A Recent Look at the Quantum Berezinian in the Yangian $Y(\mathfrak{gl}_{m|n})$

Lucy Gow*

December 28, 2004

Brundan and Kleshchev recently introduced a new family of presentations of the Yangian $Y(\mathfrak{gl}_n)$ associated to the general linear Lie algebra \mathfrak{gl}_n , and thus provided a fresh approach to its study. In this article, we would like to show how some of their ideas can be fruitfully extended to consider the Yangian $Y(\mathfrak{gl}_{m|n})$ associated to the Lie superalgebra $\mathfrak{gl}_{m|n}$. In particular, we give a new proof of the result by Nazarov that the quantum Berezinian is central.¹

1 Definition of $Y(\mathfrak{gl}_{m|n})$

The Yangian $Y(\mathfrak{gl}_{m|n})$ is defined in [7] to be the \mathbb{Z}_2 -graded associative algebra over \mathbb{C} with generators $t_{ij}^{(r)}$ and certain relations described below. We define the formal power series

$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)} u^{-1} + t_{ij}^{(2)} u^{-2} + \dots,$$

and a matrix

$$T(u) = \sum_{i,j=1}^{m+n} t_{ij}(u) \otimes E_{ij} (-1)^{\overline{j}(\overline{i}+1)},$$
 (1)

where E_{ij} is the standard elementary matrix and \bar{i} is the parity of the index i. In analogy with the usual Yangian $Y(\mathfrak{gl}_n)$ (see for example [2], [5], [6]), the defining relations are then expressed by the matrix product

$$R(u-v)T_1(u)T_2(v) = T_2(v)T_1(u)R(u-v)$$

where

$$R(u-v) = 1 - \frac{1}{(u-v)}P_{12}$$

^{*}lucyg@maths.usyd.edu.au

 $^{^1\}mathrm{The}$ author would like to acknowledge the guidance and support of her PhD supervisor Alexander Molev.

and P_{12} is the permutation matrix:

$$P_{12} = \sum_{i,j=1}^{m+n} E_{ij} \otimes E_{ji} (-1)^{\overline{j}}.$$

Then we have the following equivalent form of the defining relations:

$$[t_{ij}(u), t_{kl}(v)] = \frac{(-1)^{ij} + ik + jk}{(u-v)} (t_{kj}(u)t_{il}(v) - t_{kj}(v)t_{il}(u)).$$

Throughout this article we will observe the following notation for entries of the inverse matrix of T(u):

$$T(u)^{-1} =: (t'_{ij}(u))_{i,j=1}^n.$$

A straightforward calculation yields the following relation in $Y(\mathfrak{gl}_{m|n})$:

$$[t_{ij}(u), t'_{kl}(v)] = \frac{(-1)^{\overline{ij} + \overline{ik} + \overline{jk}}}{(u - v)} \cdot (\delta_{kj} \sum_{s=1}^{m+n} t_{is}(u) t'_{sl}(v) - \delta_{il} \sum_{s=1}^{m+n} t'_{ks}(v) t_{sj}(u)).$$
 (2)

2 Gauss Decomposition of T(u)

In [1], the Drinfeld presentation is described in terms of the quasideterminants of Gelfand and Retakh ([3], [4]). In this article we make use of the analogous set of generators of the Yangian $Y(\mathfrak{gl}_{m|n})$. First we recall the definition of the quasideterminants and some conventional notation.

Definition 2.1. Let X be a square matrix over a ring with identity such that its inverse matrix X^{-1} exists, and such that its jith entry is an invertible element of the ring. Then the ijth quasideterminant of X is defined by the formula

$$|X|_{ij} = ((X^{-1})_{ii})^{-1}$$
.

Equivalently, we may define quasideterminants inductively as follows. If $X = (x_{11})$ is a 1×1 -matrix then there is only one quasideterminant of X; and this is $|X|_{11} = x_{11}$. For n > 1, we have

$$|X|_{ij} = x_{ij} - \sum_{k \neq i, l \neq j} x_{ik} (|X^{ij}|_{lk})^{-1} x_{lj},$$

where X^{ij} is the matrix obtained from X by removing both the ith row and the jth column. It is sometimes convenient to adopt the following alternative notation for the quasideterminants:

$$|X|_{ij} =: \begin{vmatrix} x_{11} & \cdots & x_{1j} & \cdots & x_{1n} \\ & \cdots & & \cdots & \\ x_{i1} & \cdots & \boxed{x_{ij}} & \cdots & x_{in} \\ & \cdots & & \cdots & \\ x_{n1} & \cdots & x_{nj} & \cdots & x_{nn} \end{vmatrix}.$$

