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If p : M → B is a fibration of a PDn -complex M over a PDr -complex B the
homotopy fibre of p is a PDn−r -complex if and only if it is finitely dominated,
by a theorem of Gottlieb and Quinn. (The paper [11] gives a very nice proof
for the case when M , B and the homotopy fibre are finite complexes. The
general case follows on taking products with copies of S1 to reduce to the finite
case and using the Künneth theorem). When B is aspherical and p∗ = π1(p)
is an epimorphism the homotopy fibre is the covering space corresponding to
Ker(p∗). We shall show that in this case we may use duality to relax the
hypothesis that the fibre be finitely dominated, to requiring merely that it be
homotopy equivalent to a complex with finite [n/2]-skeleton. In the simplest
nontrivial case, when the base is S1 , we can improve this slightly, and our result
is then best possible. (Our argument shall be entirely homological, rather than
homotopy-theoretic as in [11]).

The first section introduces some notation and terminology. In §2 we use the
finiteness criterion of Brown and extend a duality argument of Barge to show
that a covering space of a PDn -complex with covering group a PDr -group is
a PDn−r -complex if it is homotopy equivalent to a complex with finite [n/2]-
skeleton and has finitely presentable fundamental group (Theorem 4). In §3 we
provide some algebraic background relating to Novikov rings and the finiteness
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criterion of Ranicki. (In particular, we consider explicitly the twisted case).
This is used in §4 together with the main result of [16] to show that if M ′ is
an infinite cyclic covering space of a finite PDn -complex M then M ′ satisfies
Poincaré duality of formal dimension n − 1 if χ(M) = 0 and M ′ is homotopy
equivalent to a complex with finite [(n − 1)/2]-skeleton (Theorem 7). Knot
theory provides examples with π = π1(M) ∼= Z and infinite cyclic covering
space [(n − 3)/2]-connected but not finitely dominated, so this finiteness hy-
pothesis is best possible in general. (See the paragraph following Theorem 7
below). If n 6= 4 then M ′ must in fact be a PDn−1 -complex; this is not known
when n = 4. In the aspherical case if a PDn -group π is a semidirect product
π ∼= νoZ then ν is a PDn−1 -group if and only if χ(π) = 0 and ν is FP[(n−1)/2] .
We do not know whether the finiteness assumption on ν is best possible in this
case.

1 Notation

If X is a space let C∗(X) be its singular chain complex, X̃ its universal covering
space, and Xν the covering space associated to a subgroup ν ≤ π1(X).

Since we wish to minimize finiteness hypotheses, we shall make the following
distinctions. A PDn -space is a connected space X with an orientation character
w : π1(X) → Z× and a class [X] ∈ Hn(X; Zw) which satisfies formal Poincaré
duality of dimension n with w -twisted local coefficients. A PDn -complex is a
PDn -space which is homotopy equivalent to a finitely dominated cell complex.
It is finite if it is homotopy equivalent to a finite cell complex. A cell complex
X is finitely dominated if and only if X × S1 is finite, by Theorem 1 of [19].

Let R be a ring. An R-chain complex has finite k -skeleton if it is chain homo-
topy equivalent to a projective complex P∗ with Pj finitely generated for j ≤ k .
If i : R → S is an inclusion of R as a subring of a ring S and C is a S -module
let i!C be the R-module obtained by restriction of coefficients. An S -chain
complex C∗ is R-finitely dominated if i!C∗ is chain homotopy equivalent to
a finite projective R-chain complex. If X is a PDn -space with fundamental
group π then C∗(X̃) is Z[π]-finitely dominated, so π is FP2 , and X is finitely
dominated if and only if π is finitely presentable [7].

If G is a group and A is a left Z[G]-module let |A| be the Z[G]-module with the
same underlying group and trivial G-action, and let AG = HomZ(Z[G], A) be
the module of functions α : G → A with G-action given by (gα)(h) = g.α(hg)
for all g, h ∈ G. Then |A|G is coinduced from a module over the trivial group.
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The conjugate of A with respect to an orientation character w : G → Z/2Z
is the right Z[G]-module DwA with the same underlying group and G-action
given by a.g = (−1)w(g)g−1.a for all a ∈ A and g ∈ G. (Note that the conjugate
of a free left Z[G]-module is again free. In particular, Dw(Z[G]) ∼= Z[G]).

A group G is a weak PDr -group if Hq(G; Z[G]) ∼= Z if q = r and is 0 otherwise
[1]. If r ≤ 2 a group is a weak PDr -group if and only if it is virtually a PDr -
group. This is easy for r ≤ 1 and is due to Bowditch when r = 2 [6].

2 Brown’s criterion and duality

In this section we shall combine the finiteness criterion of Brown with an ex-
tension of work of Barge to establish our first main result.

Lemma 1 Let G be a group and A a left G-module. Then AG ∼= |A|G .

