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Model specification of short–range dependent stationary time se-
ries has become a very active research field in both econometrics and
statistics since about two decades ago. In the meantime, estimation
of long–range dependent stationary time series models has also been
quite active. To the best of our knowledge, however, model specifica-
tion of stationary time series with long–range dependence (LRD) has
not been discussed in the literature. This is probably due to unavail-
ability of certain central limit theorems for weighted quadratic forms
of stationary time series with LRD. In this paper we try to tackle
such difficult issues by establishing a nonparametric model specifica-
tion test for parametric time series with LRD. In order to establish
asymptotic distributions of the proposed test statistic, we develop
new central limit theorems for certain weighted quadratic forms of
stationary time series with LRD. In order to implement the proposed
test in practice, we develop a computer–intensive parametric boot-
strap simulation procedure for finding simulated critical values. As a
result, our finite–sample studies show that both the proposed theory
and the simulation procedure work well and that the proposed test
has little size distortion and reasonable power.

1. Introduction. Various specification test statistics based on nonpara-
metric and semiparametric techniques have been proposed and studied ex-
tensively for both independent and short–range dependent cases during the
last two decades. Thus, there is a very long list of research papers in both the
econometrics and statistics literature. Most results can be found from recent
survey papers and manuscripts, such as Tjøstheim (1994), Fan and Gijbels
(1996), Härdle, Lütkepohl and Chen (1997), Hart (1997), Härdle, Liang and
Gao (2000), Cai and Hong (2003), Fan and Yao (2003), Fan (2005), Gao
(2006) and the references therein.

Recent studies show that some data sets may display LRD (see Beran
1994; Robinson 1994a; Baillie and King 1996, Anh and Heyde 1999; Robin-
son 2003; Gao 2004; and others). In addition, existing studies (Hidalgo 1997;
Robinson 1997; Csörgó and Mielniczuk 1999; Mielniczuk and Wu 2004; and

AMS 2000 subject classifications: Primary 62E20; secondary 60F05.
Keywords and phrases: Central limit theorem, Gaussian process, linear process, long-

range dependence, parametric time series regression, specification testing.

1
imsart-aos ver. 2006/03/07 file: Full-revised-version.tex date: August 25, 2006



2 J. GAO AND Q. WANG

others) also discuss nonparametric regression analysis of data with LRD.
Recently, some applied researches (Anh, et al 1999; Mikosch and Starica
2004; Gao and Hawthorne 2006) show that some real data in environment
and finance with both LRD and nonlinearities may be modelled by

(1.1) Yt = m

(
t

n

)
+ et,

where m(·) is an unknown and probably nonlinear trend function of time
t, and {et} is a sequence of time series errors with possible LRD. The key
findings of such existing studies suggest that in order to avoid misrepre-
senting the mean function or the conditional mean function of a long–range
dependent data, we should let the data ‘speak’ for themselves in terms of
specifying the true form of the mean function or the conditional mean func-
tion. This is particularly important for data with LRD, because unnecessary
nonlinearity or complexity in mean functions may cause erroneous LRD.

In order to address such issues, we propose to model data with possible
LRD, nonlinearity and nonstationary using a general nonparametric trend
model. The main objective of this paper is thus to specify the trend by
constructing a nonparametric kernel–based test. Consider a nonlinear time
series model of the form

(1.2) Yt = m(Xt) + et, t = 1, 2, · · · , n,

where n is the number of observations, {Xt} is either a sequence of fixed
designs of Xt = t

n or independent and identically distributed (i.i.d.) random
designs, m(·) is an unknown function, and {et} is a long–range dependent
linear process with E[et] = 0 and 0 < E[e2t ] = σ2 < ∞. {Xs} and {et} are
assumed to be independent for all s, t ≥ 1 when {Xt} is a sequence of i.i.d.
random designs. To achieve our purpose, we will develop a kernel-based test
in this paper for the hypotheses:

(1.3) H0 : m(x) = mθ0(x) versus H1 : m(x) = mθ1(x) + cn∆(x)

for all x ∈ R = (−∞,∞), where θ0 and θ1 are vectors of unknown param-
eters, mθ(x) is a known parametric function of x indexed by a vector of
unknown parameters, θ, ∆(x) is a known smooth function, and {cn} is a
sequence of real numbers tending to zero when n → ∞. Note that, under
H0, model (1.2) becomes a parametric model of the form

(1.4) Yt = mθ0(Xt) + et,

which covers many important cases. For example, model (1.4) becomes a
simple linear model with LRD as in (1.1) of Robinson and Hidalgo (1997)
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TIME SERIES SPECIFICATION 3

when mθ0(Xt) = α0 + β0Xt. For a given set of long–range dependent data,
the acceptance of H0 suggested by a test statistic may indicate that the
mean function of the LRD data should be specified parametrically. In the
case of the Nile river data as analyzed in Anh, et al (1999), one will consider
using a linear mean function of the form m

(
t
n

)
α0 + β0 · t

n if a suitable
test suggests the acceptance of H0 : m(x) = α0 + β0 x. Similarly, if a
proper test suggests accepting a second–order polynomial function of the
form m

(
t
n

)
α0 + β0

(
t
n

)
+ γ0

(
t
n

)2 as the true trend of a financial data set
{Yt}, we will need only to difference {Yt} twice to generate a stationary set
of the data.

This paper is organized as follows. The proposed test for the hypothesis
(1.3) will be presented in Section 2.1. To investigate the proposed specifica-
tion test, the limit theorems for the leading term Mn(h) of our test statistics
are investigated in Section 2.2, where

(1.5) Mn(h) =
n∑

s=1

n∑
t=1, 6=s

es an(Xs, Xt) et,

with an(Xs, Xt) = K
(

Xs−Xt
h

)
, in which K(·) is a probability kernel function

and h is a bandwidth parameter. We mention that for the case where {Xt} is
a sequence of either fixed or random designs but {et} is a sequence of long–
range dependent errors, the problem of establishing limiting distributions for
Mn(h) is quite difficult. Because there is an involvement of h → 0 into the
inside of K(·), existing central limit theorems for U–statistics of long–range
dependent processes (see a latest result by Hsing and Wu 2004) are not
applicable. The limit theorems in Section 2.2 therefore are interesting and
useful in themselves. In Section 3, we discuss some important extensions and
applications of the theory established in Section 2. A parametric bootstrap
simulation procedure as well as some resulting properties are established
in Section 4. Section 4 also provides an example to demonstrate how to
implement the proposed test and the bootstrap simulation procedure in
practice. Section 5 concludes the paper with some remarks on extensions.
Mathematical details are relegated to Appendices A and B. Throughout the
paper, we use the symbol an ∼ bn for limn→∞ an/bn = 1.

2. Asymptotic theory. The test statistic for the hypothesis (1.3) is
proposed in Section 2.1. In order to investigate the proposed test statistic,
some new limiting distributions of weighted quadratic forms of dependent
processes with LRD are developed in Section 2.2. Their proofs, along with
other proofs, are relegated to Appendix A.
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4 J. GAO AND Q. WANG

2.1 Model specification test. Let K be a one-dimensional bounded prob-
ability density function and h be a smoothing bandwidth. When {Yt} is a
sequence of long–range dependent time series, the conventional kernel esti-
mator of m(·) is defined by

(2.1) m̂(x) =
1

nh

∑n
t=1K

(
x−Xt

h

)
Yt

f̂(x)
,

where f̂(x) = 1
nh

∑n
t=1K

(
x−Xt

h

)
is the density estimate of the marginal

density function, f(x), of {Xt} when {Xt} is a sequence of i.i.d. random
variables. When Xt = t

n , f̂(x) = 1
nh

∑n
t=1K

(
nx−t
nh

)
is a sequence of func-

tions of x. Various asymptotic properties for m̂(x) have been studied in the
literature. See Robinson 1997, Anh, et al (1999) and others, for example.
One might expect that the non-parametric test statistic for the hypothesis
(1.3) is related to m̂(x). However, as demonstrated in the model specification
literature for both the independent and short–range dependent time series
cases (Zheng 1996; Li and Wang 1998; Li 1999; Fan, Zhang and Zhang 2001;
Fan and Linton 2003; Gao 2006), there are certain classes of nonparametric
test statistics that have little involvement of nonparametric estimation. One
of the advantages is that both large and finite–sample properties of such
test statistics are much less sensitive to the use of individual nonparametric
estimation as well as the resulting estimation biases. In order to test the
hypothesis (1.3), we therefore propose a kernel–based test statistic of the
form

(2.2) M̂n(h) =
n∑

t=1

n∑
s=1, 6=t

ês an(Xs, Xt) êt

for the case where {Xt} is a sequence of i.i.d. random variables, where
an(Xs, Xt) = K

(
Xs−Xt

h

)
and êt = Yt − m

θ̃
(Xt), in which θ̃ is a consis-

tent estimator of θ0 under H0. For the case of fixed-design mean with LRD
errors, we also suggest the same form of (2.2) with Xt = t

n . As pointed out
earlier, the choice of (2.2), instead of those related to m̂(x), is mainly be-
cause our experience shows that such a form does not involve biases caused
by nonparametric estimation and thus works well both theoretically and
practically.

We need the following assumptions on the error process {et}, the kernel
function K(·) and the regression function mθ(x) for the main results of this
paper.

Assumption 2.1. (i) {et} is a sequence of linear processes defined by
et =

∑∞
j=−∞ ψjηt−j , where the innovations ηj are i.i.d. random variables
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with E[η1] = 0, E[η2
1] = 1 and E[η4

1] < ∞, and the co–variance γ(k) =
E[etek+t] =

∑∞
j=−∞ ψjψj+k satisfies that γ(0) =

∑∞
j=−∞ ψ2

j < ∞ and
γ(k) ∼ η |k|−α, as k →∞, where λ = (α, η) with 0 < α < 1 and 0 < η <∞
is a vector of unknown parameters. (ii) In addition, we have ψj ≥ 0 and
E[η6

1] <∞.

Assumption 2.2. Let λ = (α, η) be defined as in Assumption 2.1. There
exists some λ̃ = (α̃, η̃) such that ||λ̃ − λ|| = OP

(
w−1

n

)
, where {wn} is a

sequence of positive numbers satisfying limn→∞wn/ log n = ∞.

Assumption 2.3. (i) K(·) is a bounded and symmetric probability kernel
function over the real line R. (ii) There exists some 0 < β < α − 1

2 for
1
2 < α < 1 such that K(x) = O

(
1

1+|x|1−β

)
.

Assumption 2.4. When {Xt} is a sequence of i.i.d. random designs, {Xt}
and {es} are independent for all s ≥ 1 and t ≥ 1, and the density function
f(x) of Xt is bounded and uniformly continuous.

Assumption 2.5 (Random Design). (i) Under the null hypothesis H0,
||θ̃ − θ0|| = oP (n−α/2), where || · || denotes the Euclidean norm. (ii) 0 <

E

[∣∣∣∣∣∣∂mθ(X1)
∂θ |θ=θ0

∣∣∣∣∣∣2] < ∞ and there exists a ε0 > 0 such that ∂mθ(x)
∂θ is

continuous in both x ∈ R and θ ∈ Θ0, where Θ0 = {θ : ||θ − θ0|| ≤ ε0}.

Assumption 2.6 (Fixed Design). (i) Under the null hypothesis H0, ||θ̃−
θ0|| = OP (n−α/2). (ii) There exists a positive constant Cθ0 depending on θ0
only such that, for all 0 ≤ x ≤ 1,

|mθ(x)−mθ0(x)| ≤ Cθ0 ||θ − θ0||.

Assumption 2.1 (i) is quite general. For instance, the case where {et} is
a sequence of Gaussian errors is included. Assumption 2.1 (ii) is required to
establish Theorems 2.2 and 2.4 below. The positivity of ψj in Assumption
2.1(ii) may be replaced by less restrictive those like that ψj are eventually
positive. Also notice that it is possible to involve a slow–varying function
into the form of γ(k). Since this is not very essential for both our theory
and practice, we use the current Assumption 2.1 throughout this paper. As
for the alternative conditions on the {εt} in this kind of study, we refer to
Cheng and Robinson (1994), Robinson (1997) and Robinson and Hidalgo
(1997).

