ←−−− · · · ←−−−
πN

AM(N) ←−−− · · · .

Let us calculate the image of the series ψN (sij(u)) under the homomorphism πN .

Applying (2.13) we obtain

f−n ···−m−1, i,m+1···n
−n ···−m−1, j,m+1···n (u+n−m) =

∑

c

f̌−n ···−m−1, i,m+1···n
−n ···−m−1, j,m+1···n−1,c (u+n−m) fcn(u−n+m),
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where by f̌
a1···ak

b1··· bk−1,c
(u) we denote the image of the auxiliary minor š a1 ···ak

b1··· bk−1,c
(u) under

the evaluation homomorphism (4.2). Now observe that fcn(u−n+m) belongs to the

left ideal I(N) unless c = n. In this case fnn(u−n+m) ≡ 1 mod I(N). Furthermore,

by (3.10),

f̌−n ···−m−1, i,m+1···n
−n ···−m−1, j,m+1···n (v)

=
2v + 1

2v ± 1

2n−2m∑

i=1

(−1)i−1 f tai,−n
(−v) f a1··· âi ···a2n−2m

−n+1 ···−m−1, j,m+1···n−1(v − 1),

where we have set (a1, . . . , a2n−2m) = (−n · · · −m − 1, i, m + 1 · · · n − 1) and v =

u+n−m. Now f tai,−n
(−v) = θ−n,ai

fn,−ai
(−v) belongs to the right ideal J(N) unless

ai = −n, that is, i = 1. In this case fnn(−v) ≡ 1 mod J(N). Note that

αm−n(u)
2v + 1

2v ± 1
= αm−n+1(u).

Hence, πN takes ψN (sij(u)) to the series

αm−n+1(u) · f
−n+1 ···−m−1, i,m+1···n−1
−n+1 ···−m−1, j,m+1···n−1 (u+ n−m− 1)

which coincides with ψN−2(sij(u)). Thus, the sequence of coefficients at each power

of u−1 in ψN (sij(u)) with N = M + 2k, k = 0, 1, . . . defines an element of AM .

Corollary 2.2 implies that all the coefficients of the series

αm−n(u) · f
−n ···−m−1,m+1···n
−n ···−m−1,m+1···n (u+ n−m) = 1 + c

(n)
1 u−1 + c

(n)
2 u−2 + · · · (5.3)

belong to the center of the universal enveloping algebra U(g′
N−M ). Hence, for any i

the coefficient c
(n)
i is an element of the centralizer AM(N). The argument of the proof

of Proposition 5.1 shows that the image of the series (5.3) under the homomorphism

πN is

αm−n+1(u) · f
−n+1 ···−m−1,m+1···n−1
−n+1 ···−m−1,m+1···n−1 (u+ n−m− 1).

Therefore, for each i the sequence ci = (c
(n)
i | n > m + 1) determines an element of

the projective limit algebra AM . Denote by CM the subalgebra of AM generated by

all ci with i ≥ 1. The subalgebra CM is studied in detail in [14, Section 3] where it

was identified with the algebra of virtual Laplace operators. Up to an obvious change

of notation, the series (5.3) coincides with the Sklyanin minor fB(u) introduced in

the proof of Theorem 4.8. So its Harish-Chandra image can be found from (4.21)

which shows that the elements c2i with even indices are algebraically independent

and generate the algebra CM ; cf. [14, Section 3].
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Theorem 5.2. The homomorphism ψ : Y(gM) ↪→ AM is injective. Moreover, one

has an isomorphism

AM = CM ⊗ Y(gM),

where Y(gM ) is identified with its image under the embedding ψ.

Proof. Our argument is similar to the proof of [14, Theorem 4.17]. Consider the

canonical filtration of the universal enveloping algebra U(gN ). The corresponding

graded algebra grU(gN ) is isomorphic to the symmetric algebra S(gN ) of the space gN .

Elements of S(gN) can be naturally identified with polynomials in matrix elements

of an N × N matrix x = (xij)
n
i,j=−n such that xt = −x. Denote by PM(N) the

subalgebra of the elements of S(gN ) which are invariant under the adjoint action of

the Lie algebra g′
N−M . The algebra AM possesses a natural filtration induced by the

canonical filtrations on the centralizers AM(N). The corresponding graded algebra

grAM is naturally isomorphic to the projective limit PM of the commutative algebras

PM(N) with respect to homomorphisms PM(N) → PM (N − 2) analogous to (5.1);

see [14, Section 4]. The images in PM (N) of the coefficients the series (5.2) and (5.3)

can be found from the explicit formulas for the Sklyanin minors; see Proposition 3.6.

