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Abstract. We consider linear systems of difference equations over the max-

plus semiring. We extend theorems of Birkhoff et. al. to the realm of this

tropical semiring by showing that under certain conditions one may define a

connection matrix analogous to the difference and q-difference theory of sys-

tems of linear equations. We do this by lifting the problem to field from which

we derive results via a valuation on the field. We also provide some simple

examples demonstrating the theory. The motivation is to provide evidence for

the integrability of ultradiscrete difference equations.

1. Introduction

Ultra-discrete equations are of interest because they can be interpreted as cel-

lular automata [6]. They arise from a limiting procedure, known as the ultra-

discretisation method [5], applied to difference equations. Of particular interest

are the ultra-discrete versions of integrable equations. Integrable equations arise as

compatibility conditions of linear systems called Lax pairs [14]. Furthermore, these

compatibility conditions arise in the context of monodromy preserving deformations

of linear systems. Similarly, for discrete systems, there is also an analogous theory

of monodromy studied by Birkhoff [1], in the context of connection matrices. The

q-difference analogue of monodromy was studied by Carmichael [2]. A brief account

of this theory, and the theory of Schlesinger transformations for such systems was

recently given by Borodin [10]. Sakai [7] provided evidence that integrable differ-

ence equations may be derived by considering connection preserving deformations

of linear difference equations. Evidence has been provided that integrable cellular

automata can also arise as compatibility conditions of linear systems [8, 9] over the

so-called max-plus semiring.

The linear theory behind tropical semirings is relatively new. The crux of the

theory relies on lifting a given linear system to a field coupled with a valuation

[3, 4]. One novel approach involves lifting to the algebraic closure of the set of

algebraic functions in one variable C[t] coupled with the valuation bringing an

algebraic function to the order of its pole at 0 [15]. Novel as it is, for our purposes
1
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we propose a different lifting. We essentially utilize the same idea as in tropical

geometry, but adopt a sense of analysis for the valuation ring. In section 2 we

describe the field along with the valuation we will use. In section 3 we will look at

two symbolic solutions. In the last section we demonstrate a small application of

the theory.

2. The Lift

Let Q be an additively closed subset of the real numbers. We may define the

max-plus semiring as the semiring S = Q∪{−∞} with binary operations of + and

max. This ring has been called a tropical semiring or semifield in the literature [12].

The operation of + is considered to be tropical addition in the semiring, while max

is considered to be tropical addition. In this way it is distributive. In the semiring,

we consider −∞ to be the additive identity and 0 to be the multiplicative identity.

Subtraction is the analog of division, but there is no associated additive inversion.

The matrix operations are precisely what one would expect if you replace the op-

erations + and × with their tropical counterparts, thus we define the operations ⊗

and ⊕ on matrices A = (aij) and B = (bij) over S to be

A⊗B = max
k

(aik + bkj)

A⊕B = max(aij , bij)

To deal with such an object in an analytic manner, we equip S with the metric

defined by

d(x, y) = |ex − ey|

where e−∞ is defined to be 0. This endows S with a metric with an equivalent topol-

ogy on when restricted to the reals, but also considers those sequences divergent to

−∞ as convergent. To simplify things when we eventually talk about convergence,

we will also assume that Q is a closed subset with respect to the imposed topology

from R. We impose upon the matrix space a metric defined to be the

d(A,B) = max
ij
{d(aij , bij)}

We will talk about convergence on a certain class of matrices with respect to the

above metric. As an algebraic object however, Q may not even make sense when

equipped with the operation of multiplication. We will now introduce a field Ω

with a subset Ω0 ⊂ Ω which is a semiring which is homomorphic to S through a
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valuation, furthermore we will introduce a topology on Ω such that the valuation

is continuous into S.

The shortcomings of the semiring are all too obvious. Before we delve into the

specifics, we review some of the key concepts from algebra we shall use to derive

our results. The first concept is the valuation ring. If R is a ring, we define the

valuation µ : R → R ∪ {−∞} to be a mapping satisfying the properties

(1) µ(x) = −∞ if and only if x = 0.