Assumption 2.2 may be justified for certain wn like wn = n2/5/ log n. See
the discussion for the construction of λ̂ in Section 4.

Assumption 2.3(i) is a standard condition on the kernel function. To es-
tablish Theorems 2.2 and 2.4 below, we also need Assumptions 2.3(ii). It
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6 J. GAO AND Q. WANG

imposes some restrictions on α and K(·), but these restrictions are easily
verifiable. For instance, Assumption 2.3(ii) is satisfied when K(·) is either
the standard normal density function or belongs to a class of probability
kernel functions with compact support. Note also that, under Assumption
2.3, Aα <∞ where

Aα =
∫ ∞

0

∫ ∞

0

∫ ∞

0
x−αy−α[K(z)K(x+ y − z)

+K(z − x)K(z − y)
]
dxdydz(2.3)

as shown in Lemma A.6.
Assumption 2.4 is a standard condition in this kind of problem.
Assumptions 2.5 and 2.6 require certain smoothness of mθ(x) with respect

to θ to ensure a certain rate of convergence. Assumptions 2.5(i) and 2.6(i)
may be viewed as a counterpart of the conventional

√
n–rate of convergence

in the short–range dependent case. These conditions are satisfied automati-
cally when θ̃ achieves the conventional

√
n–rate of convergence as discussed

in the literature. See for example, Beran and Ghosh (1998). It follows easily
from the proofs of Theorems 2.1 in Appendix A that ||θ̃ − θ0|| = oP (n−α/2)
may be replaced by ||θ̃ − θ0|| = OP (n−α/2) in Theorem 2.1(i). To avoid in-
troducing repetitious arguments, we use current Assumption 2.5(i) for the
statement of Theorem 2.1. Assumption 2.5(ii) basically imposes certain mo-
ment conditions on both the form mθ0(·) and the design {Xt}. Assumption
2.6 is used only for the fixed–design case in Theorem 2.2.

We now state the main results of this paper. Theorem 2.1 considers the
case where {Xt} is a sequence of i.i.d. random designs. The case where
Xt = t

n is discussed in Theorem 2.2. All notation are defined as before. The
proofs of these results are given in Appendix A.

Theorem 2.1. Suppose that Assumptions 2.1(i), 2.3(i) and 2.4–2.5 hold.

(i) If limn→∞ n2(1−α)h = 0 and limn→∞ nh = ∞, then under H0,

L̂1n(h) ≡ M̂n(h)
σ̂1n(h)

→D N(0, 1) as n→∞,(2.4)

where σ̂2
1n(h) = 2n2h

∫
K2(x)dx

(
1
n

∑n
t=1 f̂(Xt)

) (
1
n

∑n
t=1 ê

2
t

)2
.

(ii) If limn→∞ h = 0, limn→∞ n2(1−α)h = ∞ and Assumption 2.2 hold,
then under H0,

L̂2n(h) ≡ M̂n(h)
σ̂2n(h)

→D χ2(1) as n→∞,(2.5)
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where χ2(1) is the chi–square distribution with degree one of freedom, and

σ̂2n(h)
2n2−α̃ h η̃

(1− α̃)(2− α̃)
I(0<α̃<1)

1
n

n∑
t=1

f̂(Xt).

Theorem 2.2. Suppose that Assumptions 2.1–2.3 and 2.6 hold. Let wn be
given as in Assumption 2.2. If limn→∞ h = 0 hold, limn→∞wn h

1/2/ log n =
∞ and nh→∞, then under H0,

L̂3n(h) ≡
∑n

t=1

∑n
s=1, 6=t bn(s, t) (êsêt − γ̂(s− t))

σ̂3n(h)
→D N(0, 1) as n→∞,(2.6)

where σ̂2
3n(h) = 8 η̃2 n (nh)3−2α̃A∗

α̃
with

A∗
α̃

=
∫ n

1/n

∫ n

1/n

∫ n

1/n
x−α̃y−α̃[K(z)K(x+ y − z)

+ K(z − x)K(z − y)
]
dxdydz,

bn(s, t) = K
(

s−t
nh

)
and

γ̂(k) =


1
n

∑n−|k|
i=1 êiêi+|k|, for |k| ≤ (nh)1/3,

η̃ |k|−α̃, for (nh)1/3 < |k| ≤ n− 1.

Remark 2.1. (i) As expected, the limiting distributions of the test statis-
tic M̂n(h) (under certain normalization) for the hypothesis (1.3) depend on
the value of α and the choice of the bandwidth h. We require 1/2 < α < 1,
together with h−1 = o(n) and h = o(n−2(1−α)), in Theorem 2.1(i). By con-
trast, Theorem 2.1(ii) allows 0 < α < 1, but we have to restrict h = o(1)
and h−1 = o(n2(1−α)). These facts imply that, to make the limiting distri-
bution of M̂n(h) (under certain normalization) normal, the conditions that
1/2 < α < 1 and h = o(n−2(1−α)) are essentially necessary for the case
where {Xt} is a sequence of i.i.d. random designs.

(ii) By tackling the proof of Theorem 2.1(i), routine modifications show
that the conclusion (2.4) also holds under H0 as h → 0 and nh → ∞ if we
replace Assumption 2.1 (i) by a short-range dependent linear process (that
is, et =

∑∞
k=−∞ ψkηt−k with

∑∞
k=−∞ |ψk| <∞). The short-range dependent

cases have been investigated in Li and Wang (1998), Li (1999) and Chapter
3 of Gao 2006. It is interesting to notice that the techniques used in this
paper are different from those mentioned above.
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(iii) By checking the proofs of Theorems 2.1 and 2.3, we may show that
the conclusions of Theorems 2.1 and 2.3 still hold if we replace the {Xt}
satisfying Assumption 2.4 by a sequence of strictly stationary and α–mixing
random variables (under certain conditions). In this case, we need to replace
Lemma A.4 listed in the appendix by a more general one, such as Lemma
B.1 of Gao and King (2005). Since there are no essential differences in the
main steps of the proof but much more technicalities are involved, we focus
on the current {Xt} for reading convenience.

(iv) For the fixed-design case of Xt = t
n , we also require 1/2 < α <

1 for the asymptotical normality of M̂n(h) (under certain normalization)
in Theorem 2.2. Furthermore, the range of the bandwidth h depends on
the accuracy of ||λ̃ − λ|| = OP (w−1

n ). As it may be justified that wn =
n2/5/ log n (see Theorem 4.2), the optimal bandwidth h ∼ C n−1/(4+α) in
theory is included in Theorem 2.2. We also mention that the γ̂(k) defined
in Theorem 2.2 provides a consistent estimate of γ(k) for each fixed k, but
it is not possible to replace γ̂(k) = η̃|k|−α̃ by γ̂(k) = 1

n

∑n−|k|
i=1 êiêi+|k| when

(nh)1/3 < k ≤ n−1 because (A.69) is not true in the latter case. The limiting
distribution of M̂n(h) (under certain normalization) for 0 < α ≤ 1/2 in the
fixed-design case is an open problem.

(v) As suggested by a referee, it should be possible to establish some cor-
responding results of Theorem 2.1 for the case where both {Xi} and {ei}
exhibit LRD. In this case, existing studies (Hidalgo 1997; Csörgó and Miel-
niczuk 1999; Mielniczuk and Wu 2004) in nonparametric estimation have
already shown that while similar techniques would be used to establish and
prove such corresponding results, the corresponding conditions and proofs
are more technical than those involved in the current paper. We therefore
wish to leave such extensions for future research.

In order to motivate the necessity of establishing some limit theorems for
general quadratic forms of dependent processes with LRD, we observe that

M̂n(h) =
n∑

t=1

n∑
s=1, 6=t

ês an(Xs, Xt) êt

= Mn(h) + 2R1n(h) +R2n(h),(2.7)
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where Mn(h) =
∑n

t=1

∑n
s=1, 6=t es an(Xs, Xt) et,

R1n(h) =
n∑

t=1

n∑
s=1, 6=t

an(Xs, Xt) es
(
m(Xt)−m

θ̃
(Xt)

)
,

R2n(h) =
n∑

t=1

n∑
s=1, 6=t

an(Xs, Xt)
(
m(Xs)−m

θ̃
(Xs)

) (
m(Xt)−m

θ̃
(Xt)

)
.

It will be shown in Appendix A below that 2R2(h) + R2(h) = oP (σin) for
i = 1 and 2 under the corresponding conditions of Theorem 2.1. Thus, in
order to prove Theorems 2.1, we need to establish limit theorems for Mn(h),
which is a weighted quadratic form of {et}. Similar arguments also work
for Theorem 2.2. Since such limit theorems are interesting and useful in
themselves, we formally establish them in Section 2.2 below.

2.2 Limit theorems for quadratic forms. As both the conditions and
results for the case of random designs are different from those for the case
of fixed designs, we establish the following two theorems separately. Their
proofs are given in Appendix A.

Theorem 2.3. Suppose that Assumptions 2.1(i), 2.3(i) and 2.4 hold.

(i) If limn→∞ n2(1−α)h = 0 and limn→∞ nh = ∞, then

(2.8)
∑n

t=1

∑n
s=1, 6=t es an(Xs, Xt) et

σ1n(h)
→D N(0, 1), as n→∞,

where σ2
1n(h) = n2hA2

1α, in which A2
1α = 2 γ2(0)

∫
K2(x)dx

∫
f2(y)dy.

(ii) If limn→∞ h = 0 and limn→∞ n2(1−α)h = ∞, then

(2.9)
∑n

t=1

∑n
s=1, 6=t es an(Xs, Xt) et

σ2n(h)
→D χ2(1), as n→∞,

where σ2n(h) = n2−α hA2α, in which A2α = 2η
(1−α)(2−α)

(∫
f2(y)dy

)
.

Theorem 2.4. Suppose that Assumptions 2.1 and 2.3 hold. If limn→∞ h =
0 and limn→∞ nh = ∞, then

(2.10)
∑n

t=1

∑n
s=1, 6=t bn(s, t) (eset − γ(s− t))

σ3n(h)
→D N(0, 1), as n→∞,

where σ2
3n(h) = 8η2 n (nh)3−2αAα, in which Aα is defined as in (2.3).

Remark 2.2. (i) Theorem 2.3 extends the existing limit theorems for
both i.i.d. and short–range dependent cases (see Hjellvik, Yao and Tjøstheim
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10 J. GAO AND Q. WANG

1998, Li 1999, and others) to the situation where {et} is a long–range de-
pendent linear process. Unlike these existing results, our theorem shows
that random functions, the limiting distribution of the random weighted
quadratic forms can be either a standard normal distribution or a chi-square
distribution.

(ii) The related results on quadratic forms of long–range dependent time
series can be found in Fox and Taqqu (1987), Avram (1988), Giraitis and Sur-
gailis (1990), Giraitis and Taqqu (1997), Ho and Hsing (1996, 1997, 2003),
Hsing and Wu (2004), and others. Since the weighted coefficients in these
existing results (see Hsing and Wu 2004, for example) are non–random and
independent of n, they are not applicable for the establishment of Theo-
rems 2.3 and 2.4. Both Theorems 2.3 and 2.4 therefore provide some sorts
of extensions of various existing results.

3. Extensions and applications. This section show that the leading
term of many existing kernel–based test statistics may be represented by
a quadratic form similar to (1.5). Theorems 2.1-2.4 suggest the feasibility
of the corresponding results based on the long-range dependent errors for
these existing test statistics. In order to avoid some repetitious arguments,
we only state some main steps. Further details will be omitted.

3.1. Existing kernel–based tests for conditional mean. A very simple idea
for constructing a kernel test for H0 is to compare the L2-distance between
a nonparametric kernel estimator of m(·) and a parametric counterpart. Let
us denote the nonparametric estimator of m(·) by m̂(·) as in (2.1) and the
parametric estimator of mθ0(·) by m̃

θ̃
(·) given by

(3.1) m̃
θ̃
(x) =

∑n
i=1Kh(x−Xi)mθ̃

(Xi)∑n
i=1Kh(x−Xi)

,

where θ̃ is a consistent estimator of θ0 as defined before andKh(·) = 1
hK

( ·
h

)
.

