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Abstract

Vector spherical harmonic analyses have been used successfully to solve laminar and mean-field mag-
netohydrodynamic dynamo problems with interactions, such as the laminar induction term, anisotropic
alpha-effects and anisotropic diffusion, which are difficult to analyse spectrally in spherical geometries.
Spectral forms of the non-linear rotating Boussinesq and anelastic momentum, magnetic field and heat
equations are derived for spherical geometries from vector spherical harmonic expansions of the velocity,
magnetic induction, vorticity, electrical current and gravitational acceleration, and from scalar spherical
harmonic expansions of the pressure and temperature. Combining the vector spherical harmonic forms of
the momentum equation and the magnetic induction equation with poloidal-toroidal representations of
the velocity and the magnetic field, non-linear spherical harmonic spectral equations are also derived for
the poloidal-toroidal potentials of the velocity, or the momentum density in the anelastic approximation,
and the magnetic field. Both compact and spectral interaction expansion forms are given.

Vector spherical harmonic spectral forms of the linearised rotating magnetic induction, momentum
and heat equations for a general basic state can be obtained by linearising the corresponding non-linear
spectral equations. Similarly, the spherical harmonic spectral equations for the poloidal-toroidal poten-
tials of the velocity and the magnetic field may be linearised. However, for computational applications,
new alternative hybrid linearised spectral equations are derived herein. The algorithmically simpler hy-
brid equations depend on vector spherical harmonic expansions of the velocity, magnetic field, vorticity,
electrical current and gravitational acceleration of the basic state, and scalar spherical harmonic expan-
sions of the poloidal-toroidal potentials of the perturbation velocity, magnetic field and temperature. The
spectral equations derived herein may be combined with the corresponding spectral forms of anisotropic
diffusion terms derived in Phillips and Ivers (2000).

KEYWORDS: magnetohydrodynamics, vector spherical harmonic, spectral equation, toroidal, poloidal,
anelastic approximation.

1 Introduction

It is generally accepted that the Earth and the planets, Mercury, Jupiter, Saturn, Neptune and Uranus,
possess planetary magnetic fields, which are generated by the magnetohydrodynamic dynamo action of the
motions in their electrically conducting fluid cores. The core physics underlying the dynamo process may be
modelled by the equations of magnetohydrodynamics, with the simplifications of the Boussinesq or anelastic
approximations. The purpose of the present work is to derive several different angular spectral forms of the
nonlinear and linearised magnetohydrodynamic equations in both approximations useful for their solution
in spherical geometries. The spectral equations are based on scalar and vector spherical harmonics together
with toroidal-poloidal vector field representations. Although complicated and difficult to derive, they are
extremely important in applications.

The momentum, magnetic induction and temperature equations governing the velocity v, magnetic
induction field B and temperature Θ of an electrically-conducting Boussinesq fluid in a frame rotating
with angular velocity Ω are

ρ

(
∂v
∂τ

+ ω× v + 2Ω× v +
dΩ
dτ

× r
)

= −∇P + J×B− ραΘΘge + Fν (1.1)

∂B
∂τ

− η∇2B = ∇× (v ×B) (1.2)
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ρcp

(
∂Θ
∂τ

+ v · ∇Θ− κ∇2Θ
)

= Q + Qν + J2/σ , (1.3)

where τ is the time and r is the position vector, together with the mass conservation equation and Gauss’
Law,

∇ · v = 0 , ∇ ·B = 0 . (1.4)

Dimensional equations are used throughout, since the non-dimensionalisation of the linearised equations
depends strongly on the basic state. In equation (1.1) Fν := ρν∇2v is the viscous volume force. The
modified pressure P is related to the non-hydrostatic pressure p by P = p+ 1

2ρv2, ω = ∇×v is the vorticity
and J = ∇×B/µ0 is the electrical current density. In V , J and B are also related to the electric field E by
Ohm’s Law for a moving conductor,

J = σ(E + v ×B) . (1.5)

The advection term has been written as a cross-product to simplify implementation in computer codes.
The effective gravitational acceleration ge includes the centripetal acceleration and may be non spherically-
symmetric. In general, ge is derived from an effective potential Ue, ge = −∇Ue, where Ue := U − 1

2 (Ω× r)2

and U is the gravitational potential. The potential U is sourced from the density by ∇2U = 4πGρ, where
G is the gravitational constant. In the Boussinesq equations the density is uniform, except in the buoyancy
force. However, the potential U may still be non spherically-symmetric due to lateral density variations
occurring in a mantle surrounding V . In (1.3) Q is the rate of radiogenic heat production per unit volume
and Qν := 2ρν(∇v)S : (∇v)S is the viscous volume heating (Landau & Lifshitz 1959). The subscript S
indicates the symmetric part of the gradient and the colon denotes the double scalar product of rank-2 tensors
F and G defined in terms of cartesian components by F : G =

∑
i,j FijGij . Both viscous and Ohmic heating

have been retained in the temperature equation, although their neglect is consistent with the Boussinesq
approximation (Malkus 1964). The kinematic viscosity ν, magnetic diffusivity η, thermal diffusivity κ,
thermal expansivity αΘ, specific heat capacity cp, electrical conductivity σ and magnetic permeability µ0

are uniform. In the anelastic equations the density is spherically-symmetric, except in the buoyancy term.
The anelastic approximation and its modifications to Fν and Qν are described in Section 7.

The vector spherical harmonic analysis of equations (1.1)–(1.4) forms the basis of several useful methods
for solving a range of problems in spherical geometries. Let (r, θ, φ) be spherical polar coordinates with co-
latitude θ, east-longitude φ, unit vectors (1r,1θ,1φ) and r = r1r. Three types of (surface) vector spherical
harmonic have been commonly used in the literature. The first type, which are closely related to the
scaloidal-poloidal-toroidal representation of vector fields, are defined by

Pm
n = Y m

n 1r , Bm
n =

r√
n(n + 1)

∇Y m
n , Cm

n = − i√
n(n + 1)

r×∇Y m
n ,

where the spherical harmonic Y m
n is defined by equation (2.1) (see Brink & Satchler 1968; also Morse &

Feshbach 1953). The second type, Ym
n,n1

, defined by equation (2.5), are simply related to PBC and will be
referred to as Y’s or simply vector spherical harmonics. These are the herein preferred set of vector spherical
harmonics (see Brink & Satchler 1968; also James 1974), primarily because of their useful differentiation
properties given in Section 2. The third type of vector spherical harmonic is based on the cartesian unit
vectors at (r, 0, 0) on the z-axis rotated to the basis vectors (1θ − i1φ)/

√
2, 1r, −(1θ + i1φ)/

√
2 (Gelfand

& Shapiro 1956; see also Burridge 1969). Surface vector spherical harmonics should not be confused with
various solid vector spherical harmonics, which have also been defined (see Morse & Feshbach 1953; Backus
1958) and not used herein.

The Y-forms, (3.12) and (3.49), of the non-linear equations, (1.1) and (1.3), are derived in Section 3.
The Y-form (3.34) of the magnetic vector potential equation (3.32) is also derived in Section 3. The Y-
form of the magnetic induction equation (1.2) is then an easy consequence using (2.17)–(2.19). The Y-vector
spherical harmonic equations have been derived for various problems: the non-diffusive mass, momentum and
temperature equations of meteorology and aeronomy (Moses 1974), including the Coriolis, centrifugal and
non-linear advective term; the magnetic induction equation (James 1974); and the Laplace tidal equations
(Swarztrauber & Kasahara 1985). The PBC spectral equations have been derived for linear rotating fluids
(Rieutord 1987, 1991) and for atmospheric oscillations, incorporating the Pedersen conductivity region and
the Hall region, and containing the Coriolis force and special cases of the Lorentz force (Jones 1970, 1971a,b).
The Gelfand-Shapiro vector spherical harmonic form of the magnetic induction equation (Oprea, Chossat
& Armbruster 1997) and related equations for core surface motions (Jackson & Bloxham 1991) have been
derived. The derivation of the spectral form of thermal anisotropic diffusion uses vector spherical harmonics
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(Phillips & Ivers 2000). The vector spherical harmonic analysis of magnetic anisotropic diffusion (Phillips
1995) and viscous anisotropic diffusion (Phillips & Ivers 2000, 2001, 2003) requires the additional use of
tensor spherical harmonics at several intermediate steps.

The vector spherical harmonic spectral equations can be further developed. The solenoidal conditions
(1.4) are not automatically satisfied by vector spherical harmonic expansions of the magnetic field and the
velocity, but must be imposed as additional conditions on the coefficients. Conditions (1.4) may be met
intrinsically in spherical geometries by the toroidal-poloidal representations,

B = T{T}+ S{S} , v = T{t}+ S{s} , (1.6)

where toroidal and poloidal fields with potentials T and S are defined, respectively, by

T{T} := ∇× {Tr} , S{S} := ∇×T{S} . (1.7)

From the identity ∇×S{S} = T{−∇2S}, it follows that the toroidal-poloidal representations of the electric
current and the vorticity are given in terms of the magnetic and velocity potentials S, T , s and t by

µ0J = T{−∇2S}+ S{T} , ω = T{−∇2s}+ S{t} .

Boundary conditions are also often simpler in terms of toroidal and poloidal potentials, e.g. matching a
magnetic field to an insulating exterior. There are two important and useful developments of the vector
spherical harmonic equations using toroidal-poloidal representations. The first development is a compact
form of the toroidal-poloidal spectral equations, in which products are expressed as convolution sums of
vector spherical harmonic coefficients and coupling integrals, but the remaining linear terms are expressed
explicitly in terms of scalar spherical harmonic coefficients of the toroidal and poloidal potentials. James
(1974) derived compact spectral toroidal-poloidal magnetic induction equations. Analogous compact spectral
toroidal-poloidal momentum equations are derived in Section 4. The second development is the interaction
expansion form of the toroidal-poloidal spectral equations, in which products are expanded as sums of
interactions between the scalar spherical harmonic coefficients of the magnetic potentials S and T and the
velocity potentials s and t. Interaction expansion forms of the magnetic induction equation (1.2) for the
evolution of the magnetic toroidal and poloidal potentials S and T , were derived by Bullard & Gellman
(1954); see equations (5.10) and (5.11). In Section 5 analogous toroidal-poloidal spectral-interaction forms
of the momentum equations (5.6) and (5.8) are derived for the velocity toroidal and poloidal potentials.
Merilees (1968) derived the spectral inviscid radial vorticity equation and horizontal divergence equation
together with the spectral potential temperature and mass equations. Frazer (1974) and Pekeris & Accad
(1975) derived these equations, without non-linear advection and with v · ∇v, respectively. In Section 5 a
spectral PT-interaction form of (5.12) is derived for the heat equation in terms of the toroidal and poloidal
potentials of the magnetic field and the velocity.