Proof If α : G → A let |α| : G → |A| be the corresponding element of
|A|G , and let Θ(α)(h) = h.α(h) for all h ∈ G. Then Θ(gα) = g|Θ(α)|, since
Θ(gα)(h) = h.(gα)(h) = hg.α(hg) = Θ(α)(hg) for all g, h ∈ G. Thus Θ defines
an isomorphism of left Z[G]-modules from AG to |A|G .

Theorem 2 Let M be a PDn -space and p : π = π1(M) → G an epimorphism
with G a PDr -group, and let ν = Ker(p). Let i : Z[ν] → Z[π] be the natural

inclusion. If i!C∗(M̃ ) has finite [n/2]-skeleton then C∗(M̃) is Z[ν]-finitely
dominated and Hs(Mν ; Z[ν]) ∼= Hn−r−s(Mν ; Z[ν]) for all s.

Proof Let v = w1(G) and w = w1(M). It is sufficient to show that the

functors Hs(Mν ;−) = Hs(i!C∗(M̃);−) from Z[ν]-modules to abelian groups

commute with direct limit for all s ≤ n, for then i!C∗(M̃) is finitely dominated,

by Brown’s finiteness criterion [8]. We may assume that s > n/2, since i!C∗(M̃)
has finite [n/2]-skeleton . If A is a Z[ν]-module and W = HomZ[ν](Z[π], A)
then Hs(Mν ;A) ∼= Hs(M ;W ) ∼= Hn−s(M ;DwW ), by Shapiro’s Lemma and
Poincaré duality.

Let Aq = Hq(Mν ;Dw(A)). As a Z[ν]-module Dw(W ) is the direct product of
|G| copies of Dw(A). Hence Hq(Mν ;Dw(W )) ∼= AG

q , for 0 ≤ q ≤ [n/2], since
Mν has finite [n/2]-skeleton. (Note that theses are left Z[G]-modules). We
shall apply the Cartan-Leray spectral sequence

E2
pq = Hp(G;Dv(Hq(Mν ;Dw(W )))) ⇒ Hp+q(M ;Dw(W )).
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Poincaré duality for G and another application of Shapiro’s Lemma now give
Hp(G;Dv(A

G
q )) ∼= Hr−p(G;AG

q ) ∼= Hr−p(1;Aq), since AG
q is coinduced from a

module over the trivial group, by Lemma 1. If s > [n/2] and p + q = n − s
then q ≤ [n/2] and so Hp(G;AG

q ) ∼= Aq if p = r and is 0 otherwise. Thus the
spectral sequence collapses to give Hn−s(M ;Dw(W )) ∼= Hn−r−s(Mν ;Dw(A)).
Since homology commutes with direct limits the result now follows easily.

Corollary 2.1 . If π is a PDn -group and ν is a normal subgroup of type
FP[n/2] such that π/ν is a PDr -group then ν is a PDn−r -group.

Proof Let M = K(π, 1). Then M is a PDn -space and C∗(M̃) is a resolution

of the augmentation module Z. As C∗(M̃ ) is Z[ν]-finitely dominated ν is FP .
Hence it is a PDn−r -group, by Theorem 9.11 of [2].

The finiteness condition in this corollary cannot be relaxed further when r = 2
and n = 4. For Kapovich has given an example of a pair ν < π with π a
PD4 -group, π/ν a PD2 -group and ν finitely generated but not FP2 [13].

Corollary 2.2 . Under the same hypotheses on M and π , if either r = n − 1
or r = n − 2 and ν is infinite or r = n − 3 and ν has one end then M is
aspherical.

Proof Since Hq(M̃ ; Z) = Hq(Mν ; Z[ν]) ∼= Hn−r−q(Mν ; Z[ν]), by the theorem,

Hq(M̃ ; Z) = 0 if q > n − r , Hn−r(M̃ ; Z) ∼= H0(Mν ; Z[ν]) ∼= H0(ν; Z[ν]) and

Hn−r−1(M̃ ; Z) ∼= H1(Mν ; Z[ν]) ∼= H1(ν; Z[ν]). In all cases the hypotheses imply

that M̃ is contractible and so M is aspherical.

In the non-aspherical case it is not immediately obvious that there are iso-
morphisms from Hs(Mν ;A) to Hn−r−s(Mν ;Dw(A)) which are induced by cap
product with a class in Hn−r(Mν ; Zw). If ν is finitely presentable then Mν

is finitely dominated; if moreover M is a PDn -complex we could apply the
Gottlieb-Quinn Theorem to conclude that Mν is a PDn−r -complex.