Härdle and Mammen (1993) proposed a test statistic of the form

Ln1(h) = n
√
h

∫ {
m̂(x)− m̃

θ̃
(x)
}2
w(x)dx,(3.2)

where w(x) is a non-negative weight function. Recall the model (1.4). Under
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H0, it is readily seen that

Ln1(h) = n
√
h

∫ ([∑n
i=1Kh(x−Xi)

(
ei +mθ0(Xi)−m

θ̃
(Xi)

)]2
n2f̂2(x)

)
w(x)dx

= n
√
h

n∑
i=1

n∑
j=1

(∫
Kh(x−Xi)Kh(x−Xj)

n2f̂2(x)
w(x)dx

)
eiej

+ remainder term,(3.3)

in which the leading term is similar to (1.5). In a related work, Kreiss,
Neuman and Yao (2002) proposed the following simplified version of Ln1(h):

Ln2(h) = n
√
h

∫ ( n∑
i=1

Kh(x−Xi)
[
Yi −m

θ̃
(Xi)

])2

w(x)dx.(3.4)

As an alternative to Ln1(h), Horowitz and Spokoiny (2001) established a
test statistic based on a discretised version of the form

(3.5) Ln3(h) =
n∑

i=1

(
m̂(Xi)− m̃

θ̃
(Xi)

)2
,

in which {Xi} is only a sequence of fixed designs. In order to avoid intro-
ducing a secondary estimation procedure required for estimating σ2(·) when
the variance function is not constant, Chen, Härdle and Li (2003) construct
a test statistic based on empirical likelihood ideas. As shown in their paper,
the first–order approximation of their test is asymptotically equivalent to

(3.6) Ln4(h) = nh

∫ [
m̂(x)− m̃

θ̃
(x)
]2
w(x)dx.

It can be easily shown that all statistics Lnj(h), j = 2, 3, 4 have a similar
decomposition like (3.3) in which the leading term is similar to (1.5).

3.2. Testing conditional mean with conditional variance. Since the main
objective of this paper is to specify parametrically the form of m(·), we
have assumed that the variance or conditional variance σ2 is an unknown
parameter. As can be seen from (1.5), we may easily replace et by et =
σ(Xt)εt with {εt} being a sequence of long–range dependent linear process.
In this case, the leading term of M̂n(h) in (2.2) becomes

(3.7) Ln5(h) =
n∑

s=1

n∑
t=1, 6=s

εs σ(Xs) K
(
Xs −Xt

h

)
σ(Xt) εt,
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12 J. GAO AND Q. WANG

which is also a quadratic form of (Xt, εt).

3.3. Testing conditional mean in additive form. WhenXt = (Xt1, · · · , Xtd)
in (1.2) is a vector of d–dimensional designs, we may consider a hypothesis
problem of the form
(3.8)

H ′
0 : m(x) =

d∑
i=1

miθ0(xi) versus H ′
1 : m(x) =

d∑
i=1

miθ1(xi) + cn

d∑
i=1

∆i(xi),

where each miθ0(·) is a known function indexed by θ0 and ∆i(·) is also a
known function over IR. Various additive models have been discussed in
the literature (see Fan, Härdle and Mammen 1998; Sperlich, Tjøstheim and
Yang 2002; Gao, Lu and Tjøstheim 2006 for example). The construction of
M̂n(h) suggests a test statistic of the form:

(3.9) Ln6(h) =
n∑

j=1

n∑
i=1

Ỹi

d∏
k=1

K

(
Xik −Xjk

h

)
Ỹj ,

for the hypothesis (3.8), where Ỹi =
(
Yi −

∑d
k=1mkθ̃0

(Xik)
)
. Clearly Ln6(h)

also has a leading term that is similar to (1.5).

As mentioned before, some corresponding results of Theorems 2.1–2.4 may
be established accordingly for Lni(h), 1 ≤ i ≤ 6. Instead of providing some
repetitious arguments and statements about such corresponding results, in
Section 4 below we propose using simulation and implementation procedures
to ensure that the main theory and the proposed test statistic established
in Section 2 are applicable in practice.

4. Simulation and implementation procedures. In this section, we
are interested in the implementation of the proposed test statistics. To do
so, we need to develop our simulation procedure for the choice of a simulated
critical value and then propose an estimation procedure for the parameter
α involved in the proposed test. Section 4.1 establishes a novel simulation
procedure for implementing our test in practice. An estimation procedure
for α is briefly mentioned in Section 4.2. Section 4.3 gives an example of
implementation to check whether the theory works well in practice.

4.1 Simulation scheme and asymptotic properties. In the construction of
simulation, the covariance structure γλ(k) = E[etet+k] needs to be replaced
by an estimated version γ

λ̃
(k) with λ̃ = (α̃, η̃) being a pair of consistent

estimators of the pair λ = (α, η). We assume the existence of λ̃ at the
moment. Its construction will be briefly mentioned at the end of this section.
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Simulation Procedure 4.1: Let Tn(h) be either L̂1n(h), L̂2n(h) or
L̂3n(h) as defined in (2.4), (2.5) or (2.6). Let lr (0 < r < 1) be the 1 − r
quantile of the exact finite–sample distribution of Tn(h). Because lr may not
be evaluated in practice, we suggest an approximate r–level critical value l∗r
to replace it by using the following bootstrap procedure:

• Generate Y ∗
i = m

θ̃
(Xi) + e∗i for 1 ≤ i ≤ n, where the original sam-

ple Xn = (X1, · · · , Xn) acts in the resampling as a fixed design even
when the Xi are random, {e∗i } is a sequence of stationary LRD Gaus-
sian errors drawn from a stationary LRD Gaussian process with the
covariance structure being given by γ

λ̃
(k) ∼ η̃ |k|−α̃.

• Use the data set {(Xi, Y
∗
i ) : 1 ≤ i ≤ n} to estimate θ̂ by θ̃∗ and

to compute T̂ ∗n(h), where T̂ ∗n(h) is the corresponding version of Tn(h)
under H0 with {(Xi, Yi) : 1 ≤ i ≤ n} and (θ0, θ̂) being replaced by
{(Xi, Y

∗
i ) : 1 ≤ i ≤ n} and (θ̂, θ̃∗).

• Repeat the above step M times and produce M versions of T̂ ∗n(h) de-
noted by T̂ ∗n,m(h) for m = 1, 2, . . . ,M . Use the M values of T̂ ∗n,m(h)
to construct their empirical distribution function. The bootstrap dis-
tribution of T̂ ∗n(h) given Wn = (X1, · · · , Xn;Y1, · · · , Yn) is defined by
P ∗
(
T̂ ∗n(h) ≤ x

)
= P

(
T̂ ∗n(h) ≤ x|Wn

)
. Then let l∗r (0 < r < 1) satisfy

P ∗
(
T̂ ∗n(h) ≥ l∗r

)
= r and estimate lr by l∗r .

Remark 4.1. In the simulation procedure, we generate a sequence of
bootstrap resamples {e∗i } from a stationary Gaussian process with LRD
even though {ei} may not be Gaussian. As discussed in Li and Wang (1998),
Bühlmann (2002), Franke, Kreiss and Mammen (2002), Horowitz (2003) and
others, we may also use a wild bootstrap to generate a sequence of resamples
for {e∗i }. Since the proposed simulation procedure works well in Section 5
below, we avoid further discussions in such issues.

To investigate asymptotic properties of l∗r and T̂ ∗n(h), we need the follow-
ing assumption.

Assumption 4.1. (i) Let H0 be false. Assume that either Assumption 2.5
or Assumption 2.6 holds with θ0 replaced by θ1. (ii) limn→∞ nαhα− 1

2 c2n = ∞
for 1

2 < α < 1 and 0 <
∫ 1
0 ∆2(x)dx <∞, where cn and ∆(x) are as defined

in (1.3).

Assumption 4.2. Let H0 be true. Assume that either Assumption 2.5 or
Assumption 2.6 holds in probability with respect to the joint distribution of
Wn when θ0 is replaced by θ̃∗.

Assumption 4.1 requires some conditions under the alternative to ensure
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14 J. GAO AND Q. WANG

that Tn(h) has some power. Assumption 4.2 is the bootstrap version of
either Assumption 2.5 or 2.6. We now have the following theorem. Its proof
is similar to Theorems 2.1 and 2.2 and will be outlined in Appendix B.

Theorem 4.1. (i) If, in addition to the conditions of either Theorem 2.1
or Theorem 2.2, Assumption 4.2 holds, then under H0,

(4.1) sup
x∈R

∣∣∣P ∗(T̂ ∗n(h) ≤ x)− P (Tn(h) ≤ x)
∣∣∣ = oP (1)

and

(4.2) lim
n→∞

P (Tn(h) > l∗r) = r.

(ii) If, in addition to the conditions of either Theorem 2.1 or Theorem
2.2, Assumptions 4.1–4.2 hold, then under H1

(4.3) lim
n→∞

P (Tn(h) > l∗r) = 1.

Theorem 4.1 shows that the bootstrap approximation works well asymp-
totically. For the independent errors case, Li and Wang (1998) established
a result similar to (4.1). To the best of our knowledge, Theorem 4.1 is new
in this kind of long–range dependent time series specification.

Note that l∗r is a function of h. A natural problem raised in simulation is
the choice of a suitable bandwidth h. To solve this problem, define the size
and power functions of Tn(h) as

(4.4) γn(h) = P (Tn(h) > l∗r |H0 true) and βn(h) = P (Tn(h) > l∗r |H0 false) .

Clearly, a reasonable selection procedure for a suitable bandwidth is such
that the size function γn(h) is controlled by a significance level, but the
power function βn(h) is maximized over such bandwidths that make γn(h)
is controllable. This suggests using an optimal bandwidth of the form

(4.5) ĥtest = arg max
h∈Hn

βn(h) with Hn = {h : γn(h) ≤ r} .

Theoretically, we have not been able to study ĥtest asymptotically. In
Example 4.1 below, we instead combine the proposed Simulation Procedure
4.1 and the Implementation 4.1 below to numerically approximate ĥtest.

Implementation Procedure 4.1: Use l̂∗r = l∗r(ĥtest) as the simulated
critical value to compute the sizes and power values of Tn(ĥtest).

4.2. LRD parameter estimation. As briefly mentioned at the beginning
of Section 4, we need to estimate λ = (α, η) when λ is unknown. We now
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give an outline of our estimation procedure. Let ui = Yi−mθ̃
(Xi), ωj = 2πj

n

and Iu(ωj) = 1
2πn

∣∣∣∑n
s=1 use

isωj

∣∣∣2 for 1 ≤ j ≤ N , where N is the number

of frequencies and is chosen as the largest integer part of C n
4
5 with some

positive C > 0. In practice, a data–driven choice of N may be used as
proposed in Robinson (1994b). Introduce an objective function of the form

(4.6) Γu(λ) =
1
N

N∑
j=1

(
log (φ(ωj ;λ) +

Iu(ωj)
φ(ωj ;λ)

)
,

where φ(ω;λ) is the spectral density function of {ui} satisfying as ω ↓ 0,

(4.7) φ(ω;λ) ∼ η

2Γ(α) sin
(

1−α
2 π

) 1
ω1−α

.

We then estimate λ by λ̃ = arg minλ Γu(λ). Define

(4.8) Σ =
1
4π

∫ π

−π

(
∂ log(φ(ω;λ)

∂ω

)(
∂ log(φ(ω;λ)

∂ω

)τ

dω.

The following Theorem 4.2 establishes an asymptotic consistency result for
λ̃. Its proof will be briefly mentioned in Appendix B.

Theorem 4.2. Assume that the conditions of either Theorem 2.1 or The-
orem 2.2 except Assumption 2.2 hold. If Σ−1 exists, then

(4.9) ||λ̃− λ|| = oP

(
log n/n2/5

)
.

Theorem 4.2 shows that Assumption 2.2 may be justified for wn = n2/5/ log n.