The convolution sums produced by product terms make the spectral equations derived in Sections 3–5
unsuitable for time-dependent non-linear applications using Faedo-Galerkin time-stepping methods. Fast-
Fourier transform based spectral techniques currently have the advantage in time-stepping problems, but
massively parallel computers may shift the advantage to convolution sums in the future. However, the
spectral forms of the non-linear magnetohydrodynamic (MHD) equations are practically useful in steady
conditions. Further, the MHD equations linearised about a steady basic state (v0,B0,Θ0) are important
in many applications and the linearised forms of the spectral equations may be efficiently applied to the
(generalised) eigenproblems, non-steady and inhomogeneous steady problems arising from such applications.
The linearised equations, which govern the perturbation fields v′, B′ and Θ′, are

ρ

(
∂v′

∂τ
+ ω0 × v′ + ω′ × v0 + 2Ω× v′

)
= −∇P ′ + J0 ×B′ + J′ ×B0 − ραΘΘ′ge + ρν∇2v′ (1.8)

∂B′

∂τ
= η∇2B′ +∇× (v0 ×B′) +∇× (v′ ×B0) (1.9)

ρcp

(
∂Θ′

∂τ
+ v0 · ∇Θ′ + v′ · ∇Θ0

)
= ρcpκ∇2Θ′ + Q′ + 2ρν(∇v0)S : (∇v′)S + 2J0 · J′/σ , (1.10)

where P ′ = p′ + ρv0 · v′, together with the solenoidal conditions,

∇ · v′ = 0 , ∇ ·B′ = 0 . (1.11)
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The vector spherical harmonic form and both compact and toroidal-poloidal spectral interaction forms
of equations (1.8)–(1.10) can be obtained by linearising the non-linear vector spherical harmonic spectral
equations or the toroidal-poloidal spectral equations, respectively. However, it is preferable for computa-
tional purposes, to use algorithmically simpler hybrid vector harmonic/spherical harmonic toroidal-poloidal
forms of the equations, than either the linearised vector spherical harmonic spectral equations or the lin-
earised toroidal-poloidal spectral equations. The number of distinct terms in the spectral toroidal-poloidal-
interaction forms of the momentum, magnetic induction and heat equations, (5.6), (5.8), (5.10), (5.11) and
(5.12), complicate their use in computer programs. The corresponding vector spectral momentum equation
(3.12), magnetic vector potential equation (3.34) and heat equation (3.49) contain substantially fewer terms
and can be used directly in applications, but require more field variables since, as noted above, vector spher-
ical harmonic expansions do not automatically impose the solenoidal condition on the magnetic or velocity
fields. In Section 6 we derive new hybrid spectral forms for the linearised momentum equation, (6.1) and
(6.2), the magnetic induction equation, (6.11) and (6.12), and the heat equation (6.15), in which the basic
state is described mathematically by the vector fields v0, ω0, B0, J0, ∇Θ0 and g, but the perturbation state
is given by the scalar fields s′, t′, S′, T ′ and Θ′. In the hybrid equations the vector fields of the basic state
are expanded in vector spherical harmonics and the perturbation fields in scalar spherical harmonics, defined
in (2.1), but interaction terms are kept in vector spherical form. Truncation of the fields and equations gives
a Galerkin approximation in angle.

In Section 7 modifications to the spectral equations are outlined for the anelastic approximation. A
final aim of the paper is to explain and demonstrate the use and application of vector spherical harmonic
techniques so they can be effectively applied to more elaborate models.

2 Vector Spherical Harmonics

The properties of vector spherical harmonics, which are needed subsequently, are given in this section. The
scalar spherical harmonic in colatitude θ and east-longitude φ is defined by

Y m
n (θ, φ) := (−)m

√
(2n + 1)(n−m)!

(n + m)!
Pn,m(cos θ)eimφ , (2.1)

where Pn,m is the the Neumann associated Legendre function defined by

Pn,m(z) := (−)n (1− z2)m/2

2nn!
dm+n(1− z2)n

dzm+n
.

Under complex conjugation, indicated by the asterisk,

(Y m
n )∗ = (−)mY −m

n . (2.2)

The spherical harmonics (2.1) are orthonormal with respect to the inner-product on scalar functions of θ
and φ,

(f, g) :=
1
4π

∮
fg∗ dΩ ,

where dΩ = sin θ dθ dφ is the element of solid angle. A lowercase Greek subscript on a scalar quantity will
denote the 2-index of a spherical harmonic. For example, Yα will denote Y mα

nα
and the orthonormalisation

condition is
(Yα, Yβ) = δαβ , (2.3)

where δαβ is the Kronecker delta. Scalar fields can be expanded in series of spherical harmonics, which
form a complete orthonormal set. Thus the poloidal and toroidal potentials of the magnetic field and the
velocity, the pressure, the temperature and the effective gravitational potential have the spherical harmonic
expansions

f =
∑
α

fαYα , f = S, T, s, t, P, Θ, Ue . (2.4)

The summations are over nα = 0, 1, 2, . . . and mα = −nα : nα in general, but for poloidal and toroidal
potentials the nα = 0 term does not contribute to the vector field and is omitted. The Y -coefficient fα in
the spherical harmonic expansion of a scalar field f is obtained by taking the inner-product of the field with
Yα, i.e. fα = (f, Yα).
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The vector spherical harmonics used herein are defined by (see James 1974),

Ym
n,n1

:= (−)n−m
√

2n + 1
∑
m1,µ

(
n n1 1
m −m1 −µ

)
Y m1

n1
eµ , (2.5)

where the complex basis vectors eµ are defined in terms of the unit vectors 1x, 1y, 1z of the cartesian
coordinate system (x, y, z) = (r sin θ cos φ, r sin θ sinφ, r cos θ) by e0 := 1z and e±1 := ∓(1x ± i1y)/

√
2. In

particular,
Yµ

n,0 = δn1eµ , Y0
0,1 = −1r . (2.6)

In spherical polar coordinates,√
n(2n + 1) Ym

n,n−1 = 1rnY m
n + 1θ∂θY

m
n + 1φ csc θ ∂φY m

n (2.7)√
n(n + 1) Ym

n,n = i1θ csc θ ∂φY m
n − i1φ∂θY

m
n (2.8)√

(n + 1)(2n + 1) Ym
n,n+1 = −1r(n + 1)Y m

n + 1θ∂θY
m
n + 1φ csc θ ∂φY m

n . (2.9)

Under complex conjugation,
(Ym

n,n1
)∗ = (−)n+n1+m+1Y−m

n,n1
. (2.10)

A lowercase Greek subscript on a vector quantity will denote the 3-index of a vector spherical harmonic.
Thus Yα will denote Ymα

nα,nα1
. The vector spherical harmonics (2.5) are orthonormal with respect to the

inner-product

(F,G) :=
1
4π

∮
F ·G∗ dΩ

of complex vector functions F and G in θ and φ. Hence

(Yα,Yβ) = δαβ , (2.11)

where δαβ := δnαnβ
δn1αn1β

δmαmβ
.

The magnetic field, electric current, velocity, vorticity, temperature gradient q := ∇Θ and effective
gravitational acceleration have the vector spherical harmonic expansions,

F =
∑
α

FαYα , F = B,J,v,ω,q,ge . (2.12)

The Y-coefficient Fα in the vector spherical harmonic expansion of a vector field F is independent of θ and
φ, and is obtained by taking the inner-product of the field with Yα, i.e. Fα = (F,Yα). The summations in
equation (2.12) are over nα = 0, 1, 2, . . . , n1α = nα, nα±1 and mα = −nα: nα. For example, r = −rY0

0,1

so r0
0,1 = −r with all other rα = 0 and Ω = (Ωx + iΩy)/

√
2Y−1

1,0 + ΩzY0
1,0 − (Ωx − iΩy)/

√
2Y1

1,0, i.e.
Ω−1

1,0 = (Ωx + iΩy)/
√

2, Ω0
1,0 = Ωz, Ω1

1,0 = −(Ωx − iΩy)/
√

2 with all other Ωα = 0.
The scalar and vector spherical harmonics, (2.1) and (2.5), have the following useful differentiation

properties. The gradient of a scalar function is given by

∇(fY m
n ) =

√
n

2n + 1
Ym

n,n−1∂
n−1
n f −

√
n + 1
2n + 1

Ym
n,n+1∂

n+1
n f , (2.13)

where f is a function of r and

∂n1
n :=


∂

∂r
+

n + 1
r

, if n1 = n− 1;

∂

∂r
− n

r
, if n1 = n + 1.

(2.14)

In 3-index notation, let ∂γ := ∂
n1γ
nγ and ∂γ := ∂

nγ
n1γ . Formulae for the divergence are

∇ · (fYm
n,n−1) =

√
n

2n + 1
Y m

n ∂n
n−1f , ∇ · (fYm

n,n) = 0 , ∇ · (fYm
n,n+1) = −

√
n + 1
2n + 1

Y m
n ∂n

n+1f . (2.15)

In particular, if a vector field F is solenoidal, the coefficient of Y m
n in ∇ · F must vanish,

√
n ∂n

n−1F
m
n,n−1 −

√
n + 1 ∂n

n+1F
m
n,n+1 = 0 , (2.16)
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and the n1 = n± 1 Y-coefficients of F are not independent. The curl formulae are

∇× (fYm
n,n−1) = i

√
n + 1
2n + 1

Ym
n,n∂n

n−1f (2.17)

∇× (fYm
n,n) =

i√
2n + 1

{√
nYm

n,n+1∂
n+1
n f +

√
n + 1Ym

n,n−1∂
n−1
n f

}
(2.18)

∇× (fYm
n,n+1) = i

√
n

2n + 1
Ym

n,n∂n
n+1f . (2.19)

The scalar Laplacian satisfies
∇2fY m

n = Y m
n Dnf , (2.20)

where

Dn :=
∂2

∂r2
+

2
r

∂

∂r
− n(n + 1)

r2
.

Note
Dn = ∂n

n±1∂
n±1
n , ∂n±1

n Dn = Dn±1∂
n±1
n , ∂n

n±1Dn±1 = Dn∂n
n±1 . (2.21)

The vector Laplacian is
∇2fYm

n,n1
= Ym

n,n1
Dn1f . (2.22)

If α is a 2-index, let Dα = Dnα , and if α is a 3-index, let D1α = Dn1α . Hence ∇2fYα = YαDαf and
∇2fYα = YαD1αf .

3 Vector Spherical Harmonic Forms of the Non-Linear Equations

The Y-vector spherical harmonic forms (3.12), (3.34) and (3.49), respectively, of the momentum equation
(1.1), the magnetic vector potential equation (3.32) and the temperature equation (1.3) are derived. The
equations incorporate a non spherically-symmetric gravitation volume force, viscous and ohmic heating. The
vector spherical harmonic form of a vector (scalar) equation is obtained by expanding all vector fields in
vector spherical harmonics, all scalar fields in scalar spherical harmonics and taking the inner-product of the
equation with a free vector (scalar) spherical harmonic. The Y-vector spherical harmonic form (3.42)–(3.44)
of the magnetic induction equation (1.2), first derived by James (1974), is simply deduced from Y-magnetic
vector potential equation (3.34). Together equations (3.12), (3.42)–(3.44) and (3.49) determine the three
velocity coefficients vm

n,n−1, vm
n,n, vm

n,n+1, the pressure coefficient Pm
n , the three magnetic coefficients Bm

n,n−1,
Bm

n,n, Bm
n,n+1 and the temperature coefficient Θm

n for each degree n and order m. These equations must be
supplemented by the incompressible flow and solenoidal magnetic field conditions (1.4), and any boundary
conditions. By the divergence formulae (2.15), the coefficient of Y m

n in the Y-form of (1.4)(a) must vanish,
which imposes the following restriction on vm

n,n−1 and vm
n,n+1,

√
n∂n

n−1v
m
n,n−1 −

√
n + 1∂n

n+1v
m
n,n+1 = 0 . (3.1)

Similarly, the coefficients Bm
n,n−1 and Bm

n,n+1 of B are also dependent,

√
n ∂n

n−1B
m
n,n−1 −

√
n + 1 ∂n

n+1B
m
n,n+1 = 0 . (3.2)

The analogous relations connecting coefficients of ω and J are clearly identically satisfied when expressed in
terms of v and B.

Non-linear terms and products produce convolution sums over coupling integrals of three scalar or vector
spherical harmonics. The momentum, magnetic induction and temperature equations lead to only three
types of coupling integral, (3.13), (3.14) and the integral in (3.49). Integrals (3.14) and that in (3.49) are
simply related by (3.50) but they are usually implemented more efficiently individually.