(2) µ(xy) = µ(x) + µ(y)

(3) µ(x + y) ≤ max(µ(x), µ(y))

Any valuation is almost a homomorphism from R into S. If there exists a subset

R0 ⊂ R containing −∞ that is closed under addition and multiplication such

that equality holds in the last property of the valuation, we will say that R0 is a

homomorphic as a semiring to S under µ. We also note that any valuation induces

a metric d : R×R → R+ defined as

(1) d(x, y) = ev(x−y)

It is very simple to show that this is indeed a metric for any valuation µ. Now we

need to identify a suitable ring R, and more precisely a suitable field such that we

map homomorphically into S.

We consider the ring Φ = Z[Q] as the ring of Z linear combinations of elements of

Q where the group Q is considered to be a group under addition. We will represent

any element x ∈ Φ by

x =
m∑

i=0

ni(xi)

As a matter of convention, we will fix a representation of x where x0 ≥ x1 ≥ . . . ≥

xm ≥ . . .. Let Ω be the field of fractions of Φ. An element of x
y ∈ Ω will be

represented by
x

y
=
∑

ni(xi)∑
mi(yi)

We let P be the mapping on Ω defined by

P

(
x

y

)
= max

i
(xi)−max

i
(yi)

We need to show that this map is a valuation. Firstly let x1 =
∑

n1
i (x

1
i ), x2 =∑

n2
i (x

2
i ), y1 =

∑
m1

i (y
1
i ) and y2 =

∑
m2

i (y
2
i ). Let x = x1/x2 and y = y1/y2. If

x = 0 then the there is no real parts at all so that maxi(x1
i )−max(x2

i ) = max(∅)−

max(x2
i ) = −∞. Suppose µ(x1/x2) = −∞, then this imposes max(x2

i ) = −∞ in

which case the set of x1
i must not contain any real number, thus x = 0. As for
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the second property, the only possible reals that may appear in the numerator of

xy are {x1
i + y1

j } but the maximal element of this set is max(x1
i ) + max(y1

i ) and

similarly for the denominator, it is clear that since Z is an integral domain that

the Z multiplier of this element is not 0 thus equality holds. The last property

is also obvious if we fix a representation such that max(x2
i ) = max(y2

i ) = 0, here

µ(x+y) = µ(x1
i y2

i +x2
i y1

i

x2
i y2

i
) = µ(x1

i y
2
i +x2

i y
1
i ) ≤ max(x1

i , y
1
i ). So this forms a valuation,

so we may define our metric on Ω to be the function

d(x, y) = eP (x−y)

thus we may now talk about the convergence in Ω. We also note that this makes

the mapping P : Ω → S continuous with respect to the two metrics. We also extend

Ω by taking the closure of Ω under this metric.

Let Ω0 be the subset of Ω which is the set of elements x
y =

P
ni(xi)P
mi(yi)

where

ni,mi ∈ N for all i. The subset Ω0 forms a semiring in itself. As a valuation, the

restriction P |Ω0 satisfies the property that P |Ω0(x + y) = max(P |Ω0(x), P |Ω0(y))

and P |Ω0(xy) = P |Ω0(x) + P |Ω0(y). In this sense we may consider the mapping

P |Ω0 as a homomorphism of semirings. We identify a “standard” lift an element of

S to be the mapping x → 1(x).

In the field of integrable equations, Ω is isomorphic to what is known as the

inversible max-plus algebra [11]. Although we do not consider equations over Ω to

be of interest directly, we are able to prove the existence of certain solutions and

use the linear theory of Ω to perform calculations over S.

3. Linear Difference Equations

Linear difference equations are the subject of the classic works of Birkhoff [1]

and Carmichael [2]. We wish to extend the work for systems of linear difference

equations over the max-plus semiring by studying the problem over the invertible

max-plus algebra. Our overall aim is to develop theory for the system over the

max-plus semiring

(2) Y (X + Q) = A(X)⊗ Y (X)

where the entries in A is an n×n matrix with entries defined rationally in terms of

the operations ⊕ and ⊗ and Q is some fixed real number no equal to 0. The first

example of such a system shall be useful later. We consider scalar linear equation

over S given by

L(X + Q) = max(0, X) + L(X)
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Here L is of the form (2) where the 1×1 matrix is semiring equivalent to polynomi-

ally linear in X. We may explicitly solve this equation in terms of some derivable

expansion. The function L is given by the expansion

L(X) =

 maxn≥0(nX − n(n−1)Q
2 ) for Q > 0

maxn≥0(−nX + n(n+1)Q
2 ) for Q < 0

It is a relatively simple procedure in 1 variable to convert any degree n polynomial,p(X)

over S to the form

p(X) = (n−m)X +
m∑

i=1

max(0, pi + X)

in which the solution to the system y(X + Q) = p(X)⊗ y(X) is then given by

y(X) =
(n−m)X(X + Q)

2Q
+
∑

L(X + pi)

Before delving into the various results, we state a few of the useful transformations

that shall be used to derive some of the later results.