4.3. An example of implementation. In this section, we implement the pro-
posed simulation procedure to show how to assess the finite–sample proper-
ties of the proposed test Tn(h) through using a simulated example.

Example 4.1. Consider a linear model of the form

(4.10) Yi = α0 + β0Xi + ei, t = 1, · · · , n,

where (α0, β0) is a pair of unknown parameters to be estimated, {Xi} is
a sequence of i.i.d. random designs drawn from uniform U[0, 1], and {ei}
is a sequence of dependent errors given by ei =

∑∞
j=−∞ bj ui−j , in which

{uk : k = 0,±1, · · · } is a sequence of independent observations drawn from
N(0, 1), and bs = c(α) |s|−

1+α
2 for 1

2 < α < 1, in which c(α) > 0 is chosen
such that E[e2i ] = 1.
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16 J. GAO AND Q. WANG

The parameters α0 and β0 are estimated by the ordinary least squares
estimators α̃0 and β̃0. The parameter α is estimated using (4.7). Throughout

this section, we use the standard Normal kernel function K(x) = 1√
2π
e−

x2

2 .
Since the conditions of Theorem 2.1(i) are satisfied, we can now implement

L̂1n(h) in this example. In order to compute the sizes and power values of
L̂1n(h), we generate {Yi} from

(4.11) H0 : Yi = α0 + β0Xi + ei or H1 : Yi = α0 + β0Xi + γ0X
2
i + ei,

where the parameters (α0, β0) are estimated by (α̃0, β̃0) under H0, and the
parameters (α0, β0, γ0) is estimated by the ordinary least squares estimators
(α̃0, β̃0, γ̃0) under H1. When we generate {Yi}, the initial values are α0 =
β0 ≡ 1 and γ0 6= 0 is to be chosen for computing power values in various
cases.

We first apply both the Simulation Procedure 4.1 and the Implementation
Procedure 4.1 to find the optimal bandwidth ĥtest. To assess the variability
of both the size and power with respect to various bandwidth values, we then
consider a set of bandwidth values of the form: hi = i

2 ĥtest for 1 ≤ i ≤ 5.
In order to examine the finite sample properties of the maximized version

of the form:

(4.12) Lmax = max
h=hi:1≤i≤5

L̂1n(h),

we also produce the simulated critical value for each case. To simplify the
notation, we introduce

(4.13) Ltest = L̂1n(h2).

In the implementation of the Simulation Procedure 4.1, we consider cases
where the number of replications of was M = 1000, each with B = 250
number of bootstrapping resamples, and the simulations were done for data
sets of sizes n = 250, 500 and 750. The corresponding simulated critical
values, sizes and power values for Lmax and Ltest are given in Tables 4.1 and
4.2 below.

Table 4.1. Simulated size values at the 5% level

Observation Lmax Ltest

n size critical value size critical value
250 0.099 2.087 0.040 1.787
500 0.095 2.091 0.057 1.591
750 0.084 1.928 0.048 1.673
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Table 4.2. Simulated power values at the 5% level

n = 250 n = 500 n = 750
γ0 Lmax Ltest Lmax Ltest Lmax Ltest

0.10 0.132 0.132 0.122 0.123 0.237 0.236
0.20 0.271 0.274 0.538 0.540 0.741 0.743
0.30 0.574 0.576 0.829 0.832 0.884 0.885
0.40 0.814 0.815 0.897 0.901 0.987 0.990

Table 4.1 shows that the sizes of Ltest tend to converge to 5% when n
increases from 250 to 750. As expected, the power values of the maximized
version Lmax are always larger than the corresponding sizes of Ltest. With
respect to power values, our finite sample results in Table 4.2 show that the
sizes of Ltest in almost all cases are greater than those of Lmax. This shows
that the selection criterion proposed in (4.4) works well numerically.

5. Conclusion. We have proposed a new nonparametric test for the
parametric specification of the mean function of long–range dependent time
series. Asymptotic distributions of the proposed test for both the fixed and
random design cases have been established. In addition, we have also pro-
posed both the Simulation Procedure 4.1 and the Implementation Procedure
4.1 to implement the proposed test in practice. The finite–sample results
show that the proposed test as well as the two procedures are practically
applicable and implementable. Further topics including how to represent
ĥtest explicitly are left for future research.
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Appendix A. This appendix provides technical details for the asymp-
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totic theory in Section 2. Appendix A.1 establishes several necessary pre-
liminary lemmas. Appendix A.2 gives the proofs of Theorem 2.3 and 2.4.
Theorems 2.1 and 2.2 are proved in Appendix A.3. Throughout the section,
we denote constants by C,C1, ..., which may have different values at each
appearance.

A.1. Technical lemmas.

Lemma A.1. Let {et} be a linear process defined by et =
∑∞

j=−∞ ψjηt−j , where
ηj are i.i.d. random variables with E[η1] = 0, E[η2

1 ] = 1 and E[η4
1 ] < ∞, and

γ(0) <∞ where γ(k) = E[etek+t] =
∑∞

j=−∞ ψjψj+k. Then, for all j, k, s and t,

E[ej ek es et] = (Eη4
1 − 3)

∞∑
m=−∞

ψj−mψk−mψs−mψt−m

+γ(j − k)γ(s− t) + γ(j − s)γ(k − t) + γ(j − t)γ(k − s).(A.1)

In particular, we have that E
[
e41
]
<∞,

|E
[
e2je

2
k

]
− γ2(0)| ≤ C γ2(j − k),(A.2) ∣∣∣E [e2j ek es

] ∣∣∣ ≤ C [γ(j − k) + γ(j − s) + γ(k − s)] ,(A.3)

for all j 6= k 6= s, and if in addition ψk ≥ 0, then for all j, k, s and t,∣∣E [(ejej+s − γ(s)
)(
ekek+t − γ(t)

)] ∣∣
≤ C γ(j − k)γ(j − k + s− t) + γ(j − k + s)γ(j − k − t).(A.4)

Proof. We only prove (A.1). By (A.1), others are simple. For all j, k, s and t,
we may write

ej ek es et

∞∑
m,n,g,l=−∞

ψj−mψk−nψs−gψt−l ηm ηn ηg ηl.

Recall that ηk are i.i.d. random variables with E[η1] = 0, E[η2
1 ] = 1 and E[η4

1 ] <∞.
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Routine calculations imply that

E[ej ek es et] = Eη4
1

∞∑
m=−∞

ψj−mψk−mψs−mψt−m

+
∞∑

m,g=−∞
m 6=g

ψj−mψk−mψs−gψt−g +
∞∑

m,g=−∞
m 6=g

ψj−mψk−gψs−mψt−g

+
∞∑

m,g=−∞
m 6=g

ψj−mψk−gψs−gψt−m

= (Eη4
1 − 3)

∞∑
m=−∞

ψj−mψk−mψs−mψt−m

+γ(j − k)γ(s− t) + γ(j − s)γ(k − t) + γ(j − t)γ(k − s).(A.5)

This yields (A.1) and the proof of Lemma A.1 is complete.

Lemma A.2. Let 1/2 < α < 1 and 0 < β < α − 1/2. Then for all k ≥ 3 and as
n→∞,

In =
1

nk/2

∫ n

1

∫ n

1

· · ·
∫ n

1

|x1 − x2|−α|x2 − x3|β−1 · · ·

|x2k−1 − x2k|−α|x2k − x1|β−1 dx1dx2 · · · dx2k → 0.(A.6)

Proof. Let α(x) and β(x) be integrable real symmetric functions on [−π, π]
having the Fourier series:

α(x) ∼ α0 +
∞∑

k=1

k−α cos(kx) and β(x) ∼ β0 +
∞∑

k=1

kβ−1 cos(kx).

where α0 = 1
π

∫ π

0
α(x)dx and β0 = 1

π

∫ π

0
β(x)dx. Let Rn be a matrix with entries

(Rn)j,j = α0 and (Rn)j,k = |j − k|−α for j 6= k, and An be a matrix with entries
(An)j,j = β0 and (An)j,k = |j − k|β−1 for j 6= k. Let Tr(M) denote the trace of
matrix M . Recall 1/2 < α < 1 and 0 < β < α − 1/2. It is readily seen that, for
each δ > 0, as x→ 0,

α(x) = O(|x|α−1−δ) and β(x) = O(|x|−β−δ).

Now, by noting that α(x) and β(x) have the Fourier coefficients:

r(0) = α0, r(k) = |k|−α, |k| ≥ 1, and a(0) = β0, a(k) = |k|β−1, |k| ≥ 1,

respectively, it follows easily from Theorem 1 of Fox and Taqqu (1987) (The reg-
ularity condition in Theorem 1 of Fox and Taqqu 1987 is not necessary. This has
been mentioned in Giraitis and Surgailis 1990) that for all k ≥ 3,

In ∼ 1
nk/2

n∑
j1,j2,...,j2k=1

r(j1 − j2) a(j2 − j3) · · · r(j2k−1 − j2k) a(j2k − j1)

=
1

nk/2
Tr(RnAn)k ≤ C max{n−1/2, o

(
n(β−α+1/2)k+ε

)
}(A.7)
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for every arbitrarily small ε > 0. This implies that In → 0 as 0 < β < α− 1/2, and
thus completes the proof of Lemma A.2.

In Lemma A.3 below, let {Xi, i ≥ 1} be a sequence of i.i.d. random variables
with density function f(x) and set gn(Xi, Xj) = K

(
Xi−Xj

h

)
− E

[
K
(

Xi−Xj

h

)]
,

(A.8)
g1n(Xi) = E

[
gn(Xi, Xj)|Xi

]
, g2n(Xi, Xj) = gn(Xi, Xj)− g1n(Xi)− g1n(Xj).

Lemma A.3. Let K(x) satisfy the Assumption 2.3(i). If f(x) is a bounded and
uniformly continuous function on IR, then

E
[
K
[
(X1 −X2)/h

]]
∼ c1 h,(A.9)

E
[
g2
2n(X1, X2)

]
∼ E

[
K2
[
(X1 −X2)/h

]]
∼ c2 h,(A.10)

E
[
g4
2n(X1, X2)

]
∼ E

[
K4
[
(X1 −X2)/h

]]
∼ c4 h,(A.11)

where cj =
∫∞
−∞Kj(s)ds

∫∞
−∞ f2(y)dy for j = 1, 2, 4. Furthermore,

E
[
g2
1n(X1)

]
∼ d1 h

2,(A.12)

E [g2n(X1, X3) g2n(X1, X4) g2n(X2, X3) g2n(X2, X4)] ∼ d2 h
3,(A.13)

where

d1 =
∫ ∞

−∞

[
f(x)−

∫ ∞

−∞
f2(y)dy

]2
f(x)dx,(A.14)

d2 =
∫ ∫ ∫

K(s)K(t)K(x+ s)K(x+ t)dsdtdx
∫ ∞

−∞
f4(y)dy.(A.15)

Proof. We only prove (A.13), as the others are similar. Write

η(s, t) = E

[
K

(
X1 −X2

h

)]
+ g1n(s) + g1n(t).