The coupling integrals simplify in special cases and can be analytically evaluated. This is done for the
Coriolis force, the Poincaré force and the buoyancy force with spherically-symmetric gravitation.
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3.1 The Momentum Equation

The Y-momentum equation (3.12) is derived by taking the inner-product of (1.1) with Yγ , where the 3-
index γ is a free index, and considering each term separately. Simplified vector spherical harmonic forms are
also given for the Coriolis volume force (3.22)–(3.24), the Poincaré volume force (3.26) and a spherically-
symmetric gravitational volume force (3.28).

The Y-form of the time-derivative and the viscous force per unit mass is

(∂v/∂τ − ν∇2v,Yγ) = (∂/∂τ − νD1γ)vγ , (3.3)

since the vector Laplacian satisfies property (2.22).
From the gradient formula (2.13) the Y-coefficients of the pressure gradient (∇P )m

n,n1
are related to the

spherical harmonic coefficients of the pressure Pm
n by

(∇P )m
n,n−1 = fP (n, n− 1)∂n−1

n Pm
n , (∇P )m

n,n = 0 , (∇P )m
n,n+1 = fP (n, n + 1)∂n+1

n Pm
n , (3.4)

where the factor fP for the pressure gradient field is

fP (n, n1) :=


√

n/(2n + 1), if n1 = n− 1;
0, if n1 = n;
−
√

(n + 1)/(2n + 1), if n1 = n + 1.
(3.5)

In terms of 3-indices the pressure gradient coefficients are (∇P )γ := (∇P,Yγ) = fP (γ)∂γPγ .
The Y-coefficients of the vector-product of two Y-expansions can easily be found by taking the inner-

product of F×G =
∑

α FαYα ×
∑

β GβYβ with Yγ . This yields

(F×G,Yγ) =
∑
α,β

FαGβ(Yα ×Yβ ,Yγ) . (3.6)

Thus the Y-coefficients of the four terms, ω× v, 2Ω× v, dΩ/dτ × r and J×B can be expressed in terms
of the same coupling integral (Yα ×Yβ ,Yγ),

(ω× v,Yγ) =
∑
α,β

ωαvβ(Yα ×Yβ ,Yγ) (3.7)

(2Ω× v,Yγ) =
∑
α,β

2Ωαvβ(Yα ×Yβ ,Yγ) (3.8)

(dΩ/dτ × r,Yγ) =
∑
α,β

(dΩα/dτ)rβ(Yα ×Yβ ,Yγ) (3.9)

(J×B,Yγ) =
∑
α,β

JαBβ(Yα ×Yβ ,Yγ) . (3.10)

Similarly the Y-coefficients of the buoyancy volume force can be expressed in terms of the different coupling
integral (YαYβ ,Yγ),

(ραΘΘge,Yγ) =
∑
α,β

ραΘge
αΘβ(YαYβ ,Yγ) . (3.11)

Combining the Y-coefficients for each term, (3.3), (3.4), (3.7)–(3.10) and (3.11), yields the Y-momentum
equation,

ρ

(
∂

∂τ
− νD1γ

)
vγ = −fP (γ)∂γPγ +

∑
α,β

{[−ρωαvβ − ρ2Ωαvβ − ρ(dΩα/dτ)rβ

+ JαBβ ](Yα ×Yβ ,Yγ)− ραΘge
αΘβ(YαYβ ,Yγ)} . (3.12)

The two coupling integrals of three harmonics, (Yα ×Yβ ,Yγ) and (YαYβ ,Yγ), which occur in (3.12), have
been evaluated in closed form (Adams 1900; James 1973, 1976) in terms of 3j-, 6j- and 9j-symbols,

(Yα×Yβ ,Yγ) = (−)nα+nβ+n1γ+mγ
√

6iΛ(α, β, γ)

 nα nβ nγ

n1α n1β n1γ

1 1 1


(

n1α n1β n1γ

0 0 0

)(
nα nβ nγ

mα mβ −mγ

)
,

(3.13)
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and

(YαYβ ,Yγ) = (−)mγ+1Λ(α, β, γ)
{

nα n1α 1
n1γ nγ nβ

}(
n1α nβ n1γ

0 0 0

)(
nα nβ nγ

mα mβ −mγ

)
. (3.14)

The Λ factor is given by

Λ(α, β, γ) :=
√

(2nα + 1)(2n1α + 1)(2nβ + 1)(2n1β + 1)(2nγ + 1)(2n1γ + 1)

for 3-indices α, β and γ, as in (3.13). In the case of a 2-index, such as the β index in (3.14), the corresponding
factor (2n1β + 1) is omitted from Λ.

To complete the development of the Y-momentum equation the coefficients ωα and Jα in (3.12) must be
expressed in terms of the Y -coefficients of v and B. The curl formulae (2.17)–(2.19) relate the Y-coefficients
of the velocity and the vorticity by

ωm
n,n−1 = i

√
n + 1
2n + 1

∂n−1
n vm

n,n (3.15)

ωm
n,n =

i√
2n + 1

{√
n∂n

n+1v
m
n,n+1 +

√
n + 1∂n

n−1v
m
n,n−1

}
(3.16)

ωm
n,n+1 = i

√
n

2n + 1
∂n+1

n vm
n,n . (3.17)

Similarly, the Y-coefficients of the magnetic field and the electric current are related by

µ0J
m
n,n−1 = i

√
n + 1
2n + 1

∂n−1
n Bm

n,n (3.18)

µ0J
m
n,n =

i√
2n + 1

{√
n∂n

n+1B
m
n,n+1 +

√
n + 1∂n

n−1B
m
n,n−1

}
(3.19)

µ0J
m
n,n+1 = i

√
n

2n + 1
∂n+1

n Bm
n,n . (3.20)

The gravitational coefficients ge
α may be prescribed apriori or derived from an effective gravitational potential

Ue. By the gradient formula (2.13),

ge = −
∑
n,m

{√
n

2n + 1
Ym

n,n−1∂
n−1
n Um

e,n −
√

n + 1
2n + 1

Ym
n,n+1∂

n+1
n Um

e,n

}
. (3.21)

The general buoyancy term is most easily evaluated in the form (3.12) using (3.21).
The coupling integrals (3.13) and (3.14) simplify in special cases. The angular velocity of the reference

frame can be approximated by diurnal and precessional parts, Ω = Ωd + Ωp. Since the precessional period
is about 27,500 years, Ωp/Ωd ∼ 10−7 and Ω = Ωd is a good approximation, except in the time derivative,
dΩ/dτ . If the z-axis is fixed along the diurnal rotation axis, then Ω = ΩdY0

1,0 from (2.6)(a) and hence
Ω0

1,0 = Ωd with all other Ωα = 0. The time derivative, which is the same in fixed and rotating frames, is
dΩ/dτ = Ω̇d1z + Ωp ×Ωd. Further, for fixed nγ = n and mγ = m, there are then at most seven non-zero
coupling integrals in the Coriolis term. The associated coefficients, apart from a factor ρ2Ω, are

(1z × v,Ym
n,n−1) = −iKm

−nvm
n−1,n−1 −

im

n
vm

n,n−1 (3.22)

(1z × v,Ym
n,n) = iKm

n vm
n−1,n −

im

n(n + 1)
vm

n,n − iKm
−n−1v

m
n+1,n (3.23)

(1z × v,Ym
n,n+1) =

im

n + 1
vm

n,n+1 + iKm
n+1v

m
n+1,n+1 , (3.24)

where

Km
n :=

1
n

√
(n + 1)(n2 −m2)

2n + 1
. (3.25)

Since the angular velocity Ω is spatially uniform, dΩ/dτ =
∑

m(dΩm
1,0/dτ)Ym

1,0. Note that it is not simply
directed along the z-axis. Hence the Y-spectral form of the Poincaré force reduces to

(ρ dΩ/dτ × r,Yγ) = −ρ
∑
m

r(dΩm
1,0/dτ)(Ym

1,0 ×Y0
0,1,Yγ) ,
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noting (2.6)(b). There are only three non-zero coupling integrals, namely (Ym
1,0 ×Y0

0,1,Y
m
1,1) = i

√
2/3 for

m = −1, 0, 1, which are equivalent to the identity 1r ×Ym
1,0 = i

√
2/3Ym

1,1. The coefficients of the Poincaré
volume force are thus

(ρ dΩ/dτ × r,Ym
1,1) = −i

√
2/3ρrdΩm

1,0/dτ . (3.26)

If the gravitational acceleration ge is spherically symmetric, then ge = −g(r)1r, ge = gY0
0,1 from

(2.6)(b) and the buoyancy volume force (3.11) greatly simplifies. The Y-coefficient is (ραΘΘge,Yγ) =
ρgαΘ

∑
β Θβ(Y0

0,1Yβ ,Yγ). For fixed nγ = n and mγ = m only two coupling integrals are non-zero,
(Y0

0,1Y
m
n ,Ym

n,n−1) = −
√

n/(2n + 1) and (Y0
0,1Y

m
n ,Ym

n,n+1) =
√

(n + 1)/(2n + 1), which are equivalent to
the identity (James 1974),

Y m
n 1r =

√
n

2n + 1
Ym

n,n−1 −
√

n + 1
2n + 1

Ym
n,n+1 , (3.27)

The associated coefficients are (Θge,Ym
n,n−1) = −gΘm

n

√
n/(2n + 1) and (Θge,Ym

n,n+1) = gΘm
n

√
(n + 1)/(2n + 1).

Thus the Y-expansion of the buoyancy volume force for a spherically-symmetric gravitational acceleration
simplifies to

ραΘΘge = −ρgαΘ

∑
n,m

Θm
n

{√
n

2n + 1
Ym

n,n−1 −
√

n + 1
2n + 1

Ym
n,n+1

}
. (3.28)

Using (3.22)–(3.24), (3.26) and (3.28) in (3.12), the n1γ = nγ , nγ ± 1 component momentum equations
with spherically-symmetric gravitational acceleration and Ω parallel to 1z = Y0

1,0 are, omitting γ subscripts,

ρ

(
∂

∂τ
− νDn−1

)
vm

n,n−1 − iKm
−nρ2Ωvm

n−1,n−1 −
im

n
ρ2Ωvm

n,n−1 = −
√

n

2n + 1
(∂n−1

n Pm
n − ραΘgΘm

n )

+
∑
α,β

(−ρωαvβ + JαBβ)(Yα ×Yβ ,Ym
n,n−1)

(3.29)

ρ

(
∂

∂τ
− νDn

)
vm

n,n + iKm
n ρ2Ωvm

n−1,n −
im

n(n + 1)
ρ2Ωvm

n,n − iKm
−n−1ρ2Ωvm

n+1,n + i
√

2
3 ρr(dΩm

1,0/dτ)δ1
n =∑

α,β

(−ρωαvβ + JαBβ)(Yα ×Yβ ,Ym
n,n)

(3.30)

ρ

(
∂

∂τ
− νDn+1

)
vm

n,n+1 +
im

n + 1
ρ2Ωvm

n,n+1 + iKm
n+1ρ2Ωvm

n+1,n+1 =

√
n + 1
2n + 1

(∂n+1
n Pm

n − ραΘgΘm
n )

+
∑
α,β

(−ρωαvβ + JαBβ)(Yα ×Yβ ,Ym
n,n+1) .

(3.31)

The Coriolis volume force couples the coefficients vm
n,n1

with the same n1 (and m) but different n. If the
incompressible condition (3.1) is included the coefficients vm

n,n1
couple into two infinite chains with either

|n1−n| = mod(n, 2) or |n1−n| = mod(n+1, 2). If Ω is not parallel to 1z, the Coriolis volume force induces
stronger coupling over m between the coefficients vm

n,n1
. There are then several more non-zero coupling

integrals of the form (Yµ
1,0 × Yβ ,Yγ), µ = ±1, which can also be evaluated analytically. The Poincaré

volume force only drives vm
1,1.