The matrix T(u) defined in (1) has the following Gauss decomposition in terms of quasideterminants (by Theorem 4.96 in [3]; see §5 in [1]):

$$T(u) = F(u)D(u)E(u)$$

for unique matrices

$$D(u) = \begin{pmatrix} d_1(u) & \cdots & 0 \\ & d_2(u) & \vdots \\ \vdots & & \ddots & \\ 0 & \cdots & d_{m+n}(u) \end{pmatrix},$$

$$E(u) = \begin{pmatrix} 1 & e_{12}(u) & \cdots & e_{1,m+n}(u) \\ & \ddots & & e_{2,m+n}(u) \\ & & \ddots & \vdots \\ 0 & & 1 \end{pmatrix},$$

$$F(u) = \begin{pmatrix} 1 & & \cdots & 0 \\ f_{21}(u) & & \ddots & \vdots \\ \vdots & & & \ddots & \\ f_{m+n,1}(u) & f_{m+n,2}(u) & \cdots & 1 \end{pmatrix},$$

where

$$d_{i}(u) = \begin{vmatrix} t_{11}(u) & \cdots & t_{1,i-1}(u) & t_{1i}(u) \\ \vdots & \ddots & & \vdots \\ t_{i1}(u) & \cdots & t_{i,i-1}(u) & t_{ii}(u) \end{vmatrix},$$

$$e_{ij}(u) = d_{i}(u)^{-1} \begin{vmatrix} t_{11}(u) & \cdots & t_{1,i-1}(u) & t_{1j}(u) \\ \vdots & \ddots & \vdots & & \vdots \\ t_{i-1,i}(u) & \cdots & t_{i-1,i-1}(u) & t_{i-1,j}(u) \\ t_{i1}(u) & \cdots & t_{i,i-1}(u) & t_{ii}(u) \end{vmatrix},$$

$$f_{ji}(u) = \begin{vmatrix} t_{11}(u) & \cdots & t_{1,i-1}(u) & t_{1i}(u) \\ \vdots & \ddots & \vdots & & \vdots \\ t_{i-1,1}(u) & \cdots & t_{i-1,i-1}(u) & t_{i-1,i}(u) \\ t_{ji}(u) & \cdots & t_{j,i-1}(u) & t_{ji}(u) \end{vmatrix} d_{i}(u)^{-1}.$$

It is easy to recover each generating series $t_{ij}(u)$ by multiplying together and taking commutators of $d_i(u)$; $1 \le i \le m+n$, and $e_i(u) := e_{i,i+1}(u)$, $f_i(u) = f_{i+1,i}(u)$; $1 \le i < m+n$ (see §5 of [1]). Thus the Yangian $Y(\mathfrak{gl}_{m|n})$ is generated by the coefficients of the latter.

2.1 Some Useful Maps

Here we define some automorphisms of the Yangian $Y(\mathfrak{gl}_{m|n})$ and homomorphisms between Yangians, so that we may refer to them in the next section.

Let $\omega_{m|n}: Y(\mathfrak{gl}_{m|n}) \to Y(\mathfrak{gl}_{m|n})$ be the automorphism defined by

$$\omega: T(u) \mapsto T(-u)^{-1}$$
.

Let $\tau: Y(\mathfrak{gl}_{m|n}) \to Y(\mathfrak{gl}_{m|n})$ be the automorphism defined by

$$\tau(t_{ij}(u)) = t_{ji}(-u) \times (-1)^{\overline{i}(\overline{j}+1)}.$$

Let $\rho_{m|n}: Y(\mathfrak{gl}_{m|n}) \to Y(\mathfrak{gl}_{n|m})$ be the isomorphism defined by

$$\rho_{m|n}(t_{ij}(u)) = t_{m+n+1-i,m+n+1-j}(-u).$$

Let $\varphi_{m|n}: Y(\mathfrak{gl}_{m|n}) \hookrightarrow Y(\mathfrak{gl}_{m+k|n})$ be the inclusion which sends each generator $t_{ij}^{(r)} \in Y(\mathfrak{gl}_{m|n})$ to the generator $t_{k+i,k+j}^{(r)}$ in $Y(\mathfrak{gl}_{m+k|n})$.

