GELFAND-TSETLIN BASES FOR REPRESENTATIONS OF FINITE W-ALGEBRAS AND SHIFTED YANGIANS

VYACHESLAV FUTORNY, ALEXANDER MOLEV, AND SERGE OVSIENKO

ABSTRACT. Remarkable subalgebras of the Yangian for \mathfrak{gl}_n called the shifted Yangians were introduced in a recent work by Brundan and Kleshchev in relation to their study of finite W-algebras. In particular, in that work a classification of finite-dimensional irreducible representations of the shifted Yangians and the associated finite W-algebras was given. We construct a class of these representations in an explicit form via bases of Gelfand–Tsetlin type.

1. Introduction

A striking relationship between the Yangians and finite W-algebras was first discovered by Ragoucy and Sorba [14]; see also Briot and Ragoucy [1]. This relationship was developed in full generality by Brundan and Kleshchev [4]. The finite W-algebras associated to nilpotent orbits in the Lie algebra \mathfrak{gl}_N turned out to be isomorphic to quotients of certain subalgebras of the Yangian $Y(\mathfrak{gl}_n)$. These subalgebras, called the shifted Yangians in [4], admit a description in terms of generators and relations. This leads to respective presentations of the finite W-algebras and thus provides new tools to study their structure and representations. The representation theory of the shifted Yangians and associated W-algebras was developed in a subsequent paper by Brundan and Kleshchev [5] where many deep and remarkable connections of the shifted Yangian representation theory were explored. In particular, a classification of the finite-dimensional irreducible representations of the shifted Yangians and the finite W-algebras was given in terms of their highest weights. Moreover, in the case of the shifted Yangian associated to \mathfrak{gl}_2 all such representations were explicitly constructed.

Our aim in this paper is to construct in an explicit form a family of representations of the shifted Yangians and finite W-algebras via bases of Gelfand–Tsetlin type. Such bases for certain classes of representations of the Yangian $Y(\mathfrak{gl}_n)$ were constructed in different ways by Nazarov and Tarasov [12, 13] and Molev [10]. We mainly employ the approach of [12, 13] which turns out to be more suitable for the generalization to the case of the shifted Yangians. In more detail, following

[4], consider an n-tuple of positive integers $\pi = (p_1, \ldots, p_n)$ such that $p_1 \leq \cdots \leq p_n$. We can visualize π as a *pyramid* of left-justified rows of bricks, where the top row contains p_1 bricks, the second row contains p_2 bricks, etc. Such a pyramid determines a finite W-algebra which we denote by $W(\pi)$. For each $k \in \{1, \ldots, n\}$ we let π_k denote the pyramid with the rows (p_1, \ldots, p_k) . Our basis is consistent with the chain of subalgebras

(1)
$$W(\pi_1) \subset W(\pi_2) \subset \cdots \subset W(\pi_n).$$

In the case of the one-column pyramid (1, ..., 1) of height n we recover the classical Gelfand–Tsetlin basis for representations of the Lie algebra \mathfrak{gl}_n . For any π , the formulas for the action of the Drinfeld generators of $W(\pi)$ in the basis turn out to be quite similar to the Yangian case. These explicit constructions of representations of $W(\pi)$ proved to be useful for a description of the Harish-Chandra modules over finite W-algebras and a proof of the associated Gelfand–Kirillov conjecture based on recent results of Futorny and Ovsienko [8, 9]; see our forthcoming paper [7].

2. Shifted Yangians and W-algebras

As in [4], given a pyramid $\pi = (p_1, \dots, p_n)$ with $p_1 \leqslant \dots \leqslant p_n$, introduce the corresponding *shifted Yangian* $Y_{\pi}(\mathfrak{gl}_n)$ as the associative algebra defined by generators

(2)
$$d_{i}^{(r)}, \quad i = 1, \dots, n, \qquad r \geqslant 1,$$
$$f_{i}^{(r)}, \quad i = 1, \dots, n - 1, \qquad r \geqslant 1,$$
$$e_{i}^{(r)}, \quad i = 1, \dots, n - 1, \qquad r \geqslant p_{i+1} - p_{i} + 1,$$

subject to the following relations:

$$[d_i^{(r)}, d_j^{(s)}] = 0,$$

$$[e_i^{(r)}, f_j^{(s)}] = -\delta_{ij} \sum_{t=0}^{r+s-1} d_i^{\prime(t)} d_{i+1}^{(r+s-t-1)},$$

$$[d_i^{(r)}, e_j^{(s)}] = (\delta_{ij} - \delta_{i,j+1}) \sum_{t=0}^{r-1} d_i^{(t)} e_j^{(r+s-t-1)},$$

$$[d_i^{(r)}, f_j^{(s)}] = (\delta_{i,j+1} - \delta_{ij}) \sum_{t=0}^{r-1} f_j^{(r+s-t-1)} d_i^{(t)},$$

