Finiteness conditions and $P D_{r}$-group covers of $P D_{n}$-complexes

J. A. Hillman, D.H.Kochloukova
School of Mathematics and Statistics, University of Sydney, NSW 2006, AUSTRALIA, UNICAMP-IMECC, Cx.P.6005, 13083-970 Campinas, SP, BRAZIL
Email: jonh@maths.usyd.edu.au, desi@ime.unicamp.br

Abstract

We show that an infinite cyclic covering space M^{\prime} of a $P D_{n}$ complex M is a $P D_{n-1}$-complex if and only if $\chi(M)=0$ and M^{\prime} is homotopy equivalent to a complex with finite $[(n-1) / 2]$-skeleton and $\pi_{1}\left(M^{\prime}\right)$ is finitely presentable. This is best possible in terms of minimal finiteness assumptions on the covering space. We give also a corresponding result for covering spaces M_{ν} with covering group a $P D_{r}$-group under a slightly stricter finiteness condition.

AMS Classification 57P10, 55R99
Keywords coinduced module, finiteness condition, finite domination, infinite cyclic cover, Novikov ring, Poincaré duality

If $p: M \rightarrow B$ is a fibration of a $P D_{n}$-complex M over a $P D_{r}$-complex B the homotopy fibre of p is a $P D_{n-r}$-complex if and only if it is finitely dominated, by a theorem of Gottlieb and Quinn. (The paper [11] gives a very nice proof for the case when M, B and the homotopy fibre are finite complexes. The general case follows on taking products with copies of S^{1} to reduce to the finite case and using the Künneth theorem). When B is aspherical and $p_{*}=\pi_{1}(p)$ is an epimorphism the homotopy fibre is the covering space corresponding to $\operatorname{Ker}\left(p_{*}\right)$. We shall show that in this case we may use duality to relax the hypothesis that the fibre be finitely dominated, to requiring merely that it be homotopy equivalent to a complex with finite $[n / 2]$-skeleton. In the simplest nontrivial case, when the base is S^{1}, we can improve this slightly, and our result is then best possible. (Our argument shall be entirely homological, rather than homotopy-theoretic as in [11]).

The first section introduces some notation and terminology. In $\S 2$ we use the finiteness criterion of Brown and extend a duality argument of Barge to show that a covering space of a $P D_{n}$-complex with covering group a $P D_{r}$-group is a $P D_{n-r}$-complex if it is homotopy equivalent to a complex with finite $[n / 2]$ skeleton and has finitely presentable fundamental group (Theorem 4). In $\S 3$ we provide some algebraic background relating to Novikov rings and the finiteness
criterion of Ranicki. (In particular, we consider explicitly the twisted case). This is used in $\S 4$ together with the main result of [16] to show that if M^{\prime} is an infinite cyclic covering space of a finite $P D_{n}$-complex M then M^{\prime} satisfies Poincaré duality of formal dimension $n-1$ if $\chi(M)=0$ and M^{\prime} is homotopy equivalent to a complex with finite $[(n-1) / 2]$-skeleton (Theorem 7). Knot theory provides examples with $\pi=\pi_{1}(M) \cong Z$ and infinite cyclic covering space $[(n-3) / 2]$-connected but not finitely dominated, so this finiteness hypothesis is best possible in general. (See the paragraph following Theorem 7 below). If $n \neq 4$ then M^{\prime} must in fact be a $P D_{n-1}$-complex; this is not known when $n=4$. In the aspherical case if a $P D_{n}$-group π is a semidirect product $\pi \cong \nu \rtimes Z$ then ν is a $P D_{n-1}$-group if and only if $\chi(\pi)=0$ and ν is $F P_{[(n-1) / 2]}$. We do not know whether the finiteness assumption on ν is best possible in this case.

1 Notation

If X is a space let $C_{*}(X)$ be its singular chain complex, \widetilde{X} its universal covering space, and X_{ν} the covering space associated to a subgroup $\nu \leq \pi_{1}(X)$.

Since we wish to minimize finiteness hypotheses, we shall make the following distinctions. A $P D_{n}$-space is a connected space X with an orientation character $w: \pi_{1}(X) \rightarrow \mathbb{Z}^{\times}$and a class $[X] \in H_{n}\left(X ; \mathbb{Z}^{w}\right)$ which satisfies formal Poincaré duality of dimension n with w-twisted local coefficients. A $P D_{n}$-complex is a $P D_{n}$-space which is homotopy equivalent to a finitely dominated cell complex. It is finite if it is homotopy equivalent to a finite cell complex. A cell complex X is finitely dominated if and only if $X \times S^{1}$ is finite, by Theorem 1 of [19].

Let R be a ring. An R-chain complex has finite k-skeleton if it is chain homotopy equivalent to a projective complex P_{*} with P_{j} finitely generated for $j \leq k$. If $i: R \rightarrow S$ is an inclusion of R as a subring of a ring S and C is a S-module let $i^{!} C$ be the R-module obtained by restriction of coefficients. An S-chain complex C_{*} is R-finitely dominated if $i^{!} C_{*}$ is chain homotopy equivalent to a finite projective R-chain complex. If X is a $P D_{n}$-space with fundamental group π then $C_{*}(\widetilde{X})$ is $\mathbb{Z}[\pi]$-finitely dominated, so π is $F P_{2}$, and X is finitely dominated if and only if π is finitely presentable [7].

If G is a group and A is a left $\mathbb{Z}[G]$-module let $|A|$ be the $\mathbb{Z}[G]$-module with the same underlying group and trivial G-action, and let $A^{G}=\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], A)$ be the module of functions $\alpha: G \rightarrow A$ with G-action given by $(g \alpha)(h)=g . \alpha(h g)$ for all $g, h \in G$. Then $|A|^{G}$ is coinduced from a module over the trivial group.

The conjugate of A with respect to an orientation character $w: G \rightarrow Z / 2 Z$ is the right $\mathbb{Z}[G]$-module $D_{w} A$ with the same underlying group and G-action given by $a . g=(-1)^{w(g)} g^{-1} . a$ for all $a \in A$ and $g \in G$. (Note that the conjugate of a free left $\mathbb{Z}[G]$-module is again free. In particular, $\left.D_{w}(\mathbb{Z}[G]) \cong \mathbb{Z}[G]\right)$.
A group G is a weak $P D_{r}$-group if $H^{q}(G ; \mathbb{Z}[G]) \cong Z$ if $q=r$ and is 0 otherwise [1]. If $r \leq 2$ a group is a weak $P D_{r}$-group if and only if it is virtually a $P D_{r}$ group. This is easy for $r \leq 1$ and is due to Bowditch when $r=2$ [6].

2 Brown's criterion and duality

In this section we shall combine the finiteness criterion of Brown with an extension of work of Barge to establish our first main result.

Lemma 1 Let G be a group and A a left G-module. Then $A^{G} \cong|A|^{G}$.
Proof If $\alpha: G \rightarrow A$ let $|\alpha|: G \rightarrow|A|$ be the corresponding element of $|A|^{G}$, and let $\Theta(\alpha)(h)=h . \alpha(h)$ for all $h \in G$. Then $\Theta(g \alpha)=g|\Theta(\alpha)|$, since $\Theta(g \alpha)(h)=h .(g \alpha)(h)=h g . \alpha(h g)=\Theta(\alpha)(h g)$ for all $g, h \in G$. Thus Θ defines an isomorphism of left $\mathbb{Z}[G]$-modules from A^{G} to $|A|^{G}$.

