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Abstract. We demonstrate a relationships between the representation theory

of Borel subgroups and parabolic subgroups of general linear groups. In partic-
ular, we show that the representations of Borel subgroups could be computed

from representations of certain maximal parabolic subgroups.

1. Introduction

Little is known about the representation theory of the Borel subgroups of general
linear groups. The linear representations of these subgroups play an important
role in the representation theory of the general linear group itself, so it is to be
expected that further knowledge of the representation theory of Borels would be
useful. In this paper, we investigate the representation theory of maximal parabolic
groups. At first sight this might appear to be an easier problem, but we show
that these groups present at least as many difficulties as the Borel subgroup. In
particular, we show that computing the irreducible representations for a maximal
parabolic subgroup is essentially equivalent to computing them for a collection of
parabolic groups with more blocks but smaller degree—this collection will include
Borel subgroups. The techniques in this paper are inspired by matrix problems [2].

2. Background and notation

Throughout this paper k is a locally compact field (this includes the finite fields
and the real and complex numbers). Let λ = (λ1, λ2, . . . , λs) be a composition,
that is, a finite sequence of nonnegative integers. We write λ |= m if

∑s
i=1 λi = m,

and n(λ) =
∑s

i=1(i− 1)λi.
The parabolic subgroup with block sizes given by the parts of λ is

Pλ =


GLλ1(k) Mλ1,λ2(k) · · · Mλ1,λs(k)

0 GLλ2(k)
. . .

...
...

. . . . . . Mλs−1,λs
(k)

0 · · · 0 GLλs(k)


Note that the n-dimensional Borel subgroup is just P (1n). We write Irr(G) for the
set of irreducible unitary representations of a locally compact group G over the
complex field. If A is an abelian group, we write Â for the dual group consisting
of all linear characters of A. We define G = A o H to be a semidirect product of
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A and H with A normal. If A is abelian, then the action of H on A induces an
action of H on Â by h ·φ(a) = φ(h−1ah). Finally, for H a subgroup of G, we write
IndG

H(V ) to denote the induction to G of the H-module V .
We assume for convenience that the irreducible representations of the general

linear groups over k are known, although we never explicitly use them; for instance,
see [3] when k is finite. Our main theorem on the representations of maximal
parabolic groups can now be stated.

Theorem 1. The set Irr
(
P (m,n)

)
is in one-to-one correspondence with the disjoint

union
⋃

(λ,p) Irr
(
Pλ ×GLp(k)

)
where (λ, p) runs over pairs of a composition λ and

a non-negative integer p such that λ |= m and p = n− n(λ).

Furthermore, our proof gives this correspondence explicitly, so from the irre-
ducible representations of P (m,n) you could construct the irreducible representa-
tions of each Pλ, and vice versa. We have used this result to compute explicit
generic character tables of some small parabolic groups (for m + n ≤ 4).

The proof of this theorem depends on the following standard result.

Theorem 2. Let the group G be a semidirect product A o H with A abelian. Let
X be a set of orbit representatives for the action of H on Â. Then we have a one-
to-one correspondence between the disjoint union

⋃
x∈X Irr(Hx) and Irr(G) given

by
V ∈ Irr(Hx) 7→ IndAoH

AoHx
(x � V ),

where � denotes external direct product.

This was proved for locally compact groups in [4, Theorem 14.1]. A proof for finite
groups using Clifford theory can be found in [1, Proposition 11.8].

3. Representations of quotients of parabolic subgroups

In this section we prove a result relating the representations of a certain quotient
of a parabolic subgroup to representations of other such quotients with smaller
degree but more blocks. Suppose that λ is a composition and n is an integer. We
define

N =



Iλ1 0 . . . 0 Mλ1,n(k)

0 Iλ2

. . .
...

...
...

. . . . . . 0 Mλs−1,n(k)
0 . . . 0 Iλs

0
0 0 . . . 0 In

 ,

which is easily seen to be a normal subgroup of P (λ1,...,λs,n). Denote the quotient
by

Qλ,n =



GLλ1(k) Mλ1,λ2(k) . . . Mλ1,λs
(k) ◦

0 GLλ2(k)
. . .

... ◦
...

. . . . . . Mλs−1,λs
(k) ◦

0 . . . 0 GLλs
(k) Mλs,n(k)

0 0 . . . 0 GLn(k)

 .