Recall that g1n(s) = E [gn(X1, X2)|X1 = s] and f(x) is a bounded and uniformly
continuous density function. It is readily seen that, for all (s, t) ∈ IR2,

|η(s, t)| ≤
∫ ∫

K
[
(x− y)/h

]
f(x)f(y)dxdy

+
∫ ∞

−∞

{
K
[
(s− y)/h

]
+K

[
(t− y)/h

]}
f(y)dy

≤ 3h sup
x
f(x).(A.16)
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This implies that, uniformly for (x, y) on IR2,

f(x, y) ≡ E [g2n(X1, x) g2n(X1, y)]

=
∫ ∞

−∞

[
K
(s− x

h

)
− η(s, x)

] [
K
(s− y

h

)
− η(s, y)

]
f(s)ds

=
∫ ∞

−∞
K
(s− x

h

)
K
(s− y

h

)
f(s) ds+R1n

= h

∫ ∞

−∞
K(s)K

(x− y

h
+ s
)
f(x+ sh) ds+R1n,(A.17)

where

|R1n| ≤
∫ ∞

−∞
|η(s, x)|K

(s− y

h

)
f(s) ds+

∫ ∞

−∞
|η(s, y)|K

(s− x

h

)
f(s) ds

+
∫ ∞

−∞
|η(s, x)| |η(s, y)| f(s) ds ≤ 15h2 sup

x
f2(x).(A.18)

It is now readily seen that

E [g2n(X1, X3) g2n(X1, X4) g2n(X2, X3) g2n(X2, X4)] = Ef2(X1, X2)

= h2

∫ ∫
K(s)K(t)E

[
K
(X1 −X2

h
+ s
)
K
(X1 −X2

h
+ t
)

× f(X1 + sh)f(X1 + th)
]
dsdt + R2n

∼ h3

∫ ∫ ∫
K(s)K(t)K(x+ s)K(x+ t)dsdtdx

∫ ∞

−∞
f4(y)dy,(A.19)

where we have used the facts: under the conditions on f(x) and K(x),

E
[
K
(X1 −X2

h
+ s
)
K
(X1 −X2

h
+ t
)
f(X1 + sh)f(X1 + th)

]
=

∫ ∫
K
(x− y

h
+ s
)
K
(x− y

h
+ t
)
f(x+ sh)f(x+ th)f(x)f(y)dxdy

∼ h

∫ ∞

−∞
K(x+ s)K(x+ t)dx

∫ ∞

−∞
f4(y)dy,(A.20)

and

|R2n| ≤ 30h3

∫ ∞

−∞
K(s)E

[
K
(X1 −X2

h
+ s
)
f(X1 + sh)

]
ds

+ E
[
R2

1n

]
= O(h4).

This proves (A.13), and hence completes the proof of Lemma A.3.

Our next lemma establishes a Berry–Esseen–type bound for random weighted
U–statistics. This lemma is interesting and useful in itself.
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Lemma A.4. Let {εk, k ≥ 1} be a sequence of i.i.d. random variables. Let {anij}
be a sequence of constants with anij = anji for all n ≥ 1. Let {ϕn(x, y)} be a
sequence of symmetric Borel-measurable functions such that for all n ≥ 1,

(A.21) E
[
ϕ2

n(ε1, ε2)
]
> 0, E [ϕn(ε1, ε2) | ε1] = 0.

Then there exists an absolute constant A > 0 such that

sup
x

∣∣P (B−1
n Sn ≤ x

)
− Φ(x)

∣∣ ≤ AB−4/5
n

(
A1nEϕ

4
n(ε1, ε2) +A2n Ln

)1/5
,

where Sn =
∑

1≤i<j≤n anij ϕn(εi, εj), B2
n =

∑
1≤i<j≤n a2

nijEϕ
2
n(ε1, ε2),

A1n =
n∑

i=2

( i−1∑
j=1

a2
nij

)2

, A2n =
n−1∑
i=2

n∑
j=i+1

( i−1∑
k=1

anik anjk

)2

,(A.22)

Ln = E
[
ϕn(ε1, ε3)ϕn(ε1, ε4)ϕn(ε2, ε3)ϕn(ε2, ε4)

]
.(A.23)

Proof. In the proof of Lemma A.4, we omit the subscripts n in anij and ϕn for
convenience. Set, for i = 2, 3, ..., n,

Zi =
i−1∑
k=1

aikϕ(εi, εk), Fi = σ(ε1, ..., εi)

It is readily seen that Sn =
∑n

i=2 Zi and E(Zi | Fi−1) = 0, i = 2, 3, ..., n, by (A.21).
This implies that {Sj ,Fj , 2 ≤ j ≤ n} forms a martingale sequence. Hence it follows
from Theorem 3.9 with δ = 1 in Hall and Heyde (1980) that there exists an absolute
constant A > 0 such that

(A.24) sup
x

∣∣P (B−1
n Sn ≤ x

)
− Φ(x)

∣∣ ≤ AB−4/5
n M1/5

n ,

where U2
n =

∑n
i=2 Z

2
i and Mn =

∑n
i=2E[Z4

i ] + E(U2
n −B2

n)2.
Next we will show that

(A.25) Mn ≤ 10A1nEϕ
4
n(ε1, ε2) + 4A2n Ln,

and then (A.22) follows immediately. In fact, by noting B2
n = E[U2

n],

(A.26) Mn =
n∑

i=2

E[Z4
i ] + EU4

n −B4
n = 2

n∑
i=2

E[Z4
i ] + 2

∑
2≤i<j≤n

E
[
Z2

i Z
2
j

]
−B4

n.

Since the moments E
[
ϕ(εi, εk)ϕ(εi, εk1)ϕ(εj , εl)ϕ(εi, εl1)

]
, in which k, k1, l, l1 ap-

pear only once (not equal to i and j), always equal zero in view of (A.21), we obtain
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readily that, for all i < j,

E
[
Z2

i Z
2
j

]
=

i−1∑
k,k1=1

j−1∑
l,l1=1

aikaik1ajlajl1E
[
ϕ(εi, εk)ϕ(εi, εk1)ϕ(εj , εl)ϕ(εj , εl1)

]
=

i−1∑
k=1

j−1∑
l=1

a2
ika

2
jlE
[
ϕ2(εi, εk)ϕ2(εj , εl)

]
+ 2

i−1∑
k,l=1
k 6=l

aikailajkajl E
[
ϕ(εi, εk)ϕ(εi, εl)ϕ(εj , εk)ϕ(εj , εl)

]

+ 2
i−1∑
k=1

a2
ikajiajk E

[
ϕ2(εi, εk)ϕ(εj , εi)ϕ(εj , εk)

]
= R1ij +R2ij +R3ij ,(A.27)

where

R1ij =
i−1∑
k=1

j−1∑
l=1
l 6=k

a2
ika

2
jl

(
E
[
K2(ε1, ε2)

])2
R2ij = 2

i−1∑
k,l=1

aikailajkajl E
[
ϕ(ε1, ε3)ϕ(ε1, ε4)ϕ(ε2, ε3)ϕ(ε2, ε4)

]
|R3ij | ≤

i−1∑
k=1

a2
ik

(
3a2

jk + 2|ajiajk|
)
E
[
ϕ4(ε1, ε2)

]
≤ 4

i−1∑
k=1

a2
ik

(
a2

jk + a2
ji

)
E
[
ϕ4(ε1, ε2)

]
.

Similarly, for all 2 ≤ i ≤ n,

E[Z4
i ] =

i−1∑
j=1

a4
ijE[ϕ4(ε1, ε2)] +

∑
1≤j 6=k≤i−1

a2
ija

2
ikE
[
ϕ2(ε1, ε2)ϕ2(ε1, ε3)

]
≤

( i−1∑
j=1

a2
ij

)2

E
[
ϕ4(ε1, ε2)

]
.(A.28)

By virtue of (A.27) and (A.28), it is readily seen that
∑n

i=2E
[
Z4

i

]
≤ A1nE

[
ϕ4(ε1, ε2)

]
and

2
∑

2≤i<j≤n

E
[
Z2

i Z
2
j

]
≤ B4

n + 4A2nLn + 8A1nE
[
ϕ4(ε1, ε2)

]
.

Taking these estimates back into (A.26), we obtain the inequality (A.25). The
proof of Lemma A.4 is now complete.
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Lemma A.5. Let {εk, k ≥ 1} be a sequence of i.i.d. random variables with Eε1 = 0
and Eε61 < ∞. Let {anij} be a sequence of real numbers with anij = anji and
||A||2 ≡

∑∞
i,j=−∞ a2

nij < ∞ for all n ≥ 1. If there exists an absolute constant

b21 > 0 such that 1− V 2

||A||2 ≥ b21 with V 2 =
∑∞

i=−∞ a2
nii, then

sup
x

∣∣∣P (Sn/Bn ≤ x
)
− Φ(x)

∣∣∣ ≤ C

{
Tr(A4)

}1/4

||A||
,(A.29)

where Sn =
∑∞

i,j=−∞ anij (εi εj − E[εiεj ]) , B2
n = 2(||A||2 − V 2)µ2

2 + V 2(µ4 − µ2
2)

with µj = E|ε1|j, and A is the infinite matrix with anij as its (i, j)th element.

The proof of Lemma A.5 follows immediately from Theorem 1.1 of Götze and
Tikhomirov (2002), together with (2.4) and Remark 1.8 in the same paper. We omit
the details.

Lemma A.6. Let K(x) be a non-negative symmetric integrable function satisfying
K(x) = O

[
(1 + |x|1−β)−1

]
, where 0 < β ≤ α− 1/2 and 1/2 < α < 1. Then,

∆0 ≡
∫ ∞

0

x−αK(x)dx <∞,(A.30)

Aα ≡
∫ ∞

0

∫ ∞

0

∫ ∞

0

x−α y−α
[
I1(x, y, w) + I2(x, y, w)

]
dxdydw <∞,(A.31)

and as h→ 0,

∆1 ≡
∫ 1/h

0

∫ 1/h

0

∫ 1/h

x

x−α y−α max{w, y}
[
I1(x, y, w)

+ I2(x, y, w)
]
dxdydw = o(1/h),(A.32)

where I1(x, y, w) = K(w)K(x+ y − w) and I2(x, y, w) = K(w − x)K(w − y).

Proof. The proof of (A.30) is easy. We now prove (A.31) and (A.32). Note that
β − 2α < −α− 1/2 < −1, and for any u ∈ IR,

(A.33)
∫ ∞

0

K(w)K(w + u) dw ≤ C/(1 + |u|1−β).

It is readily seen that

Aα ≤
∫ ∞

0

∫ ∞

0

∫ ∞

0

x−α y−αK(w)
[
K(w + x− y) +K(w − x− y)

]
dxdydw

≤ C + C1

∫ ∞

1

∫ ∞

1

x−α y−α dxdy

1 + |x− y|1−β

≤ C + C2

∫ ∞

1

xβ−2α dx <∞,(A.34)
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which implies (A.31). Similarly, it follows from (A.33) and 1 + β − 2α < 0 that

∆1 ≤ C +
∫ 1/h

1

∫ 1/h

1

∫ 1/h

1

x−α y−α (w + y)K(w)

× [K(w + x− y) +K(w − x− y)] dxdydw

≤ C + C1 (1/h)β

∫ 1/h

1

∫ 1/h

1

x−α y−αdxdy

+ C2

∫ 1/h

1

∫ 1/h

1

x−α y1−α dxdy

1 + |x− y|1−β

≤ C + C3 (1/h)2−2α+β = o(1/h),(A.35)

which yields (A.32). This also completes the proof of Lemma A.6.

A.2. Proofs of Theorems 2.3 and 2.4.

Proof of Theorem 2.3. We may write∑
1≤i 6=j≤n

ei ej

[
K

(
(Xi −Xj)

h

)]
= Q̃

(1)
2n + Q̃

(2)
2n + Q̃

(3)
2n ,

where

Q̃
(1)
2n =

∑
1≤i 6=j≤n

ei ej E

[
K

(
(Xi −Xj)

h

)]
,(A.36)

Q̃
(2)
2n =

∑
1≤i 6=j≤n

ei ej

[
g1n(Xi) + g1n(Xj)

]
,(A.37)

Q̃
(3)
2n =

∑
1≤i 6=j≤n

ei ej g2n(Xi, Xj),(A.38)

where g1n(Xi) and g2n(Xi, Xj) are defined as in (A.8). Theorem 2.3 now follows
easily if we prove: whenever h→ 0,

(A2αn
2−α h

)−1
Q̃

(1)
2n →D χ2(1),(A.39)

Q̃
(2)
2n = oP

(
max

{
n2−α h, n

√
h
})

,(A.40)

and if in addition nh→∞, then

(A.41)
(
A1α n

√
h
)−1

Q̃
(3)
2n →D N(0, 1).