Theorem 2 Let M be a $P D_{n}$-space and $p: \pi=\pi_{1}(M) \rightarrow G$ an epimorphism with G a $P D_{r}$-group, and let $\nu=\operatorname{Ker}(p)$. Let $i: \mathbb{Z}[\nu] \rightarrow \mathbb{Z}[\pi]$ be the natural inclusion. If $i!C_{*}(\widetilde{M})$ has finite $[n / 2]$-skeleton then $C_{*}(\widetilde{M})$ is $\mathbb{Z}[\nu]$-finitely dominated and $H^{s}\left(M_{\nu} ; \mathbb{Z}[\nu]\right) \cong H_{n-r-s}\left(M_{\nu} ; \mathbb{Z}[\nu]\right)$ for all s.

Proof Let $v=w_{1}(G)$ and $w=w_{1}(M)$. It is sufficient to show that the functors $H^{s}\left(M_{\nu} ;-\right)=H^{s}\left(i^{!} C_{*}(\widetilde{M}) ;-\right)$ from $\mathbb{Z}[\nu]$-modules to abelian groups commute with direct limit for all $s \leq n$, for then $i^{!} C_{*}(\widetilde{M})$ is finitely dominated, by Brown's finiteness criterion [8]. We may assume that $s>n / 2$, since $i^{!} C_{*}(\widetilde{M})$ has finite $[n / 2]$-skeleton. If A is a $\mathbb{Z}[\nu]$-module and $W=H o m_{\mathbb{Z}[\nu]}(\mathbb{Z}[\pi], A)$ then $H^{s}\left(M_{\nu} ; A\right) \cong H^{s}(M ; W) \cong H_{n-s}\left(M ; D_{w} W\right)$, by Shapiro's Lemma and Poincaré duality.
Let $A_{q}=H_{q}\left(M_{\nu} ; D_{w}(A)\right)$. As a $\mathbb{Z}[\nu]$-module $D_{w}(W)$ is the direct product of $|G|$ copies of $D_{w}(A)$. Hence $H_{q}\left(M_{\nu} ; D_{w}(W)\right) \cong A_{q}^{G}$, for $0 \leq q \leq[n / 2]$, since M_{ν} has finite $[n / 2]$-skeleton. (Note that theses are left $\mathbb{Z}[G]$-modules). We shall apply the Cartan-Leray spectral sequence

$$
E_{p q}^{2}=H_{p}\left(G ; D_{v}\left(H_{q}\left(M_{\nu} ; D_{w}(W)\right)\right)\right) \Rightarrow H_{p+q}\left(M ; D_{w}(W)\right) .
$$

Poincaré duality for G and another application of Shapiro's Lemma now give $H_{p}\left(G ; D_{v}\left(A_{q}^{G}\right)\right) \cong H^{r-p}\left(G ; A_{q}^{G}\right) \cong H^{r-p}\left(1 ; A_{q}\right)$, since A_{q}^{G} is coinduced from a module over the trivial group, by Lemma 1. If $s>[n / 2]$ and $p+q=n-s$ then $q \leq[n / 2]$ and so $H_{p}\left(G ; A_{q}^{G}\right) \cong A_{q}$ if $p=r$ and is 0 otherwise. Thus the spectral sequence collapses to give $H_{n-s}\left(M ; D_{w}(W)\right) \cong H_{n-r-s}\left(M_{\nu} ; D_{w}(A)\right)$. Since homology commutes with direct limits the result now follows easily.

Corollary 2.1. If π is a $P D_{n}$-group and ν is a normal subgroup of type $F P_{[n / 2]}$ such that π / ν is a $P D_{r}$-group then ν is a $P D_{n-r}$-group.

Proof Let $M=K(\pi, 1)$. Then M is a $P D_{n}$-space and $C_{*}(\widetilde{M})$ is a resolution of the augmentation module \mathbb{Z}. As $C_{*}(\widetilde{M})$ is $\mathbb{Z}[\nu]$-finitely dominated ν is $F P$. Hence it is a $P D_{n-r}$-group, by Theorem 9.11 of [2].

The finiteness condition in this corollary cannot be relaxed further when $r=2$ and $n=4$. For Kapovich has given an example of a pair $\nu<\pi$ with π a $P D_{4}$-group, π / ν a $P D_{2}$-group and ν finitely generated but not $F P_{2}$ [13].

Corollary 2.2. Under the same hypotheses on M and π, if either $r=n-1$ or $r=n-2$ and ν is infinite or $r=n-3$ and ν has one end then M is aspherical.

Proof Since $H_{q}(\widetilde{M} ; \mathbb{Z})=H_{q}\left(M_{\nu} ; \mathbb{Z}[\nu]\right) \cong H^{n-r-q}\left(M_{\nu} ; \mathbb{Z}[\nu]\right)$, by the theorem, $H_{q}(\widetilde{M} ; \mathbb{Z})=0$ if $q>n-r, H_{n-r}(\widetilde{M} ; \mathbb{Z}) \cong H^{0}\left(M_{\nu} ; \mathbb{Z}[\nu]\right) \cong H^{0}(\nu ; \mathbb{Z}[\nu])$ and $H_{n-r-1}(\widetilde{M} ; \mathbb{Z}) \cong H^{1}\left(M_{\nu} ; \mathbb{Z}[\nu]\right) \cong H^{1}(\nu ; \mathbb{Z}[\nu])$. In all cases the hypotheses imply that \widetilde{M} is contractible and so M is aspherical.

In the non-aspherical case it is not immediately obvious that there are isomorphisms from $H^{s}\left(M_{\nu} ; A\right)$ to $H_{n-r-s}\left(M_{\nu} ; D_{w}(A)\right)$ which are induced by cap product with a class in $H_{n-r}\left(M_{\nu} ; \mathbb{Z}^{w}\right)$. If ν is finitely presentable then M_{ν} is finitely dominated; if moreover M is a $P D_{n}$-complex we could apply the Gottlieb-Quinn Theorem to conclude that M_{ν} is a $P D_{n-r}$-complex.

We shall give instead a purely homological argument which does not require π or ν to be finitely presentable, and so applies to $P D_{n}$-spaces. If G is a weak $P D_{r}$-group and M_{ν} is a $P D_{n-r}$-complex then M_{ν} has fundamental class $\left[M_{\nu}\right]=\eta_{G} \cap[M]$, where $\eta_{G} \in H^{r}(M ; \mathbb{Z}[G])$ is the image of a generator of $H^{r}(G ; \mathbb{Z}[G])$. Barge has given a simple homological argument to show that cap product with $\left[M_{\nu}\right]$ induces isomorphisms with simple coefficients [1]. We
shall extend his argument to the case of arbitrary local coefficients. (See also Chapter 4 of [12] for the case $G=Z$ and $n=4$).

All tensor products $N \otimes P$ in the following theorem are taken over \mathbb{Z}.
Theorem 3 Let M be a $P D_{n}$-space and $p: \pi=\pi_{1}(M) \rightarrow G$ an epimorphism with G a weak $P D_{r}$-group, and let $\nu=\operatorname{Ker}(p)$. If $C_{*}(\widetilde{M})$ is $\mathbb{Z}[\nu]$-finitely dominated then there are isomorphisms $H^{p}\left(M_{\nu} ; \mathbb{Z}[\nu]\right) \cong H^{p+r}(M ; \mathbb{Z}[\pi])$, induced by cup product with η_{G}.