3.2 The Magnetic Vector Potential and Induction Equations

The Y-vector spherical harmonic form (3.33), or in component form (3.35)–(3.37), of the magnetic vector
potential equation (3.32) is derived. The Y-vector spherical harmonic form of the magnetic induction
equation (1.2) (James 1974) is also deduced in component form (3.42)–(3.44). The magnetic vector potential
equation closely resembles the momentum equation, the uncurled form of the well-known analogy between
the magnetic induction equation and the vorticity equation (Elsasser 1950). The similar Y-spectral analysis
of the momentum and magnetic vector potential equations provides checks on the spectral equations and
simplifies computer implementation. It is also easier to spectrally analyze terms of the form F×G and then
apply the curl formulae (2.17)–(2.19), rather than analyze ∇× (F × G) directly. Hence the derivation of
the Y-spectral equations for B starts from the magnetic vector potential equation rather than the magnetic
induction equation.
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The electric field E is given in terms of the magnetic vector potential A, where ∇× A = B, and the
electric scalar potential Φ, by E = −∂A/∂τ − ∇Φ. Eliminating E transforms Ohm’s Law (1.5) into the
magnetic vector potential equation,

∂A/∂τ = −η∇×B + v ×B−∇Φ . (3.32)

The magnetic induction equation (1.2) is the curl of (3.32). Expanding v and B in terms of vector spherical
harmonics and using (3.6),

(v ×B,Yγ) =
∑
α,β

vαBβ(Yα ×Yβ ,Yγ) ,

where the coupling integral (Yα ×Yβ ,Yγ) is given by (3.13). The inner-product of (3.32) with Yγ , where
γ is a free index, yields

(∂A/∂τ,Yγ) = −η(∇×B,Yγ) +
∑
α,β

vαBβ(Yα ×Yβ ,Yγ)− (∇Φ)γ . (3.33)

where (∇Φ)γ := (∇Φ,Yγ) are the Y-coefficients of ∇Φ. The first term on the right in (3.33) can be simplified
using the vector identity, ∇×∇×A = −∇2A + ∇(∇ ·A), the relation ∇×A = B and properties (2.21).
Thus the Y-spectral form of the magnetic vector potential equation is obtained,(

∂

∂τ
− ηDγ

)
Aγ =

∑
α,β

vαBβ(Yα ×Yβ ,Yγ)− (∇{Φ + η∇ ·A})γ . (3.34)

The degree n and order m component equations of (3.34) are(
∂

∂τ
− ηDn−1

)
Am

n,n−1 =
∑
α,β

vαBβ(Yα ×Yβ ,Ym
n,n−1)−

√
n

2n + 1
∂n−1

n (Φm
n + η{∇ ·A}m

n ) (3.35)

(
∂

∂τ
− ηDn

)
Am

n,n =
∑
α,β

vαBβ(Yα ×Yβ ,Ym
n,n) (3.36)

(
∂

∂τ
− ηDn+1

)
Am

n,n+1 =
∑
α,β

vαBβ(Yα ×Yβ ,Ym
n,n+1) +

√
n + 1
2n + 1

∂n+1
n (Φm

n + η{∇ ·A}m
n ) . (3.37)

The gradient in (3.34), which has been evaluated using the gradient formula (2.13), makes no contribution
to the Am

n,n-equation. From the curl formulae (2.17)–(2.19) the Y-coefficients of B are given in terms of the
Y-coefficients of A by

Bm
n,n−1 = i

√
n + 1
2n + 1

∂n−1
n Am

n,n (3.38)

Bm
n,n =

i√
2n + 1

{√
n∂n

n+1A
m
n,n+1 +

√
n + 1∂n

n−1A
m
n,n−1

}
(3.39)

Bm
n,n+1 = i

√
n

2n + 1
∂n+1

n Am
n,n . (3.40)

The divergence of A has the spectral form,

(∇ ·A)m
n =

√
n

2n + 1
∂n

n−1A
m
n,n−1 −

√
n + 1
2n + 1

∂n
n+1A

m
n,n+1 . (3.41)

Equations (3.35)–(3.37), together with (3.38)–(3.41), determine the vector potential Y-coefficients Aγ and
the scalar potential Y -coefficients Φγ . They provide the simplest starting point for the derivations of the
spectral toroidal-poloidal induction equations in §§4–6.

The Y-vector spherical harmonic form of the magnetic induction equation for the magnetic field Y-
coefficients Bγ follows from (3.35)–(3.37) and (3.38)–(3.40). By (3.38) applying i

√
(n + 1)/(2n + 1)∂n−1

n to
equation (3.36) and using (2.21) yields the Bm

n,n−1-equation,(
∂

∂τ
− ηDn−1

)
Bm

n,n−1 = i

√
n + 1
2n + 1

∑
α,β

∂n−1
n (vαBβ)(Yα ×Yβ ,Ym

n,n) . (3.42)

10



Similarly, by (3.39) applying i
√

(n + 1)/(2n + 1) ∂n
n−1 to equation (3.35) and i

√
n/(2n + 1) ∂n

n+1 to equation
(3.37), and adding yields the Bm

n,n-equation,

(
∂

∂τ
− ηDn

)
Bm

n,n = i

√
n + 1
2n + 1

∑
α,β

∂n
n−1(vαBβ)(Yα ×Yβ ,Ym

n,n−1)

+ i

√
n

2n + 1

∑
α,β

∂n
n+1(vαBβ)(Yα ×Yβ ,Ym

n,n+1) . (3.43)

Lastly, by (3.40) applying i
√

n/(2n + 1) ∂n+1
n to (3.36) yields the Bm

n,n+1-equation,(
∂

∂τ
− ηDn+1

)
Bm

n,n+1 = i

√
n

2n + 1

∑
α,β

∂n+1
n (vαBβ)(Yα ×Yβ ,Ym

n,n) . (3.44)

The gradient terms in (3.35) and (3.37) have been eliminated and equations (3.42)–(3.44) are expressed
purely in terms of the Y-coefficients of B and v. However, equations (3.42) and (3.44) are not independent,
since Bm

n,n−1 and Bm
n,n+1 must also satisfy condition (3.2). Thus (3.43) and only one of (3.42) and (3.44)

determine the magnetic field. Alternatively, (3.42) and (3.44) can be reduced to a single equation using the
toroidal-poloidal representation (1.6)(a) as in §4.

3.3 The Heat Equation

The scalar spherical harmonic spectral equation for the temperature (3.49) is derived by taking the inner-
product of (1.3) with Yγ , where γ is a free index. Combining the time-derivative and the thermal diffusion
term, which simplifies using the Laplacian property (2.20), gives

(∂Θ/∂τ − κ∇2Θ, Yγ) = (∂/∂τ − κDγ)Θγ . (3.45)

To derive the spectral form of the advective term v ·∇Θ, substitute the vector spherical harmonic expansions
for the velocity, (2.12), and for the temperature gradient q := ∇Θ,

v · ∇Θ =
∑
α,β

vαqβYα ·Yβ .

Hence
(v · ∇Θ, Yγ) =

∑
α,β

vαqβ(Yα ·Yβ , Yγ) . (3.46)

The Ohmic heating term can be expanded in a similar way, J · J =
∑

α,β JαJβYα ·Yβ , and hence

(J2, Yγ) =
∑
α,β

JαJβ(Yα ·Yβ , Yγ) . (3.47)

The spectral form of the viscous heating term,

Qν = 1
2ρν

∑
i,j

(∂ivj + ∂jvi)2 = ρν[∇v : ∇v +∇v : (∇v)T ] ,

can be found using the identities, ∇v : ∇v = 1
2∇

2v2−v·∇2v and∇v : (∇v)T = ∇v : ∇v−ω2. By the vector
Laplacian property (2.22), ∇2v2 = ∇2

∑
α,β,γ vαvβ(Yα ·Yβ , Yγ)Yγ =

∑
α,β,γ Dγ(vαvβ)(Yα ·Yβ , Yγ)Yγ . Also

v · ∇2v =
∑

α,β vαYα · ∇2(vβYβ) =
∑

α,β,γ vα(D1βvβ)(Yα ·Yβ , Yγ)Yγ . Thus, treating ω2 similarly to J2 in
(3.47),

(Qν , Yγ) = ρν(∇2v2 − 2v · ∇2v − ω2, Yγ) = ρν
∑
α,β

{Dγ(vαvβ)− 2vαD1βvβ − ωαωβ}(Yα ·Yβ , Yγ) . (3.48)

The spherical harmonic spectral heat equation is obtained by combining equations (3.45)–(3.48) and
simplifying the viscous volume heating using the symmetry of the coupling integral in α and β,
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ρcp

(
∂

∂τ
− κDγ

)
Θγ = Qγ +

∑
α,β

{
− ρcpvαqβ + ρν

[
2
∂vα

∂r

∂vβ

∂r
+ (p1α + p1β − pγ)

vαvβ

r2
− ωαωβ

]

+ JαJβ/σ

}
(Yα ·Yβ , Yγ) , (3.49)

where p1α := n1α(n1α +1), etc. The coupling integral (Yα ·Yβ , Yγ) in (3.49) is related to the integral (3.14)
using the complex conjugate properties (2.2) and (2.10),

(Yα ·Yβ , Yγ) = (−)nα+n1α+mα+1+mγ (YβY −mγ
nγ

,Y−mα
nα,n1α

) . (3.50)

The components qβ of the temperature gradient q are given in terms of the radial derivatives of the spherical
harmonic coefficients of the temperature by

qm
n,n−1 = fq(n, n− 1)∂n−1

n Θm
n , qm

n,n = 0 , qm
n,n+1 = fq(n, n + 1)∂n+1

n Θm
n , (3.51)

where fq(n, n1) = fP (n, n1), with fP given by (3.5), is a factor for the temperature gradient field.

4 Compact Non-Linear Toroidal-Poloidal Spectral Equations

The incompressible flow and solenoidal magnetic field conditions (1.4), or the equivalent Y-spectral equations
(3.1) and (3.2), can be satisfied identically by using the toroidal-poloidal representations (1.6) and (1.7). The
Y -coefficients of the magnetic potentials S and T in (2.4) are related to the Y-coefficients of the magnetic
field in (2.12) by

Bm
n,n1

= fB(n, n1)

{
∂n1

n Sm
n , if n1 = n± 1;

Tm
n , if n1 = n;

(4.1)

where the factor fB for the magnetic field is given by

fB(n, n1) :=


(n + 1)

√
n/(2n + 1) , if n1 = n− 1;

−i
√

n(n + 1) , if n1 = n;
n
√

(n + 1)/(2n + 1) , if n1 = n + 1.

(4.2)

The two dependent variables Bm
n,n±1 are substituted by a single variable Sm

n and Bm
n,n is substituted by Tm

n .
Thus evolution of the magnetic field is governed by only two independent equations of degree n and order
m, namely the spectral toroidal-poloidal induction equations. Compact forms (4.21) and (4.22) of these
equations, in which the product and non-linear terms are expanded in vector spherical harmonic coefficients,
are derived in this section from the magnetic vector potential spectral equations (3.35)–(3.37).

The Y -coefficients of the velocity potentials s and t in (2.4) are related to the Y-coefficients of the velocity
(2.12) by equations analogous to (4.1),

vm
n,n1

= fv(n, n1)

{
∂n1

n sm
n , if n1 = n± 1;

tmn , if n1 = n;
(4.3)

where fv(n, n1) = fB(n, n1). The two dependent variables vm
n,n±1 are replaced by a single variable sm

n ,
vm

n,n is replaced by tmn . However, unlike the magnetic case, the n1 = n ± 1 momentum equations in (3.12)
are not dependent and there is still the pressure to consider. If the pressure is eliminated, then evolution
of the velocity is also governed by only two independent equations of degree n and order m, the spectral
toroidal-poloidal momentum equations. Compact forms (4.7) and (4.13) of these equations are also derived
from the spectral momentum equations (3.12).