$$\begin{split} [e_i^{(r)},e_i^{(s+1)}] - [e_i^{(r+1)},e_i^{(s)}] &= e_i^{(r)}e_i^{(s)} + e_i^{(s)}e_i^{(r)}, \\ [f_i^{(r+1)},f_i^{(s)}] - [f_i^{(r)},f_i^{(s+1)}] &= f_i^{(r)}f_i^{(s)} + f_i^{(s)}f_i^{(r)}, \\ [e_i^{(r)},e_{i+1}^{(s+1)}] - [e_i^{(r+1)},e_{i+1}^{(s)}] &= -e_i^{(r)}e_{i+1}^{(s)}, \\ [f_i^{(r+1)},f_{i+1}^{(s)}] - [f_i^{(r)},f_{i+1}^{(s+1)}] &= -f_{i+1}^{(s)}f_i^{(r)}, \\ [e_i^{(r)},e_j^{(s)}] &= 0 & \text{if} \quad |i-j| > 1, \\ [f_i^{(r)},f_j^{(s)}] &= 0 & \text{if} \quad |i-j| = 1, \\ [e_i^{(r)},[e_i^{(s)},e_j^{(t)}]] + [e_i^{(s)},[e_i^{(r)},e_j^{(t)}]] &= 0 & \text{if} \quad |i-j| = 1, \\ [f_i^{(r)},[f_i^{(s)},f_j^{(t)}]] + [f_i^{(s)},[f_i^{(r)},f_j^{(t)}]] &= 0 & \text{if} \quad |i-j| = 1, \\ \end{split}$$

for all admissible i, j, r, s, t, where $d_i^{(0)} = 1$ and the elements $d_i^{\prime (r)}$ are found from the relations

$$\sum_{t=0}^{r} d_i^{(t)} d_i^{\prime (r-t)} = \delta_{r0}, \qquad r = 0, 1, \dots$$

Note that the algebra $Y_{\pi}(\mathfrak{gl}_n)$ depends only on the differences $p_{i+1} - p_i$. In the particular case of a rectangular pyramid π with $p_1 = \cdots = p_n$, the algebra $Y_{\pi}(\mathfrak{gl}_n)$ is isomorphic to the Yangian $Y(\mathfrak{gl}_n)$; see e.g. [11] for the description of its structure and representations. The isomorphism with the RTT presentation of $Y(\mathfrak{gl}_n)$ was constructed in [3] providing a proof of the original result of Drinfeld [6]. Moreover, for an arbitrary pyramid π , the shifted Yangian $Y_{\pi}(\mathfrak{gl}_n)$ can be regarded as a natural subalgebra of $Y(\mathfrak{gl}_n)$. Note also that the shifted Yangians can be defined for more general types of pyramids. However, in accordance to [4], each of these algebras is isomorphic to $Y_{\pi}(\mathfrak{gl}_n)$ for an appropriate left-justified pyramid π .

Introduce formal generating series in u^{-1} by

$$d_i(u) = 1 + \sum_{r=1}^{\infty} d_i^{(r)} u^{-r}, \qquad f_i(u) = \sum_{r=1}^{\infty} f_i^{(r)} u^{-r},$$

$$e_i(u) = \sum_{r=p_{i+1}-p_i+1}^{\infty} e_i^{(r)} u^{-r}$$

and set

$$a_i(u) = d_1(u) d_2(u-1) \dots d_i(u-i+1)$$

for $i = 1, \ldots, n$, and

$$b_i(u) = a_i(u) e_i(u - i + 1), \qquad c_i(u) = f_i(u - i + 1) a_i(u)$$

for i = 1, ..., n - 1. It is clear that the coefficients of the series $a_i(u)$, $b_i(u)$ and $c_i(u)$ generate the algebra $Y_{\pi}(\mathfrak{gl}_n)$. It is not difficult to rewrite the defining relations in terms of these coefficients. We point out a few of these relations here which will be frequently used later on; see also [3]. We have

(3)
$$[a_i(u), c_j(v)] = 0, [b_i(u), c_j(v)] = 0, if i \neq j,$$

(4)
$$[c_i(u), c_j(v)] = 0, \quad \text{if} \quad |i - j| \neq 1,$$

(5)
$$(u-v)[a_i(u), c_i(v)] = c_i(u) a_i(v) - c_i(v) a_i(u).$$

Let N be the number of bricks in the pyramid π . Due to the main result of [4], the *finite W-algebra W*(π), associated to \mathfrak{gl}_N and the pyramid π , can be defined as the quotient of $Y_{\pi}(\mathfrak{gl}_n)$ by the two-sided ideal generated by all elements $d_1^{(r)}$ with $r \geq p_1 + 1$. We refer the reader to [4, 5] for a discussion of the origins of the finite W-algebras and more references. Note that in the case of a rectangular pyramid of height p, the algebra $W(\pi)$ is isomorphic to the *Yangian of level p*; this relationship was originally observed in [1] and [14].