Proof Let C_{*} be a finitely generated projective $\mathbb{Z}[\pi]$-chain complex which is chain homotopy equivalent to $C_{*}(\widetilde{M})$. Since $C_{*}(\widetilde{M})$ is $\mathbb{Z}[\nu]$-finitely dominated there is a finitely generated projective $\mathbb{Z}[\nu]$-chain complex E_{*} and a pair of $\mathbb{Z}[\nu]$ linear chain homomorphisms $\theta: E_{*} \rightarrow i^{!} C_{*}$ and $\phi: i^{!} C_{*} \rightarrow E_{*}$ such that $\theta \phi \sim$ $I_{C_{*}}$ and $\phi \theta \sim I_{E_{*}}$. Let $C^{q}=\operatorname{Hom}_{\mathbb{Z}[\pi]}\left(C_{q}, \mathbb{Z}[\pi]\right)$ and $E^{q}=\operatorname{Hom}_{\mathbb{Z}[\nu]}\left(E_{q}, \mathbb{Z}[\nu]\right)$, and let $\widehat{\mathbb{Z}[\pi]}=\operatorname{Hom}_{\mathbb{Z}[\nu]}\left(i^{!} \mathbb{Z}[\pi], \mathbb{Z}[\nu]\right)$ be the module coinduced from $\mathbb{Z}[\nu]$. (The left π-action on $\widehat{\mathbb{Z}}[\pi]$ is given by $(g \alpha)(h)=\alpha(h g)$ for all $g, h \in \pi$.) Then there are isomorphisms $\Psi: H^{q}\left(E^{*}\right) \cong H^{q}\left(C_{*} ; \widehat{\mathbb{Z}[\pi]}\right)$, determined by θ and Shapiro's Lemma.
The complex $\mathbb{Z}[G] \otimes_{\mathbb{Z}[\pi]} C_{*}$ is an augmented complex of finitely generated projective $\mathbb{Z}[G]$-modules with finitely generated integral homology. Therefore G is of type $F P_{\infty}$, by Theorem 3.1 of [22]. Hence the augmentation $\mathbb{Z}[G]$-module \mathbb{Z} has a resolution A_{*} by finitely generated projective $\mathbb{Z}[G]$-modules. Let $A^{q}=\operatorname{Hom}_{\mathbb{Z}[G]}\left(A_{q}, \mathbb{Z}[G]\right)$ and let $\eta \in H^{r}\left(A^{*}\right)=H^{r}(G ; \mathbb{Z}[G])$ be a generator. Let $\varepsilon_{C}: C_{*} \rightarrow A_{*}$ be a chain map corresponding to the projection of p onto G, and let $\eta_{G}=\varepsilon_{C}^{*} \eta \in H^{r}\left(C_{*} ; \mathbb{Z}[G]\right)$. The augmentation $A_{*} \rightarrow \mathbb{Z}$ determines a chain homotopy equivalence $p: C_{*} \otimes A_{*} \rightarrow C_{*} \otimes \mathbb{Z}=C_{*}$. Let $\sigma: G \rightarrow \pi$ be a set-theoretic section.
We may define cup-products relating the cohomology of M_{ν} and M as follows. Let $e: \widehat{\mathbb{Z}[\pi]} \otimes \mathbb{Z}[G] \rightarrow \mathbb{Z}[\pi]$ be the pairing given by $e(\alpha \otimes g)=\sigma(g) . \alpha\left(\sigma(g)^{-1}\right)$ for all $\alpha: \mathbb{Z}[\pi] \rightarrow \mathbb{Z}[\nu]$ and $g \in G$. Then e is independent of the choice of section σ and is $\mathbb{Z}[\pi]$-linear with respect to the diagonal left π-action on $\widehat{\mathbb{Z}[\pi]} \otimes \mathbb{Z}[G]$. Let $d: C_{*} \rightarrow C_{*} \otimes C_{*}$ be a π-equivariant diagonal, with respect to the diagonal left π-action on $C_{*} \otimes C_{*}$, and let $j=\left(1 \otimes \varepsilon_{C}\right) d: C_{*} \rightarrow C_{*} \otimes A_{*}$. Then $p j=I d_{C_{*}}$ and so j is a chain homotopy equivalence. We define the cup-product $[f] \cup \eta_{G}$ in $H^{p+r}\left(C^{*}\right)=H^{p+r}(M ; \mathbb{Z}[\pi])$ by $[f] \cup \eta_{G}=e_{\#} d^{*}\left(\Psi([f]) \times \eta_{G}\right)=e_{\#} j^{*}(\Psi([f]) \times \eta)$ for all $[f] \in H^{p}\left(E^{*}\right)=H^{p}\left(M_{\nu} ; \mathbb{Z}[\nu]\right)$.
If C is a left $\mathbb{Z}[\pi]$-module let $D=\operatorname{Hom}_{\mathbb{Z}[\nu]}\left(i^{!} C, \mathbb{Z}[\pi]\right)$ have the left G-action determined by $(g \lambda)(c)=\sigma(g) \lambda\left(\sigma(g)^{-1} c\right)$ for all $c \in C$ and $g \in G$. If C is free
with basis $\left\{c_{i} \mid 1 \leq i \leq n\right\}$ there is an isomorphism of left $\mathbb{Z}[G]$-modules Θ : $D \cong\left(|\mathbb{Z}[\pi]|^{G}\right)^{n}$ given by $\Theta(\lambda)(g)=\left(\sigma(g) \cdot \lambda\left(\sigma(g)^{-1} c_{1}\right), \ldots, \sigma(g) \cdot \lambda\left(\sigma(g)^{-1} c_{n}\right)\right)$ for all $\lambda \in D$ and $g \in G$, and so D is coinduced from a module over the trivial group.
Let $D^{q}=\operatorname{Hom}_{\mathbb{Z}[\nu]}\left(i^{!} C_{q}, \mathbb{Z}[\pi]\right)$ and let $\rho: E^{*} \otimes \mathbb{Z}[G] \rightarrow D^{*}$ be the \mathbb{Z}-linear cochain homomorphism defined by $\rho(f \otimes g)(c)=\sigma(g) f \phi\left(\sigma(g)^{-1} c\right)$ for all $c \in C_{q}$, $\lambda \in D^{q}, f \in E^{q}, g \in G$ and all q. Then the G-action on D^{q} and ρ are independent of the choice of section σ, and ρ is $\mathbb{Z}[G]$-linear if $E^{q} \otimes \mathbb{Z}[G]$ has the left G-action given by $g\left(f \otimes g^{\prime}\right)=f \otimes g g^{\prime}$ for all $g, g^{\prime} \in G$ and $f \in E^{q}$.
If $\lambda \in D^{q}$ then $\lambda \theta_{q}\left(E_{q}\right)$ is a finitely generated $\mathbb{Z}[\nu]$-submodule of $\mathbb{Z}[\pi]$. Hence there is a family of homomorphisms $\left\{f_{g} \in E^{q} \mid g \in F\right\}$, where F is a finite subset of G, such that $\lambda \theta_{q}(e)=\Sigma_{g \in F} f_{g}(e) \sigma(g)$ for all $e \in E_{q}$. Let $\lambda_{g}(e)=$ $\sigma(g)^{-1} f_{g}(\phi \sigma(g) \theta(e)) \sigma(g)$ for all $e \in E_{q}$ and $g \in F$. Let $\Phi(\lambda)=\Sigma_{g \in F} \lambda_{g} \otimes g \in$ $E^{q} \otimes \mathbb{Z}[G]$. Then Φ is a \mathbb{Z}-linear cochain homomorphism. Moreover $[\rho \Phi(\lambda)]=$ $[\lambda]$ for all $[\lambda] \in H^{q}\left(D^{*}\right)$ and $[\Phi \rho(f \otimes g)]=[f \otimes g]$ for all $[f \otimes g] \in H^{q}\left(E^{*} \otimes \mathbb{Z}[G]\right)$, and so ρ is a chain homotopy equivalence. (It is not clear that Φ is $\mathbb{Z}[G]$-linear on the cochain level, but we shall not need to know this).
We now compare the hypercohomology of G with coefficients in the cochain complexes $E^{*} \otimes \mathbb{Z}[G]$ and D^{*}. On one side we have $\mathbb{H}^{n}\left(G ; E^{*} \otimes \mathbb{Z}[G]\right)=$ $H_{\text {tot }}^{n}\left(\operatorname{Hom}_{\mathbb{Z}[G]}\left(A_{*}, E^{*} \otimes \mathbb{Z}[G]\right)\right)$, which may be identified with $H_{\text {tot }}^{n}\left(E^{*} \otimes A^{*}\right)$ since A_{q} is finitely generated for all $q \geq 0$. This is in turn isomorphic to $H^{n-r}\left(E^{*}\right) \otimes H^{r}(G ; \mathbb{Z}[G]) \cong H^{n-r}\left(E^{*}\right)$, since G acts trivially on E^{*} and is a weak $P D_{r}$-group.
On the other side we have $\mathbb{H}^{n}\left(G ; D^{*}\right)=H_{\text {tot }}^{n}\left(\operatorname{Hom}_{\mathbb{Z}[G]}\left(A_{*}, D^{*}\right)\right)$. The cochain homomorphism ρ induces a morphism of double complexes from $E^{*} \otimes A^{*}$ to $\operatorname{Hom}_{\mathbb{Z}[G]}\left(A_{*}, D^{*}\right)$ by $\rho^{p q}(f \otimes \alpha)(a)=\rho(f \otimes \alpha(a)) \in D^{p}$ for all $f \in E^{p}, \alpha \in A^{q}$ and $a \in A_{q}$ and all $p, q \geq 0$. Let $\hat{\rho}^{p}([f])=\left[\rho^{p r}(f \times \eta)\right] \in \mathbb{H}^{p+r}\left(G ; D^{*}\right)$ for all $[f] \in H^{p}\left(E^{*}\right)$. Then $\hat{\rho}^{p}: H^{p}\left(E^{*}\right) \rightarrow \mathbb{H}^{p+r}\left(G ; D^{*}\right)$ is an isomorphism, since $[f] \mapsto[f \times \eta]$ is an isomorphism and ρ is a chain homotopy equivalence. Since C_{p} is a finitely generated projective $\mathbb{Z}[\pi]$-module D^{p} is a direct summand of a coinduced module. Therefore $H^{i}\left(G ; D^{p}\right)=0$ for all $i>0$, while $H^{0}\left(G ; D^{p}\right)=$ $\operatorname{Hom}_{\mathbb{Z}[\pi]}\left(C_{p}, \mathbb{Z}[\pi]\right)$, for all $p \geq 0$. Hence $\mathbb{H}^{n}\left(G ; D^{*}\right) \cong H^{n}\left(C^{*}\right)$ for all n.
Let $f \in E^{p}, a \in A_{r}$ and $c \in C_{p}$, and suppose that $\eta(a)=\Sigma n_{g} g$. Since $\hat{\rho}^{p}([f])(a)(c)=\rho(f \otimes \eta(a))(c)=\Sigma n_{g} \sigma(g) f \phi\left(\sigma(g)^{-1} c\right)=([f] \cup \eta)(c, a)$ it follows that the homomorphisms from $H^{p}\left(E^{*}\right)$ to $H^{p+r}\left(C^{*}\right)$ given by cup-product with η_{G} are isomorphisms for all p.