Lemma 1. Given Y (X) is a solution of (2), then

(1) Z(X) = α (X)
Q ⊗ Y (X) is a solution of

Z(X + Q) = (α⊗A(X))⊗ Z(X)

where X ∈ ZQ.

(2) Z(X) = β (X)(X+Q)
2Q ⊗ Y (X) is a solution of

Z(X + Q) = (βX ⊗A(X))⊗ Z(X)

where X ∈ ZQ.

(3) Z(X) = T (X)⊗ Y (X) is a solution of

Z(X + Q) = T (X + Q)⊗A(X)⊗ T−1(X)⊗ Z(X)

for all X and invertible matrices T over S.

(4) Z(X) = Y (X)⊗−L(X + A) is a solution of

Z(X + Q) = (max(0, A + X)⊗A(X))⊗ Z(X)

for all X.

These statements are easily verifiable by direct calculation. We note that the

set of invertible matrices over S is a very small set. The fourth transformation is

useful in transforming any rational matrix over S to one that is rational in X. This
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stems from the fact that any scalar difference equation is solvable in terms of L

functions, thus henceforth we shall assume that any matrix is of the form

(3) A(X) = A0 ⊕A1 ⊗X ⊕ . . .⊕Am ⊗mX

where Ai are constant matrices over S. We may define two symbolic solutions at

∞ and −∞ defined by the infinite products

Y−∞(X) = A(X −Q)⊗A(X − 2Q)⊗ . . .(4a)

(Y∞(X))−1 = . . . A(X + 2Q)⊗A(X + Q)⊗A(X)(4b)

We call these the fundamental solutions. Unfortunately, many of the techniques

applied in the theory of Birkhoff cannot be applied, since we are dealing with a

module over a semiring. For one, the matrix A−1(X) may not be defined for all X,

in fact, over a semiring, it is more often than not, not invertible for any X. We can

however consider the lift of the problem to Ω by considering the problem

(5) Y (1(X).1(Q)) = (A0 + A11(X) + . . . + An1(X)n)Y (1(X))

Where the Ai are constant matrices over Ω. This can be given either by the standard

lift, or any other lift to a matrix over Ω0. As a matter of notation, we consider

the function F (1(X)) to be a function of the real variable X taking values in Ω

depending on X. We now require analogous transforms over Ω.

Lemma 2. Given Y (1(X)) is a solution of (2), then

(1) Z(1(X)) = α
(X)
Q Y (X) is a solution of

Z(1(X).1(Q)) = αA(1(X))Z(1(X))

for α ∈ Ω and X ∈ ZQ.

(2) Z(1(X)) = 1(βX(X+Q)
2Q )Y (X) is a solution of

Z(1(X).1(Q)) = (βX ⊗A(1(X)))Z(1(X))

for β ∈ Z and X ∈ ZQ.

(3) Z(1(X)) = T (1(X))Y (1(X)) is a solution of

Z(1(X).1(Q)) = (T (1(X).1(Q))A(1(X))T−1(1(X)))Z(1(X))

for all X

This gives us the tools required to prove the following theorem
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Theorem 1. Assume that A0 and An are diagonalizable over Ω to D0 = diag(d(0)
i )

and Dm = diag(d(m)
i ). If |P (d(0)

i ) − P (d(0)
j )| < Q, then one fundamental solution

Y−∞ is given by

(6) Y−∞(1(X)) = Ŷ−∞(X)D
X
Q

0

and if |P (d(m)
i ) − P (d(m)

j )| < Q for all i, j then the fundamental solution Y∞ is

given by

(7) Y∞(X) = 1
(

mX(X −Q)
2Q

)
Ŷ∞(X)D

X
Q
m

Where Ŷ−∞(0) and Ŷ∞(0) are defined for Q ∈ R and X ∈ ZQ.