We will use the same notation for the images of the elements of $Y_{\pi}(\mathfrak{gl}_n)$ in the quotient algebra $W(\pi)$. Set

$$A_i(u) = u^{p_1} (u-1)^{p_2} \dots (u-i+1)^{p_i} a_i(u)$$

for $i = 1, \ldots, n$, and

$$B_i(u) = u^{p_1} (u-1)^{p_2} \dots (u-i+2)^{p_{i-1}} (u-i+1)^{p_{i+1}} b_i(u),$$

$$C_i(u) = u^{p_1} (u-1)^{p_2} \dots (u-i+1)^{p_i} c_i(u)$$

for i = 1, ..., n-1. The following lemma is immediate from the results of Brown and Brundan [2]. Here we regard $A_i(u)$, $B_i(u)$, and $C_i(u)$ as series with coefficients in $W(\pi)$.

Lemma 2.1. All series $A_i(u)$, $B_i(u)$, and $C_i(u)$ are polynomials in u.

Proof. In terms of the RTT presentation of the Yangian, each of the series $a_i(u) \in Y(\mathfrak{gl}_n)[[u^{-1}]]$ coincides with a quantum minor of the matrix of the generators; see [3, Theorem 8.6]. Therefore the statement for the $A_i(u)$ follows from the results of [2, Section 3]. Note that the polynomial $A_i(u)$ in u is monic of degree $p_1 + \cdots + p_i$. Furthermore, the defining relations of $Y_{\pi}(\mathfrak{gl}_n)$ imply $[f_i^{(1)}, a_i(u)] = c_i(u)$, and so $C_i(u) = [f_i^{(1)}, A_i(u)]$ is a polynomial in u of degree $p_1 + \cdots + p_i - 1$. Similarly,

$$b_i(u) (u - i + 1)^{p_{i+1} - p_i} = [a_i(u), e_i^{(p_{i+1} - p_i + 1)}],$$

which gives

$$B_i(u) = [A_i(u), e_i^{(p_{i+1}-p_i+1)}],$$

so that $B_i(u)$ is a polynomial in u of degree $p_1 + \cdots + p_i - 1$.

Note that by [5, Theorem 6.10], all coefficients of the polynomial $A_n(u)$ belong to the center of $W(\pi)$ and these coefficients (excluding the leading one) are algebraically independent generators of the center.

For $i=1,\ldots,n-1$ define the elements $h_i^{(r)} \in \mathcal{Y}_{\pi}(\mathfrak{gl}_n)$ by the expansion

$$1 + \sum_{r=1}^{\infty} h_i^{(r)} u^{-r} = d_i(u)^{-1} d_{i+1}(u)$$

and set

$$H_i^{(r)}(u) = u^r + u^{r-1} h_i^{(1)} + \dots + h_i^{(r)}$$

Lemma 2.2. For i = 1, ..., n-1 in the algebra $W(\pi)$ we have

$$(u-v)[B_i(u), C_i(v)] = A'_{i+1}(u) A_i(v) - A'_{i+1}(v) A_i(u),$$

where $A'_{i+1}(u)$ is the polynomial in u with coefficients in $W(\pi)$ given by

$$A'_{i+1}(u) = u^{p_1} (u-1)^{p_2} \dots (u-i+2)^{p_{i-1}} (u-i+1)^{p_{i+1}}$$

$$\times a_i (u+1)^{-1} (a_{i+1}(u+1) a_{i-1}(u) + c_i (u+1) b_i (u))$$

$$- H_i^{(p_{i+1}-p_i)} (u-i+1) A_i (u).$$

Moreover,

$$B_i(u) C_i(u-1) = A'_{i+1}(u) A_i(u-1) - A_{i+1}(u) A_{i-1}(u-1) + H_i^{(p_{i+1}-p_i)}(u-i) A_i(u) A_i(u-1).$$

Proof. Observe that for any fixed $i \in \{1, \ldots, n-1\}$ the elements $d_i^{(r)}$, $d_{i+1}^{(r)}$, $e_i^{(r)}$ and $f_i^{(r)}$ of $Y_{\pi}(\mathfrak{gl}_n)$ satisfy the defining relations of the shifted Yangian $Y_{\pi_i}(\mathfrak{gl}_2)$, where $\pi_i = (p_i, p_{i+1})$. Therefore, it suffices to prove the first relation in the case i = 1; the proof for the remaining values of i will then easily follow. Working in the Yangian $Y(\mathfrak{gl}_2)$, we can derive the relation

$$(u-v-1)[d_1(u),e_1(v)] = (e_1(v)-e_1(u)) d_1(u);$$

see e.g. [3]. This allows us to calculate the commutators $[d_1(u), e_1^{(r)}]$ and leads to an equivalent expression for $b_1(u)$ in the subalgebra $Y_{\pi}(\mathfrak{gl}_2)$:

$$b_1(u) = d_1(u) e_1(u) = (1 - u^{-1})^{p_2 - p_1} e_1(u - 1) d_1(u).$$

Furthermore, starting from the relations

$$[e_1^{(r)}, f_1^{(s)}] = -\sum_{t=0}^{r+s-1} d_1^{\prime(t)} d_2^{(r+s-t-1)}$$

in $Y_{\pi}(\mathfrak{gl}_2)$, it is now straightforward to derive that

$$(u-v) [b_1(u), c_1(v)] = a_1(u+1)^{-1} (a_2(u+1) + c_1(u+1) b_1(u)) a_1(v)$$

$$- (u^{-1}v)^{p_2-p_1} a_1(v+1)^{-1} (a_2(v+1) + c_1(v+1) b_1(v)) a_1(u)$$

$$- u^{p_1-p_2} (H_1^{(p_2-p_1)}(u) - H_1^{(p_2-p_1)}(v)) a_1(u) a_1(v).$$

The desired relation in $W(\pi)$ is then obtained by multiplying both sides by the product $u^{p_2} v^{p_1}$. Furthermore, by the defining relations,

$$u^{p_2} a_1(u+1)^{-1} (a_2(u+1) + c_1(u+1) b_1(u))$$

= $u^{p_2} (d_2(u) + f_1(u) d_1(u) e_1(u)).$

This is a polynomial in u due to [5, Theorem 3.5]. Hence, by Lemma 2.1, $A'_{2}(u)$ is a polynomial in u too.

The second part of the lemma is implied by the first by taking into account the relations in the shifted Yangian $Y_{\pi}(\mathfrak{gl}_n)$,

$$a_i(u)^{-1}c_i(u) = c_i(u-1) a_i(u-1)^{-1}$$

and

$$(u-i)^{p_{i+1}-p_i} a_i (u-1)^{-1} b_i (u-1) = (u-i+1)^{p_{i+1}-p_i} b_i (u) a_i (u)^{-1},$$

which are implied by the defining relations.

3. Construction of basis vectors

Using the canonical homomorphism $Y_{\pi}(\mathfrak{gl}_n) \to W(\pi)$ we can extend every representation of the finite W-algebra $W(\pi)$ to the shifted Yangian $Y_{\pi}(\mathfrak{gl}_n)$. In what follows we work with representations of $W(\pi)$, and the results can be easily interpreted in the shifted Yangian context.

Let us recall some definitions and results from [5] regarding representations of $W(\pi)$. Fix an n-tuple $\lambda(u) = (\lambda_1(u), \dots, \lambda_n(u))$ of monic polynomials in u with coefficients in \mathbb{C} , where $\lambda_i(u)$ has degree p_i . We let $L(\lambda(u))$ denote the irreducible highest weight representation of $W(\pi)$ with the highest weight $\lambda(u)$. Then $L(\lambda(u))$ is generated by a nonzero vector ζ (the highest vector) such that

$$B_i(u) \zeta = 0$$
 for $i = 1, ..., n - 1$, and $u^{p_i} d_i(u) \zeta = \lambda_i(u) \zeta$ for $i = 1, ..., n$.

Write

$$\lambda_i(u) = (u + \lambda_i^{(1)}) (u + \lambda_i^{(2)}) \dots (u + \lambda_i^{(p_i)}), \qquad i = 1, \dots, n.$$

We will assume that the parameters $\lambda_i^{(k)}$ satisfy the conditions: for any value $k \in \{1, \dots, p_i\}$ we have

$$\lambda_i^{(k)} - \lambda_{i+1}^{(k)} \in \mathbb{Z}_+, \qquad i = 1, \dots, n-1,$$

where \mathbb{Z}_+ denotes the set of nonnegative integers. In this case the representation $L(\lambda(u))$ of $W(\pi)$ is finite-dimensional.

Denote by q_k the number of bricks in the column k of the pyramid π . We have $q_1 \geqslant \cdots \geqslant q_l > 0$, where $l = p_n$ is the number of the columns in π . If $p_{i-1} < k \leqslant p_i$ for some $i \in \{1, \ldots, n\}$ (taking $p_0 = 0$), then we set $\lambda^{(k)} = (\lambda_i^{(k)}, \ldots, \lambda_n^{(k)})$. Then $q_k = n - i + 1$. Let $L(\lambda^{(k)})$ denote the finite-dimensional irreducible representation of the Lie algebra \mathfrak{gl}_{q_k} with the highest weight $\lambda^{(k)}$. The vector space

(6)
$$L(\lambda^{(1)}) \otimes \ldots \otimes L(\lambda^{(l)})$$

can be equipped with an action of the algebra $W(\pi)$, and $L(\lambda(u))$ is isomorphic to a subquotient of the module (6). In particular,

(7)
$$\dim L(\lambda(u)) \leqslant \prod_{k=1}^{l} \dim L(\lambda^{(k)}).$$

In what follows we will only consider a certain family of representations of $W(\pi)$ by imposing a generality condition on the highest weights of the representations $L(\lambda(u))$. We will assume that

$$\lambda_i^{(k)} - \lambda_j^{(m)} \notin \mathbb{Z}$$
, for all i, j and all $k \neq m$.