Finally, let $\psi_k:Y(\mathfrak{gl}_{m|n})\to Y(\mathfrak{gl}_{m+k|n})$ be the injective homomorphism defined by

$$\psi_k = \omega_{m+k|n} \circ \varphi_{m|n} \circ \omega_{m|n}. \tag{3}$$

This last homomorphism is useful for studying quasideterminants so we discuss it in some detail with the following remarks.

Remark 2.1. We can calculate $\psi_k(t_{ij}(u))$ explicitly for any $1 \le i, j \le m+n$ (see Lemma 4.2 of [1]):

$$\psi_k(t_{ij}(u)) = \begin{vmatrix} t_{11}(u) & \cdots & t_{1k}(u) & t_{1,k+j}(u) \\ \vdots & \ddots & \vdots & \vdots \\ t_{k1}(u) & \cdots & t_{kk}(u) & t_{k,k+j}(u) \\ t_{k+i,1}(u) & \cdots & t_{k+i,k}(u) & \boxed{t_{k+i,k+j}(u)} \end{vmatrix}.$$

In particular, this means that for $k \ge 1$, we have $\psi_k(d_1(u)) = d_{k+1}(u)$, $\psi_k(e_1(u)) = e_{k+1}(u)$, and $\psi_k(f_1(u)) = f_{k+1}(u)$.

Furthermore, by (3), we have for any $k, l \ge 1$ that $\psi_k \circ \psi_l = \psi_{k+l}$, so we may generalise this observation to give for instance $\psi_k(d_l(u)) = d_{k+l}(u)$.

Remark 2.2. Notice that the map ψ_k sends $t'_{ij}^{(r)} \in Y(\mathfrak{gl}_{m|n})$ to the element $t'_{k+i,k+j}^{(r)}$ in $Y(\mathfrak{gl}_{m+k|n})$. Thus the subalgebra $\psi_k(Y(\mathfrak{gl}_{m|n}))$ is generated by the elements $\{t'_{k+s,k+t}\}_{s,t=1}^n$. Then, by (2), all elements of this subalgebra commute with those of the subalgebra generated by the elements $\{t'_{ij}^{(r)}\}_{i,j=1}^k$.

By Remark 2.1, this implies in particular that for any $i, j \geq 1$, the quasideterminants $d_i(u)$ and $d_j(v)$ commute.

3 The Quantum Berezinian

The quantum Berezinian was defined by Nazarov [7] and plays a similar role in the study of the Yangian $Y(\mathfrak{gl}_{m|n})$ as the quantum determinant does in the case of the Yangian $Y(\mathfrak{gl}_n)$ (see [5]).

Definition 3.1. The quantum Berezinian is the following power series with coefficients in the Yangian $Y(\mathfrak{gl}_{m|n})$:

$$b_{m|n}(u) := \sum_{\rho \in S_m} \operatorname{sgn}(\tau) t_{\tau(1)1}(u) t_{\tau(2)2}(u-1) \cdots t_{\tau(m)m}(u-m+1)$$

$$\times \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) t'_{m+1,m+\sigma(1)}(u-m+1) \cdots t'_{m+n,m+\sigma(n)}(u-m+n)$$

The first part of this expression for $b_{m|n}(u)$ is quite special and so is given its own notation:

$$C_m(u) := \sum_{\tau \in S_m} \operatorname{sgn}(\tau) t_{\tau(1)1}(u) t_{\tau(2)2}(u-1) \cdots t_{\tau(m)m}(u-m+1).$$

It is clear that $C_m(u)$ is an element of the subalgebra of $Y(\mathfrak{gl}_{m|n})$ generated by the set $\{t_{ij}^{(r)}\}_{1\leq i,j\leq m;r\geq 0}$. This subalgebra is isomorphic to the Yangian $Y(\mathfrak{gl}_{\mathfrak{m}})$ associated to the Lie algebra \mathfrak{gl}_m by the inclusion $Y(\mathfrak{gl}_m)\to Y(\mathfrak{gl}_{m|n})$ which send each generator $t_{ij}^{(r)}$ in $Y(\mathfrak{gl}_{\mathfrak{m}})$ to the generator of the same name in $Y(\mathfrak{gl}_{m|n})$. Moreover, $C_m(u)$ is in fact the image under this map of the quantum determinant of the smaller Yangian $Y(\mathfrak{gl}_{\mathfrak{m}})$ (see [1], [5]). Then it is well known (see Theorem 2.32 in [6]) that we have the alternative expression:

$$C_m(u) = d_1(u)d_2(u-1)\cdots d_m(u-m+1).$$

We can extend this observation as follows:

Theorem 1. We have the following alternative expression for the quantum Berezinian:

$$b_{m|n}(u) = d_1(u) d_2(u-1) \cdots d_m(u-m+1)$$

 $\times d_{m+1}(u-m+1)^{-1} \cdots d_{m+n}(u-m+n)^{-1}.$

Proof. Notice that the second part of the expression for $b_{m|n}(u)$ in Definition 3.1 is the image under the isomorphism $\rho_{n|m}\circ\omega_{n|m}:Y(\mathfrak{gl}_{n|m})\to Y(\mathfrak{gl}_{m|n})$ of

$$\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) t_{n,\sigma(n)} (u - m + 1) \cdots t_{2,\sigma(2)} (u - m + n - 1) t_{1,\sigma(1)} (u + m - n)$$
 (4)

where in this expression (4) we are following the usual convention for denoting generators in the Yangian $Y(\mathfrak{gl}_{n|m})$. We recognise (by comparing with (8.3) of [1] for example) that the expression (4) is in fact $C_n(u-m+n)$, the image of the quantum determinant of $Y(\mathfrak{gl}_n)$ under the natural inclusion $Y(\mathfrak{gl}_n) \hookrightarrow Y(\mathfrak{gl}_{n|m})$. So in order to verify the claim we must calculate the image of $C_n(u-m+n)$ under this map explicitly in terms of our quasideterminants $d_i(v)$. Applying Proposition 1.6 of [4], we find that the image of $d_i(v)$ in $Y(\mathfrak{gl}_{n|m})$ is $(d_{m+n+1-i}(v))^{-1}$ in $Y(\mathfrak{gl}_{m|n})$. This gives the desired result.

The following theorem is a result of Nazarov [7]. We give a new proof.

Theorem 2. The coefficients of the quantum Berezinian (3.1) are central in the algebra $Y(\mathfrak{gl}_{m|n})$.

Proof. By Remark 2.2, we already know that the quantum Berezinian $b_{m|n}(u)$ commutes with $d_i(v)$ for $1 \le i \le m+n$. In addition, if we know that the quantum Berezinian commutes with $e_i(v)$, then by applying the automorphism τ , we find that it also commutes with $f_i(-v)$. So our problem reduces to showing that $b_{m|n}(u)$ commutes with $e_i(v)$ for each i between 1 and m+n-1. We proceed by breaking this problem into three cases.

Case 1: $1 \le i \le m-1$. For $1 \le i \le m-1$, we have that $e_i(v)$ commutes with $C_m(u) = d_1(u) \cdots d_m(u-m+1)$ by Theorem 7.2 in [1]. On the other hand, $e_i(v)$ is an element of the subalgebra generated by $\{t_{jk}^{(r)}\}_{1 \leq j,k \leq m}$ and thus by Remark 2.2 commutes with $d_{m+s}(u-m+s)^{-1} = t'_{m+s,m+s}(u-m+s)$ for $1 \leq s \leq n$.

Case 2: $m+1 \le i \le m+n-1$. Applying Propositions 1.6 and 1.4 of [4] in turn to $f_i(v)$, we find an alternative expression:

$$f_{i}(v) = - \begin{vmatrix} t'_{i+1,i+1}(v) & \cdots & t'_{i+1,m+n}(v) \\ \vdots & & \vdots \\ t'_{m+n,i+1}(v) & \cdots & t'_{m+n,m+n}(v) \end{vmatrix}^{-1} \\ \vdots & \vdots & \vdots \\ t'_{m+n,i+1}(v) & t'_{i+1,i+2}(v) & \cdots & t'_{i+1,m+n}(v) \\ \vdots & \vdots & \ddots & \vdots \\ t'_{m+n,i}(v) & t'_{m+n,i+2}(v) & \cdots & t'_{m+n,m+n}(v) \end{vmatrix}$$

Thus, we find that for $m+1 \le i \le m+n-1$,

$$e_i(v) = \rho_{n|m} \circ \omega_{n|m}(-f_{m+n-i}(v)).$$

We apply this isomorphism to the results of Case 1 in the Yangian $Y(\mathfrak{gl}_{n|m})$. This shows that $e_i(v)$ commutes with the quantum Berezinian in the case where $m+1 \le i \le m+n-1.$