Proof. We split the proof of this statement into two parts. Showing that Y−∞ is

well defined, and showing that (Y∞)−1 is well defined.

Using lemma 2, we transform the problem so that we are interested in solutions

of

Y (1(X)) = z
X
Q TY (X)

where T is a matrix that diagonalizes A0. The function Y then satisfies the equation

Y (1(X)) = A(1(X))Y (1(X)) where A is given by

A = zT−1AT = Am1(X)m + . . . + A11(X) + D0

we restrict our attention to solutions of Y (X + Q) = A(X)Y (X). We choose our z

very carefully, firstly we let z be the a multiple of product of all the denominators

appearing in the Ai, and secondly embed a multiplier of this product of the form

1(Z) where Z is chosen to be negatively large enough for all the real parts of the

entries of Ai be non-positive. By being particular about our choice of z, we restrict

our attention to the case in which we may represent each entry of Ak in the form
a
(k)
ij

1(0) where a
(k)
ij is in Φ.

We consider the following sequence of matrices over Ω.

Gk = (g(k)
ij

) = [A(X −Q) . . . A(X − kQ)]D1−k
0

Let ε > 0, we will show that there exists an N such that for n1, n2 > N we may

express Gn1 and Gn2 in the form

Gn1
= Tij(ε) + O(ε/2)

Gn2
= Tij(ε) + O(ε/2)

Where Tij(ε) denotes terms in common with both Gn1
and Gn2

and O(ε/2) stands

for terms with distance from 0 is less than ε/2. Under our particular choice of
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metric, the terms Tij(ε) will cancel out in our subtraction leaving terms that will

be small, and via the triangle inequality, the two terms will be a total distance of

less than ε away. Given the form of the sequence, it is sufficient to consider the

case where X sufficiently large and negative since we have the following relation

Gk(1(X)) = A(1(X −Q)) . . . A(1(X −mQ))Gk−m(1(X −mQ))

With this freedom we choose a large and negative X. We write

Gk(1(X)) =
∑

G
(j)
k 1(X)j

We may expand Gk in terms of D0 and the Ai’s to obtain explicit expressions for

the G
(l)
k ’s over Ω. It is easy to see the expression for G

(1)
k is given by

G
(1)
k = [A1D

k−2
0 (−Q) + D0A1D

(k−3)
0 1.(−2Q) + . . . + Dk−2

0 A11(−kQ)]D1−k
0

This gives an expression for our chosen representatives of (G(1)
k )ij as

(G(1)
k )ij = a

(1)
ij 1(−Q)

1(0) +
d
(0)
i

d
(0)
j

1(−Q) + . . . +

(
d
(0)
i

d
(0)
j

1(−Q)

)k
 d

(0)
i

If however, the P

(
d
(0)
i

d
(0)
j

)
= P (d(0)

i )−P (d(0)
j ) < Q then the contribution attributed

larger terms added for k large are smaller and smaller, and so we may pick a N1

large enough such that the terms
(

d
(0)
i

d
(0)
j

)k

1(X) are less than ε/2 away from −∞ for

all i, j. This then splits up G
(1)
k into parts of Tij(ε) and smaller terms for k > N1.

Since we have reduced the case to one in which all entries of the Ai are nonpositive,

and since the G
(l)
k are composed of elements of the entries of Ai, we need only look

at the coefficient matrices such that elX > ε/2, thus we may pick an L such that

this is true for l < L. For l < L we may write explicitly the matrices G
(l)
k in terms

of the Ai’s and D0.

G
(l)
k =

(
(AlD

k−2
0 1(−lQ) + . . . + Dk−2

0 Al1(−klQ))+(
Al−1A1D

k−3
0 1(−(l + 2)Q) + . . . + Dk−2

0 Al−1Al−1.1(−kl(l + 1)
2

Q)
)

+

...