The Gelfand-Tsetlin pattern $\Lambda(u)$ (associated with the highest weight $\lambda(u)$) is an array of monic polynomials in u of the form

$$\lambda_{n1}(u) \qquad \lambda_{n2}(u) \qquad \dots \qquad \lambda_{nn}(u)$$

$$\lambda_{n-1,1}(u) \qquad \dots \qquad \lambda_{n-1,n-1}(u)$$

$$\dots \qquad \dots$$

$$\lambda_{21}(u) \qquad \lambda_{22}(u)$$

$$\lambda_{11}(u)$$

where

$$\lambda_{ri}(u) = (u + \lambda_{ri}^{(1)}) \dots (u + \lambda_{ri}^{(p_i)}), \qquad 1 \leqslant i \leqslant r \leqslant n,$$
 with $\lambda_{ni}^{(k)} = \lambda_i^{(k)}$ and the following conditions hold
$$\lambda_{r+1,i}^{(k)} - \lambda_{ri}^{(k)} \in \mathbb{Z}_+ \quad \text{and} \quad \lambda_{ri}^{(k)} - \lambda_{r+1,i+1}^{(k)} \in \mathbb{Z}_+$$

for $k = 1, ..., p_i$ and $1 \le i \le r \le n - 1$. We have $\lambda_{ni}(u) = \lambda_i(u)$ for i = 1, ..., n, so that the top row coincides with $\lambda(u)$.

Most arguments in the rest of the paper will not be essentially different from [13, Section 3], so we only sketch the main steps in the construction of the basis. Given a pattern $\Lambda(u)$, introduce the corresponding element ζ_{Λ} of $L(\lambda(u))$ by the formula

$$\zeta_{\Lambda} = \prod_{i=1,\dots,n-1} \left\{ \prod_{k=1}^{p_i} \left(C_{n-1}(-l_{n-1,i}^{(k)} - 1) \dots C_{n-1}(-l_i^{(k)}) \right) \right. \\
\times \prod_{k=1}^{p_i} \left(C_{n-2}(-l_{n-2,i}^{(k)} - 1) \dots C_{n-2}(-l_i^{(k)} + 1) C_{n-2}(-l_i^{(k)}) \right) \\
\times \dots \times \prod_{k=1}^{p_i} \left(C_i(-l_{ii}^{(k)} - 1) \dots C_i(-l_i^{(k)} + 1) C_i(-l_i^{(k)}) \right) \right\} \zeta,$$

where we have used the notation

$$l_i^{(k)} = \lambda_i^{(k)} - i + 1$$
 and $l_{ri}^{(k)} = \lambda_{ri}^{(k)} - i + 1$.

Note that by (4) we have $[C_i(u), C_i(v)] = 0$, so that the order of the factors in the products over k is irrelevant.

Lemma 3.1. We have

$$A_r(u) \zeta_{\Lambda} = \lambda_{r1}(u) \dots \lambda_{rr}(u-r+1) \zeta_{\Lambda},$$

for $r = 1, \ldots, n$.

Proof. When applying $A_r(u)$ to ζ_{Λ} , separating the first factor, we need to calculate $A_r(u) C_s(v) \eta$ for the respective value of v. By (3), the operator $A_r(u)$ commutes with $C_s(v)$ for $s \neq r$. Furthermore, by (5),

$$A_r(u) C_r(v) \eta = \frac{1}{u - v} C_r(u) A_r(v) \eta + \frac{u - v - 1}{u - v} C_r(v) A_r(u) \eta$$

The calculation is completed by induction on the number of factors $C_i(v)$ in the expression for ζ_{Λ} , taking into account that $A_r(v) \eta = 0$.

Lemma 3.2. For any $1 \le i \le r \le n-1$ and $k=1,\ldots,p_i$ we have

$$B_{r}(-l_{ri}^{(k)}) \zeta_{\Lambda} = -\lambda_{1}(-l_{ri}^{(k)}) \dots \lambda_{i}(-l_{ri}^{(k)} - i + 1)$$

$$\times \lambda_{r+1,i+1}(-l_{ri}^{(k)} - i) \dots \lambda_{r+1,r+1}(-l_{ri}^{(k)} - r)$$

$$\times \lambda_{1}(-l_{ri}^{(k)} - 1) \dots \lambda_{i-1}(-l_{ri}^{(k)} - i + 1)$$

$$\times \lambda_{r-1,i}(-l_{ri}^{(k)} - i) \dots \lambda_{r-1,r-1}(-l_{ri}^{(k)} - r + 1) \zeta_{\Lambda+\delta}^{(k)},$$

where $\zeta_{\Lambda+\delta_{ri}^{(k)}}$ corresponds to the pattern obtained from $\Lambda(u)$ by replacing $\lambda_{ri}^{(k)}$ by $\lambda_{ri}^{(k)}+1$, and the vector ζ_{Λ} is considered to be zero, if $\Lambda(u)$ is not a pattern.