Case 3: i=m. We begin by considering the Yangian $Y(\mathfrak{gl}_{1|1})$. For this algebra we have $b_{1|1}(u) = d_1(u)d_2(u)^{-1}$ and we would like to show that this commutes with $e_1(v)$. So it will suffice to show

$$d_1(u)e_1(v)d_2(u) = d_2(u)e_1(v)d_1(u).$$
(5)

We have

$$\begin{pmatrix}
t_{11}(u) & t_{12}(u) \\
t_{21}(u) & t_{22}(u)
\end{pmatrix} = \begin{pmatrix}
d_1(u) & d_1(u) e_1(u) \\
f_1(u) d_1(u) & f_1(u) d_1(u) e_1(u) + d_2(u)
\end{pmatrix} (6)$$

$$\begin{pmatrix}
t'_{11}(v) & t'_{12}(v) \\
t'_{21}(v) & t'_{22}(v)
\end{pmatrix} = \begin{pmatrix}
d_1(v)^{-1} + e_1(v) d_2(v)^{-1} f_1(v) & -e_1(v) d_2(v)^{-1} \\
-d_2(v)^{-1} f_1(v) & d_2(v)^{-1}
\end{pmatrix}. (7)$$

$$\begin{pmatrix} t'_{11}(v) & t'_{12}(v) \\ t'_{21}(v) & t'_{22}(v) \end{pmatrix} = \begin{pmatrix} d_1(v)^{-1} + e_1(v)d_2(v)^{-1}f_1(v) & -e_1(v)d_2(v)^{-1} \\ -d_2(v)^{-1}f_1(v) & d_2(v)^{-1} \end{pmatrix}.$$
(7)

An application of (2) gives

$$(u-v)[t_{11}(u), t'_{12}(v)] = t_{11}(u)t'_{12}(v) + t_{12}(u)t'_{22}(v).$$

Substituting in the expressions from (6) and (7) then cancelling $d_2(v)$, this gives

$$(u-v)[d_1(u), e_1(v)] = d_1(u)(e_1(v) - e_1(u)).$$

Similarly, by considering the commutator $[t_{12}(u), t'_{22}(v)]$, we derive the relation

$$(u-v)[d_2(u), e_1(v)] = d_2(u)(e_1(v) - e_1(u)).$$

We rewrite these relations to find

$$(u-v)e_1(v)d_1(u) = (u-v-1)d_1(u)e_1(v) + d_1(u)e_1(u),$$

$$(u-v)e_1(v)d_2(u) = (u-v-1)d_2(u)e_1(v) + d_2(u)e_1(u),$$

and by considering these expressions we see that (5) holds.

Now we return our attention to the general Yangian $Y(\mathfrak{gl}_{m|n})$. By similar appeals to Remark 2.2 as in the first case, we see that $e_m(v)$ commutes with $d_1(u)\cdots d_{m-1}(u-m+2)$ and with $d_{m+2}(u-m+2)^{-1}\cdots d_{m+n}(u-m+n)^{-1}$. So we need only show that $e_m(v)$ commutes with $d_m(u-m+1)d_{m+1}(u-m+1)^{-1}$. This follows immediately when we apply the homomorphism ψ_{m-1} to the identity (5) in $Y(\mathfrak{gl}_{1|1})$.

References

- [1] Jonathan Brundan and Alexander Kleshchev. Parabolic presentations of the Yangian $Y(gl_n)$. To appear in Commun.Math. Phys., 2004. Preprint: math.QA/0407011.
- [2] Vyjayanthi Chari and Andrew Pressley. A guide to quantum groups. Cambridge University Press, Cambridge, 1994.
- [3] I. Gelfand, S. Gelfand, V. Retakh, and R.L. Wilson. Quasideterminants. to appear in Advances in Mathematics, 2004. Preprint: arXiv:math.QA/0208146.
- [4] I. M. Gelfand and V. S. Retakh. Determinants of matrices over noncommutative rings. Funct. Anal. Appl., 25(2):91–102, 1991.
- [5] A. Molev, M. Nazarov, and G. Olshanskii. Yangians and classical Lie algebras. Russian Math. Surveys, 51:205–282, 1996.
- [6] A. I. Molev. Yangians and their applications. In Handbook of algebra, Vol. 3, pages 907–959. North-Holland, Amsterdam, 2003.
- [7] M. L. Nazarov. Quantum Berezinian and the classical Capelli identity. Lett. Math. Phys., 21(2):123–131, 1991.