Actually, if h→ 0 and
√
hn1−α →∞, then Q̃(2)

2n + Q̃
(3)
2n = oP

(
n2−αh

)
by virtue

of (A.40) and (A.41). This, together with (A.39), yields Theorem 2.3(ii). Similarly,
if
√
hn1−α → 0 and nh→∞, then Q̃(1)

2n + Q̃
(2)
2n = oP

(
n
√
h
)

by virtue of (A.39) and
(A.40). This, together with (A.41), yields Theorem 2.3(i).
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We now prove (A.39)-(A.41). (A.39) first. By (A.9),

(
A2αn

2−α h
)−1

Q̃
(1)
2n = (1 + oP (1))

[( 1
dn

n∑
j=1

ej

)2

− 1
d2

n

n∑
j=1

e2j

]
,

where d2
n = 2η

(1−α)(2−α)n
2−α. It is readily seen that 1

d2
n

∑n
j=1 e

2
j → 0 a.s. by the

stationary ergodic theorem. This, together with (A.42) and the continuous mapping
theorem, yields that (A.39) will follow if we prove

1
dn

n∑
j=1

ej →D N(0, 1).(A.42)

In fact, by letting νjn =
∑n

t=1 ψt−j and recalling γ(k) =
∑∞

j=−∞ ψjψj+k ∼ η|k|−α,
simple calculations show that,

∑n
j=1 ej =

∑∞
j=−∞ νjnηj ,

∞∑
j=−∞

ν2
jn =

n∑
i,j=1

γ(i− j) = nγ(0) + 2
n−1∑
k=1

(n− k)γ(k) ∼ d2
n,(A.43)

and maxj |νjn| ≤
√
nγ1/2(0) = o(dn). Equation (A.42) now follows from Lemma 1

of Robinson (1997). This proves (A.39).
Second, we prove (A.40). In fact, by (A.12), independence of ei and Xi and (A.3),

E
(
Q̃

(2)
2n

)2

= E
( n∑

i=1

g1n(Xi) ei

∑
1≤j 6=i≤n

ej

)2

= [d1 h
2 + o(h2)]

( ∑
1≤i 6=j≤n

E
[
e2i e

2
j

]
+

∑
1≤i 6=k 6=j≤n

E
[
e2i ejek

] )
≤ C h2

[
n2Ee41 + n

n∑
i,j=1

γ(i− j)
]
≤ C h2

(
n2 + n3−α

)
.

Thus, equation (A.40) follows immediately from the Markov’s inequality.
Finally, we prove (A.41). Write

B2
n =

∑
1≤i<j≤n

e2i e
2
j E
[
g2
2n(Xi, Xj)

]
=

1
2
E
[
g2
2n(X1, X2)

]
·

( n∑
i=1

e2i

)2

−
n∑

i=1

e4i

 .
By (A.10) and the stationary ergodic theorem which yields that 1

n

∑n
i=1 e

2
i →

E[e21] = γ(0) a.s. and 1
n

∑n
i=1 e

4
i → E[e41] < ∞ a.s., it is readily seen that as

n→∞

(A.44) 4A−2
1α n

−2 h−1B2
n → 1, a.s.,

where A1α is defined as in Theorem 2.1(i). So, to prove (A.41), it suffices to show
that

(A.45) Q̃
(3)
2n /(2Bn) →D N(0, 1).
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Lemma A.4 will be used to establish (A.45). In fact, by noting that

Q̃
(3)
2n = 2

∑
1≤i<j≤n

ei ej g2n(Xi, Xj)

and E
[
g2n(Xi, Xj)|ei

]
= 0 for all i 6= j, it follows from the independence of ei and

Xi, Lemma A.4, (A.11) and (A.13) that
(A.46)

sup
x

∣∣P (Q̃(3)
2n /2Bn ≤ x|e1, ..., en

)
− Φ(x)

∣∣ ≤ AB−4/5
n

(
c4 hA1n + d2 h

3A2n

)1/5
,

where A is an absolute constant, c4 and d2 are defined as in (A.11) and (A.13), and

A1n =
n∑

i=2

i−1∑
j=1

(eiej)2

2

≤
n∑

i=2

e4i

 n∑
j=1

e2j

2

,

A2n =
n−1∑
i=2

n∑
j=i+1

(
i−1∑
k=1

ei ej e
2
k

)2

≤

 ∑
1≤i<j≤n

e2i e
2
j

2

.

By the stationary ergodic theorem again, for n large enough,

1
n3
A1n ≤ 2E[e41] · (E[e21])

2 a.s. and
1
n4
A2n ≤ 2

(
E[e21]

)4
a.s.

This, together with (A.44) and (A.46), implies that, for n large enough,

sup
x

∣∣∣P (Q̃(3)
2n /(2Bn) ≤ x|e1, ..., en

)
− Φ(x)

∣∣∣ ≤ C

(
1
nh

+ h

)1/5

, a.s.

Now, if h→ 0 and nh→∞, then

lim
n→∞

sup
x

∣∣P (Q̃(3)
2n /(2Bn) ≤ x

)
− Φ(x)

∣∣
≤ E

[
lim

n→∞
sup

x

∣∣∣P (Q̃(3)
2n /(2Bn) ≤ x | e1, ..., en

)
− Φ(x)

∣∣∣] = 0.

This proves (A.45), and hence also completes the proof of Theorem 2.3.

Proof of Theorem 2.4. Let

Q̃1n = K(0)
∑n

i=1 e
2
i and Q1n =

∑n
i=1

∑n
j=1,j 6=i ei ej bn(i, j).

We have that

Q̃n ≡ Q1n − EQ1n + Q̃1n − EQ̃1n =
n∑

i,j=1

(
ei ej − γ(i− j)

)
bn(i, j)

=
∞∑

k,l=−∞

ankl (ηkηl − E [ηkηl]) ,(A.47)
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where ankl =
∑n

i,j=1 ψi−kψj−l bn(i, j) and we have used the facts that E[ηkηl] = 0
for k 6= l, Eη2

k = 1 and

∞∑
k=−∞

ankk =
n∑

i,j=1

K

(
i− j

nh

) ∞∑
k=−∞

ψi−kψj−k =
n∑

i,j=1

γ(i− j) bn(i, j).

By Lemma A.5, in order to prove Theorem 2.4, it suffices to show as n→∞(
Q̃1n − EQ̃1n

)
τn

→P 0,(A.48)

2 ||A||2 ≡ 2
∞∑

k,l=−∞

a2
nkl ∼ A2

0 τ
2
n,(A.49)

V 2 =
∞∑

k=−∞

a2
nkk = o(τ2

n),(A.50)

Tr(A4) = o(τ4
n),(A.51)

where τn = n2−α h3/2−α and A2
0 = 8η2Aα with Aα being defined in (2.3). Indeed,

by virtue of (A.49)–(A.51), it follows from Lemma A.5 that

(Q̃n − E[Q̃n])/τn →D A0N(0, 1).

This, together with (A.48), yields Theorem 2.4.
In the following, we give the proofs of (A.48)-(A.51). (A.48) first. Recall 1/2 <

α < 1 and γ(k) ∼ η|k|−α. By virtue of (A.2), it is readily seen that

E
[(
Q̃1n − EQ̃1n

)2] = K2(0)E
[ n∑

k=1

(e2k − Ee2k)
]2

≤ C
n∑

j,k=1

γ2(j − k) ≤ C
n∑

k=1

(n− k)γ2(k) ≤ C n.

This, together with the Markov’s inequality and nh→∞, yields (A.48).
Secondly, we prove (A.49). We have

||A||2 =
∞∑

k,l=−∞

 n∑
i,j=1

ψi−kψj−l K

(
i− j

nh

)2

=
n∑

i,j,s,t=1

∞∑
k,l=−∞

ψi−kψj−lψs−kψt−lK

(
i− j

nh

)
K

(
s− t

nh

)

=
n∑

i,j,s,t=1

K

(
i− j

nh

)
K

(
s− t

nh

)
γ(i− s) γ(t− j).
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Write fn(x, y; z, w) = K
(

x−z
nh

)
K
(

y−w
nh

)
+ K

(
y−z
nh

)
K
(

x−w
nh

)
. Clearly, fn(·, ·; ·, ·)

has the following symmetry in its indexes:

fn(x, y; z, w) = fn(y, x; z, w) = fn(x, y; w, z) = fn(y, x; w, z).

Also fn(x, y; z, w) = fn(z, w; x, y). By noting that for any function g(x, y) and
symmetric function b(x),

n∑
i,j=1

b(i− j)g(i, j) = b(0)
n∑

i=1

g(i, i) +
n−1∑
i=1

n−i∑
j=1

b(i)
[
g(j, j + i) + g(j + i, j)

]
,

some algebras show that (noting γ(k) = γ(−k))

2 ||A||2 =
n∑

i1,i2,j1,j2=1

γ(i1 − i2) γ(j1 − j2) fn(i1, i2; ji, j2)

= γ2(0)
n∑

i,j=1

fn(i, i; j, j) + 4 γ(0)
n∑

i=1

n−1∑
j=1

n−j∑
k=1

γ(i) fn(i, i; k, j + k)

+ 4
n−1∑
i1=1

n−i1∑
i2=1

n−1∑
j1=1

n−j1∑
j2=1

γ(i1) γ(j1) fn(i2, i1 + i2; j2, j1 + j2)

≡ ∆1n + 4 ∆2n + 4 ∆3n.(A.52)

Recalling that K(x) is a probability density function and γ(x) ∼ η x−α for
0 < α < 1 and x > 0, we have that

(A.53) ∆3n ∼
∫ n−1

1

∫ n−1

1

∫ n−x

1

∫ n−y

1

γ(x) γ(y) fn(z, x+ z; w, y + w) dxdydzdw.

Write gn(x, y) =
∫ n−x

1

∫ n−y

1
fn(z, x+ z; w, y+w) dzdw. By the Fubini’s theorem,

gn(x, y) =
∫ n−x

1

∫ n−y−z

1−z

fn(z, x+ z; w + z, y + w + z) dwdz

=
∫ n−y−1

−(n−x−1)

∫ min{n−x,n−y−w}

max{1,1−w}
fn(0, x; w, y + w) dzdw

=
∫ n−y−1

0

(
n− 1−max{x, y + w}

)
fn(0, x; w, y + w) dw

+
∫ n−x−1

0

(
n− 1−max{x+ w, y}

)
fn(0, x; −w, y − w) dw

=
∫ n−1

y

(
n− 1−max{x,w}

)
fn(0, x; w − y, w) dw

+
∫ n−1

x

(
n− 1−max{w, y}

)
fn(0, x; x− w, x+ y − w) dw.
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Taking this into (A.53), simple calculations show that if h→ 0 and nh→∞, then

∆3n ∼
∫ n−1

1

∫ n−1

1

γ(x) γ(y) gn(x, y) dxdy

∼ 2
∫ n−1

1

∫ n−1

1

∫ n−1

x

γ(x) γ(y)
(
n− 1−max{w, y}

)
[
K
( w
nh

)
K

(
x+ y − w

nh

)
+ K

(
w − x

nh

)
K

(
w − y

nh

)]
dxdydw

∼ 2n (nh)3−2α η2

∫ 1/h

0

∫ 1/h

0

∫ 1/h

x

x−α y−α
(
1− hmax{w, y}

)
×
[
K(w)K(x+ y − w) + K(w − x)K(w − y)

]
dxdydw

∼ 2n (nh)3−2α η2

∫ ∞

0

∫ ∞

0

∫ ∞

x

x−α y−α

×
[
K(w)K(x+ y − w) + K(w − x)K(w − y)

]
dxdydw

= 2n (nh)3−2α η2Aα = n (nh)3−2αA2
0/4,(A.54)

where we have used the facts that K(x) is symmetric, A2
α <∞ and (A.32).

By a similar argument, if h→ 0 and nh→∞, then

(A.55) ∆1n + 4 ∆2n = O(n3−αh2) = o(∆3n).

By virtue of (A.52), (A.54) and (A.55), we obtain the proof of (A.49).

Thirdly, we prove (A.50). Let

h(i, j, s, t) =
∞∑

k=−∞

ψi−kψj−kψs−kψt−k =
∞∑

k=−∞

ψkψj−i+kψs−i+kψt−i+k.