Proof. The argument is based on Lemma 2.2. As in the proof of Lemma 3.1, separating the first factor, we need to calculate $B_r(-l_{ri}^{(k)}) C_s(v) \eta$ for the respective value of v. By (3), the operator $B_r(u)$ commutes with $C_s(v)$ for $s \neq r$. If s = r then we consider two cases. If $-l_{ri}^{(k)} - v \neq 1$, then applying the first relation of Lemma 2.2 together with Lemma 3.1, we find that

$$B_r(-l_{ri}^{(k)}) C_r(v) \eta = C_r(v) B_r(-l_{ri}^{(k)}) \eta$$

and proceed by induction. If $v = -l_{ri}^{(k)} - 1$, then we apply the second relation of Lemma 2.2 together with Lemma 3.1 to get

$$B_r(-l_{ri}^{(k)}) C_r(-l_{ri}^{(k)} - 1) \eta = -A_{r+1}(-l_{ri}^{(k)}) A_{r-1}(-l_{ri}^{(k)} - 1) \eta.$$

One more application of Lemma 3.1 leads to the desired formula. \Box

The following theorem provides a basis of the Gelfand–Tsetlin type for the representation $L(\lambda(u))$.

Theorem 3.3. The vectors ζ_{Λ} parameterized by all patterns $\Lambda(u)$ associated with the highest weight $\lambda(u)$, form a basis of the representation $L(\lambda(u))$ of the algebra $W(\pi)$.

Proof. It is easy to verify that if the array of monic polynomials obtained from $\Lambda(u)$ by increasing the entry $\lambda_{ri}^{(k)}$ by 1 is a pattern, then the coefficient of the vector $\zeta_{\Lambda+\delta_{ri}^{(k)}}$ in the formula of Lemma 3.2 is nonzero. This implies that each vector $\zeta_{\Lambda} \in L(\lambda(u))$ associated with a pattern $\Lambda(u)$ is nonzero.

Furthermore, by Lemma 3.1, ζ_{Λ} is an eigenvector for all operators $A_r(u)$ with distinct sets of eigenvalues. This shows that the vectors ζ_{Λ} are linearly independent.

Finally, for each $i \in \{1, \ldots, n\}$ and $p_{i-1} < k \leqslant p_i$ the set of parameters $(\lambda_{rj}^{(k)})$ with $i \leqslant j \leqslant r \leqslant n$ forms a Gelfand–Tsetlin pattern associated with the highest weight $\lambda^{(k)}$ of the irreducible representation $L(\lambda^{(k)})$ of the Lie algebra \mathfrak{gl}_{q_k} . Hence, the number of patterns $\Lambda(u)$ coincides with the product of dimensions dim $L(\lambda^{(k)})$ for $k = 1, \ldots, l$. Comparing this with (7), we conclude that the number of patterns coincides with dim $L(\lambda(u))$.

Note that by Theorem 3.3, we have the equality in (7), and thus we recover a result from [5] that the representation (6) of $W(\pi)$ is irreducible.

4. ACTION OF THE GENERATORS

We will calculate the action of the generators of $W(\pi)$ in a normalized basis of $L(\lambda(u))$. For any pattern $\Lambda(u)$ associated to $\lambda(u)$ set

$$N_{\Lambda} = \prod_{(r,i)} \prod_{j=1}^{i-1} \prod_{m=1}^{p_j} \prod_{k=1}^{p_i} (l_j^{(m)} - l_i^{(k)}) (l_j^{(m)} - l_i^{(k)} + 1) \dots (l_j^{(m)} - l_{ri}^{(k)} - 1)$$

$$\times \prod_{j=i}^{r-1} \prod_{m=1}^{p_j} \prod_{k=1}^{p_i} (l_{r-1,j}^{(m)} - l_i^{(k)}) (l_{r-1,j}^{(m)} - l_i^{(k)} + 1) \dots (l_{r-1,j}^{(m)} - l_{ri}^{(k)} - 1),$$

where the pairs (r, i) run over the set of indices satisfying $1 \le i \le r \le n-1$. This constant is clearly nonzero for any pattern $\Lambda(u)$. Introduce normalized vectors $\xi_{\Lambda} \in L(\lambda(u))$ by

$$\xi_{\Lambda} = N_{\Lambda}^{-1} \zeta_{\Lambda}.$$

By Theorem 3.3, the vectors ξ_{Λ} form a basis of the representation $L(\lambda(u))$. The algebra $W(\pi)$ is generated by the coefficients of the polynomials $A_r(u)$ with $r=1,\ldots,n$ and the coefficients of the polynomials $B_r(u)$ and $C_r(u)$ with $r=1,\ldots,n-1$. Since $B_r(u)$ and $C_r(u)$ are polynomials in u of degree less than $p_1 + \cdots + p_r$, it suffices to find the values of these polynomials at $p_1 + \cdots + p_r$ different values of u. The polynomial can then be calculated by the Lagrange interpolation formula. For these values we take the numbers $-l_{ri}^{(k)}$ with $i=1,\ldots,r$ and $k=1,\ldots,p_i$.