We shall give instead a purely homological argument which does not require
π or ν to be finitely presentable, and so applies to PDn -spaces. If G is a
weak PDr -group and Mν is a PDn−r -complex then Mν has fundamental class
[Mν ] = ηG ∩ [M ], where ηG ∈ Hr(M ; Z[G]) is the image of a generator of
Hr(G; Z[G]). Barge has given a simple homological argument to show that
cap product with [Mν ] induces isomorphisms with simple coefficients [1]. We
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shall extend his argument to the case of arbitrary local coefficients. (See also
Chapter 4 of [12] for the case G = Z and n = 4).

All tensor products N ⊗ P in the following theorem are taken over Z.

Theorem 3 Let M be a PDn -space and p : π = π1(M) → G an epimorphism

with G a weak PDr -group, and let ν = Ker(p). If C∗(M̃) is Z[ν]-finitely dom-
inated then there are isomorphisms Hp(Mν ; Z[ν]) ∼= Hp+r(M ; Z[π]), induced
by cup product with ηG .

Proof Let C∗ be a finitely generated projective Z[π]-chain complex which is

chain homotopy equivalent to C∗(M̃ ). Since C∗(M̃ ) is Z[ν]-finitely dominated
there is a finitely generated projective Z[ν]-chain complex E∗ and a pair of Z[ν]-
linear chain homomorphisms θ : E∗ → i!C∗ and φ : i!C∗ → E∗ such that θφ ∼
IC∗

and φθ ∼ IE∗
. Let Cq = HomZ[π](Cq, Z[π]) and Eq = HomZ[ν](Eq, Z[ν]),

and let Ẑ[π] = HomZ[ν](i
!Z[π], Z[ν]) be the module coinduced from Z[ν]. (The

left π -action on Ẑ[π] is given by (gα)(h) = α(hg) for all g, h ∈ π .) Then there

are isomorphisms Ψ : Hq(E∗) ∼= Hq(C∗; Ẑ[π]), determined by θ and Shapiro’s
Lemma.

The complex Z[G]⊗Z[π] C∗ is an augmented complex of finitely generated pro-
jective Z[G]-modules with finitely generated integral homology. Therefore G is
of type FP∞ , by Theorem 3.1 of [22]. Hence the augmentation Z[G]-module
Z has a resolution A∗ by finitely generated projective Z[G]-modules. Let
Aq = HomZ[G](Aq, Z[G]) and let η ∈ Hr(A∗) = Hr(G; Z[G]) be a generator.
Let εC : C∗ → A∗ be a chain map corresponding to the projection of p onto
G, and let ηG = ε∗Cη ∈ Hr(C∗; Z[G]). The augmentation A∗ → Z determines
a chain homotopy equivalence p : C∗ ⊗ A∗ → C∗ ⊗ Z = C∗ . Let σ : G → π be
a set-theoretic section.

We may define cup-products relating the cohomology of Mν and M as follows.

Let e : Ẑ[π]⊗Z[G] → Z[π] be the pairing given by e(α⊗g) = σ(g).α(σ(g)−1) for
all α : Z[π] → Z[ν] and g ∈ G. Then e is independent of the choice of section σ

and is Z[π]-linear with respect to the diagonal left π -action on Ẑ[π]⊗Z[G]. Let
d : C∗ → C∗⊗C∗ be a π -equivariant diagonal, with respect to the diagonal left
π -action on C∗ ⊗ C∗ , and let j = (1 ⊗ εC)d : C∗ → C∗ ⊗ A∗ . Then pj = IdC∗

and so j is a chain homotopy equivalence. We define the cup-product [f ]∪ηG in
Hp+r(C∗) = Hp+r(M ; Z[π]) by [f ]∪ηG = e#d∗(Ψ([f ])×ηG) = e#j∗(Ψ([f ])×η)
for all [f ] ∈ Hp(E∗) = Hp(Mν ; Z[ν]).

If C is a left Z[π]-module let D = HomZ[ν](i
!C, Z[π]) have the left G-action

determined by (gλ)(c) = σ(g)λ(σ(g)−1c) for all c ∈ C and g ∈ G. If C is free
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with basis {ci|1 ≤ i ≤ n} there is an isomorphism of left Z[G]-modules Θ :
D ∼= (|Z[π]|G)n given by Θ(λ)(g) = (σ(g).λ(σ(g)−1c1), . . . , σ(g).λ(σ(g)−1cn))
for all λ ∈ D and g ∈ G, and so D is coinduced from a module over the trivial
group.

Let Dq = HomZ[ν](i
!Cq, Z[π]) and let ρ : E∗ ⊗ Z[G] → D∗ be the Z-linear

cochain homomorphism defined by ρ(f⊗g)(c) = σ(g)fφ(σ(g)−1c) for all c ∈ Cq ,
λ ∈ Dq , f ∈ Eq , g ∈ G and all q . Then the G-action on Dq and ρ are
independent of the choice of section σ , and ρ is Z[G]-linear if E q ⊗ Z[G] has
the left G-action given by g(f ⊗ g′) = f ⊗ gg′ for all g, g′ ∈ G and f ∈ Eq .

