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Abstract

It is known that volatility plays a central role in financial modelling problems. This

paper studies, in detail, a class of discrete time stochastic volatility (SV) models

driven by ARMA models with innovations having a stochastic variances. The auto-

correlation function of this class of models is derived and methods of identification of

such processes are described. An example is added to illustrate the development of

the theory over the standard methods.
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1 Introduction

The class of autoregressive moving average (ARMA) models has been used in many

applications related to time series observations. This class of ARMA moedsl of order

(p,q) or ARMA(p,q) is given by

Xt = C + α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p + Zt + β1Zt−1 + · · ·+ βqZt−q, (1.1)

where C is a constant, αj’s and βj’s are not all zeros for all j, {Zt} is a sequence

of uncorrelated random variables (not necessarily independent) with mean zero and

constant variance, σ2 (known as white noise, WN(0, σ2)).
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Under stationarity conditions (ie. the roots of 1 − α1ω − α2ω
2 − · · · − αpω

p = 0 lie

out side the unit circle), one has the stationary solution to (1.1) given by

Xt = µ+
∞

∑

j=0

ψjZt−j, (1.2)

where µ = E(Xt) is the unconditional mean of Xt and ψ(B) =
∑∞

j=0
ψjB

j such

that ψ(B)α(B) = β(B) (α(B) = I − α1B − α2B
2 − · · · − αpB

p; β(B) = I + β1B +

β2B
2 + · · · + βqB

q, and B is the backshift operator satisfying BjXt = Xt−j with

B0Xt = IXt = Xt).

Under stationary conditions, the unconditional mean of the process is

µ = E(Xt) =
C

1 − α1 − α2 − · · · − αp

; 1 − α1 − α2 − · · · − αp 6= 0 (1.3)

and the corresponding constant variance is

V ar(Xt) = σ2

∞
∑

j=0

ψ2

j , (1.4)

where
∑∞

j=0
ψ2

j <∞.

However, the conditional mean and variance of the process, respectively are

Et|t−1 = E(Xt|Ft−1) = α1Xt−1 + α2Xt−2 + · · · + αpXt−p + β1Zt−1 + · · ·+ βqZt−q

and Vt|t−1 = V ar(Xt|Ft−1) = σ2, where Ft−1 is the history of the process upto time

t−1. Therefore, standard ARMA models are useful in modelling the conditional mean

but not suitable for modelling the conditional variance.

In many practical problems in finance, it has been noticed that the models assum-

ing constant conditional variance may not produce good forecast values. Further it

has been recognised that many financial time series data are uncorrelated while the

squared values are highly correlated. Engle (1982) exploited this idea and put forward

a class of Autoregressive Conditional Heteroskedastic (ARCH) models to describe the

conditional variance which proved to be extremely useful in many financial time series
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applications. Bollerslev (1986) generalised the class of ARCH models to incorporate

the temporal dependence in conditional variances for skewness and excess kurtosis.

The class of (p, q)th order generalised ARCH or GARCH is given by

Xt =
√

htζt,

ht = α0 +

p
∑

i=1

αiX
2

t−i +

q
∑

j=1

βjht−j, (1.5)

where ζt is a sequence of independent and identically distributed (iid) random vari-

ables with zero mean and unit variance, α0 > 0, αi ≥ 0, βj ≥ 0 and
∑p

i=1
αi +

∑q

j=1
βj < 1.

Notes:

1. When βj = 0, j = 1, 2, · · · , q, equation (1.5) reduces to the ARCH(p) model. The

conditions on α′s and β ′s ensure that V ar(Xt) > 0, while
∑p

i=1
αi +

∑q

j=1
βj < 1 is

required for wide sense stationarity of {Xt}.

2. It is clear that the unconditional variance of Xt is greater than the conditional

variance of Xt provided the past realizations of X2
t >

α0

1−
Pp

i=1
αi−

Pq

j=1
βj
.

Remark:

When the original time series has significant serial correlations, first we fit an ARMA

model and and then investigate the residuals for any heteroscedasticity.

A shortcoming of the GARCH model in (1.5) is that the sign of Xt does not

influence the conditional variance, which may contradict the observed dynamics of

the process. Therefore, the main concern of this paper is to further develop the theory

which may turn out to be useful in modelling the statistical properties of financial

data. With that view in mind, the next section considers the class of ARMA models

with a stochastic variance specification.
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2 ARMA Models with Stochastic Variance

Suppose that {Xt} in (1.1) represents the mean corrected return of a stock given by

Xt = Yt − µ, where µ = E(Yt). The word volatility in finance literature is frequently

associated with the V ar(Xt) and the changes of volatility occur in almost all classes

of assets and have been extensively studied and reported in the past. This paper

considers the changes of volatility by allowing the variance of the noise process in

(1.1) to be σ2
t . For example, set Zt such that Zt ∼ NID(0, σ2

t ). The assumption of

normality of Zt is not necessary, but can be used to simplify many related results.