Of course, only vector equations can have toroidal-poloidal component equations so the heat equation is
not considered.

4.1 The Momentum Equation

The compact forms (4.7) and (4.13) of the spectral toroidal-poloidal momentum equations with general
rotation rate Ω and gravitational acceleration ge are derived for the toroidal-poloidal velocity potentials t
and s. Solving (4.3) for tmn ,

tmn = ev(n, n)vm
n,n , (4.4)
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where the factor ev for the velocity equation is defined by

ev(n, n1) :=


1/
√

n(2n + 1), if n1 = n− 1;
i/
√

n(n + 1), if n1 = n;
1/
√

(n + 1)(2n + 1), if n1 = n + 1.
(4.5)

It is clear from the time derivative in (3.12), that the vm
n,n-equation governs the evolution of the toroidal

velocity potential coefficient tmn . Thus the spectral toroidal momentum equation, or tmn -equation, is produced
by

tmn -equation = ev(n, n)× vm
n,n-equation . (4.6)

Substituting (4.3) into the left side of (3.12) and using (4.6) gives the compact spectral toroidal momentum
equation,

ρ

(
∂

∂τ
−νDγ

)
tγ =

∑
α,β

n1γ=nγ

ev(γ){[−ρωαvβ−ρ2Ωαvβ−ρ(dΩα/dτ)rβ+JαBβ ](Yα×Yβ ,Yγ)−ραΘge
αΘβ(YαYβ ,Yγ)} .

(4.7)
The time derivative and viscous terms are on the left, and the non-linear and other product interaction
terms, including the remaining linear terms, are on the right side of (4.7).

In terms of Sm
n and Tm

n , the Y-coefficients of the electric current are given by

µ0J
m
n,n1

= fJ(n, n1)

{
∂n1

n Tm
n , if n1 = n± 1;

DnSm
n , if n1 = n;

(4.8)

where the factor fJ for the current field is

fJ(n, n1) :=


(n + 1)

√
n/(2n + 1) , if n1 = n− 1;

i
√

n(n + 1) , if n1 = n;
n
√

(n + 1)/(2n + 1) , if n1 = n + 1.

(4.9)

Similarly, the Y-coefficients of the vorticity, in terms of sm
n and tmn , are

ωm
n,n1

= fω(n, n1)

{
∂n1

n tmn , if n1 = n± 1;
Dnsm

n , if n1 = n;
(4.10)

where fω(n, n1) = fJ(n, n1).
The derivation of the compact spectral poloidal momentum equation (4.13) is more involved. Solving

(4.3) for sm
n ,

Dnsm
n = ev(n, n− 1)∂n

n−1v
m
n,n−1 + ev(n, n + 1)∂n

n+1v
m
n,n+1 , (4.11)

where the factor ev is defined by (4.5). From the time derivative it is seen that applying ev(n, n − 1)∂n
n−1

to the vm
n,n−1-equation in (3.12) and ev(n, n − 1)∂n

n+1 to the vm
n,n+1-equation in (3.12), and adding, yields

an equation which governs the evolution of Dnsm
n . This equation, called the compact spectral poloidal

momentum equation or the sm
n -equation, is produced by

sm
n -equation = ev(n, n− 1)∂n

n−1v
m
n,n−1-equation + ev(n, n + 1)∂n

n+1v
m
n,n+1-equation . (4.12)

The combination of operators here eliminates the modified pressure Pm
n . A purely algebraic combination for

sm
n is possible from (4.3), namely

sm
n =

r√
n(n + 1)

(
vm

n,n−1√
(n + 1)(2n + 1)

−
vm

n,n+1√
n(2n + 1)

)
,

but the corresponding combination of the vm
n,n±1-equations does not eliminate the pressure. The diffusion

term in the sm
n -equation takes the simple form,

ev(n, n− 1)∂n
n−1Dn−1v

m
n,n−1 + ev(n, n + 1)∂n

n+1Dn+1v
m
n,n+1 = DnDnsm

n .
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From (3.12) the compact spectral poloidal momentum equation is thus

ρ

(
∂

∂τ
− νDγ

)
Dγsγ =

∑
α,β

n1γ=nγ±1

ev(γ)∂γ{[−ρωαvβ − ρ2Ωαvβ − ρ(dΩα/dτ)rβ + JαBβ ](Yα ×Yβ ,Yγ)

− ραΘge
αΘβ(YαYβ ,Yγ)} , (4.13)

where ∂γ is defined following (2.14). The Y-coefficients on the right are given in terms of the Y -coefficients
of the toroidal-poloidal potentials of v and B by (4.1), (4.3), (4.8) and (4.10).

4.2 The Magnetic Vector Potential and Induction Equations

Compact spectral toroidal-poloidal magnetic induction equations (4.21) and (4.22) are derived for the
toroidal-poloidal magnetic potentials T and S.

Uncurling the toroidal-poloidal representation (1.6) and (1.7) yields A = Tr +∇× Sr +∇R, where the
second term on the right side is the toroidal part of A, and the first and third terms comprise the poloidal
and scaloidal parts of A. In component form,

Am
n,n−1 =

√
n

2n + 1
(rTm

n + ∂n−1
n Rm

n ) , (4.14)

Am
n,n = −i

√
n(n + 1)Sm

n , (4.15)

Am
n,n+1 = −

√
n + 1
2n + 1

(rTm
n + ∂n+1

n Rm
n ) . (4.16)

It follows from (4.15) and the time derivative in (3.36) that the Am
n,n-equation (3.36) is i/

√
n(n + 1) times

the spectral poloidal magnetic equation or Sm
n -equation, i.e.

Sm
n -equation = eB(n, n)×Am

n,n-equation , (4.17)

where eB is the magnetic equation factor,

eB(n, n1) :=


−1/

√
n(2n + 1), if n1 = n− 1;

i/
√

n(n + 1), if n1 = n;
−1/

√
(n + 1)(2n + 1), if n1 = n + 1.

(4.18)

To obtain the Tm
n -equation, Rm

n must be eliminated from equations (4.14) and (4.16). By the definition
(2.14) of ∂n1

n and (2.21),

Tm
n = eB(n, n− 1)∂n

n−1A
m
n,n−1 + eB(n, n + 1)∂n

n+1A
m
n,n+1 . (4.19)

Thus the spectral toroidal magnetic induction equation or Tm
n -equation is extracted from (3.35) and (3.37)

by operating on the Am
n,n−1-equation (3.35) with eB(n, n − 1)∂n

n−1 and on the Am
n,n+1-equation (3.37) with

eB(n, n + 1)∂n
n+1, i.e.

Tm
n -equation = eB(n, n− 1)∂n

n−1A
m
n,n−1-equation + eB(n, n + 1)∂n

n+1A
m
n,n+1-equation . (4.20)

The gradient term in (3.32) makes no contribution to the Tm
n -equation. Moreover, the diffusion term sim-

plifies to
eB(n, n− 1)∂n

n−1Dn−1A
m
n,n−1 + eB(n, n + 1)∂n

n+1Dn+1A
m
n,n+1 = DnTm

n ,

using (2.21). Thus (
∂

∂τ
− ηDγ

)
Sγ =

∑
α,β

(n1γ=nγ)

eB(γ)(Yα ×Yβ ,Yγ)vαBβ (4.21)

(
∂

∂τ
− ηDγ

)
Tγ =

∑
α,β,n1γ

(n1γ=nγ±1)

eB(γ)(Yα ×Yβ ,Yγ)∂γ(vαBβ) . (4.22)

Of course the Y-coefficients of v and B on the right sides of (4.21) and (4.22) are given in terms of Sγ and
Tγ by (4.1) and (4.2).
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5 Non-Linear Toroidal-Poloidal Spectral-Interaction Equations

In this section the toroidal-poloidal spectral-interaction forms, (5.6) and (5.8), of the momentum equation
are derived. Toroidal and poloidal potentials are substituted for the velocity and magnetic field in the non-
linear and product terms on the right sides of (4.7) and (4.13) and the expressions are simplified. In this
section only the case, where Ω is parallel to 1z, is considered. The toroidal-poloidal spectral-interaction
equations are analogous to the Bullard & Gellman (1954) form of the magnetic induction equation, which
are also given in (5.10) and (5.11).

In equations (4.7) and (4.13) the sums over the 3-indices α and β, i.e. over the six quantities nα, n1α,
mα, nβ , n1β and mβ , can be reduced to sums over four indices by evaluating the sums over n1α and n1β and
expressing the coupling integrals in terms of the Adams-Gaunt integral,

Aαβγ :=
∮

YαYβYγ dΩ , (5.1)

and the Elsasser dynamo integral,

Eαβγ :=
∮

1
sin θ

(∂θYα ∂φYβ − ∂φYα ∂θYβ)Yγ dΩ . (5.2)

From the complex conjugate property of the spherical harmonics (2.2),

Aαβγ∗ =
∮

YαYβY ∗
γ dΩ = (−)mγ A

mαmβ−mγ
nα nβ nγ , Eαβγ∗ = (−)mγ E

mαmβ−mγ
nα nβ nγ . (5.3)

The integrals Aαβγ and Eαβγ have been evaluated (Adams 1900; James 1973) in closed form. In terms of
3j-symbols,

Aαβγ = 4πΛ(α, β, γ)
(

nα nβ nγ

0 0 0

)(
nα nβ nγ

mα mβ mγ

)
(5.4)

and

Eαβγ = −4πiΛ(α, β, γ)∆(α, β, γ)
(

nα + 1 nβ + 1 nγ + 1
0 0 0

)(
nα nβ nγ

mα mβ mγ

)
, (5.5)

where

∆(α, β, γ) =

√
(nα + nβ + nγ + 2)(nα + nβ + nγ + 4)

4(nα + nβ + nγ + 3)

√
(nα + nβ − nγ + 1)(nγ + nα − nβ + 1)(nβ + nγ − nα + 1) .

In this section dashes will denote radial derivatives, not perturbation fields.

5.1 The Momentum Equation

The spectral poloidal-toroidal spectral-interaction forms (5.6) and (5.8) of the momentum equation are
derived. The toroidal momentum equation is derived by substituting (4.1), (4.3), (4.8) and (4.10) into (4.7)
and summing over n1α and n1β . After lengthy calculations the spectral-interaction form of the toroidal
momentum equation obtains,

ρ

(
∂

∂τ
− νDn

)
tmn − ρ2Ωp−1

n (imtn + Cm
n ∂n

n−1s
m
n−1 + Cm

n+1∂
n
n+1s

m
n+1) +

ρr√
3

dΩm
n

dτ
=∑

α,β

{−ρ[(sαsβtmn ) + (sαtβtmn ) + (tαtβtmn )] + µ−1
0 [(SαSβtmn ) + (SαTβtmn ) + (TαTβtmn )] + ραΘ(Ue

αΘβtmn )} ,

(5.6)

where the toroidal-poloidal spectral-interaction forms of the advection, Lorentz and buoyancy terms are
given by

4πpγr(sαsβtγ) = −pβ(Dαsα)sβEαβγ∗

8πpγr2(sαtβtγ) = {pβ(pβ − pα − pγ)(rsα)′tβ − pα(pα − pβ − pγ)sα(rtβ)′}Aαβγ∗

4πpγr(tαtβtγ) = pαtαtβEαβγ∗
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4πpγr(SαSβtγ) = −pβ(DαSα)SβEαβγ∗

8πpγr2(SαTβtγ) = {pβ(pβ − pα − pγ)(rSα)′Tβ − pα(pα − pβ − pγ)Sα(rTβ)′}Aαβγ∗

4πpγr(TαTβtγ) = pαTαTβEαβγ∗

4πpγr(Ue
αΘβtγ) = −Ue

αΘβEαβγ∗ .