Theorems 2 and 3 together give the following version of the Gottlieb-Quinn Theorem for covering spaces.

Theorem 4 Let M be a $P D_{n}$-space and $p: \pi=\pi_{1}(M) \rightarrow G$ an epimorphism with G a $P D_{r}$-group, and let $\nu=\operatorname{Ker}(p)$. Then M_{ν} is a $P D_{n-r}$-space if and only if $i!C_{*}(\widetilde{M})$ has finite $[n / 2]$-skeleton.

Proof The conditions are clearly necessary. Conversely, if M_{ν} has finite [$n / 2$]skeleton then C_{*} is $\mathbb{Z}[\nu]$-finitely dominated, by Theorem 2 , and so cup product with η_{G} induces isomorphisms $H^{p}\left(M_{\nu} ; \mathbb{Z}[\nu]\right) \cong H^{p+r}(M ; \mathbb{Z}[\pi])$, by Theorem 3 . Let $[M] \in H_{n}\left(M ; \mathbb{Z}^{w}\right)$ be a fundamental class for M, and let $\left[M_{\nu}\right]=\eta_{G} \cap[M] \in$ $H_{n-r}\left(M ; \mathbb{Z}^{w} \otimes \mathbb{Z}[G]\right)=H_{n-r}\left(M_{\nu} ; \mathbb{Z}^{\left.w\right|_{\nu}}\right)$. Then cap product with $\left[M_{\nu}\right]$ induces isomorphisms $H^{p}\left(M_{\nu} ; \mathbb{Z}[\nu]\right) \cong H_{n-r-p}\left(M_{\nu} ; \mathbb{Z}[\nu]\right)$ for all p, since $c \cap\left[M_{\nu}\right]=$ $\left(c \cup \eta_{G}\right) \cap[M]$ in $H_{n-r-p}(M ; \mathbb{Z}[\pi])=H_{n-r-p}\left(M_{\nu} ; \mathbb{Z}[\nu]\right)=H_{n-r-p}(\widetilde{M} ; \mathbb{Z})$ for $c \in H^{p}\left(M_{\nu} ; \mathbb{Z}[\nu]\right)$. Since $i!C_{*}(\widetilde{M})$ is finitely dominated it follows that cap product with $\left[M_{\nu}\right]$ induces isomorphisms $H^{p}\left(M_{\nu} ; \mathcal{F}\right) \cong H_{n-r-p}\left(M_{\nu} ; D_{w}(\mathcal{F})\right)$, for any free $\mathbb{Z}[\nu]$-module \mathcal{F}, and hence for arbitrary coefficient modules, by an easy 5 -Lemma argument.

Corollary 4.1. Under the same hypotheses on M and π, the covering space M_{ν} is a $P D_{n-r}$-complex if and only if it is homotopy equivalent to a complex with finite $[n / 2]$-skeleton and ν is finitely presentable.

Corollary 4.2. If M is a $P D_{n}$-space and π is a $P D_{r}$-group then \widetilde{M} is a $P D_{n-r}$-complex if and only if $H_{q}(\widetilde{M} ; \mathbb{Z})$ is finitely generated for all $q \leq[n / 2]$.

Proof The condition is clearly necessary. If it holds then \widetilde{M} has finite $[n / 2]$ skeleton [25], and so \widetilde{M} is a $P D_{n-r}$-complex by Corollary 4.1.