+
(

Al
1D0(k − l − 2)1(− l(l − 1)

2
Q) + . . . + Dk−l−1

0 Al
11(− l(2k − l)

2
Q)
))

D1−k
0

where each bracket is any combination, At1 , . . . Ath
, of the Ai’s in a way such that

t1+. . .+th = k. We also note that although we have written G
(l)
k in this manner, the
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first term does not appear for l > m. We introduce the set fl
k = {t = (t1, . . . , tk)

such that
∑

ti = l, 0 ≤ ti ≤ m}. This allows us to write

G
(1)
k =

∑
t∈fl

k

At11(−t1Q)At11(−2t2Q) . . . Atk
1(−ktkQ)

D1−k
0 =

∑
t∈fl

k

At

D1−k
0

Where for convenience A0 = D0. Furthermore we may express each component of

At at the i, j-th component as

(At)ij =
∑

r

at1
ir1

1(−t1Q) at2
r1r2

1(−2t2Q) . . . atk
rkj(d

0
j )

1−k

For k > l, any t ∈ fl
k+1 must be obtained through some insertion of a 0 at some

place in the sequence t = (t0, . . . , tk). It is then clear that At = A(t,0), thus all the

parts of G
(l)
k appear in the parts of G

(l)
k+1. We need to show that through insertion

of a 0 anywhere other than the end, decreases the magnitude of the element in some

way. Suppose s ∈ f is obtained via the addition of some 0 anywhere but the end,

say the (h+1)-th place, then the effect is shifting nonzero entries of t further down

meaning the

(As) = (At11(−t1Q) . . . Ath
1(−hthQ)D0 ×

Ath+1
1(−(h + 2)th+1Q) . . . Atk

1(−(k + 1)tkQ))D−k
0

The effect of this on this addition is the addition of terms at most d(0)
r

d
(0)
j

1(−Q) times

smaller than those terms that do come from G
(l)
k , in fact we have a lower bound for

how much in magnitude it has decreased by, this is mini,j(|P (d(0)
i )− P (d(0)

j )−Q|)

which is some finite non-identity element. This means the only parts of G
(l)
k+1 that

are not smaller by some fixed amount are those part that come from G
(l)
k . This

means we may find an Nl such that any additional parts are less than ε/2 away from

−∞ in all entries of G
(l)
k 1(lX). Now we take N = max(Nl) which is an integer large

enough so that Gk = Tij + O(ε/2). The Gk then represents a cauchy convergent

sequence in Ω. By relating a shift in k to the way in which we shift X, we let

k = X
Q , thus we have the solution for Y −∞(1(X)) = limk→∞Gk(1(X)) = G(1(X))

and Y (1(X)) = z
X
Q T−1Y , but as an infinite product, the series given by (4a) is

given by T−1z−
X
Q G(1(X))T which we will call Y−∞(1(X)).

Let us now shift our attention to the other direction. In a similar manner, we

are interested in solutions of

Y (1(X)) = z
X
Q 1
(
−mX(X −Q)

2Q

)
SY (X)
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where S diagonalizes Am. Here Y satisfies Y (1(X)1(Q)) = A(1(X))Y (1(X)) where

A(X) = S−1A(X)S1(−mX) = zA01(−mX) + . . . + Am−11(−X) + Dm

By letting z be an element such that A is in the image of φ under the same inclusion

as before. By such a choice of z, we have the entries of A be in the image of Φ

under the inclusion. We

Gk(1(X)) = D−k
m [A(1(X + kQ)) . . . A(1(X))]

we denote the elements of these matrices gk
ij . We wish to choose an Nij such that

d(gm
ij , gM

ij ) < ε for m,M > Nij . We express Gk in the following way

Gk = G
(0)

k + G
(−1)

k 1(−X) + . . . + G
(−km)

k 1.(−kmX)

The G
(0)

k term is the identity matrix, thus we need only consider non-positive

multiples of X, furthermore, due to our choice in z, we need only need to consider

l < L for some in which e−lX < ε/2 for l > L. We start with the −1 matrix given

by

G
(−1)

k = D−k
m [A1D

k−1
m + . . . + Dk−1

m A11(−kQ)]

We may express the entries in G
(−1)

k by

(G
(−1)

k )ij =
a
(m−1)
ij

d
(m)
i

1(0) +
d
(m)
j

d
(m)
i

1(−Q) + . . . +

(
d
(m)
j

d
(m)
i

1(−Q)

)k


which should converge only if P (
d
(m)
j

d
(m)
i

) = P (d(m)
j ) − P (d(m)

i ) ≤ Q. In general the

expansion can be made as follows,for l ≤ m < k 6= 0. We expand G
(l)

k to get the

following

G
(l)

k (1(X)) =
(
D−1

m (Am−l + . . . + D−k
m Am−lD

k−1
m 1(−kQ))

+(D−2
m Am−l+1Am−11(−3Q) + . . . + D−k

m Am−1Am−l+11((−k − l)Q)
...