Theorem 4.1. We have

(8)
$$A_r(u)\,\xi_{\Lambda} = \lambda_{r1}(u)\dots\lambda_{rr}(u-r+1)\,\xi_{\Lambda},$$

for $r = 1, \ldots, n$, and

(9)
$$B_{r}(-l_{ri}^{(k)}) \, \xi_{\Lambda} = -\lambda_{r+1,1}(-l_{ri}^{(k)}) \dots \lambda_{r+1,r+1}(-l_{ri}^{(k)} - r) \, \xi_{\Lambda + \delta_{ri}^{(k)}},$$
$$C_{r}(-l_{ri}^{(k)}) \, \xi_{\Lambda} = \lambda_{r-1,1}(-l_{ri}^{(k)}) \dots \lambda_{r-1,r-1}(-l_{ri}^{(k)} - r + 2) \, \xi_{\Lambda - \delta_{ri}^{(k)}},$$

for $r=1,\ldots,n-1$, where $\xi_{\Lambda\pm\delta_{ri}^{(k)}}$ corresponds to the pattern obtained from $\Lambda(u)$ by replacing $\lambda_{ri}^{(k)}$ by $\lambda_{ri}^{(k)}\pm 1$.

Proof. The formulas for the action of $A_r(u)$ and $B_r(-l_{ri}^{(k)})$ follow respectively from Lemmas 3.1 and 3.2 by taking into account the normalization constant. Now consider the vector $C_r(-l_{ri}^{(k)})\xi_{\Lambda}$. Arguing as in the proof of Lemma 3.1, and using (8), we find that

$$A_s(u) C_r(-l_{ri}^{(k)}) \, \xi_{\Lambda} = C_r(-l_{ri}^{(k)}) \, A_s(u) \, \xi_{\Lambda}$$
$$= \lambda_{s1}(u) \dots \lambda_{ss}(u-s+1) \, C_r(-l_{ri}^{(k)}) \, \xi_{\Lambda}$$

for $s \neq r$, while

$$A_{r}(u) C_{r}(-l_{ri}^{(k)}) \xi_{\Lambda} = \frac{u + l_{ri}^{(k)} - 1}{u + l_{ri}^{(k)}} C_{r}(-l_{ri}^{(k)}) A_{r}(u) \xi_{\Lambda}$$

$$= \frac{u + l_{ri}^{(k)} - 1}{u + l_{ri}^{(k)}} \lambda_{r1}(u) \dots \lambda_{rr}(u - r + 1) C_{r}(-l_{ri}^{(k)}) \xi_{\Lambda}.$$

If $\lambda_{ri}^{(k)} = \lambda_{r+1,i+1}^{(k)}$, then the vector $\xi_{\Lambda - \delta_{ri}^{(k)}}$ is zero and we need to show that $C_r(-l_{ri}^{(k)})\xi_{\Lambda}=0$. Indeed, otherwise the vector $C_r(-l_{ri}^{(k)})\xi_{\Lambda}$ must be proportional to a certain basis vector of $L(\lambda(u))$. However, this is impossible because none of the basis vectors has the same set of eigenvalues as $C_r(-l_{ri}^{(k)})\xi_{\Lambda}$. If $\lambda_{ri}^{(k)} - \lambda_{r+1,i+1}^{(k)} \ge 1$, then by the same argument we have

$$C_r(-l_{ri}^{(k)})\,\xi_{\Lambda} = \alpha\,\xi_{\Lambda-\delta_{ri}^{(k)}}$$

for a certain constant α . Its value is found by the application of the operator $B_r(-l_{ri}^{(k)}+1)$ to the vectors on both sides with the use of (8), (9) and the second relation in Lemma 2.2.

Note that in the particular case of a rectangular pyramid π the normalized basis $\{\xi_{\Lambda}\}$ coincides with the basis of [10] constructed in a different way.

Let us denote by π' the pyramid with the rows p_1, \ldots, p_{n-1} . Then the finite W-algebra $W(\pi')$ may be identified with the subalgebra of $W(\pi)$ generated by the elements (2), excluding all $h_n^{(r)}$, $e_{n-1}^{(r)}$ and $f_{n-1}^{(r)}$. Theorem 4.1 implies the following branching rule for the reduction $W(\pi) \downarrow W(\pi')$ and thus shows that the basis $\{\xi_{\Lambda}\}$ is consistent with the chain of subalgebras (1).

Corollary 4.2. The restriction of the $W(\pi)$ -module $L(\lambda(u))$ to the subalgebra $W(\pi')$ is isomorphic to the direct sum of irreducible highest weight $W(\pi')$ -modules $L'(\mu(u))$,

$$L(\lambda(u))|_{W(\pi')} \cong \bigoplus_{\mu(u)} L'(\mu(u)),$$

where $\mu(u)$ runs over all (n-1)-tuples of monic polynomials in u of the form $\mu(u) = (\mu_1(u), \dots, \mu_{n-1}(u))$, such that

$$\mu_i(u) = (u + \mu_i^{(1)}) (u + \mu_i^{(2)}) \dots (u + \mu_i^{(p_i)}), \qquad i = 1, \dots, n - 1,$$

and the following conditions hold:

$$\lambda_i^{(k)} - \mu_i^{(k)} \in \mathbb{Z}_+ \quad and \quad \mu_i^{(k)} - \lambda_{i+1}^{(k)} \in \mathbb{Z}_+$$

for
$$k = 1, \ldots, p_i$$
 and $1 \leqslant i \leqslant r \leqslant n - 1$.