Stark used Theorem 3.1 of [22] with the Gottlieb-Quinn Theorem to deduce that if M is a $P D_{n}$-complex and v.c.d. $\pi / \nu<\infty$ then π / ν is of type $v F P$, and therefore is virtually a $P D$-group. Is there a purely algebraic argument to show that if M is a $P D_{n}$-space, ν is a normal subgroup of π and $C_{*}(\widetilde{M})$ is $\mathbb{Z}[\nu]$-finitely dominated then π / ν must be a weak $P D$-group?

3 Novikov rings and Ranicki's criterion

The results of the above section apply in particular when $G=Z$. In this case however we may use an alternative finiteness criterion of Ranicki to get a slightly stronger result, which we can show to be best possible. Here we shall outline the algebra relevant to our use of Ranicki's criterion in the next section.

Let R be a ring with an automorphism α, and let $S=R_{\alpha}\left[z, z^{-1}\right], \widehat{S}_{+}=$ $R_{\alpha}((z))$ and $\widehat{S}_{-}=R_{\alpha}\left(\left(z^{-1}\right)\right)$ be the rings of twisted Laurent polynomials and series $\Sigma_{j \geq a} r_{j} z^{ \pm j}$ with coefficients $r_{j} \in R$ and multiplication determined by $z r=\alpha(r) z$ for all $r \in R$.
An α-twisted endomorphism of an R-module E is an additive function $h: E \rightarrow$ E such that $h(r e)=\alpha(r) h(e)$ for all $e \in E$ and $r \in R$, and h is an α-twisted automorphism if it is bijective. Such an endomorphism h extends to α-twisted endomorphisms of the modules $S \otimes_{R} E, \widehat{E}_{+}=\widehat{S}_{+} \otimes_{R} E$ and $\widehat{E}_{-}=\widehat{S}_{-} \otimes_{R} E$ by $h(s \otimes e)=z s z^{-1} \otimes h(e)$ for all $e \in E$ and $s \in S, \widehat{S}_{+}$or \widehat{S}_{-}, respectively. In particular, left multiplication by z determines α-twisted automorphisms of $S \otimes_{R} E, \widehat{E}_{+}$and \widehat{E}_{-}which commute with h.
If E is finitely generated then $1-z^{-1} h$ is an automorphism of \widehat{E}_{-}, with inverse given by a geometric series: $\left(1-z^{-1} h\right)^{-1}=\Sigma_{k \geq 0} z^{-k} h^{k}$. (If E is not finitely generated this series may not give a function with values in \widehat{E}_{-}, and $z-h=z\left(1-z^{-1} h\right)$ may not be surjective). Similarly, if k is an α^{-1}-twisted endomorphism of E then $1-z k$ is an automorphism of \widehat{E}_{+}.

If P_{*} is a chain complex with an endomorphism $\beta: P_{*} \rightarrow P_{*}$ let $P_{*}[1]$ be the suspension and $\mathcal{C}(\beta)_{*}$ be the mapping cone. Thus $\mathcal{C}(\beta)_{q}=P_{q-1} \oplus P_{q}$, and $\partial_{q}\left(p, p^{\prime}\right)=\left(-\partial p, \beta(p)+\partial p^{\prime}\right)$, and there is a short exact sequence

$$
0 \rightarrow P_{*} \rightarrow \mathcal{C}(\beta)_{*} \rightarrow P_{*}[1] \rightarrow 0
$$

The connecting homomorphisms in the associated long exact sequence of homology are induced by β. The algebraic mapping torus of an α-twisted self chain homotopy equivalence h of an R-chain complex E_{*} is the mapping cone $\mathcal{C}\left(1-z^{-1} h\right)$ of the endomorphism $1-z^{-1} h$ of the S-chain complex $S \otimes_{R} E_{*}$.

Lemma 5 Let E_{*} be a projective chain complex over R which is finitely generated in degrees $\leq d$ and let $h: E_{*} \rightarrow E_{*}$ be an α-twisted chain homotopy equivalence. Then $H_{q}\left(\widehat{S}_{-} \otimes_{S} \mathcal{C}\left(1-z^{-1} h\right)_{*}\right)=0$ for $q \leq d$.

Proof There is a short exact sequence

$$
0 \rightarrow S \otimes_{R} E_{*} \rightarrow \mathcal{C}\left(1-z^{-1} h\right)_{*} \rightarrow S \otimes_{R} E_{*}[1] \rightarrow 0
$$

Since E_{*} is a complex of projective R-modules the sequence

$$
0 \rightarrow \widehat{E}_{*-} \rightarrow \widehat{S}_{-} \otimes_{S} \mathcal{C}\left(1-z^{-1} h\right)_{*} \rightarrow \widehat{E}_{*-}[1] \rightarrow 0
$$

obtained by extending coefficients is exact. The endomorphism $1-z^{-1} h$ of \widehat{E}_{*-} induces isomorphisms in degrees $\leq d$ and so induces isomorphisms on homology in degrees $<d$ and an epimorphism on homology in degree d. Therefore
$H_{q}\left(\widehat{S}_{-} \otimes_{S} \mathcal{C}\left(1-z^{-1} h\right)_{*}\right)=0$ for $q \leq d$, by the long exact sequence for homology.

Theorem 6 Let C_{*} be a finitely generated projective S-chain complex. Then $i^{!} C_{*}$ is chain homotopy equivalent (over R) to a projective complex E_{*} which is finitely generated in degrees $\leq d$ if and only if $H_{q}\left(\widehat{S}_{ \pm} \otimes_{S} C_{*}\right)=0$ for $q \leq d$.

Proof We may assume without loss of generality that C_{q} is a finitely generated free S-module for all $q \leq d+1$, with basis $X_{i}=\left\{c_{q, i}\right\}_{i \in I(q)}$. We may also assume that $0 \notin \partial_{i}\left(X_{i}\right)$ for $i \leq d+1$, where $\partial_{i}: C_{i} \rightarrow C_{i-1}$ is the differential of the complex. Let $h_{ \pm}$be the $\alpha^{ \pm 1}$-twisted automorphisms of $i^{!} C_{*}$ induced by multiplication by $z^{ \pm 1}$ in C_{*}. Let $f_{q}\left(z^{k} r c_{q, i}\right)=\left(0, z^{k} \otimes r c_{q, i}\right) \in\left(S \otimes_{R} C_{q-1}\right) \oplus$ $\left(S \otimes_{R} C_{q}\right)$. Then f_{*} defines S-chain homotopy equivalences from C_{*} to each of $\mathcal{C}\left(1-z^{-1} h_{+}\right)$and $\mathcal{C}\left(1-z h_{-}\right)$.
Suppose first that $k_{*}: i^{!} C_{*} \rightarrow E_{*}$ and $g_{*}: E_{*} \rightarrow i^{!} C_{*}$ are chain homotopy equivalences, where E_{*} is a projective R-chain complex which is finitely generated in degrees $\leq d$. Then $\theta_{ \pm}=k_{*} h_{ \pm} g_{*}$ are $\alpha^{ \pm 1}$-twisted self homotopy equivalences of E_{*}, and $\mathcal{C}\left(1-z^{-1} h_{+}\right)$and $\mathcal{C}\left(1-z h_{-}\right)$are chain homotopy equivalent to $\mathcal{C}\left(1-z^{-1} \theta_{+}\right)$and $\mathcal{C}\left(1-z \theta_{-}\right)$, respectively. Therefore $H_{q}\left(\widehat{S}_{-} \otimes_{S} C_{*}\right)=$ $H_{q}\left(\widehat{S}_{-} \otimes_{S} \mathcal{C}\left(1-z^{-1} \theta_{+}\right)\right)=0$ and $H_{q}\left(\widehat{S}_{+} \otimes_{S} C_{*}\right)=H_{q}\left(\widehat{S}_{+} \otimes_{S} \mathcal{C}\left(1-z \theta_{-}\right)\right)=0$ for $q \leq d$, by Lemma 5 , applied twice.
Conversely, suppose that $H_{i}\left(\widehat{S}_{ \pm} \otimes_{S} C_{*}\right)=0$ for all $i \leq k$. We can proceed as in [4] where the case of a partial free deleted resolution of a module over a group ring is considered (using a support function with values in the group). We shall define inductively a support function supp_{X} for the elements λ of $\cup_{i \leq d+1} C_{i}$ with values finite subsets of $\left\{z^{j}\right\}_{j \in \mathbb{Z}}$ so that
(1) $\operatorname{supp}_{X}(0)=\emptyset$
(2) if $x \in X_{0}$ then $\operatorname{supp}_{X}\left(z^{j} x\right)=z^{j}$;
(3) if $x \in X_{i}$ for $1 \leq i \leq d+1$ then $\operatorname{supp}_{X}\left(z^{j} x\right)=z^{j} \cdot \operatorname{supp}_{X}\left(\partial_{i}(x)\right)$;
(4) if $s=\sum_{j} r_{j} z^{j} \in S$, where $r_{j} \in R, \operatorname{supp}_{X}(s x)=\cup_{r_{j} \neq 0} \operatorname{supp}_{X}\left(z^{j} x\right)$
(5) if $0 \leq i \leq d+1$ and $\lambda=\sum_{s_{x} \in S, x \in X_{i}} s_{x} x$ then $\operatorname{supp}_{X}(\lambda)=\cup_{s_{x} \neq 0, x \in X_{i}} \operatorname{supp}_{X}\left(s_{x} x\right)$