The primes denote radial derivatives, pα := nα(nα + 1) and

Cm
n := (n2 − 1)

√
n2 −m2

4n2 − 1
. (5.7)

The non-linear and other product interaction terms are given on the right side of (5.6) and the remaining lin-
ear terms on the left. There are no separate (tαsβtγ) or (TαSβtγ) interactions in (5.6) due to the summations
over α and β.

In general, interaction terms may be modified using the double summation over α and β, the symmetry
of Aαβγ∗ in α and β or the anti-symmetry of Eαβγ∗ and so are not unique. In particular, coefficients of Aαβγ∗

or Eαβγ∗ , respectively, can be symmetrised or anti-symmetrised in α and β. These procedures often produce
more complicated coefficients. The converse procedures of de-symmetrisation of an Aαβγ∗ -coefficient or de-
anti-symmetrisation of an Eαβγ∗ -coefficient by the addition of an arbitrary anti-symmetric or symmetric
function, respectively, can sometimes be more useful in practice.

To derive the spectral-interaction form of the poloidal momentum equation, equations (4.1), (4.3), (4.8)
and (4.10) are substituted into (4.13) and the sums over n1α and n1β evaluated. After lengthy calculations
the spectral-interaction form of the poloidal momentum equation follows,

ρ

(
∂

∂τ
− νDn

)
Dnsm

n − ρ2Ωp−1
n (imDnsm

n − Cm
n ∂n

n−1t
m
n−1 − Cm

n+1∂
n
n+1t

m
n+1) =∑

α,β

{−ρ[(sαsβsm
n ) + (sαtβsm

n ) + (tαtβsm
n )] + µ−1

0 [(SαSβsm
n ) + (SαTβsm

n ) + (TαTβsm
n )] + ραΘ(Ue

αΘβsm
n )} ,

(5.8)

where the toroidal-poloidal spectral-interaction forms of the advection, Lorentz and buoyancy terms are
given by

8πpγr2(sαsβsγ) = {pγ(pα + pβ − pγ)(Dαsα)(rsβ)′ + pβ(pα − pβ + pγ)r[(Dαsα)sβ ]′}Aαβγ∗

4πpγr3(sαtβsγ) = {pγr2(Dαsα)tβ + (pα + pβ + pγ)sαtβ − (pα + pβ − pγ)(rsαt′β + rs′αtβ + r2s′αt′β)

− pβr2s′′αtβ − pαr2sαt′′β}Eαβγ∗

8πpγr2(tαtβsγ) = {pγ(pα + pβ − pγ)(rtα)′tβ + pα(−pα + pβ + pγ)r(tαtβ)′}Aαβγ∗

8πpγr2(SαSβsγ) = {pγ(pα + pβ − pγ)(DαSα)(rSβ)′ + pβ(pα − pβ + pγ)r[(DαSα)Sβ ]′}Aαβγ∗

4πpγr3(SαTβsγ) = {pγr2(DαSα)Tβ + (pα + pβ + pγ)SαTβ − (pα + pβ − pγ)(rSαT ′
β + rS′αTβ + r2S′αT ′

β)

− pαr2S′′αTβ − pβr2SαT ′′
β }Eαβγ∗

8πpγr2(TαTβsγ) = {pγ(pα + pβ − pγ)(rTα)′Tβ + pα(−pα + pβ + pγ)r(TαTβ)′}Aαβγ∗

8πpγr(Ue
αΘβsγ) = {(pα − pβ + pγ)Ue

αΘ′
β + (pα − pβ − pγ)Ue

α
′Θβ}Aαβγ∗ .

The primes denote radial derivatives. There are no separate (tαsβsγ) or (TαSβsγ) interactions. Equations
(5.6) and (5.8) are analogous to the equations derived by Bullard & Gellman (1954) from the magnetic
induction equation for the magnetic toroidal and poloidal potentials. If the gravitational acceleration is
spherically-symmetric, then the buoyancy term in the toroidal equation (5.6) vanishes and the buoyancy
term in the poloidal equation (5.8) simplifies to

(Ue
αΘβsγ) = −g

r
Θβδβ

γ δ0
nα

δmα
0 , (5.9)

since nα = 0, n1α = 1, mα = 0, g = ∂1
0Ue,0

0 = ∂rU
e,0
0 and A0βγ∗ = 4πδβγ .

The highest radial derivatives of tmn in (5.6) and (5.8) are second-order, but those of sm
n are second-order

and fourth-order respectively.
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5.2 The Magnetic Induction Equation

If (4.1) and (4.3) are substituted into (4.21) and (4.22), and n1α and n1β are summed, the coupling integral
reduces to either the Adams-Gaunt integral, (5.1) or the Elsasser integral (5.2). The well-known Bullard &
Gellman (1954) equations are obtained, with minor modifications due to the different definition of toroidal-
poloidal fields and different normalisation of the scalar spherical harmonics, after lengthy calculations:(

∂

∂τ
− ηDγ

)
Sγ =

∑
α,β

{(sαSβSγ) + (sαTβSγ) + (tαSβSγ) + (tαTβSγ)} (5.10)

(
∂

∂τ
− ηDγ

)
Tγ =

∑
α,β

{(sαSβTγ) + (sαTβTγ) + (tαSβTγ) + (tαTβTγ)} , (5.11)

where now α and β are 2-indices and the toroidal-poloidal spectral-interaction terms are given by

8πpγr2(sαSβSγ) = {−pα(−pα + pβ + pγ)sα(rSβ)′ + pβ(pα − pβ + pγ)(rsα)′Sβ}Aαβγ∗

4πpγr(sαTβSγ) = pαsαTβEαβγ∗

4πpγr(tαSβSγ) = pβtαSβEαβγ∗

(tαTβSγ) = 0

4πpγr3(sαSβTγ) = {(pα + pβ + pγ)sαSβ − (pα + pβ − pγ)(rs′αSβ + rsαS′β + r2s′αS′β)

− pαr2sαS′′β − pβr2s′′αSβ}Eαβγ∗

8πpγr2(sαTβTγ) = {−pγ(pα + pβ − pγ)(sαTβ + rs′αTβ) + pα(pα − pβ − pγ)(rs′αTβ + rsαT ′
β)}Aαβγ∗

8πpγr2(tαSβTγ) = {pγ(pα + pβ − pγ)(tαSβ + rtαS′β)− pβ(pβ − pα − pγ)(rt′αSβ + rtαS′β)}Aαβγ∗

4πr(tαTβTγ) = tαTβEαβγ∗ .

The primes denote radial derivatives.

5.3 The Heat Equation

The spectral equations for the temperature can also be expressed in terms of the spherical harmonic coeffi-
cients of Θ and of the toroidal-poloidal potentials tα, sα, Tα and Sα of the velocity and the magnetic field.
Substituting (4.2) and (4.3) into the heat equation (3.49), and summing over n1α and n1β , the coupling
integral reduces to Adams-Gaunt integrals (5.1) and Elsasser integrals (5.2) giving,

ρcp

(
∂

∂τ
− κDγ

)
Θγ = Qγ +

∑
α,β

{−ρcp[(sαΘβΘγ) + (tαΘβΘγ)] + ρν[(sαsβΘγ) + (sαtβΘγ)

+(tαtβΘγ)] + [(SαSβΘγ) + (SαTβΘγ) + (TαSβΘγ) + (TαTβΘγ)]/µ2
0σ} ,

(5.12)

where the temperature-toroidal-poloidal spectral-interaction terms are given by

4πr2(sαΘβΘγ) = {rpαsαΘ′
β + 1

2 (pα + pβ − pγ)(rsα)′Θβ}Aαβγ∗

4πr(tαΘβΘγ) = −tαΘβEαβγ∗

8πr2(sαsβΘγ) = {2pαpβ [r2Dγ(sαsβ/r2)− 2sα(Dβsβ)]

+ (pα + pβ − pγ)[r2Dγ((rsα)′(rsβ)′/r2)− 2(rsα)′(rDβsβ)′ − r2(Dαsα)(Dβsβ)]}Aαβγ∗

2πr(sαtβΘγ) = {rDγ [(rsα)′tβ/r]− (rDαsα)′tβ − (rsα)′(Dβtβ)− (Dαsα)(rtβ)′}Eαβγ∗

8π(tαtβΘγ) = {−2pαpβtαtβ/r2 + (pα + pβ − pγ)[Dγ(tαtβ)− 2tα(Dβtβ)− (rtα)′(rtβ)′/r2]}Aαβγ∗

8π(SαSβΘγ) = (pα + pβ − pγ)(DαSα)(DβSβ)Aαβγ∗

2πr(SαTβΘγ) = (DαSα)(rTβ)′Eαβγ∗

8πr2(TαTβΘγ) = {2pαpβTαTβ + (pα + pβ − pγ)(rTα)′(rTβ)′}Aαβγ∗

The dashes denote radial derivatives. The interactions (tαsβΘγ) and (TαSβΘγ) have been absorbed into
(sαtβΘγ) and (SαTβΘγ) respectively.
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6 Hybrid Spectral Forms of the Linearised Equations

The most important results of the paper for use in applications are the hybrid spectral forms of the linearised
momentum, magnetic induction and heat equations derived in this section, namely (6.2)–(6.9), (6.11)–(6.14)
and (6.15)–(6.19). In these hybrid spectral equations the basic state is described mathematically by the
vector fields v0, ω0, B0, J0, q0 := ∇Θ0 and ge, but the perturbation state is given by scalar fields — the
toroidal-poloidal potentials s′, t′, S′, T ′ and the temperature Θ′. There may be a perturbed heat source
Q′. The vector fields of the basic state are expanded in vector spherical harmonics and the perturbation
fields in scalar spherical harmonics. The notation v0

α = v0,mα
nα,n1α

, etc, is adopted. Thus v0 =
∑

α v0
αYα, etc.

Spectral forms of the interaction terms are a hybrid of Y-coefficients of the basic state and Y -coefficients of
the toroidal-poloidal potentials and the temperature. In this section the z-axis coincides with the rotation
axis.

The Y-spectral form of the linearised momentum equation is obtained by linearising the Y-spectral
equation (3.12),

ρ

(
∂

∂τ
− νDγ

)
v′γ = −fP (γ)∂γP ′

γ −
∑
α,β

ραΘge
αΘ′

β(YαYβ ,Yγ)

+
∑
α,β

(−ρω0
αv′β − ρω′αv0

β − ρ2Ωαv′β + J ′αB0
β + J0

αB′
β)(Yα ×Yβ ,Yγ) . (6.1)

If toroidal-poloidal representations for both the basic state and the perturbation fields are substituted into
the v′γ-equation (6.1), proceeding as in Section 5 yields the linearised forms of the tγ-equation (5.6) and
the sγ-equation (5.8), respectively. Instead, different hybrid spectral forms of the linearised tγ-equation and
sγ-equation are derived by substituting toroidal-poloidal representations only for the perturbation magnetic,
velocity, electric current and vorticity fields, not the basic state fields. The hybrid spectral equations are
structurally more compact with greater redundancy and their use is therefore generally less error prone. The
hybrid t′γ-equation is

ρ

(
∂

∂τ
−νDγ

)
t′γ =

∑
α,β

(n1γ=nγ)

{−ρ(ω0
αv′βv′γ)+ρ(v0

αω′βv′γ)+(J0
αB′

βv′γ)−(B0
βJ ′αv′γ)−ραΘ(ge

αΘ′
βv′γ)−ρ2(Ωαv′βv′γ)}

(6.2)
and the hybrid s′γ-equation is

ρ

(
∂

∂τ
−νDγ

)
Dγs′γ =

∑
α,β,n1γ

(n1γ=nγ±1)

{−ρ(ω0
αv′βv′γ)+ρ(v0

αω′βv′γ)+(J0
αB′

βv′γ)−(B0
βJ ′αv′γ)−ραΘ(ge

αΘ′
βv′γ)−ρ2(Ωαv′βv′γ)} .