...

+ (A
l

m−1Dm(k − l) + . . . + Dm(k − l)Al
m−1)

)
Where each of the brackets contains all possible multiplications of Am−jr

and Dm’s

such that
∑

jr = l. Again, the first few terms written may not appear if l > m.

Let kl
k be the set {t = (t0, t1, . . . , tk) st 0 ≤ ti ≤ m, t1 + . . . + tk − km = l} where
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l ≤ 0. Then we may write G
(l)

k as

G
(l)

k = D−k
m

∑
t∈kl

k

At01((m− t0)kQ)At11((m− t1)(k − 1)Q) . . . Atk


=

∑
t∈kl

k

At

D−k
m

Where Am = Dm. Furthermore we may express each component of At as

(At)ij = (d(m)
j )−k(

∑
r

at0
ir1

1((m− t0)kQ)at1
r1r2

1((m− t1)(k − 1)Q) . . . atk
rkj)

Suppose s ∈ kl
k+1 was obtained via the insertion of a m at the beginning of an

element t ∈ kl
k, then the elements At = As, thus all the parts of G

(l)
k are contained

within the parts of G
(l)

k+1. Furthermore, for k > l any element of kl
k+1 must be

obtained via the addition of an m in some place. Suppose s ∈ kl
k is obtained via

the addition of some m anywhere but the front, say the (h + 1)-th place, then the

effect is shifting the entries not equal to m of t further down meaning As becomes

As = D−k
m At01((m− t0)(k + 1)Q) . . .

. . . Ath
1((m− th)(k − h + 1)Q)DmAth+11((m− th+1)(k − (h + 1))Q) . . .

. . . Atk
)

Which has the effect that any extra terms not contained in G
(l)

k in the i, j-th

position are at least d(m)
r

d
(m)
j

1(−Q) times smaller. This is by assumption smaller than

the multiplicative identity element thus we may choose an Nl and thus an N such

that all additional terms are less than ε/2 away from −∞. Now Gk has a limit and

then one obtains Y (1(X)) in the same manner as above.

To end we simply state a simple relation between the k in Gk and X to be

k = X/Q. When we substitute into the limit, we obtain the fundamental solution

Y−∞(1(X)) and (Y∞(1(X)))−1 whose inverse exists and where Ŷ−∞ is given by the

limit matrix of G and Ŷ∞ is given by the limiting case of G. Thus we have the form

given above. �

(Remark: It is true that some of these conditions may be relaxed. Special cases

where A1 and Am−1 are −∞ are special cases in which the d
(j)
i ’s can be 2Q apart.

It is difficult to obtain explicit or at least easily expressible minimal conditions for

which the fundemental forms can be well defined. )
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The connection matrix is defined as the matrix that satisfies the relation

(8) Y−∞(1(X)) = Y∞(1(X))P (1(X))

By using the forms of both Y−∞(X) and Y∞(X), we may formulate P (X) as

(9) P (1(X)) = . . .⊗A(1(X +2Q))⊗A(1(X +Q))⊗A(1(X))⊗A(1(X−Q)))⊗ . . .

from this formulation it is clear that the matrix P (1(X)) is periodic in X, that is

to say that P (X + Q) = P (X). Considering the problem over Ω, we introduce the

variable T ∈ S and let

Y (1(X)) = Y (1(X), 1(T ))

Ai = Ai(1(T ))

P (1(X)) = P (1(X), 1(T ))

then we have the following result.

Theorem 2. Suppose P (1(X), 1(T )) = P (1(X), 1(T + Q)), then there exists a

matrix B(1(X), 1(T )) such that Y satisfies the following equation

(10) Y (1(X), 1(T + Q)) = B(1(X), 1(T ))Y (1(X), 1(T ))

for all X ∈ ZQ.