By ψj ≥ 0 and K(x) ≥ 0, it is readily seen that, for any j ≥ 0, s and t,

n∑
i=1

h(i, j + i, s, t) ≤
∞∑

k=−∞

ψkψj+k

n∑
i=1

ψs−i+kψt−i+k ≤ γ(j) γ(t− s).
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Therefore, as in (A.52)–(A.54), it follows from (A.30) that

V 2 =
∞∑

k=−∞

 n∑
i,j=1

ψi−kψj−kK

(
i− j

nh

)2

=
n∑

i,j,s,t=1

K

(
i− j

nh

)
K

(
s− t

nh

)
h(i, j, s, t)

≤ K(0)
n∑

i,s,t=1

K

(
s− t

nh

)
h(i, i, s, t)

+ 2
n∑

j=1

K

(
j

nh

) n∑
i,s,t=1

K

(
s− t

nh

)
h(i, j + i, s, t)

≤

K(0)γ(0) + 2
n∑

j=1

K

(
j

nh

)
γ(j)

 n∑
s,t=1

K

(
s− t

nh

)
γ(s− t)

≤ C n

(
K(0)γ(0) + 2

∫ n

1

x−αK
( x

nh

)
dx

) ∫ n

1

x−αK
( x

nh

)
dx

≤ C n3−2α h2−2α = o(τ2
n)(A.56)

since nh→∞. This proves (A.50).
Finally, we prove (A.51). Tedious but simple calculations show that

Tr(A4) =
∞∑

i,j,l,m=−∞

anij anjl anlm anmi

=
∞∑

i,j,l,m=−∞

n∑
j1,j2,··· ,j7,j8=1

ψj1−iψj2−jψj3−jψj4−lψj5−lψj6−mψj7−mψj8−i

×K
(
j1 − j2
nh

)
K

(
j3 − j4
nh

)
K

(
j5 − j6
nh

)
K

(
j7 − j8
nh

)
=

n∑
j1,j2,··· ,j7,j8=1

K

(
j1 − j2
nh

)
γ(j2 − j3) · · · K

(
j7 − j8
nh

)
γ(j8 − j1).

Recall that K(x) = O[(1 + |x|1−β)−1]. Similarly to the proof of (A.49), it follows
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from Lemma A.2 that,

Tr(A4) ∼
∫ n

1

∫ n

1

· · ·
∫ n

1

K

(
x1 − x2

nh

)
γ(x2 − x3) · · ·K

(
x7 − x8

nh

)
γ(x8 − x1)

dx1dx2 · · · dx7dx8

∼ η4 (nh)4(2−α)

∫ 1/h

0

∫ 1/h

0

· · ·
∫ 1/h

0

K(x1 − x2)|x2 − x3|−α

K
(
x7 − x8

)
|x8 − x1|−αdx1dx2 · · · dx7dx8

= O(1) (nh)4(2−α)

∫ 1/h

0

∫ 1/h

0

· · ·
∫ 1/h

0

|x1 − x2|β−1 |x2 − x3|−α · · ·

|x7 − x8|β−1 |x8 − x1|−αdx1dx2 · · · dx7dx8

= o(1) (nh)4(2−α) (1/h)2 = o(1) τ4
n.

This yields (A.51) and thus completes the proof of Theorem 2.4.

A.3. Proofs of Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Note that∣∣n(α−α̂) − 1
∣∣ ≤ |α− α̂| log n exp{|α− α̂| log n}.(A.57)

It follows easily from (2.7), Theorems 2.3 and Assumption 2.2 that Theorems 2.1
will follow if we prove

1
n

n∑
t=1

f̂(Xt) =
1
n2h

n∑
i,j=1

K
(Xi −Xj

h

)
→P

∫ ∞

−∞
f2(x)dx,(A.58)

1
n

n∑
t=1

ê2t =
1
n

n∑
t=1

(εt +mθ0(Xt)−mθ̃(Xt))2 →P γ(0),(A.59)

and under the corresponding conditions of Theorem 2.1,

2R1n(h) +R2n(h) = oP (σin(h)), i = 1, 2.(A.60)

Recall that K
(

X1−X2
h

)
∼ h

∫∞
−∞ f2(x)dx by (A.9). The proof of (A.58) follows

from a standard method and hence the details are omitted. By the stationary
ergodic theorem, 1

n

∑n
t=1 e

2
t → γ(0), a.s. This implies that (A.59) will follow if we

have

1
n

n∑
t=1

[
2εt(mθ0(Xt)−mθ̃(Xt)) + (mθ0(Xt)−mθ̃(Xt))2

]
→P 0.(A.61)

Since the proof of (A.61) is similar to (A.60), we only prove (A.60) in the following.
For ∀ε > 0, write Ωn = {θ̃ : ||θ̃ − θ0|| ≤ ε n−α/2}. Also, let

J1(s, t) = K

(
Xs −Xt

h

)(
mθ0(Xs)−m

θ̃
(Xs)

)
,

J2(s, t) = K

(
Xs −Xt

h

)(
mθ0(Xs)−m

θ̃
(Xs)

)(
mθ0(Xt)−m

θ̃
(Xt)

)
.
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Recall K is bounded and f is bounded and uniformly continuous. It follows easily
from Assumption 2.4 that, under H0, for all s 6= s1 6= t and for n large enough such
that Ωn ⊆ Θ0,

E
[
J2

1 (s, t)I(θ̃ ∈ Ωn)
]

≤ C ε2 n−αE

[
K2
(X1 −X2

h

)∣∣∣∣∣∣∂mθ(X1)
∂θ

|θ=θ0

∣∣∣∣∣∣2]
≤ C1 ε

2 n−αhE

[∣∣∣∣∣∣∂mθ(X1)
∂θ

|θ=θ0

∣∣∣∣∣∣2]
≤ C2 ε

2 n−αh,

E
[
|J1(s, t)J1(s1, t)|I(θ̃ ∈ Ωn)

]
≤ C ε2 n−αE

[
K
(X1 −X2

h

)
K
(X1 −X3

h

)]
×
[∣∣∣∣∣∣∂mθ(X2)

∂θ
|θ=θ0

∣∣∣∣∣∣∣∣∣∣∣∣∂mθ(X3)
∂θ

|θ=θ0

∣∣∣∣∣∣]
≤ C1 ε

2 n−αh2E

[∣∣∣∣∣∣∂mθ(X1)
∂θ

|θ=θ0

∣∣∣∣∣∣2]
≤ C2 ε

2 n−α h2.

These facts imply that for any 1 ≤ t ≤ n,

E
[ n∑

s=1, 6=t

J1(s, t)I(θ̃ ∈ Ωn)
]2
≤ C ε2 (n1−αh+ n2−αh2) ≤ 2C ε2 n2−αh2,

since nh→∞, and hence by the independence between et and Xs,

E
[
R2

1n(h)I(θ̃ ∈ Ωn)
]

= E
[ n∑

t=1

et

n∑
s=1, 6=t

J1(s, t)I(θ̃ ∈ Ωn)
]2

≤ 2C ε2 n2−αh2
n∑

t1,t2=1

E [et1et2 ] ≤ C1 ε
2 n4−2αh2,(A.62)

where we have used the fact [see (A.43)] that

n∑
t1,t2=1

E [et1et2 ] = E

(
n∑

t=1

et

)2

≤ Cn2−α.

In view of (A.62), Assumption 2.5(i) and the Markov’s inequality, we obtain that,
for ∀ε > 0 and n sufficient large, (i) if nh→∞ and n2(1−α)h→ 0, then

P
(
|R1n(h)| ≥ ε1/2σ1n

)
≤ P

(
||θ̃ − θ0|| > εn−α/2

)
+ Cε−1(n2h)−1E

[
R2

1n(h)I(θ̃ ∈ Ωn)
]

≤ P
(
||θ̃ − θ0|| > εn−α/2

)
+ Cn2(1−α)hε ≤ C1 ε.(A.63)
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(ii) If h→ 0 and n2(1−α)h→∞, then

P
(
|R1n(h)| ≥ ε1/2σ2n

)
≤ P

(
||θ̃ − θ0|| > εn−α/2

)
+Cε−1(n4−2αh2)−1E

[
R2

1n(h)I(θ̃ ∈ Ωn)
]

≤ P
(
||θ̃ − θ0|| > εn−α/2

)
+ C ε ≤ C1 ε.(A.64)

(A.63) and (A.64) yield that R1n(h) = o(σjn), 1 ≤ j ≤ 2, under the corresponding
conditions of Theorems 2.1. Similarly, by noting

E
[
|J2(1, 2)|I(θ̃ ∈ Ωn)

]
≤ C εn−αE

[
K
(X1 −X2

h

)∣∣∣∣∣∣∂mθ(X1)
∂θ

|θ=θ0

∣∣∣∣∣∣
×
∣∣∣∣∣∣∂mθ(X2)

∂θ
|θ=θ0

∣∣∣∣∣∣]
≤ C1 ε n

−αh E

[∣∣∣∣∣∣∂mθ(X1)
∂θ

|θ=θ0

∣∣∣∣∣∣2] ≤ C2 ε n
−α h,

we obtain that for 1 ≤ j ≤ 2 and n sufficiently large,

P (|R2n(h)| ≥ ε1/2σjn) ≤ P
(
||θ̃ − θ0|| > εn−α/2

)
+ Cε1/2(σjn)−1n2E

[
|J2(1, 2)|I(θ̃ ∈ Ωn)

]
≤ C ε1/2,(A.65)

which implies that R2n(h) = o(σjn) hold for 1 ≤ j ≤ 2. We now prove (A.60) and
hence also complete the proof of Theorem 2.1.

Proof of Theorem 2.2. As in (2.7), under H0, we may write
n∑

t=1

n∑
s=1, 6=t

bn(s, t) (êsêt − γ̂(s− t))

= M∗
n(h) + 2R∗1n(h) +R∗2n(h) +R3n(h),(A.66)

where M∗
n(h) =

∑n
t=1

∑n
s=1, 6=t bn(s, t)

[
es et − γ(s− t)

]
,

R∗1n(h) =
n∑

t=1

n∑
s=1, 6=t

bn(s, t) es

(
mθ0(

t

n
)−m

θ̃
(
t

n
)
)
,

R∗2n(h) =
n∑

t=1

n∑
s=1, 6=t

bn(s, t)
(
mθ0(

s

n
)−m

θ̃
(
s

n
)
) (

mθ0(
t

n
)−m

θ̃
(
t

n
)
)
,

and by the symmetries of K(x), γ(k) and γ̂(k),

R3n(h) =
n∑

t=1

n∑
s=1, 6=t

bn(s, t) [γ̂(s− t)− γ(s− t)]

= 2
n−1∑
s=1

(n− s)K
( s
nh

)
[γ̂(s)− γ(s)] .(A.67)
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It follows easily from (A.66) and Theorem 2.4 that Theorem 2.2 will follow if we
prove

2R∗1n(h) +R∗2n(h) = oP

[
σ3n(h)

]
,(A.68)

R3n(h) = oP

[
σ3n(h)

]
,(A.69)

σ̂3n(h)
σ3n(h)

→P 1.(A.70)

We first prove (A.68). For ∀ε > 0 and n sufficiently large, write Ω1n = {θ̃ :
||θ̃− θ0|| ≤ C0 n

−α/2}, where C0 is chosen such that P
(
||θ̃ − θ0|| > C0 n

−α/2
)
< ε.

Since ||θ̃ − θ0|| = OP (n−α/2), C0 exists, under H0. Also, write

(A.71) J3(s, t) = K

(
s− t

nh

)(
mθ0

( s
n

)
−m

θ̃

( s
n

))
.