(6.3)
The interaction terms in equations (6.2) and (6.3) are

(ω0
αv′βv′γ) := ev(γ)fv(β)(Yα ×Yβ ,Yγ)


∂γ(ω0

α∂βs′β), n1γ = nγ ± 1, n1β = nβ ± 1;
∂γ(ω0

αt′β), n1γ = nγ ± 1, n1β = nβ ;
ω0

α∂βs′β , n1γ = nγ , n1β = nβ ± 1;
ω0

αt′β , n1γ = nγ , n1β = nβ ;

(6.4)

(v0
αω′βv′γ) := ev(γ)fω(β)(Yα ×Yβ ,Yγ)


∂γ(v0

α∂βt′β), n1γ = nγ ± 1, n1β = nβ ± 1;
∂γ(v0

αDβs′β), n1γ = nγ ± 1, n1β = nβ ;
v0

α∂βt′β , n1γ = nγ , n1β = nβ ± 1;
v0

αDβs′β , n1γ = nγ , n1β = nβ ;

(6.5)

(J0
αB′

βv′γ) := ev(γ)fB(β)(Yα ×Yβ ,Yγ)


∂γ(J0

α∂βS′β), n1γ = nγ ± 1, n1β = nβ ± 1;
∂γ(J0

αT ′
β), n1γ = nγ ± 1, n1β = nβ ;

J0
α∂βS′β , n1γ = nγ , n1β = nβ ± 1;

J0
αT ′

β , n1γ = nγ , n1β = nβ ;

(6.6)
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(B0
αJ ′βv′γ) := ev(γ)fJ(β)(Yα ×Yβ ,Yγ)


∂γ(B0

α∂βT ′
β), n1γ = nγ ± 1, n1β = nβ ± 1;

∂γ(B0
αDβS′β), n1γ = nγ ± 1, n1β = nβ ;

B0
α∂βT ′

β , n1γ = nγ , n1β = nβ ± 1;
B0

αDβS′β , n1γ = nγ , n1β = nβ ;

(6.7)

(Ωαv′βv′γ) := ev(γ)fv(β)(Y0
1,0 ×Yβ ,Yγ)


Ω∂γ∂βs′β , n1γ = nγ ± 1, n1β = nβ ± 1;
Ω∂γt′β , n1γ = nγ ± 1, n1β = nβ ;
Ω∂βs′β , n1γ = nγ , n1β = nβ ± 1;
Ωt′β , n1γ = nγ , n1β = nβ .

(6.8)

For the general gravitational acceleration the spectral form is

(ge
αΘ′

βv′γ) := ev(γ)(YαYβ ,Yγ)

{
∂γ(ge

αΘ′
β), n1γ = nγ ± 1;

ge
αΘ′

β , n1γ = nγ .
(6.9)

The buoyancy term for a spherically-symmetric gravitational acceleration does not have a special hybrid
form. The Poincaré force has been omitted.

The Y-spectral form of the linearised magnetic vector potential equation is obtained by linearising the
Y-spectral magnetic vector potential equation (3.34) to give(

∂

∂τ
− ηDγ

)
A′

γ =
∑
α,β

(v0
αB′

β −B0
αv′β)(Yα ×Yβ ,Yγ)− (∇{Φ′ + η∇ ·A′})γ . (6.10)

As in the case of the momentum equation, substituting toroidal-poloidal representations for both the basic
state and the perturbation fields into the A′

γ-equation (6.10) and proceeding as in Section 5 leads to the
linearised form of the Sγ-equation (5.10) and the Tγ-equation (5.11), respectively. Hybrid spectral forms of
the S′γ-equation and the T ′

γ-equation are obtained by substituting toroidal-poloidal representations only for
the perturbation magnetic and velocity fields into (6.10). This yields the hybrid S′γ- and T ′

γ-equations,(
∂

∂τ
− ηDγ

)
S′γ =

∑
α,β

(n1γ=nγ)

{(v0
αB′

βB′
γ)− (B0

αv′βB′
γ)} (6.11)

(
∂

∂τ
− ηDγ

)
T ′

γ =
∑

α,β,n1γ

(n1γ=nγ±1)

{(v0
αB′

βB′
γ)− (B0

αv′βB′
γ)} . (6.12)

The interaction terms in equations (6.11) and (6.12) are

(v0
αB′

βB′
γ) := eB(γ)fB(β)(Yα ×Yβ ,Yγ)


∂γ(v0

α∂βS′β), n1γ = nγ ± 1, n1β = nβ ± 1;
∂γ(v0

αT ′
β), n1γ = nγ ± 1, n1β = nβ ;

v0
α∂βS′β , n1γ = nγ , n1β = nβ ± 1;

v0
αT ′

β , n1γ = nγ , n1β = nβ ;

(6.13)

(B0
αv′βB′

γ) := eB(γ)fv(β)(Yα ×Yβ ,Yγ)


∂γ(B0

α∂βs′β), n1γ = nγ ± 1, n1β = nβ ± 1;
∂γ(B0

αt′β), n1γ = nγ ± 1, n1β = nβ ;
B0

α∂βs′β , n1γ = nγ , n1β = nβ ± 1;
B0

αt′β , n1γ = nγ , n1β = nβ .

(6.14)

Finally, the linearised form of the heat equation (3.49) is

ρcp

(
∂

∂τ
− κDγ

)
Θ′

γ = Q′
γ +

∑
α,β

{−ρcp(v0
αq′βΘ′

γ)− ρcp(q0
αv′βΘ′

γ) + ρν(v0
αv′βΘ′

γ) + (J0
αJβΘ′

γ)/µ0σ} , (6.15)

where the four interaction terms are

(v0
αq′βΘ′

γ) := fq(β)(Yα ·Yβ , Yγ)

{
v0

α∂βΘ′
β , n1β = nβ ± 1;

0, n1β = nβ ;
(6.16)
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(q0
αv′βΘ′

γ) := fv(β)(Yα ·Yβ , Yγ)

{
q0
α∂βs′β , n1β = nβ ± 1;

q0
αt′β , n1β = nβ ;

(6.17)

(v0
αv′βΘ′

γ) := (Yα ·Yβ , Yγ)×{
2fv(β)[2(∂rv

0
α)∂r∂βs′β + (p1α + p1β − pγ)v0

α(∂βs′β)/r2]− fω(β)ω0
α∂βt′β , n1β = nβ ± 1;

2fv(β)[2(∂rv
0
α)∂rt

′
β + (p1α + p1β − pγ)v0

α t′β/r2]− fω(β)ω0
αDβs′β , n1β = nβ ,

(6.18)

using (4.3) and (4.10); and

(J0
αJ ′βΘ′

γ) := 2fJ(β)(Yα ·Yβ , Yγ)

{
J0

α∂βT ′
β , n1β = nβ ± 1;

J0
αDβS′β , n1β = nβ ;

(6.19)

where fq is given following (3.51). The interaction terms in the toroidal-poloidal equations and the heat
equation have the same structure: an equation factor, ev, eB or unity; a field factor, fv, fB , fJ , fω or fq;
a coupling integral; and a radial expression, which consists of coefficients of the basic state fields and the
perturbation scalar fields, t′, s′, T ′, S′ and Θ′, and possibly their radial derivatives. There may also be a
parameter depending on the scaling. The structure can be efficiently exploited in numerical implementations
of the spectral equations.

7 Anelastic Spectral Equations

In the anelastic approximation the velocity satisfies ∇ · [ρ(r)v] = 0, the viscous force in the momentum
equation is Fν := ∇ · {ρν[∇v + (∇v)T − 2

3I∇ · v]} and the viscous heating in the heat equation is Qν :=
ρν{∇v : ∇v + ∇v : (∇v)T − 2

3 (∇ · v)2}. The first condition filters out sound waves. The density ρ varies
only with spherical radius, except in the buoyancy term, where the density also depends affinely on the
temperature. The density and the pressure are constant strictly only on the equipotential surfaces of the
effective gravitational potential Ue, which are deformed from spherical surfaces by the rotation through the
centripetal acceleration. Such deformation is neglected and the density ρ and the pressure depend only on
the spherical radius r. The parameters ν, αΘ and κ may depend on the pressure and hence the density. The
velocity v could be used as a dependent field variable but the momentum density u := ρv is preferable, since
it is solenoidal and hence possesses a toroidal-poloidal representation u = T{t} + S{s}. The velocity itself
is generally compressible, ∇ · v = ∇ · (u/ρ) = ur(1/ρ)′. The radial dependence of the density implies that
the vector spherical harmonic coefficients of u and v are simply related by uα = ρvα and that the anelastic
spectral equations are no more strongly coupled in angle than the Boussinesq equations. Spectral equations
can be derived for a more general density with lateral variations, but they are not considered herein.

7.1 The Momentum Equation

Since ρ∇v = ∇u−R′1ru, where R := ln ρ, the viscous force can be written as

Fν = ν[∇2u−R′∂ru−(R′′+3R′/r)u−(R′/r)′urr]+∇ν ·[∇u−R′1ru−R′u1r +(∇u)T ]+∇( 2
3νR′ur) . (7.1)

It is assumed that the kinematic viscosity is independent of the density as in the case of dense gases (Chapman
& Cowling 1970). Moreover, it may be argued that the laminar viscous force is only important in boundary
layers thin compared to a typical length scale of ν, so variation of ν with density can be neglected if ν is
small. Thus (7.1) reduces to

Fν = ν[∇2u−R′∂ru− (R′′ + 3R′/r)u− (R′/r)′urr] +∇( 2
3νR′ur) .

The last two terms can be expressed in terms of the Y-vector spherical harmonic coefficients of u using
Ym

n,n−1 · 1r =
√

n/(2n + 1) Y m
n , Ym

n,n · 1r = 0 and Ym
n,n+1 · 1r = −

√
(n + 1)/(2n + 1) Y m

n , which are
deduced from (2.7)–(2.9). Thus since ur =

∑
α uα1r ·Yα,

(ur)m
n =

√
n

2n + 1
um

n,n−1 −
√

n + 1
2n + 1

um
n,n+1 . (7.2)
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Using (3.27),

ur1r =
∑
n,m

(ur)m
n Y m

n 1r =
∑
n,m

(√
n

2n + 1
um

n,n−1 −
√

n + 1
2n + 1

um
n,n+1

)(√
n

2n + 1
Ym

n,n−1 −
√

n + 1
2n + 1

Ym
n,n+1

)
Thus

(ur1r)m
n,n1

=


n

2n + 1
um

n,n−1 −
√

n(n + 1)
2n + 1

um
n,n+1 , n1 = n− 1

0 , n1 = n

−
√

n(n + 1)
2n + 1

um
n,n−1 +

n + 1
2n + 1

um
n,n+1 , n1 = n + 1

(7.3)

and
F ν

γ = ν[D1γuγ −R′∂ruγ − (R′′ + 3R′/r)uγ − (R′/r)′(urr)γ ] + (∇ 2
3νR′ur)γ , (7.4)

where (urr)γ is given by (7.3) and (∇ 2
3νR′ur)γ by (7.2) and the gradient formula (2.13).

Replacing vγ by uγ/ρ in (3.12), the anelastic Y-momentum equation becomes

∂uγ

∂τ
−F ν

γ = −fP (γ)∂γPγ+
∑
α,β

{[−ωαuβ−2Ωαuβ−ρ(dΩα/dτ)rβ+JαBβ ](Yα×Yβ ,Yγ)−ραΘge
αΘβ(YαYβ ,Yγ)} ,

(7.5)
where F ν

γ is given by (7.4) and ωα is related to the vector spherical harmonic coefficients of uα by equations
(3.15)–(3.17) with vm

n,n1
replaced by um

n,n1
/ρ.