If λ ∈ Dq then λθq(Eq) is a finitely generated Z[ν]-submodule of Z[π]. Hence
there is a family of homomorphisms {fg ∈ Eq|g ∈ F}, where F is a finite
subset of G, such that λθq(e) = Σg∈F fg(e)σ(g) for all e ∈ Eq . Let λg(e) =
σ(g)−1fg(φσ(g)θ(e))σ(g) for all e ∈ Eq and g ∈ F . Let Φ(λ) = Σg∈F λg ⊗ g ∈
Eq ⊗Z[G]. Then Φ is a Z-linear cochain homomorphism. Moreover [ρΦ(λ)] =
[λ] for all [λ] ∈ Hq(D∗) and [Φρ(f⊗g)] = [f⊗g] for all [f⊗g] ∈ H q(E∗⊗Z[G]),
and so ρ is a chain homotopy equivalence. (It is not clear that Φ is Z[G]-linear
on the cochain level, but we shall not need to know this).

We now compare the hypercohomology of G with coefficients in the cochain
complexes E∗ ⊗ Z[G] and D∗ . On one side we have Hn(G;E∗ ⊗ Z[G]) =
Hn

tot(HomZ[G](A∗, E
∗ ⊗ Z[G])), which may be identified with Hn

tot(E
∗ ⊗ A∗)

since Aq is finitely generated for all q ≥ 0. This is in turn isomorphic to
Hn−r(E∗) ⊗ Hr(G; Z[G]) ∼= Hn−r(E∗), since G acts trivially on E∗ and is a
weak PDr -group.

On the other side we have Hn(G;D∗) = Hn
tot(HomZ[G](A∗, D

∗)). The cochain
homomorphism ρ induces a morphism of double complexes from E∗ ⊗ A∗ to
HomZ[G](A∗, D

∗) by ρpq(f ⊗ α)(a) = ρ(f ⊗ α(a)) ∈ Dp for all f ∈ Ep , α ∈ Aq

and a ∈ Aq and all p, q ≥ 0. Let ρ̂p([f ]) = [ρpr(f × η)] ∈ Hp+r(G;D∗) for
all [f ] ∈ Hp(E∗). Then ρ̂p : Hp(E∗) → Hp+r(G;D∗) is an isomorphism, since
[f ] 7→ [f × η] is an isomorphism and ρ is a chain homotopy equivalence. Since
Cp is a finitely generated projective Z[π]-module Dp is a direct summand of a
coinduced module. Therefore H i(G;Dp) = 0 for all i > 0, while H0(G;Dp) =
HomZ[π](Cp, Z[π]), for all p ≥ 0. Hence Hn(G;D∗) ∼= Hn(C∗) for all n.

Let f ∈ Ep , a ∈ Ar and c ∈ Cp , and suppose that η(a) = Σngg . Since
ρ̂p([f ])(a)(c) = ρ(f ⊗ η(a))(c) = Σngσ(g)fφ(σ(g)−1c) = ([f ]∪ η)(c, a) it follows
that the homomorphisms from Hp(E∗) to Hp+r(C∗) given by cup-product with
ηG are isomorphisms for all p.

Theorems 2 and 3 together give the following version of the Gottlieb-Quinn
Theorem for covering spaces.
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Theorem 4 Let M be a PDn -space and p : π = π1(M) → G an epimorphism
with G a PDr -group, and let ν = Ker(p). Then Mν is a PDn−r -space if and

only if i!C∗(M̃ ) has finite [n/2]-skeleton.

Proof The conditions are clearly necessary. Conversely, if Mν has finite [n/2]-
skeleton then C∗ is Z[ν]-finitely dominated, by Theorem 2, and so cup product
with ηG induces isomorphisms Hp(Mν ; Z[ν]) ∼= Hp+r(M ; Z[π]), by Theorem 3.
Let [M ] ∈ Hn(M ; Zw) be a fundamental class for M , and let [Mν ] = ηG∩[M ] ∈
Hn−r(M ; Zw ⊗ Z[G]) = Hn−r(Mν ; Zw|ν). Then cap product with [Mν ] induces
isomorphisms Hp(Mν ; Z[ν]) ∼= Hn−r−p(Mν ; Z[ν]) for all p, since c ∩ [Mν ] =

(c ∪ ηG) ∩ [M ] in Hn−r−p(M ; Z[π]) = Hn−r−p(Mν ; Z[ν]) = Hn−r−p(M̃ ; Z) for

c ∈ Hp(Mν ; Z[ν]). Since i!C∗(M̃) is finitely dominated it follows that cap
product with [Mν ] induces isomorphisms Hp(Mν ;F) ∼= Hn−r−p(Mν ;Dw(F)),
for any free Z[ν]-module F , and hence for arbitrary coefficient modules, by an
easy 5-Lemma argument.