It follows easily from Assumption 2.6 that, under H0,

E
( n∑

s=1, 6=t

J3(s, t)I(θ̃ ∈ Ω1n)
)2

≤ C2
θ0
E
[
||θ̃ − θ0||2I(θ̃ ∈ Ω1n)

] [ n∑
s=1, 6=t

K
(s− t

nh

)]2
≤ Cn2−αh2(A.72)

for all 1 ≤ t ≤ n. As in the proof of (A.72),

E
[
R∗21n(h)I(θ̃ ∈ Ω1n)

]
= E

 n∑
t=1

et

n∑
s=1, 6=t

J3(s, t)I(θ̃ ∈ Ω1n)

2

≤ C n2−αh2
n∑

t1,t2=1

E [et1et2 ] ≤ C1 n
4−2αh2 = o(σ3n(h)2),(A.73)

since h2 = o(h3−2α) for 1/2 < α < 1. Therefore, for ∀ε > 0 and n sufficiently large,

P (|R∗1n(h)| ≥ εσ3n(h)) ≤ P
(
||θ̃ − θ0|| > C0 n

−α/2
)

+ ε−2σ3n(h)−2E
[
R∗21n(h)I(θ̃ ∈ Ω1n)

]
≤ C ε.(A.74)

Similarly, we have

P (|R∗2n(h)| ≥ εσ3n(h)) ≤ P
(
||θ̃ − θ0|| > C0 n

−α/2
)

+ ε−1 σ3n(h)−1E
[
|R∗2n(h)|I(θ̃ ∈ Ω1n)

]
≤ ε+ C n−2 hα−3/2

n∑
t=1

n∑
s=1, 6=t

K

(
s− t

nh

)
≤ ε+ C hα−1/2 ≤ 2ε.

imsart-aos ver. 2006/03/07 file: Full-revised-version.tex date: August 25, 2006



36 J. GAO AND Q. WANG

This, together with (A.74), implies that 2R∗1n(h) +R∗2n(h) = oP

[
σ3n(h)

]
, hence we

complete the proof of (A.68).
We next prove (A.69). Write πn = (nh)1/3. Recalling (A.67), it suffices to show

that

R
(1)
3n (h) :=

πn∑
s=1

(n− s)K
( s
nh

)
[γ̂(s)− γ(s)] = oP

[
σ3n(h)

]
,(A.75)

R
(2)
3n (h) :=

n−1∑
s=πn+1

(n− s)K
( s
nh

)
[γ̂(s)− γ(s)] = oP

[
σ3n(h)

]
.(A.76)

To prove (A.75), by recalling that γ̂(k) = 1
n

∑n−|k|
i=1 êiêi+|k| for |k| ≤ πn, we may

write

R
(1)
3n (h) = R

(1)∗
3n (h) +R

(2)∗
3n (h) +R

(3)∗
3n (h),(A.77)

where

R
(1)∗
3n (h) =

2
n

πn∑
s=1

(n− s)K
( s
nh

) n−s∑
i=1

(eiei+s − Eeiei+s),

R
(2)∗
3n (h) =

2
n

πn∑
s=1

(n− s)K
( s
nh

) n−s∑
i=1

[
ei

(
mθ0(

i+ s

n
)−m

θ̃
(
i+ s

n
)
)

+ ei+s

(
mθ0(

i

n
)−m

θ̃
(
i

n
)
)]
,

R
(3)∗
3n (h) =

2
n

πn∑
s=1

(n− s)K
( s
nh

) n−s∑
i=1

(
mθ0(

i

n
)−m

θ̃
(
i

n
)
)

×
(
mθ0(

i+ s

n
)−m

θ̃
(
i+ s

n
)
)
.

Using the same arguments as in the proof of (A.68), we have R(2)∗
3n (h)+R

(3)∗
3n (h) =

oP

[
σ3n(h)

]
. As for R(1)∗

3n (h), it follows easily from (A.4) and πn = (nh)1/3 that

E
[
R

(1)∗
3n (h)

]2 ≤ 4
πn∑

s,t=1

K
( s
nh

)
K
( t
nh

) n∑
i,j=1

∣∣E(eiei+s − Eeiei+s)(ejej+t − Eejej+t)
∣∣

≤ C n

πn∑
s,t=1

K
( s
nh

)
K
( t
nh

) n∑
i=1

[
γ(i)γ(i+ s− t) + γ(i+ s)γ(i− t)

]
≤ C n

πn∑
s,t=1

K
( s
nh

)
K
( t
nh

)
≤ C nπ2

n = o
[
σ2

3n(h)
]
,

where we have used the result that, whenever 1/2 < α < 1, γ(0) < ∞ and γ(k) ∼
ηk−α,

∑n
i=1 γ(i+ x)γ(i− y) ≤ C <∞, for all x, y ≥ 0. These facts, together with

(A.77), yield (A.75).
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In order to prove (A.76), without loss of generality, we assume that γ(k) = η |k|−α

for all πn ≤ |k| ≤ n−1. Otherwise the proof follows from some routine modifications.
We first notice that, whenever λ̃ ∈ Λn := {λ̃ : ||λ̃ − λ|| ≤ C0 w

−1
n }, where C0 is

chosen such that P
(
||λ̃− λ|| > C0 w

−1
n

)
< ε,

max
1≤k≤n

∣∣∣ γ̂(k)
γ(k)

− 1
∣∣∣ ≤ ∣∣ η̃

η
− 1
∣∣+ ∣∣ η̃

η

∣∣ max
1≤k≤n

∣∣∣|k|α−α̃ − 1
∣∣∣ ≤ C w−1

n log n.(A.78)

Therefore it follows from wn h
1/2/ log n → ∞ that, for ∀ε > 0 and n sufficiently

large ,

P
[
R

(2)
3n (h) ≥ εσ3n(h)

]
≤ P (R3n(h) ≥ εσ3n(h), λ̃ ∈ Λn) + P (||λ̃− λ|| > C0 w

−1
n )

≤ 2n(εσ3n(h))−1
n∑

s=1

K(
s

nh
)γ(s)E max

1≤k≤n

∣∣∣ γ̂(k)
γ(k)

− 1
∣∣∣I(λ̃∈Λn) + ε

≤ C w−1
n h−1/2 log n+ ε ≤ C ε,

which yields (A.76). The proof of (A.69) is now complete.
We finally prove (A.70). Recall (A.57). It suffices to show that A∗

α̃
−Aα = oP (1).

In fact, by recalling Aα <∞ and noting for λ̃ ∈ Λn,

sup
1/n≤x,y≤n

|(xy)α−α̂ − 1| ≤ |e2|α−α̂| log n − 1|+ |e−2|α−α̂| log n − 1| ≤ C w−1
n log n,

it is readily seen that, for ∀ε > 0, when λ̃ ∈ Λn and n sufficiently large,

|A∗
α̃
−Aα| ≤ ε+

∫ n

1/n

∫ n

1/n

∫ n

1/n

∣∣(xy)−α̃ − (xy)−α
∣∣[K(z)K(x+ y − z)

+ K(z − x)K(z − y)
]
dxdydz

≤ ε+ C sup
1/n≤x,y≤n

|(xy)α−α̂ − 1| ≤ 2ε.

This implies that, for any ε > 0 and n sufficiently large,

P (|A∗
α̃
−Aα| ≥ ε1/2) ≤ P (|A∗

α̃
−Aα| ≥ ε1/2, λ̃ ∈ Λn) + P (||λ̃− λ|| > C0 n

−1/2)

≤ ε−1/2E
[
|A∗

α̃
−Aα|I(λ̃∈Λn)

]
+ ε ≤ ε+ 2ε1/2,

which yields A∗
α̃
− Aα = oP (1). This proves (A.70) and hence completes the proof

of Theorem 2.2.

Appendix B. This appendix provides technical details for the asymptotic the-
ory in Section 4. Appendix B.1 proves Theorem 4.1. The proof of Theorem 4.2 is
given in B.2. Since the proofs are similar for both the random and fixed designs,
we provide only an outline of the proof in the fixed design situation. In this case,
Tn(h) = L̂3n(h).

imsart-aos ver. 2006/03/07 file: Full-revised-version.tex date: August 25, 2006



38 J. GAO AND Q. WANG

B.1. Proof of Theorem 4.1. We first prove (4.1). In view of Theorem 2.2, it suffices
to show that

sup
x∈R

∣∣P ∗(T̂ ∗n(h) ≤ x)− Φ(x)
∣∣ = oP (1).(B.1)

As in (A.66), we may rewrite T̂ ∗n(h) as

T̂ ∗n(h) =
1

σ̂3n(h)
[
M∗∗

n (h) + 2R∗∗1n(h) +R∗∗2n(h)
]
,(B.2)

where M∗∗
n (h) =

∑n
t=1

∑n
s=1, 6=t bn(s, t)

[
e∗s e

∗
t − γ̂(s− t)

]
,

R∗1n(h) =
n∑

t=1

n∑
s=1, 6=t

bn(s, t) e∗s

(
m

θ̃∗
(
t

n
)−m

θ̃
(
t

n
)
)
,

R∗2n(h) =
n∑

t=1

n∑
s=1, 6=t

bn(s, t)
(
m

θ̃∗
(
s

n
)−m

θ̃
(
s

n
)
) (

m
θ̃∗

(
t

n
)−m

θ̃
(
t

n
)
)
,

Since {e∗i } is drawn from a stationary Gaussian process with covariance structure
γ

λ̃
(k) ∼ η̃ |k|−α̃, similarly to the proof of Theorem 2.4, we have

sup
x∈R

∣∣∣P ∗(M∗∗
n (h)

σ3n(h)
≤ x

)
− Φ(x)

∣∣∣ = oP (1).(B.3)

On the other hand, similarly to the proof of (A.68), for any ε > 0,

P ∗
(
|2R∗∗1n(h) +R∗∗2n(h)| ≥ εσ3n(h)

)
= oP (1).(B.4)

The facts (B.2)-(B.4), together with (A.70), yield (B.1).
We next prove (4.2). In view of Theorem 2.2, it suffices to show that

l∗r − lr = oP (1).(B.5)

In fact, by recalling the definitions of l∗r and lr, it is readily seen from (B.1) and
Theorem 2.2 that Φ(l∗r)−Φ(lr) = oP (1), which implies (B.5) since Φ(x) is a bounded
continuous function.

We finally prove (4.3). In view of (B.5), it suffices to show that under H1,

P (L̂3n(h) ≥ lr) = 1,(B.6)

with lr satisfying Φ(lr) = 1 − r + o(1) with 0 < r < 1. In order to prove (B.6), as
in (A.66), under H1, we may rewrite L̂3n(h) as

L̂3n(h) =
1

σ̂3n(h)
[
Sn(h) + 2Q1n(h) +Q2n(h) +R3n(h)

]
,(B.7)
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where

Sn(h) =
n∑

t=1

n∑
s=1, 6=t

bn(s, t)
[
ζs ζt − γ(s− t)

]
Q1n(h) = cn

n∑
t=1

n∑
s=1, 6=t

bn(s, t) ζs ∆(
t

n
),

Q2n(h) = c2n

n∑
t=1

n∑
s=1, 6=t

bn(s, t) ∆(
s

n
) ∆(

t

n
),

in which ζs = εt +
[
mθ1(

t
n ) −m

θ̃
( t

n )
]
, and R3n(h) is defined as in (A.66). Simple

calculations show that

Q2n(h) ∼ c2n

∫ n

1

∫ n

1

K
(x− y

nh

)
∆(

x

n
)∆(

y

n
)dxdy

∼ C [1 + o(1)]c2n (nh)2 = C dn σ3n(h),(B.8)

where dn = c2nn
α hα−1/2 →∞. By the similar arguments as in the proof of Theorem

2.2, it follows easily that under Assumption 4.1,

Sn(h)/σ3n(h) →D N(0, 1),(B.9)

and Q1n(h) = OP [cnn−α/2(nh)2] = oP [Q2n(h)]. These facts, together with (A.69)
and (A.70), yield (B.6) since lr is finite for 0 < r < 1. The proof of Theorem 4.1 is
now complete.

B.2. Proof of Theorem 4.2: The first step is to show that as N →∞

(B.10)
√
N
(
λ̃− λ

)
→D N

(
0,Σ−1

)
,

where Σ is a positive definite covariance matrix as in (4.8). The proof of (B.10)
is standard in this kind of problem (see Theorem 2 of Robinson 1995 or Theorem
2.1(ii) of Gao 2004). It follows from (B.10) and N ∼ Cn4/5 that

(B.11)
n2/5

log(n)
(
λ̃− λ

)
∼ C

log n

√
N
(
λ̃− λ

)
→P 0,

which implies (4.9). This also completes an outline of the proof.
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Härdle, W., Liang, H., Gao, J., 2000. Partially Linear Models. Springer Series: Contribu-
tions to Statistics. Physica–Verlag, New York.
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