Proof. Suppose P (1(X), 1(T )) = P (1(X), 1(T + Q)), then by definition

(Y∞(1(X), 1(T )))−1Y−∞(1(X), 1(T )) = (Y∞(1(X), 1(T+Q)))−1⊗Y−∞(1(X), 1(T+Q))

so by rearranging we see that

B(1(X), 1(T )) = Y∞(1(X), 1(T + Q))(Y∞(1(X), 1(T )))−1

= Y−∞(1(X), 1(T + Q))(Y−∞(1(X), 1(T )))−1

furthermore, by defining B in this way we deduce that

Y∞(1(X), 1(T + Q)) = B(1(X), 1(T ))Y∞(1(X), 1(T ))

Y−∞(1(X), 1(T + Q)) = B(1(X), 1(T ))Y−∞(1(X), 1(T ))

Since these are invertible, any solution may be expressed in the form

Y (1(X), 1(T + Q)) = B(1(X), 1(T ))Y (1(X), 1(T ))

�
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This now shows that the fundamental solutions exist under certain conditions

over Ω. This imposes a necessary condition on the system. That is that the

evolution in both variables is independent of the order of computation. This imposes

the condition that

(11) A(1(X), 1(T + Q))B(1(X), 1(T )) = B(1(X + Q), 1(T ))A(1(X), 1(T ))

This is then the compatibility of a connection preserving deformation.

The study of ultradiscrete systems is concerned with linear systems over the max-

plus semiring as it is a more natural setting in terms of ultradiscretized variables.

An immediate corollary of our main theorem is the following.

Corollary 1. Suppose there exists a linear system of the form (15) over Ω0 that

maps to (2) through P . If (15) then satisfies the conditions of the theorem, then

the solution Y−∞(X) is defined as is (Y∞(X))−1 over S. The matrix P (X) is also

defined over S.

Proof. We simply rely on the continuity of the mapping P |Ω0 . Given any X ∈ S,

we know that Y−∞(X) and (Y∞(X))−1 are matrices over Ω0 due to the closure of

the Ω0 under matrix operations. This means we may obtain Y−∞ and (Y∞) via P

as well as the connection matrix. �

If the additional condition that B(1(X), 1(T )) is a matrix over Ω0, then this

translates to the system Y (X) over S to be also considered to be some system over

T as well with Y (X, T ) satisfying the linear condition

Y (X + Q) = B(X, T )⊗ Y (X, T )

This imposes a condition on S. That is the through the mapping of (11) we obtain

the condition that

(12) A(X, T + Q)⊗B(X, T ) = B(X + Q,T )⊗A(X, T )

This is then a necessary condition of a connection preserving deformation of linear

systems over the max-plus semiring. Here we consider that if any system were

derived as such a compatibility condition over S, then the system is considered

integrable.
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4. Application : Ultradiscrete Riccati Equation

This section is devoted to giving an example of a projection preserving trans-

formation may be used to generalize the condition for which we may define fun-

damental solutions. We begin with the discrete Riccati equation We consider the

discrete Riccati equation with rational coefficients given by

(13) x(qt) =
ax + b

cx + d

A suitable ultradiscretization of this equation is given by

(14) X(T + Q) = max(A(T ) + X(T ), B(T ))− (C(T ) + X(T ), D(T ))

By letting X(T ) = U(T )−V (T ) we may write this as U(T +Q)−V (T ) = max(A+

U(T ), B + V (T ))−max(C + U(T ), D + V (T )). From this we derive the following

equivalent linear difference equation

(15) Y (T + Q) =

 A B

C D

⊗ Y (T )

Without loss of generality, we may assume that A,B, C and D are all polynomial

in T . Let m be the maximal degree of A,B,C and D, then we may write

A = A0 ⊕A1 ⊗ T ⊕ . . .⊕Am ⊗mT

B = B0 ⊕B1 ⊗ T ⊕ . . .⊕Bm ⊗mT

C = C0 ⊕ C1 ⊗ T ⊕ . . .⊕ Cm ⊗mT

D = D0 ⊕D1 ⊗ T ⊕ . . .⊕Dm ⊗mT

This now puts (14) in the form of (2). By setting

Ri =

 Ai Bi

Ci Di


By letting R(T ) = R0 ⊕ R1 ⊗ T ⊕ . . . ⊕ Rm ⊗mT . We write this equation in the

form

(16) Y (T + Q) = R(T )⊗ Y (T )

In order to show that the fundamental solution Y−∞ exists, we have a condition

on the coefficients A0, B0, C0 and D0. In order to show that Y∞ exists we must

assume some condition on Am, Bm, Cm and Dm.