Corollary 4.1 . Under the same hypotheses on M and π , the covering space
Mν is a PDn−r -complex if and only if it is homotopy equivalent to a complex
with finite [n/2]-skeleton and ν is finitely presentable.

Corollary 4.2 . If M is a PDn -space and π is a PDr -group then M̃ is a
PDn−r -complex if and only if Hq(M̃ ; Z) is finitely generated for all q ≤ [n/2].

Proof The condition is clearly necessary. If it holds then M̃ has finite [n/2]-

skeleton [25], and so M̃ is a PDn−r -complex by Corollary 4.1.

Stark used Theorem 3.1 of [22] with the Gottlieb-Quinn Theorem to deduce
that if M is a PDn -complex and v.c.d.π/ν < ∞ then π/ν is of type vFP ,
and therefore is virtually a PD -group. Is there a purely algebraic argument to
show that if M is a PDn -space, ν is a normal subgroup of π and C∗(M̃) is
Z[ν]-finitely dominated then π/ν must be a weak PD -group?

3 Novikov rings and Ranicki’s criterion

The results of the above section apply in particular when G = Z . In this
case however we may use an alternative finiteness criterion of Ranicki to get a
slightly stronger result, which we can show to be best possible. Here we shall
outline the algebra relevant to our use of Ranicki’s criterion in the next section.
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Let R be a ring with an automorphism α, and let S = Rα[z, z−1], Ŝ+ =
Rα((z)) and Ŝ− = Rα((z−1)) be the rings of twisted Laurent polynomials and
series Σj≥arjz

±j with coefficients rj ∈ R and multiplication determined by
zr = α(r)z for all r ∈ R.

An α-twisted endomorphism of an R-module E is an additive function h : E →
E such that h(re) = α(r)h(e) for all e ∈ E and r ∈ R, and h is an α-twisted
automorphism if it is bijective. Such an endomorphism h extends to α-twisted
endomorphisms of the modules S ⊗R E , Ê+ = Ŝ+ ⊗R E and Ê− = Ŝ− ⊗R E
by h(s ⊗ e) = zsz−1 ⊗ h(e) for all e ∈ E and s ∈ S , Ŝ+ or Ŝ− , respectively.
In particular, left multiplication by z determines α-twisted automorphisms of
S ⊗R E , Ê+ and Ê− which commute with h.

If E is finitely generated then 1 − z−1h is an automorphism of Ê− , with in-
verse given by a geometric series: (1 − z−1h)−1 = Σk≥0z

−khk . (If E is not

finitely generated this series may not give a function with values in Ê− , and
z − h = z(1 − z−1h) may not be surjective). Similarly, if k is an α−1 -twisted
endomorphism of E then 1 − zk is an automorphism of Ê+ .

If P∗ is a chain complex with an endomorphism β : P∗ → P∗ let P∗[1] be the
suspension and C(β)∗ be the mapping cone. Thus C(β)q = Pq−1 ⊕ Pq , and
∂q(p, p′) = (−∂p, β(p) + ∂p′), and there is a short exact sequence

0 → P∗ → C(β)∗ → P∗[1] → 0.

The connecting homomorphisms in the associated long exact sequence of ho-
mology are induced by β . The algebraic mapping torus of an α-twisted self
chain homotopy equivalence h of an R-chain complex E∗ is the mapping cone
C(1 − z−1h) of the endomorphism 1 − z−1h of the S -chain complex S ⊗R E∗ .

Lemma 5 Let E∗ be a projective chain complex over R which is finitely
generated in degrees ≤ d and let h : E∗ → E∗ be an α-twisted chain homotopy
equivalence. Then Hq(Ŝ− ⊗S C(1 − z−1h)∗) = 0 for q ≤ d.

Proof There is a short exact sequence

0 → S ⊗R E∗ → C(1 − z−1h)∗ → S ⊗R E∗[1] → 0.

Since E∗ is a complex of projective R-modules the sequence

0 → Ê∗− → Ŝ− ⊗S C(1 − z−1h)∗ → Ê∗−[1] → 0

obtained by extending coefficients is exact. The endomorphism 1−z−1h of Ê∗−

induces isomorphisms in degrees ≤ d and so induces isomorphisms on homol-
ogy in degrees < d and an epimorphism on homology in degree d. Therefore
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Hq(Ŝ− ⊗S C(1 − z−1h)∗) = 0 for q ≤ d, by the long exact sequence for homol-
ogy.

Theorem 6 Let C∗ be a finitely generated projective S -chain complex. Then
i!C∗ is chain homotopy equivalent (over R) to a projective complex E∗ which
is finitely generated in degrees ≤ d if and only if Hq(Ŝ± ⊗S C∗) = 0 for q ≤ d.