Then $\operatorname{supp}_{X}\left(\partial_{i}(\lambda)\right) \subseteq \operatorname{supp}_{X}(\lambda)$ for all $\lambda \in C_{i}$ and all $1 \leq i \leq d+1$.
Define two subcomplexes C^{+}and C^{-}of C which are 0 in degrees $i \geq d+2$ as follows. Since $X=\cup_{i \leq d+1} X_{i}$ is finite there is a positive integer b such that $\cup_{x \in X_{i}, i \leq d+1} \operatorname{supp}_{X}(x) \subseteq\left\{z^{j}\right\}_{-b \leq j \leq b}$.
(1) if $i \leq d+1$ an element $\lambda \in C_{i}$ is in C^{+}if and only if $\operatorname{supp}_{X}(\lambda) \subseteq$ $\left\{z^{j}\right\}_{j \geq-b}$; and
(2) if $i \leq d+1$ an element $\lambda \in C_{i}$ is in C^{-}if and only if $\operatorname{supp}_{X}(\lambda) \subseteq\left\{z^{j}\right\}_{j \leq b}$.

Then $\cup_{i \leq d+1} X_{i} \subseteq\left(C^{+}\right)^{[d+1]} \cap\left(C^{-}\right)^{[d+1]}$ and so $\left(C^{+}\right)^{[d+1]} \cup\left(C^{-}\right)^{[d+1]}=C^{[d+1]}$, where the upper index $*$ denotes the $*$-skeleton. Moreover $\left(C^{+}\right)^{[d+1]}$ is a complex of free finitely generated $R_{\alpha}[z]$-modules, $\left(C^{-}\right)^{[d+1]}$ is a complex of free finitely generated $R_{\alpha}\left[z^{-1}\right]$-modules, $\left(C^{+}\right)^{[d+1]} \cap\left(C^{-}\right)^{[d+1]}$ is a complex of free finitely generated R-modules and

$$
C^{[d+1]}=S \otimes_{R_{\alpha}[z]}\left(C^{+}\right)^{[d+1]}=S \otimes_{R_{\alpha}\left[z^{-1}\right]}\left(C^{-}\right)^{[d+1]}
$$

Furthermore there is a Mayer-Vietoris exact sequence

$$
0 \rightarrow\left(C^{+}\right)^{[d+1]} \cap\left(C^{-}\right)^{[d+1]} \rightarrow\left(C^{+}\right)^{[d+1]} \oplus\left(C^{-}\right)^{[d+1]} \rightarrow C^{[d+1]} \rightarrow 0
$$

Thus the $(d+1)$-skeletons of C, C^{+}and C^{-}satisfy "algebraic transversality" in the sense of [21, Prop. 1].

Then to prove the theorem it suffices to show that C^{+}and C^{-}are each chain homotopy equivalent over R to a complex of projective R-modules which is finitely generated in degrees $\leq d$. As in [21, p. 628] there is an exact sequence of $R_{\alpha}\left[z^{-1}\right]$-module chain complexes

$$
0 \rightarrow\left(C^{-}\right)^{[d+1]} \rightarrow C^{[d+1]} \oplus R_{\alpha}\left[\left[z^{-1}\right]\right] \otimes_{R_{\alpha}\left[z^{-1}\right]}\left(C^{-}\right)^{[d+1]} \rightarrow \widehat{S}_{-} \otimes_{S} C^{[d+1]} \rightarrow 0
$$

Let \tilde{i} denote the inclusion of $\left(C^{-}\right)^{[d+1]}$ into the central term. Inclusions on each component define a chain homomorphism

$$
\tilde{j}:\left(C^{+}\right)^{[d+1]} \cap\left(C^{-}\right)^{[d+1]} \rightarrow\left(C^{+}\right)^{[d+1]} \oplus R_{\alpha}\left[\left[z^{-1}\right]\right] \otimes_{R_{\alpha}\left[z^{-1}\right]}\left(C^{-}\right)^{[d+1]}
$$

such that the mapping cones of \tilde{i} and \tilde{j} are chain equivalent R-module chain complexes. The map induced by \tilde{i} in homology is an epimorphism in degree d and an isomorphism in degree $<d$, since $H_{i}\left(\widehat{S}_{-} \otimes_{S} C^{[d+1]}\right)=0$ for $i \leq d$. In particular all homologies in degrees $\leq d$ of the mapping cone of \tilde{i} are 0 . Hence all homologies of the mapping cone of \tilde{j} are 0 in degrees $\leq d$. Then $\left(C^{+}\right)^{[d+1]}$ is homotopy equivalent over R to a chain complex of projectives over R whose d-skeleton is a summand of $\left(C^{+}\right)^{[d]} \cap\left(C^{-}\right)^{[d]}$. This completes the proof.

If π is a group, $\rho: \pi \rightarrow Z$ is an epimorphism with kernel ν and $\rho(z)=1$ then conjugation by $z\left(g \mapsto z g z^{-1}\right)$ determines an automorphism α of $R=\mathbb{Z}[\nu]$. The corresponding twisted extensions S, \widehat{S}_{+}and \widehat{S}_{-}are the group ring $\mathbb{Z}[\pi]$ and the Novikov rings $\widehat{\mathbb{Z}[\pi]_{\rho}}$ and $\widehat{\mathbb{Z}[\pi]}{ }_{-\rho}$. In [16] it is shown that if π is finitely generated the matrix rings $\left.\mathbb{M}_{n}(\widehat{\mathbb{Z}[\pi}]_{\rho}\right)$ are von Neumann finite: i.e., if $A, B \in$
$\left.\mathbb{M}_{n}(\widehat{\mathbb{Z}[\pi}]_{\rho}\right)$ and $A B=I$ then $B A=I$. Hence finitely generated stably free $\widehat{\mathbb{Z}[\pi]} \rho$-modules have well defined ranks, and the rank is strictly positive if the module is nonzero. (In [12] rings satisfying the latter conditions are said to be weakly finite).