Theorem 3. Suppose R0 and Rm are upper or lower triangular matrices. If |A0−

D0| < Q and |Am −Dm| < Q then the connection matrix exists.
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Proof. The standard lift of the triangular matrix is diagonalizable with eigenvalues

corresponding to the diagonal elements. The result comes from a direct application

of the theorem where the diagonal elements are 1(Ai) and 1(Di) for i = 1,m.

The requirement is then obtained as a direct application of the main theorems

requirement. �

Theorem 4. Suppose Ai = Di 6= Bi, Ci for i = 1,m, then the connection matrix

exists.

Proof. We apply the standard lift to get the matrix Ri over Ω0 which is

Ri =

1(Ai) 1(Bi)

1(Ci) 1(Ai)


whose eigenvalues may be calculated to be

λ = 1(Ai)± 1
(

Bi + Ci

2

)
which both have the same valuation. �

By using the theory of projection preserving transformations we may extend our

results

Theorem 5. A sufficient condition for the connection matrix to exist over the

max-plus semiring is that Bi + Ci > Ai + Di and Bi + Ci > 2 max(Ai, Di)−Q for

i = 0,m.

Proof. The first case is where Bi + Ci ≥ 2 max(Ai, Di), both conditions in this

theorem are met. We let Ri be the matrix over Ω given by

R′i =

1(Ai) 1(Bi)

1(Ci) 1(Di)


From this we pick an Ei such that Ei such that the matrix R′i⊕Ei is diagonalizable.

We let Ei be

Ei =

−∞ 1(Ai + Di − Ci) + 1(Bi−Ci

2 )(1(Ai) + 1(Di))

−∞ −∞


Since Bi +Ci ≥ 2 max(Ai, Di) it can easily verified that the map Ri → Ri⊕Ei is a

projection preserving transformations. Furthermore that we can directly compute

the eigenvalues, these are

d
(i)
1 = −1(

Bi

2
+

Ci

2
)

d
(i)
2 = 1(Ai) + 1(Di) + 1(

Bi

2
+

Ci

2
)
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Since Bi

2 + Ci

2 ≥ max(Ai, Di), the leading parts are the same, this shows P (d(i)
1 )−

P (d(2)
2 ) = 0 < Q. This is precisely our first condition.

The second case is where Ai + Di ≤ Bi + Ci ≤ 2 max(Ai, Di). Let Ei be

Ei =

−∞ 1(Ai + Di − Ci) + 1(2Bi + Ci)/(1(Ai) + 1(Di))2

−∞ −∞


Again, this can be easily verified. Furthermore we may compute the eigenvalues

directly to be

d
(i)
1 =

−1(Bi + Ci)
1(Ai) + 1(Di)

d
(i)
2 =

(1(Ai) + 1(Di))2 + 1(Bi + Ci)
1(Ai) + 1(Di)

now P (d(i)
1 /d

(i)
2 ) = P (1(Bi + Ci)) − P ((1(Ai) + 1(Di))2 + 1(Bi + Ci) < Q is the

requirement. We write this as Bi + Ci −max(2Ai, 2Di, Bi + Ci) < Q. But due to

the conditions, Bi + Ci − 2 max(Ai, Di) < Q is the requirement for the connection

matrix to exist. �

It is possible to diagonalize over Ω under some conditions, in which case it is

possible to take arbitrary powers of matrices. There are many choices for the field

that we may use to diagonalize and thus find powers of matrices over S. For ex-

ample, the p-adics coupled with the p-adic valuation is a valuation ring, but with

this construction we require Q to be the integers, furthermore the field is not alge-

braically closed. One other choice is the algebraic closure of the algebraic functions

over C in one variable with a valuation defined to be the order of the pole or root

of the function at 0. This however restricts ones choice to something isomorphic to

the rationals, but is by definition algebraically closed. Ideally, one wants a valua-

tion ring with valuation whose image is all the reals and algebraically closed with

a homomorphic sub-semiring homomorphic to the max-plus algebra through that

valuation that is also metric space such that the valuation is continuous. But this

author thinks it is a lot to ask of a field.

5. Conclusion

This work leads us to the derivation of integrable ultradiscrete systems as com-

patibility conditions of linear difference equations with rational coefficients in the

invertible max-plus algebra and the max-plus semiring. The methods employed

to find powers of matrices over a tropical semiring are quite general are possibly

require further investigation.
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