Proof We may assume without loss of generality that Cq is a finitely generated
free S -module for all q ≤ d + 1, with basis Xi = {cq,i}i∈I(q) . We may also
assume that 0 /∈ ∂i(Xi) for i ≤ d + 1, where ∂i : Ci → Ci−1 is the differential
of the complex. Let h± be the α±1 -twisted automorphisms of i!C∗ induced by
multiplication by z±1 in C∗ . Let fq(z

krcq,i) = (0, zk ⊗ rcq,i) ∈ (S ⊗R Cq−1) ⊕
(S ⊗R Cq). Then f∗ defines S -chain homotopy equivalences from C∗ to each
of C(1 − z−1h+) and C(1 − zh−).

Suppose first that k∗ : i!C∗ → E∗ and g∗ : E∗ → i!C∗ are chain homotopy equiv-
alences, where E∗ is a projective R-chain complex which is finitely generated
in degrees ≤ d. Then θ± = k∗h±g∗ are α±1 -twisted self homotopy equiva-
lences of E∗ , and C(1− z−1h+) and C(1− zh−) are chain homotopy equivalent
to C(1 − z−1θ+) and C(1 − zθ−), respectively. Therefore Hq(Ŝ− ⊗S C∗) =

Hq(Ŝ− ⊗S C(1 − z−1θ+)) = 0 and Hq(Ŝ+ ⊗S C∗) = Hq(Ŝ+ ⊗S C(1 − zθ−)) = 0
for q ≤ d, by Lemma 5, applied twice.

Conversely, suppose that Hi(Ŝ±⊗S C∗) = 0 for all i ≤ k . We can proceed as in
[4] where the case of a partial free deleted resolution of a module over a group
ring is considered (using a support function with values in the group). We shall
define inductively a support function suppX for the elements λ of ∪i≤d+1Ci

with values finite subsets of {zj}j∈Z so that

(1) suppX(0) = ∅

(2) if x ∈ X0 then suppX(zjx) = zj ;

(3) if x ∈ Xi for 1 ≤ i ≤ d + 1 then suppX(zjx) = zj .suppX(∂i(x));

(4) if s =
∑

j rjz
j ∈ S , where rj ∈ R, suppX(sx) = ∪rj 6=0suppX(zjx)

(5) if 0 ≤ i ≤ d + 1 and λ =
∑

sx∈S,x∈Xi
sxx then

suppX(λ) = ∪sx 6=0,x∈Xi
suppX(sxx)

Then suppX(∂i(λ)) ⊆ suppX(λ) for all λ ∈ Ci and all 1 ≤ i ≤ d + 1.

Define two subcomplexes C+ and C− of C which are 0 in degrees i ≥ d + 2
as follows. Since X = ∪i≤d+1Xi is finite there is a positive integer b such that
∪x∈Xi,i≤d+1suppX(x) ⊆ {zj}−b≤j≤b .
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(1) if i ≤ d + 1 an element λ ∈ Ci is in C+ if and only if suppX(λ) ⊆
{zj}j≥−b ; and

(2) if i ≤ d + 1 an element λ ∈ Ci is in C− if and only if suppX(λ) ⊆ {zj}j≤b .

Then ∪i≤d+1Xi ⊆ (C+)[d+1] ∩ (C−)[d+1] and so (C+)[d+1] ∪ (C−)[d+1] = C [d+1],
where the upper index ∗ denotes the ∗-skeleton. Moreover (C+)[d+1] is a
complex of free finitely generated Rα[z]-modules, (C−)[d+1] is a complex of
free finitely generated Rα[z−1]-modules, (C+)[d+1] ∩ (C−)[d+1] is a complex of
free finitely generated R-modules and

C [d+1] = S ⊗Rα[z] (C
+)[d+1] = S ⊗Rα[z−1] (C−)[d+1].

Furthermore there is a Mayer-Vietoris exact sequence

0 → (C+)[d+1] ∩ (C−)[d+1] → (C+)[d+1] ⊕ (C−)[d+1] → C [d+1] → 0.

Thus the (d +1)-skeletons of C , C+ and C− satisfy “algebraic transversality”
in the sense of [21, Prop. 1].

Then to prove the theorem it suffices to show that C+ and C− are each chain
homotopy equivalent over R to a complex of projective R-modules which is
finitely generated in degrees ≤ d. As in [21, p. 628] there is an exact sequence
of Rα[z−1]-module chain complexes

0 → (C−)[d+1] → C [d+1] ⊕ Rα[[z−1]] ⊗Rα[z−1] (C−)[d+1] → Ŝ− ⊗S C [d+1] → 0.