There are two interesting cases arise in practice, where σ2
t is

(i) a deterministic function of time and

(ii) a stochastic process.

These two cases can be analysed to emphasize different related practical issues. How-

ever, in each case we need additional assumptions relating to σ2
t such as

(a) 0 < m < σ2
t < M <∞ in (i) and

(b) stationarity in (ii)

for stable solutions. Case (i) has been considered by many authors (see, for example,

Peiris and Singh (1987), Peiris (1991) and Singh and Peiris (1997) and references

there in for details).

This paper considers the case (ii) with the following specification for ht = log σ2
t

to describe a class of stochastic volatility (SV) models. Suppose that {ht} follows an

ARMA(p′, q′) model satisfying

ht = C ′ + η1ht−1 + η2ht−2 + · · ·+ ηp′ht−p′ + ν0Vt + ν1Vt−1 + · · ·+ νq′Vt−q′ , (2.1)

where C ′ is a positive constant, η′js and ν ′js are (constants) not all zeros for all j and

{Vt} is assumed to be a sequence of serially uncorrelated random variables which are

mutually uncorrelated with {Zt}. Further assume that the mean and the variance of

{Vt} are zero and σ2
V respectively(ie.{Vt} ∼ WN(0, σ2

V )). Without loss of generality
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(w.l.o.g.) we may take σ2
V = 1.

It is known that the volatility logarithm given in (2.1) follows a stationary ARMA(p′, q′)

process when the zeros of η(ω) = 1 − η1ω − η2ω
2 − · · · − ηp′ωp′

are outside the unit

circle. In this case C ′ = (1 −
∑p′

i=1
ηi) δ, where δ = E(ht) is the unconditional mean

of ht.

Notes:

1. The class of SV models driven by (1.1) with Zt ∼ NID(0, σ2
t ) and ht = ln(σ2

t ),

where ht follows (2.1) is called the class of ARMA− ARMASV (p, q, p′, q′).

2. It is convenient to set Zt = σtUt, where σt and Ut are two independent variables

and {Ut} ∼ NID(0, 1). In this case, it is clear that

E(Zj
t ) = MjE(σj

t ), (2.2)

where Mj = E(U j
t ) = dj

dtj
(exp(t2/2))|t=0 and exp(t2/2) is the moment generating

function (mgf) of an N(0, 1) distribution. For example, M1 = 0,M2 = 1,M3 = 0 and

M4 = 3.

3. When σt and Ut are not independent, we may consider a more general case such

that the pairs (Vt, Ut) are iid and corr(Vt, Ut) 6= 0. For example, (Vt, Ut) are iid and

bivariate normal with the correlation matrix

(

1 δ′

δ′ 1

)

.

Let ν(ω) = ν0 + ν1ω+ ν2ω
2 + · · ·+ νq′ωq′

and let the sequence of square summable

constants {ψ′
i} is obtained by Ψ′(B)η(B) = ν(B), where Ψ′(B) =

∑∞
j=0

ψ′
jB

j. In this

case

ht = δ +

∞
∑

j=0

ψ′
jVt−j (2.3)

is a valid solution to (2.1). The assumption on the zeros of η(ω) ensures that the

process {ht} is weakly stationary with mean δ and variance, ξ2 =
∑∞

j=0
ψ′2

j . Clearly,

with the assumption of normality, the unconditional distribution of Xt is a lognormal

mixture of normal distributions. See, for instance, Taylor (1994).
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In many applications of time series with the specification in (2.1), one needs the

moments of {Xt}. The next section derives the moments , E(X j
t ) for j, 1 ≤ j ≤ 4.

3 Moments and Kurtosis

When {Vt} ∼ NID(0, 1), the unconditional distribution of σ2
t is log normal with

mean δ and variance ξ2. Since ht ∼ N(δ, ξ2), we have

E[(σ2

t )
j] = exp(jδ + j2ξ2/2).