From the representation u = T{t}+ S{s} and by comparison with (4.1),

um
n,n1

= fv(n, n1)

{
∂n1

n sm
n , if n1 = n± 1;

tmn , if n1 = n.

Thus similarly to (4.6) the tmn -equation is ev(n, n) times the um
n,n-equation. From (7.4),

F ν,m
n,n = νfv(n, n)[Dntmn −R′∂rt

m
n − (R′′ + 3R′/r)tmn ] , (7.6)

and the compact anelastic tγ-equation is

∂tγ
∂τ

− ν(Dγ −R′∂r −R′′ − 3R′/r)tγ =∑
α,β

n1γ=nγ

ev(γ){(−ωαuβ − 2Ωαuβ − ρ(dΩα/dτ)rβ + JαBβ)(Yα ×Yβ ,Yγ)− ραΘge
αΘβ(YαYβ ,Yγ)} . (7.7)

Analogously to (4.12) the anelastic sm
n -equation is obtained by applying ev(n, n− 1)∂n

n−1 to the um
n,n−1-

equation, ev(n, n + 1)∂n
n+1 to the um

n,n+1-equation and adding. Now (rur)m
n = n(n + 1)sm

n , so by (3.27),
(urr)m

n,n−1 = n(n + 1)
√

n/(2n + 1) sm
n and (urr)m

n,n+1 = −n(n + 1)
√

(n + 1)/(2n + 1) sm
n . Thus the viscous

term is

ev(n, n− 1)∂n
n−1F

ν,m
n,n−1 + ev(n, n + 1)∂n

n+1F
ν,m
n,n+1 =

νDnDnsm
n − (n + 1)/(2n + 1)∂n

n−1ν[R′∂r∂
n−1
n sm

n + (R′′ + 3R′/r)∂n−1
n sm

n + (R′/r)′nsm
n ]

− n/(2n + 1)∂n
n+1ν[R′∂r∂

n+1
n sm

n + (R′′ + 3R′/r)∂n+1
n sm

n − (R′/r)′(n + 1)sm
n ]

and the compact anelastic sm
n -equation is

∂(Dγsγ)
∂τ

− ν

[
DγDγ −R′∂rDγ −

(
3R′

r
+ 2R′′

)
Dγ − [R(3) + 2(R′/r)′]∂r −

R(3) + 2(R′/r)′

r

]
sγ =∑

α,β
n1γ=nγ±1

ev(γ){[−ωαuβ − 2Ωαuβ − ρ(dΩα/dτ)rβ + JαBβ ](Yα ×Yβ ,Yγ)− ραΘge
αΘβ(YαYβ ,Yγ)} . (7.8)

In terms of the toroidal and poloidal potentials of u, the vorticity is ω = ∇× (u/ρ) = S{t/ρ} +
T{−(∇2s)/ρ−(1/ρ)′∂r(rs)/r}. Hence the toroidal and poloidal potentials of the vorticity ω are −(∇2s)/ρ−
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(1/ρ)′∂r(rs)/r and t/ρ, respectively. The only anelastic toroidal-poloidal interactions which differ from (5.6)
and (5.8) arise from ω×u and are thus given by replacing tα by tα/ρ and Dαsα by (Dαsα)/ρ+(1/ρ)′∂r(rsα)/r
in the spectral interaction terms of ω× u. These anelastic interactions, indicated by a subscript a, are

4πpγrρ(sαsβtγ)a = −pβ [Dαsα −R′(rsα)′/r]sβEαβγ∗

(sαtβtγ)a = 0

8πpγr2ρ(tαsβtγ)a = {pα(pα − pβ − pγ)tα(rsβ)′ − pβ(pβ − pα − pγ)ρ(rtα/ρ)′sβ}Aαβγ∗

4πpγrρ(tαtβtγ)a = pαtαtβEαβγ∗

8πpγr2ρ(sαsβsγ)a = {pγ(pα + pβ − pγ)[Dαsα −R′(rsα)′/r]sβ + [rDαsα −R′(rsα)′]s′β)

+ pβ(pα − pβ + pγ)(rρ{[Dαsα −R′(rsα)′/r]/ρ}′sβ + [rDαsα −R′(rsα)′]s′β)}Aαβγ∗

4πrρ(sαtβsγ)a = [Dαsα −R′(rsα)′/r]tβEαβγ∗

4πpγr3ρ(tαsβsγ)a = {−(pα + pβ + pγ)tαsβ + (pα + pβ − pγ)[rρ(tα/ρ)′sβ + rtαs′β + r2ρ(tα/ρ)′s′β ]

+ pαr2tαs′′β + pβr2ρ(tα/ρ)′′sβ}Eαβγ∗

8πpγr2ρ(tαtβsγ)a = {pγ(pα + pβ − pγ)[tαtβ + rρ(tα/ρ)′tβ ] + pα(−pα + pβ + pγ)[rρ(tα/ρ)′tβ + rtαt′β ]}Aαβγ∗ .

7.2 The Magnetic Induction Equation

The anelastic forms of the Y-magnetic vector potential equation, the Y-magnetic induction equation and
the compact toroidal-poloidal induction equations are obtained from (3.34) or (3.35)–(3.37), (3.42)–(3.44),
(4.21) and (4.22) by replacing vα with uα/ρ.

There are additional terms in the anelastic toroidal-poloidal spectral-interaction forms of the induction
equation. The toroidal-poloidal representations for u and B imply v × B = u × B/ρ = (T{t} + S{s}) ×
(T{T}+S{S})/ρ = T{t/ρ}×(T{T}+S{S})+S{s}×T{T/ρ}+S{s}×S{S}/ρ. The first term implies that
the anelastic terms, (tαTβTγ)a, (tαTβSγ)a, (tαSβTγ)a and (tαSβSγ)a, are obtained from the corresponding
Boussinesq terms by replacing tα by tα/ρ. The second term implies that (sαTβTγ)a = (sαTβ/ρTγ) =
(sαTβTγ)/ρ and (sαTβSγ)a = (sαTβ/ρSγ) = (sαTβSγ)/ρ. Consistent with these results is equation (4.21),
which implies that the anelastic spectral-interaction form of the poloidal equation is simply (4.21) with the
right side divided by ρ. Thus (sαSβSγ)a = (sαSβSγ)/ρ. The remaining interaction contains an additional
term,

(sαSβTγ)a = (sαSβTγ)/ρ− (1/ρ)′{pαsα(rSβ)′ + pβSβ(rsα)′}Eαβγ∗/4πr2pγ .

7.3 The Heat Equation

The anelastic form of the viscous dissipation term in (1.3) is

Qν = 1
2ρν

∑
i,j

(∂ivj + ∂jvi − 2
3δij∇ · v)2 = ρν{∇2v2 − 2v · ∇2v − ω2 − 2

3 (∇ · v)2} (7.9)

= ν/ρ{∇2u2 − 2u · ∇2u− ρ2ω2} − 2νR′{∂r(u2/ρ)− 1
3u2

r(1/ρ)′} . (7.10)

Thus from (7.9) the vector spherical harmonic form of the heat equation (3.49) becomes

ρcp

(
∂

∂τ
−κDγ

)
Θγ = Qγ +

∑
α,β

{−cpuαqβ + ρν[2∂r(uα/ρ)∂r(uβ/ρ)+ (p1α + p1β − pγ)uαuβ/(r2ρ2)−ωαωβ ]

+ JαJβ/σ}(Yα ·Yβ , Yγ)− 2
3ρν{(1/ρ)′}2

∑
α,β

urαurβ(YαYβ , Yγ) . (7.11)

The spectral-interaction form of (7.11) is (5.12) with the following anelastic interaction expansions in place
of the corresponding incompressible interactions,

8πr2ρ2(sαsβΘγ)a = {2pαpβ [r2Dγ(sαsβ/r2)− 2sα(Dβsβ)− 2r2ρR′(sαsβ/r2ρ)′ − 1
3 (R′)2sαsβ ]

+ (pα + pβ − pγ)[r2Dγ((rsα)′(rsβ)′/r2)− 2(rsα)′(rDβsβ)′

− 2r2ρR′((rsα)′(rsβ)′/r2ρ)′ − r2(Dαsα −R′∂r(rsα)/r)(Dβsβ −R′∂r(rsβ)/r)]}Aαβγ∗

2πrρ2(sαtβΘγ)a = {rDγ [(rsα)′tβ/r]− (rDαsα)′tβ − (rsα)′(Dβtβ)− 2rρR′[(rsα)′tβ/rρ]′
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− ρ[Dαsα −R′∂r(rsα)/r](rtβ/ρ)′}Eαβγ∗

8πρ2(tαtβΘγ)a = {−2pαpβtαtβ/r2 + (pα + pβ − pγ)[Dγ(tαtβ)− 2tα(Dβtβ)− ρ2(rtα/ρ)′(rtβ/ρ)′/r2

− 2ρR′(tαtβ/ρ)′]}Aαβγ∗

and (sαΘβΘγ)a = (sαΘβΘγ)/ρ, (tαΘβΘγ)a = (tαΘβΘγ)/ρ. These follow from (7.10) by replacing tα by
tα/ρ and Dαsα by (Dαsα)/ρ + (1/ρ)′∂r(rsα)/r in the incompressible ω2 interactions of (5.12), and leaving
the other terms unchanged.

8 Conclusions

The most important results of the paper in terms of applications are the hybrid toroidal-poloidal spec-
tral forms (6.2), (6.3), (6.11), (6.12) and (6.15) of the linearised momentum, magnetic induction and heat
equations, and the anelastic extensions of §7. There are effectively only three distinct coupling integrals,
(Yα × Yβ ,Yγ), (YαYβ ,Yγ) and (Yα · Yβ , Yγ). Although the third is simply related to the second by
(3.51), it is simpler to implement the coupling integrals separately. There are only six types of radial ex-
pression containing derivatives, which occur in (6.4)–(6.9), (6.13)–(6.14) and (6.16)–(6.18), namely f0∂γf ′,
∂γ(f0f

′), ∂γ(f0∂βf ′), f0Dγf ′, ∂γ(f0Dβf ′) and DγDγf ′. These include f0∂rf
′, f0∂r∂βf ′. Here f0 indicates

a known radial expression of the basic state and f ′ denotes a coefficient of one of the scalar perturbation
fields s′, t′, S′, T ′,Θ′. The hybrid spectral equations are in general much easier and less error prone to im-
plement numerically than the toroidal-poloidal spectral interaction form of the equations due the greatly
reduced number of terms over the linearised spectral interaction equations. Only three subroutines, one for
each coupling integral, are needed to implement the angular dependence of all 12 product terms. Further,
even though there are 29 different radial expressions, radial discretisation can be accomplished by a single
subroutine, which discretises just the six distinct types of radial expression. These equations have been
numerically implemented in Ivers and Phillips (2003) for an axisymmetric basic state using second-order
finite-differences for the radial discretisation.

The other main results of the paper are the Y-vector spherical harmonic momentum equation (3.12),
magnetic induction equation (3.42)–(3.44), magnetic vector potential equation (3.34) and heat equation
(3.49), the compact toroidal-poloidal momentum equation (4.7), (4.13) and magnetic induction equation
(4.21), (4.22).

The hybrid spectral equations derived herein can be used with viscous and thermal anisotropic diffusion.
Spectral expansions have been derived in Phillips and Ivers (2000) for general diffusion tensors. Toroidal-
poloidal spectral-interaction expansions have been derived for special cases of rapidly-rotating and strong field
anisotropic diffusion Phillips and Ivers (2001, 2003), which together with the spectral-interaction expansions
of other linear terms derived herein, are useful in time-stepping dynamically consistent dynamo codes (Ivers
2003).
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