Let ĩ denote the inclusion of (C−)[d+1] into the central term. Inclusions on
each component define a chain homomorphism

j̃ : (C+)[d+1] ∩ (C−)[d+1] → (C+)[d+1] ⊕ Rα[[z−1]] ⊗Rα[z−1] (C−)[d+1]

such that the mapping cones of ĩ and j̃ are chain equivalent R-module chain
complexes. The map induced by ĩ in homology is an epimorphism in degree d
and an isomorphism in degree < d, since Hi(Ŝ− ⊗S C [d+1]) = 0 for i ≤ d. In
particular all homologies in degrees ≤ d of the mapping cone of ĩ are 0. Hence
all homologies of the mapping cone of j̃ are 0 in degrees ≤ d. Then (C+)[d+1]

is homotopy equivalent over R to a chain complex of projectives over R whose
d-skeleton is a summand of (C+)[d] ∩ (C−)[d] . This completes the proof.

If π is a group, ρ : π → Z is an epimorphism with kernel ν and ρ(z) = 1 then
conjugation by z (g 7→ zgz−1 ) determines an automorphism α of R = Z[ν].
The corresponding twisted extensions S , Ŝ+ and Ŝ− are the group ring Z[π]

and the Novikov rings Ẑ[π]ρ and Ẑ[π]−ρ . In [16] it is shown that if π is finitely

generated the matrix rings Mn(Ẑ[π]ρ) are von Neumann finite: i.e., if A,B ∈
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Mn(Ẑ[π]ρ) and AB = I then BA = I . Hence finitely generated stably free

Ẑ[π]ρ -modules have well defined ranks, and the rank is strictly positive if the
module is nonzero. (In [12] rings satisfying the latter conditions are said to be
weakly finite).

4 Infinite cyclic coverings

One approach to duality when G = π/ν ∼= Z might proceed as follows. Let

Ψ : Hq(Mν ; Z[ν]) → Hq(M ; Ẑ[π]) be the isomorphism determined by Shapiro’s

Lemma. The module Ẑ[π] may be identified with the left Z[π]-module of doubly
infinite series Σn∈Zrnzn with coefficients in Z[ν], and there is an exact sequence

ξ : 0 → Z[π] → A+ ⊕ A− → Ẑ[π] → 0.

If C∗(M̃ ) is Z[ν]-finitely dominated the Bockstein operation for ξ induces

isomorphisms δξ : Hq(M ; Ẑ[π]) → Hq+1(M ; Z[π]). If we could show that
δξΨ(c) = ±Ψ(c) ∪ ηZ for all c ∈ Hq(Mν ; Z[ν]) then we could conclude that
Mν is a PDn−1 -space, with fundamental class ηZ ∩ [M ]. However we have not
managed to carry this through, and so we shall use Theorem 3 instead.

Theorem 7 Let M be a PDn -space with fundamental group π and let p :
π → Z be an epimorphism with kernel ν . Then Mν is a PDn−1 -space if and
only if χ(M) = 0 and C∗(M̃ν) = i!C∗(M̃) has finite [(n − 1)/2]-skeleton.

Proof If Mν is a PDn−1 -space then C∗(M̃ν) is Z[ν]-finitely dominated [7]. In
particular, H∗(M ; Z[Z]) = H∗(Mν ; Z) is finitely generated. Let Λ = Z[Z]. The
augmentation Λ-module Z has a short free resolution 0 → Λ → Λ → Z → 0,
and it follows easily from the exact sequence of homology for this coefficient
sequence that χ(M) = 0 [20]. Thus the conditions are necessary.

Suppose that they hold. Let A± be the two Novikov rings corresponding to
the two epimorphisms ±p : π → Z with kernel ν . Then Hj(A± ⊗Z[π] C∗) = 0
for j ≤ [(n − 1)/2], by Theorem 6. Hence Hj(A± ⊗Z[π] C∗) = 0 for j ≥
n − [(n − 1)/2], by duality. If n is even there is one possible nonzero module,
in degree m = n/2. But then Hm(A±⊗Z[π] C∗) is stably free, by Lemma 3.1 of
[12]. Since χ(A± ⊗Z[π] C∗) = χ(C∗) = χ(M) = 0 and the rings A± are weakly

finite [16] these modules are 0. Thus Hj(A±⊗Z[π] C∗) = 0 for all j , and so i!C∗

is chain homotopy equivalent to a finite projective Z[ν]-complex, by Theorem
6. Thus the result follows from Theorem 3, as in Theorem 4.
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When n is odd [n/2] = [(n − 1)/2], so the finiteness condition on Mν agrees
with that of Theorem 4 (for G = Z ), but it is slightly weaker if n is even.

The infinite cyclic cover of the closed n-manifold M(K) obtained by surgery on
a simple (n− 2)-knot K is [(n− 3)/2]-connected. However there are examples
for which π[(n−1)/2](M(K)) is not finitely generated as an abelian group [14, 17].
Thus the FP[(n−1)/2] condition is best possible, in general.