Now the mean and variance of σ2
t respectively are exp(δ + ξ2/2) and exp(2δ +

ξ2)(expξ2 − 1). From (1.2) it is obvious that E[(Xt − µ)r] < ∞ for all r > 0 where

the mean return is E(Xt) = µ and its variance is E[(Xt − µ)2] =
∑∞

j=0
ψ2

jE(σ2
t ) =

exp(δ+ ξ2/2)
∑∞

j=0
ψ2

j . Further, we obtain a lower bound for E[(Xt −µ)4] is obtained

as follows:

E[(Xt − µ)4] = E[(
∞

∑

j=0

ψjZt−j)
4] (3.1)

= E[(

∞
∑

j=0

ψjZt−j)
2(

∞
∑

j=0

ψjZt−j)
2] (3.2)

≥ (

∞
∑

j=0

ψ2

j )
2E(σ4

t ) (3.3)

= 3exp(2δ + 2ξ2)(

∞
∑

j=0

ψ2

j )
2.

Therefore, the kurtosis of Xt is greater than 3exp(ξ2) and clearly, the distribution of

Xt is leptokurtic.

Example 1

Consider an ARMA − ARMASV (1, 0, 1, 0) given by the following two equations:

Xt = C + αXt−1 + Zt, {Zt} ∼ WN(0, σ2

t ) (3.4)

ht = C ′ + ηht−1 + Vt, {Vt} ∼ WN(0, 1), (3.5)
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where |α|, |η| < 1.

In this case we have

Xt = µ+

∞
∑

j=0

αjZt−j

ht = δ +
∞

∑

j=0

ηjVt−j,

where µ = C
1−α

and δ = C′

1−η
.

Under the assumption of normality

V ar(Xt) = E[(Xt − µ)2] =
exp(δ + ξ2/2)

1 − α2
,

where ξ2 = var(ht) =
∑∞

j=0
η2j = 1

1−η2 .

The corresponding kurtosis K1 > 3exp(1/(1 − η2)).

Example 2

Consider an ARMA − ARMASV (1, 0, 1, 1) model given by (3.4) and the following

volatility equation:

ht = C ′ + ηht−1 + Vt + νVt−1, {Vt} ∼ WN(0, 1). (3.6)

In this case we have

ht = δ +
∞

∑

j=0

ψ′
jVt−j,

where ψ′
0 = 1 and ψ′

j = ηj−1(η + ν) for j ≥ 1.

Under the assumption of normality

V ar(Xt) = E[(Xt − µ)2] =
exp(δ + ξ′2/2)

1 − α2
,

where ξ2 = var(ht) =
∑∞

j=0
ψ′2j = 1+2ην+ν2

1−η2 .

The corresponding kurtosis K2 > 3exp(1+2ην+ν2

1−η2 ).

Next section considers the modelling of excess equity returns in the US(Jan 1971

to Sept 2004) as an application of ARMA models with stochastic variance (SV).
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4 An application of SV modelling

We obtained the data for equity index from Morgan Stanley Capital International

and the short-term interest rate data from the International Financial Statistics of

the International Monetary Fund. Excess return is calculated by subtracting the

interest rate from the return computed from the equity index. These are all annualised

figures. The time series plot, acf and the pacf of data show that there is no significant

serial correlation (see, Appendix 1). The analysis shows that the squared values are

autocorrelated (see Appendix 2) and therefore we fit AR(1) and ARMA(1,1) models

to these squared values. The following tables report the corresponding results:

Table 1: Results for Excess Equity Return (USA)

Estimated Model Parameters
Model α0 α1 θ1 σ2

v

AR -0.1099 0.9207 0.2130
(0.0475) (0.0313) (0.0577)

ARMA -0.1110 0.9199 0.5016 0.0204
(0.0504) (0.0331) (0.0044) (0.0105)

Model parameters are estimated by the quasi-maximum likelihood method using

numerical maximization algorithm in GaussTM . The robust standard errors (se) are

given in parentheses.

Entries are p-values for the respective statistics. These diagnostics are computed

from the recursive residual (standardised) of the measurement equation. The null

hypothesis in the portmanteau test is that the residuals are serially uncorrelated.

The ARCH test checks for no serial correlations in the squared residual up to lag 26.

This is applicable to recursive residuals as explained in Wells (1996, p 27). MNR is
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Table 2: Residual Diagnostics and Model Adequacy Tests

Estimated Model Parameters
Model Portmanteau ARCH MNR Recursice T

AR 0.443 0.320 0.019 0.946

ARMA 0.469 0.642 0.116 0.933

the modified Von Neumann ratio test using a recursive residual for model adequacy

(see, Harvey, 1990, Chapter 5). Similarly, if the model is correctly specified then the

recursive T has a Student’s t-distribution (see, Harvey, 1990, p 157).
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Figure 1

Estimated Variance from the SV Model (AR Structure)

 
 

Figure 2
Estimated Variance from the SV Model (ARMA Structure)
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