Similarly we use square brackets for the image of a matrix in this quotient. Note
that Q(m),n ∼= P (m,n), Qλ,0 ∼= Pλ, and if λs = 0 then Qλ,n ∼= Pλ ⊕GLn(k).
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Proposition 3. Suppose that λ is a composition with s parts and n is a natu-
ral number. Then there is a one-to-one correspondence between Irr(Qλ,n) and the
disjoint union

⋃M
l=0 Irr(Qλ̃l,n−l), where M = min(λs, n) and

λ̃l := (λ1, . . . , λs−1, λs − l, l).

Proof. The group G = Qλ,n is a semidirect product of

A =



Iλ1 0 . . . 0 ◦

0 Iλ2

. . .
... ◦

...
. . . . . . 0 ◦

0 . . . 0 Iλs Mλs,n(k)
0 0 . . . 0 In


and the image H of Pλ⊕GLn(k) in G. Now A is easily identified with the additive
group of λs × n matrices over k. Hence Â can be identified with the same group—
this identification is not natural, but is given with respect to the standard basis.
An element of H is of the form

h =


B1 · · · B1s ◦
...

. . .
... ◦

0 · · · Bs 0
0 · · · 0 Bs+1

 ,

with B1, . . . , Bs+1 invertible. The action of H on A is given by h · a = BsaBs+1
−1

and so the action on Â is h · v = Bt
svBs+1

−t. This is essentially the natural two-
sided action of GLλs

(k)⊕GLλs+1(k) on the λs×λs+1 matrices, so the orbits of this
action have representatives of the form

x =
(

0 0
Il 0

)
for l = 0, 1, . . . ,min(λs, n). The stabilizer Hx is just the set of matrices


B1 · · · B1s ◦
...

. . .
... ◦

0 · · · Bs 0
0 · · · 0 Bs+1


with Bs = ( A B

0 C ) and Bs+1 =
(

C−1 D
0 E

)
where A, B, C, D, E are matrices of sizes

(λs− l)× (λs− l), (λs− l)× l, l× l, l× (n− l), (n− l)× (n− l) respectively; and A,
C, and E are invertible. It is now easy to show that this is isomorphic to Qλ̃l,n−l

where λ̃l = (λ1, . . . , λs − l, l).
This argument together with Theorem 2 gives us the desired result. �
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4. Application to Borel and parabolic subgroups

We start with P (m,n) = Q(m),n. Then Irr(P (m,n)) is in one-to-one correspon-

dence with
⋃

l1
Irr(Q(m−l1,l1),n−l1), since (̃m)

l1
= (m − l1, l1). By repeated appli-

cation of Proposition 3 we eventually get
⋃

λ,p Irr(Qλ,p) where

λ = (m− l1, l1 − l2, . . . , ls−2 − ls−1, ls−1),
0 = ls < ls−1 < · · · < l1 ≤ m,

p = n− l1 − · · · − ls−1.

Since ls = 0, we have Qλ,p ∼= Pλ ⊕GLp(k). Writing λ = (λ1, . . . , λs) we get
s∑

i=0

λs = (m− l1) + (l1 − l2) + · · ·+ (ls−2 − ls−1) + ls−1

= m, and
p = n− (ls−1 + ls−2 + · · ·+ l1)

= n− (λs + (λs−1 + λs) + · · ·+ (λ2 + · · ·+ λs))

= n−
s∑

i=1

(i− 1)λi.

Hence we have proved Theorem 1.
By taking λ = (1n) we get, as an immediate corollary, that the irreducible

representations of the n-dimensional Borel subgroup can be computed from the
irreducible representations of P (m,n) where m = 1

2n(n− 1).
Applying Theorem 1 with m = 1, we get p = 0, 1, . . . , n and λ = (0n−p−1, 1). So

the irreducible representations of P (1,n) correspond to elements of
n⋃

p=0

Irr(P (0n−p−1,1) ×GLp(k)) =
n⋃

p=0

Irr(k× ×GLp(k)).

On the other hand, when n = 1, we get p = 0 and λ = (m − 1, 1), or p = 1
and λ = (m). So the irreducible representations of P (1,n) correspond to elements
of Irr(P (m−1,1)) ∪ Irr(GLm(k)× k×), which corresponds to

⋃m
p=0 Irr(GLp(k)× k×)

by induction. These results were proved in [5]; they are the only cases in which
repeated application of Theorem 1 reduces to a set involving no nontrivial parabolic
subgroups.
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