Corollary 7.1 . Let π be a PDn -group and p : π → Z an epimorphism. Then
ν = Ker(p) is a PDn−1 -group if and only if χ(π) = 0 and ν is FP[(n−1)/2] .

The finiteness condition FP[(n−1)/2] is probably best possible, but we have no
examples with n > 4 to confirm this. (This condition cannot be relaxed if
n ≤ 4. For let D be the closed 3-manifold obtained by doubling the exterior
of a nontrivial knot with Alexander polynomial 1, and let π = π1(D). Then π
is a PD3 -group with χ(π) = 0, π/π′ ∼= Z and ν = π′ is not finitely generated.
The products π × Z and ν = π′ × Z give a similar example for n = 4).

Corollary 7.2 . Under the same hypotheses on M and π , if n 6= 4 then Mν

is a PDn−1 -complex if and only if it is homotopy equivalent to a complex with
finite [(n − 1)/2]-skeleton.

Proof If n ≤ 3 every PDn−1 -space is a PDn−1 -complex, while if n ≥ 5 then
[(n − 1)/2] ≥ 2 and so ν is finitely presentable.

If n ≤ 3 we need only assume that M is a PDn -space and ν is finitely generated.
It remains an open question whether every PD3 -space is finitely dominated.
The arguments of [24] and [9] on the factorization of PD3 -complexes into con-
nected sums are essentially homological, and so every PD3 -space is a connected
sum of aspherical PD3 -spaces and a PD3 -complex with virtually free funda-
mental group. (In particular, ν is FP∞ and v.c.d.ν = 0, 1 or 3). Thus this
question reduces to whether every PD3 -group is finitely presentable. There are
PD4 -groups which are not finitely presentable [10].

The case n = 4 was in fact the origin of this paper, and gives the following
improvements to Theorems 4.1 and 5.18 of [12].

Corollary 7.3 . Let M be a PD4 -space with χ(M) = 0 and π = π1(M) ∼=
ν o Z , where ν is finitely generated. Then M is aspherical if and only if ν has
one end. In that case ν is a PD3 -group.
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Proof The space Mν is a PD3 -space and ν is FP2 , by Theorem 7. If M
is aspherical then so is Mν . Hence ν is a PD3 -group, and so has one end.
Conversely, if ν has one end Hs(π; Z[π]) = 0 for s ≤ 2, by an LHS spectral

sequence argument. Since ν is finitely generated β
(2)
1 (π) = 0 [18]. Therefore

M is aspherical, by Corollary 3.5.2 of [12].

If π ∼= νoZ is a PD4 -group with ν finitely generated then χ(π) = 0 if and only
if ν is FP2 , by Corollary 2.1 and Theorem 7. However the latter conditions
need not hold. Let F be the orientable surface of genus 2. Then G = π1(F )
has a presentation 〈a1, a2, b1, b2 | [a1, b1] = [a2, b2]〉. The group π = G × G is a
PD4 -group, and the subgroup ν ≤ π generated by the images of (a1, a1) and
the six elements (x, 1) and (1, x), for x = a2 , b1 or b2 , is normal in π , with
quotient π/ν ∼= Z . However χ(π) = 4 6= 0 and so ν cannot be FP2 .

Corollary 7.4 . Let M be a PD4 -space with χ(M) = 0 and such that π =
π1(M) is an extension of Zr by a finitely generated infinite normal subgroup
ν , for some r > 1. Then M is aspherical and ν is a PD4−r -group.

Proof Let φ : π → Z be an epimorphism which factors through π/ν . Then
ν is a finitely generated infinite normal subgroup of Ker(φ), and Ker(φ)/ν ∼=
Zr−1 . Hence Ker(φ) is finitely generated and has one end, and so the result
follows from Corollaries 7.3 and 2.1.

A simple induction based on Theorem 7 shows that if Mν is the covering space of
a PDn -complex M corresponding to an epimorphism p : π1(M) → G and G is
virtually poly-Z of Hirsch length r then Mν is a PDn−r -complex if χ(M) = 0,
Ker(π1(p)) is finitely presentable and Mν is homotopy equivalent to a complex
with finite [(n − 1)/2]-skeleton.

However the methods and results described in this section break down for more
general covering groups. Let S be an aspherical closed surface and let G =
π1(S). Surface groups are left orderable, and a left order P on G determines

a Novikov-like completion R = Ẑ[G]P of Z[G] in an obvious way. Since S̃ is
contractible the most straightforward extension of the Ranicki criterion would
require that H∗(R ⊗Z[G] C∗(S̃)) = 0. If R were weakly finite this would imply

that χ(G) = χ(R ⊗Z[G] C∗(S̃)) = 0. (A more geometric notion of Novikov
completion is used in [3] to give criteria for the kernel ν of an epimorphism
f : π → G to have a finitely dominated K(ν, 1)-complex when there is a finite
K(π, 1) and G is a CAT (0)-group, such as a surface group).
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