4 Infinite cyclic coverings

One approach to duality when $G=\pi / \nu \cong Z$ might proceed as follows. Let $\Psi: H^{q}\left(M_{\nu} ; \mathbb{Z}[\nu]\right) \rightarrow H^{q}(M ; \widehat{\mathbb{Z}[\pi]})$ be the isomorphism determined by Shapiro's Lemma. The module $\widehat{\mathbb{Z}[\pi]}$ may be identified with the left $\mathbb{Z}[\pi]$-module of doubly infinite series $\Sigma_{n \in \mathbb{Z}} r_{n} z^{n}$ with coefficients in $\mathbb{Z}[\nu]$, and there is an exact sequence

$$
\xi: \quad 0 \rightarrow \mathbb{Z}[\pi] \rightarrow A_{+} \oplus A_{-} \rightarrow \widehat{\mathbb{Z}[\pi]} \rightarrow 0
$$

If $C_{*}(\widetilde{M})$ is $\mathbb{Z}[\nu]$-finitely dominated the Bockstein operation for ξ induces isomorphisms $\delta^{\xi}: H^{q}(M ; \widehat{\mathbb{Z}[\pi]}) \rightarrow H^{q+1}(M ; \mathbb{Z}[\pi])$. If we could show that $\delta^{\xi} \Psi(c)= \pm \Psi(c) \cup \eta_{Z}$ for all $c \in H^{q}\left(M_{\nu} ; \mathbb{Z}[\nu]\right)$ then we could conclude that M_{ν} is a $P D_{n-1}$-space, with fundamental class $\eta_{Z} \cap[M]$. However we have not managed to carry this through, and so we shall use Theorem 3 instead.

Theorem 7 Let M be a $P D_{n}$-space with fundamental group π and let p : $\pi \rightarrow Z$ be an epimorphism with kernel ν. Then M_{ν} is a $P D_{n-1}$-space if and only if $\chi(M)=0$ and $C_{*}\left(\widetilde{M_{\nu}}\right)=i^{!} C_{*}(\widetilde{M})$ has finite $[(n-1) / 2]$-skeleton.

Proof If M_{ν} is a $P D_{n-1}$-space then $C_{*}\left(\widetilde{M_{\nu}}\right)$ is $\mathbb{Z}[\nu]$-finitely dominated [7]. In particular, $H_{*}(M ; \mathbb{Z}[Z])=H_{*}\left(M_{\nu} ; \mathbb{Z}\right)$ is finitely generated. Let $\Lambda=\mathbb{Z}[Z]$. The augmentation Λ-module \mathbb{Z} has a short free resolution $0 \rightarrow \Lambda \rightarrow \Lambda \rightarrow \mathbb{Z} \rightarrow 0$, and it follows easily from the exact sequence of homology for this coefficient sequence that $\chi(M)=0[20]$. Thus the conditions are necessary.
Suppose that they hold. Let $A_{ \pm}$be the two Novikov rings corresponding to the two epimorphisms $\pm p: \pi \rightarrow Z$ with kernel ν. Then $H_{j}\left(A_{ \pm} \otimes_{\mathbb{Z}[\pi]} C_{*}\right)=0$ for $j \leq[(n-1) / 2]$, by Theorem 6. Hence $H_{j}\left(A_{ \pm} \otimes_{\mathbb{Z}[\pi]} C_{*}\right)=0$ for $j \geq$ $n-[(n-1) / 2]$, by duality. If n is even there is one possible nonzero module, in degree $m=n / 2$. But then $H_{m}\left(A_{ \pm} \otimes_{\mathbb{Z}[\pi]} C_{*}\right)$ is stably free, by Lemma 3.1 of [12]. Since $\chi\left(A_{ \pm} \otimes_{\mathbb{Z}[\pi]} C_{*}\right)=\chi\left(C_{*}\right)=\chi(M)=0$ and the rings $A_{ \pm}$are weakly finite [16] these modules are 0 . Thus $H_{j}\left(A_{ \pm} \otimes_{\mathbb{Z}[\pi]} C_{*}\right)=0$ for all j, and so $i^{!} C_{*}$ is chain homotopy equivalent to a finite projective $\mathbb{Z}[\nu]$-complex, by Theorem 6. Thus the result follows from Theorem 3, as in Theorem 4.

When n is odd $[n / 2]=[(n-1) / 2]$, so the finiteness condition on M_{ν} agrees with that of Theorem 4 (for $G=Z$), but it is slightly weaker if n is even.

The infinite cyclic cover of the closed n-manifold $M(K)$ obtained by surgery on a simple $(n-2)$-knot K is $[(n-3) / 2]$-connected. However there are examples for which $\pi_{[(n-1) / 2]}(M(K))$ is not finitely generated as an abelian group [14, 17]. Thus the $F P_{[(n-1) / 2]}$ condition is best possible, in general.

Corollary 7.1. Let π be a $P D_{n}$-group and $p: \pi \rightarrow Z$ an epimorphism. Then $\nu=\operatorname{Ker}(p)$ is a $P D_{n-1}$-group if and only if $\chi(\pi)=0$ and ν is $F P_{[(n-1) / 2]}$.

The finiteness condition $F P_{[(n-1) / 2]}$ is probably best possible, but we have no examples with $n>4$ to confirm this. (This condition cannot be relaxed if $n \leq 4$. For let D be the closed 3 -manifold obtained by doubling the exterior of a nontrivial knot with Alexander polynomial 1, and let $\pi=\pi_{1}(D)$. Then π is a $P D_{3}$-group with $\chi(\pi)=0, \pi / \pi^{\prime} \cong Z$ and $\nu=\pi^{\prime}$ is not finitely generated. The products $\pi \times Z$ and $\nu=\pi^{\prime} \times Z$ give a similar example for $n=4$).

Corollary 7.2. Under the same hypotheses on M and π, if $n \neq 4$ then M_{ν} is a $P D_{n-1}$-complex if and only if it is homotopy equivalent to a complex with finite $[(n-1) / 2]$-skeleton.

Proof If $n \leq 3$ every $P D_{n-1}$-space is a $P D_{n-1}$-complex, while if $n \geq 5$ then $[(n-1) / 2] \geq 2$ and so ν is finitely presentable.

If $n \leq 3$ we need only assume that M is a $P D_{n}$-space and ν is finitely generated. It remains an open question whether every $P D_{3}$-space is finitely dominated. The arguments of [24] and [9] on the factorization of $P D_{3}$-complexes into connected sums are essentially homological, and so every $P D_{3}$-space is a connected sum of aspherical $P D_{3}$-spaces and a $P D_{3}$-complex with virtually free fundamental group. (In particular, ν is $F P_{\infty}$ and v.c.d. $\nu=0,1$ or 3). Thus this question reduces to whether every $P D_{3}$-group is finitely presentable. There are $P D_{4}$-groups which are not finitely presentable [10].

The case $n=4$ was in fact the origin of this paper, and gives the following improvements to Theorems 4.1 and 5.18 of [12].