For each i = 1, ..., n-1 introduce the polynomials $\tau_{ni}(u)$ and $\tau_{in}(u)$ with coefficients in $W(\pi)$ by the formulas

(10)
$$\tau_{ni}(u) = C_{n-1}(u) C_{n-2}(u) \dots C_i(u), \tau_{in}(u) = B_i(u) B_{i+1}(u) \dots B_{n-1}(u).$$

Define the vector $\zeta_{\mu} \in L(\lambda(u))$ corresponding to the (n-1)-tuple of polynomials $\mu(u) = (\mu_1(u), \dots, \mu_{n-1}(u))$ by the formula

$$\zeta_{\mu} = \prod_{i=1}^{n-1} \prod_{k=1}^{p_i} \left(\tau_{ni} \left(-m_i^{(k)} - 1 \right) \dots \tau_{ni} \left(-l_i^{(k)} + 1 \right) \tau_{ni} \left(-l_i^{(k)} \right) \right) \zeta,$$

where the ordering of the factors corresponds to increasing indices i and k, and we used the notation

$$m_i^{(k)} = \mu_i^{(k)} - i + 1$$
 and $l_i^{(k)} = \lambda_i^{(k)} - i + 1$.

By Theorem 4.1, each vector ζ_{μ} generates a $W(\pi')$ -submodule of $L(\lambda(u))$, isomorphic to $L'(\mu(u))$. Moreover, the operators $\tau_{ni}(-m_i^{(k)})$ and $\tau_{in}(-m_i^{(k)})$ take ζ_{μ} to the vectors proportional to $\zeta_{\mu-\delta_i^{(k)}}$ and $\zeta_{\mu+\delta_i^{(k)}}$, respectively. So, the polynomials (10) valued at appropriate points can be regarded as the *lowering* and *raising* operators for the reduction $W(\pi) \downarrow W(\pi')$; cf. [11, Chapter 5].

ACKNOWLEDGMENTS

The authors acknowledge the support of the Australian Research Council. The first author is supported in part by the CNPq grant (processo 307812/2004-9) and by the Fapesp grant (processo 2005/60337-2). He is grateful to the University of Sydney for the warm hospitality during his visit.

References

- [1] C. Briot and E. Ragoucy, RTT presentation of finite W-algebras, J. Phys. A 34 (2001), 7287–7310.
- [2] J. Brown and J. Brundan, Elementary invariants for centralizers of nilpotent matrices, J. Austral. Math. Soc., to appear; preprint arXiv:math/0611024.
- [3] J. Brundan and A. Kleshchev, Parabolic presentations of the Yangian $Y(\mathfrak{gl}_n)$, Comm. Math. Phys. **254** (2005), 191–220.
- [4] J. Brundan and A. Kleshchev, Shifted Yangians and finite W-algebras, Adv. Math. 200 (2006), 136–195.
- [5] J. Brundan and A. Kleshchev, Representations of shifted Yangians and finite W-algebras, Memoirs AMS, to appear; arXiv:math/0508003.
- [6] V. G. Drinfeld, A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. 36 (1988), 212–216.
- [7] V. Futorny, A. Molev and S. Ovsienko, Gelfand–Kirillov conjecture and Harish–Chandra modules for finite W-algebras, in preparation.
- [8] V. Futorny and S. Ovsienko, Galois orders, preprint arXiv:math/0610069.
- [9] V. Futorny and S. Ovsienko, Fibers of characters in Harish-Chandra categories, preprint arXiv:math/0610071.
- [10] A. I. Molev, Gelfand–Tsetlin basis for representations of Yangians, *Lett. Math. Phys.* **30** (1994), 53–60.
- [11] A. Molev, Yangians and classical Lie algebras, Mathematical Surveys and Monographs, 143. American Mathematical Society, Providence, RI, 2007.
- [12] M. Nazarov and V. Tarasov, Yangians and Gelfand–Zetlin bases, Publ. Res. Inst. Math. Sci. Kyoto Univ. 30 (1994), 459–478.
- [13] M. Nazarov and V. Tarasov, Representations of Yangians with Gelfand–Zetlin bases, *J. Reine Angew. Math.* **496** (1998), 181–212.
- [14] E. Ragoucy and P. Sorba, Yangian realisations from finite W-algebras, Comm. Math. Phys. 203 (1999), 551–572.

Institute of Mathematics and Statistics, University of São Paulo, Caixa Postal 66281- CEP 05315-970, São Paulo, Brazil

E-mail address: futorny@ime.usp.br

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

E-mail address: alexm@maths.usyd.edu.au

FACULTY OF MECHANICS AND MATHEMATICS, KIEV TARAS SHEVCHENKO UNIVERSITY, VLADIMIRSKAYA 64, 00133, KIEV, UKRAINE

E-mail address: ovsienko@zeos.net