Indeed, apply the proposition to the Sklyanin minor s −n ···−m−1,m+1···n
−n ···−m−1,m+1···n (u + n −m)

then replace each series sij(u) by its image fij(u) under the evaluation homomorphism

(4.2). Observe that the image of stij(−u) coincides with fij(u∓ 1). Since we are only

interested in the highest degree component of the coefficient at each power of u−1,

we may replace each expression of type fij(u + c) by δij + Fiju
−1. Hence, denoting

the elements of the set A = {−n, . . . ,−m− 1, m+ 1, . . . , n} by a1, . . . , aN−M we can

write, modulo lower degree terms at each power of u,

f −a1 ···−aN−M

a1 ···aN−M
(u+ n−m) ≡ αn−m(u+ n−m)

×
∑

p∈SM

sgn pp′ · (1 + Fu−1)−ap(1),ap′(1)
· · · (1 + Fu−1)−ap(N−M),ap′(N−M)

,

where F denotes the (N − M) × (N − M) matrix whose rows and columns are

enumerated by the elements of the set A and whose ij-th entry is Fij. Since these

matrix elements commute modulo lower degree terms, taking into account the relation

αm−n(u)αn−m(u+ n−m) = 1,

we can conclude from Lemma 3.8 that the image of the series (5.3) in PM(N) is the

determinant det(1+xu−1)AA. The same argument shows that the image of the series

(5.2) in PM(N) is det(1 + xu−1)AiAj
, where

Ai = {−n, . . . ,−m− 1, i,m+ 1, . . . , n}.
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Our next step is to show that every element φ of the algebra PM(N) such that

deg φ < n − m can be represented as a polynomial in the coefficients of the series

det(1+xu−1)AA and det(1+xu−1)AiAj
. However, it was proved in [14, Section 4.9] that

φ can be presented as a polynomial in the elements tr (xAA)k and Λ
(k)
ij with −m 6

i, j 6 m and k > 1, where Λ
(k)
ij =

∑
xic1xc1c2 · · ·xck−1j, summed over the indices

cr ∈ A. On the other hand, each element tr (xAA)k is a polynomial in the coefficients

of the series det(1 + xu−1)AA. This follows from the fact that the coefficients of the

characteristic polynomial det(u+x)AA form a complete set of invariants of the matrix

xAA. (Explicit expressions for the elements tr (xAA)k in terms of the coefficients of

the characteristic polynomial can be derived e.g. from the Liouville formula; cf. [13,

Remark 5.8]). The claim now follows from the well known identity

det(1 + xu−1)AiAj
= det(1 + xu−1)AA ·

(
δij +

∞∑

k=1

(−1)k−1Λ
(k)
ij u

−k
)
; (5.4)

see e.g. [5, 6]. Indeed, the identity implies that the elements Λ
(k)
ij are polynomials in

the coefficients of the series det(1 + xu−1)AiAj
and det(1 + xu−1)AA. This allows us

to conclude that the algebra AM is generated by the subalgebra CM and the image

of the homomorphism ψ.

Observe that since the matrix x satisfies xt = −x we have the relations

det(1 + xu−1)AA = det(1− xu−1)AA

and

Λ
(k)
ij = (−1)k θij Λ

(k)
−j,−i.

Hence, we can write

det(1 + xu−1)AA = 1 +
∞∑

r=1

Λ(2r) u−2r

for some polynomials Λ(2r) in the matrix elements of x. For the elements Λ
(k)
ij we

shall impose the following restrictions on i, j, k:

i+ j < 0 for k odd, i+ j ≤ 0 for k even

in the orthogonal case, and

i+ j < 0 for k even, i+ j ≤ 0 for k odd

in the symplectic case. Fix a positive integer K and assume that the index k satisfies

1 6 k 6 K. It follows from the argument of [14, Section 4.10] that there exists a
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large enough value of N such that the polynomials Λ(k) for even k, and Λ
(k)
ij with the

above restrictions on i, j, k are algebraically independent. Due to the identity (5.4),

the same statement will hold if each polynomial Λ
(k)
ij is replaced by the coefficient at

u−k of the series det(1 + xu−1)AiAj
. This proves the injectivity of ψ and the tensor

product decomposition for the algebra AM .
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