Corollary 7.3. Let M be a $P D_{4}$-space with $\chi(M)=0$ and $\pi=\pi_{1}(M) \cong$ $\nu \rtimes Z$, where ν is finitely generated. Then M is aspherical if and only if ν has one end. In that case ν is a $P D_{3}$-group.

Proof The space M_{ν} is a $P D_{3}$-space and ν is $F P_{2}$, by Theorem 7. If M is aspherical then so is M_{ν}. Hence ν is a $P D_{3}$-group, and so has one end. Conversely, if ν has one end $H^{s}(\pi ; \mathbb{Z}[\pi])=0$ for $s \leq 2$, by an LHS spectral sequence argument. Since ν is finitely generated $\beta_{1}^{(2)}(\pi)=0$ [18]. Therefore M is aspherical, by Corollary 3.5.2 of [12].

If $\pi \cong \nu \rtimes Z$ is a $P D_{4}$-group with ν finitely generated then $\chi(\pi)=0$ if and only if ν is $F P_{2}$, by Corollary 2.1 and Theorem 7. However the latter conditions need not hold. Let F be the orientable surface of genus 2. Then $G=\pi_{1}(F)$ has a presentation $\left\langle a_{1}, a_{2}, b_{1}, b_{2} \mid\left[a_{1}, b_{1}\right]=\left[a_{2}, b_{2}\right]\right\rangle$. The group $\pi=G \times G$ is a $P D_{4}$-group, and the subgroup $\nu \leq \pi$ generated by the images of $\left(a_{1}, a_{1}\right)$ and the six elements $(x, 1)$ and $(1, x)$, for $x=a_{2}, b_{1}$ or b_{2}, is normal in π, with quotient $\pi / \nu \cong Z$. However $\chi(\pi)=4 \neq 0$ and so ν cannot be $F P_{2}$.

Corollary 7.4. Let M be a $P D_{4}$-space with $\chi(M)=0$ and such that $\pi=$ $\pi_{1}(M)$ is an extension of Z^{r} by a finitely generated infinite normal subgroup ν, for some $r>1$. Then M is aspherical and ν is a $P D_{4-r}$-group.

Proof Let $\phi: \pi \rightarrow Z$ be an epimorphism which factors through π / ν. Then ν is a finitely generated infinite normal subgroup of $\operatorname{Ker}(\phi)$, and $\operatorname{Ker}(\phi) / \nu \cong$ Z^{r-1}. Hence $\operatorname{Ker}(\phi)$ is finitely generated and has one end, and so the result follows from Corollaries 7.3 and 2.1.

A simple induction based on Theorem 7 shows that if M_{ν} is the covering space of a $P D_{n}$-complex M corresponding to an epimorphism $p: \pi_{1}(M) \rightarrow G$ and G is virtually poly- Z of Hirsch length r then M_{ν} is a $P D_{n-r}$-complex if $\chi(M)=0$, $\operatorname{Ker}\left(\pi_{1}(p)\right)$ is finitely presentable and M_{ν} is homotopy equivalent to a complex with finite $[(n-1) / 2]$-skeleton.

However the methods and results described in this section break down for more general covering groups. Let S be an aspherical closed surface and let $G=$ $\pi_{1}(S)$. Surface groups are left orderable, and a left order P on G determines a Novikov-like completion $R=\widehat{\mathbb{Z}}[G]_{P}$ of $\mathbb{Z}[G]$ in an obvious way. Since \widetilde{S} is contractible the most straightforward extension of the Ranicki criterion would require that $H_{*}\left(R \otimes_{\mathbb{Z}[G]} C_{*}(\widetilde{S})\right)=0$. If R were weakly finite this would imply that $\chi(G)=\chi\left(R \otimes_{\mathbb{Z}[G]} C_{*}(\widetilde{S})\right)=0$. (A more geometric notion of Novikov completion is used in [3] to give criteria for the kernel ν of an epimorphism $f: \pi \rightarrow G$ to have a finitely dominated $K(\nu, 1)$-complex when there is a finite $K(\pi, 1)$ and G is a $C A T(0)$-group, such as a surface group).

References

[1] Barge, J. Dualité dans les revêtements galoisiens, Invent. Math. 58 (1980), 101-106.
[2] Bieri, R. Homological Dimension of Discrete Groups, Queen Mary College Mathematics Notes, London, 2nd ed. 1981
[3] Bieri, R. and Geogeghan, R. Kernels of actions on non-positively curved spaces, in Geometry and Cohomology in Group Theory (edited by P.H.Kropholler, G.A.Niblo and R.Stöhr), LMS Lecture Notes Series 252,

Cambridge University Press, Cambridge - New York - Melbourne (1998), 24-38.
[4] R. Bieri, B. Renz, Valuations on free resolutions and higher geometric invariants of groups, Comment. Math. Helv. 63(1988), 464-497
[5] Bieri, R. and Strebel, R. Geometric Invariants for Discrete groups, manuscript-book, Frankfurt University
[6] Bowditch, B.H. Planar groups and the Seifert conjecture, J. Reine u. Angew. Math. 576 (2004), 11-62.
[7] Browder, W. Poincaré complexes, their normal fibrations and surgery, Invent. Math. 17 (1972), 191-202.
[8] K. S. Brown A homological criterion for finiteness, Commentarii Math. Helvetici 50 (1975), 129-135.
[9] Crisp, J.S. The decomposition of Poincaré duality complexes, Commentarii Math. Helvetici 75 (2000), 232-246.
[10] Davis, M. The cohomology of a Coxeter group with group ring coefficients, Duke Math. J. 91 (1998), 297-314.
[11] Gottlieb, D.H. Poincaré duality and fibrations, Proc. Amer. Math. Soc. 76 (1979), 148-150.
[12] Hillman, J.A. Four-Manifolds, Geometries and Knots, Geometry and Topology Monographs Vol. 5 (2002).
[13] Kapovich, M. On normal subgroups in the fundamental groups of complex surfaces, preprint, University of Utah (1998).
[14] Kearton, C. An algebraic classification of some even-dimensional knots, Topology 15 (1976), 363-373.
[15] Kochloukova, D.H. On a conjecture of E.Rapaport Strasser about knot-like groups and its pro- p version, J. Pure App. Algebra, to appear.
[16] Kochloukova, D.H. Some Novikov rings that are von Neumann finite and knotlike groups, preprint, UNICAMP, Brazil (2005).
[17] Levine, J.P. An algebraic classification of some knots of codimension two, Commentarii Math. Helvetici 45 (1970), 185-198.
[18] Lück, W. L^{2}-Betti numbers of mapping tori and groups, Topology 33 (1994), 203-214.
[19] Mather, M. Counting homotopy types of manifolds, Topology 4 (1965), 93-94.
[20] Milnor, J.W. Infinite cyclic coverings, in Conference on the Topology of Manifolds (edited by J.G.Hocking), Prindle, Weber and Schmidt, Boston (1968), 115-133.
[21] Ranicki, A.A. Finite domination and Novikov rings, Topology 34 (1995), 619-632.
[22] Stark, C.W. Resolutions modeled on ternary trees, Pacific J. Math. 173 (1996), 557-569.
[23] Strebel, R. A remark on subgroups of infinite index in Poincaré duality groups, Comment. Math. Helv. 52 (1977), 317-324.
[24] Turaev, V.G. Three-dimensional Poincaré complexes: classification and splitting, Math. Sbornik 180 (1989), 809-830.
[25] Wall, C.T.C. Finiteness conditions for CW-complexes, Ann. Math. 81 (1965), 56-69.

