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Abstract. We present, for the first time, two hierarchies of nonlinear, inte-
grable q-difference equations, one of which includes a q-difference form of each
of the second and fifth Painlevé equations, qPII and qPV, the other includes
qPIII. All the equations have multiple free parameters. A method to calculate
a 2× 2 Lax pair for each equation in the hierarchy is also given.

1. Introduction

Nonlinear evolution equations occur frequently in physical modeling and ap-
plied mathematics. Nonlinear integrable lattice equations provide a natural dis-
crete extension of classically integrable systems. For example, the lattice modified
Korteweg-de Vries equation

LMKdV : xl+1,m+1 = xl,m

(
p xl+1,m − r xl,m+1

)
(
p xl,m+1 − r xl+1,m

)

provides an integrable discrete version of the well-known modified Korteweg-de
Vries equation. More recently, there has been great interest in nonlinear ordinary
difference equations because such q-discrete Painlevé equations are of fundamental
interest in the theory of integrable systems and random matrix theory amongst
other subjects. The integrability of such equations lies in the fact that they can be
solved through an associated linear problem called a Lax pair.

Reductions constitute a natural connection between lattice equations and or-
dinary difference equations. The LMKdV equation is de-autonomized by allow-
ing p and r to depend on l and m and there are known reductions from the
non-autonomous LMKdV equation to q-discrete forms of the second, third and
fifth Painlevé equations, denoted qPII, qPIII, and qPV respectively [1, 2]. Differ-
ent types of these reductions are possible, one of the simplest of which is to set
xl,m+1 = xn+d,m for some positive integer d. In fact the reductions that take
the LMKdV equations to qPII and qPV are of this type with d = 2 and d = 3
respectively. There apparently exist an infinite series of such reductions that re-
sult in equations of arbitrary order, which suggests the existence of a hierarchy of
equations. In a recent paper [2] we established a connection between these non-
autonomous reductions and reductions of a Lax pair for the LMKdV equation itself.
In this way, Lax pairs for non-autonomous versions of qPII, qPIII, and qPV with
multiple free parameters were discovered.

Here we find Lax pairs for higher order equations and we thereby lay the ground-
work for a hierarchy of equations. Two hierarchies are shown to exist, at the base
of one lies qPII and qPV, while qPIII lies at the base of the other.

While there is a relatively large body of literature focussing on continuous
Painlevé hierarchies [4, 5, 6] and some results concerning hierarchies of d-discrete
nonlinear equations [3, 4], the problem of q-discrete hierarchies has been more elu-
sive. Although a hierarchy of integrable nonlinear q-difference equations was found
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in [7], we believe that the results presented in this work are first example of such a
hierarchy found by expansions of Lax pairs.

The paper is organized as follows. In §2, we derive the formulas used to calculate
quantities that exactly describe an equation in one of the hierarchies. These are
given in terms of the same quantities describing the equation at a lower order
and so we thereby obtain a recursive method of finding the hierarchies. We go
further to purport a general formula that yields those quantities for any member
of either hierarchy, and thus any equation in the hierarchies with its Lax pair. In
§3, we clarify the application of the formulas found in §2 and use them to confirm
a known result. In §4, we derive new equations and Lax pairs. We end the paper
with a conclusion where we also point out some open problems.

2. How to Construct the hierarchy

In this section we will establish the existence of two hierarchies of nonlinear, inte-
grable, ordinary q-difference equations that are each obtainable from the LMKdV
equation via a reduction. In section 2.1, the procedure for constructing the hi-
erarchies will be derived in relation to the first hierarchy, which corresponds to
reductions of the type xl,m+1 = xl+d,m for some integer d. Subsequently, in sec-
tion 2.2 we shall outline an analogous process that leads to the second hierarchy
corresponding to reductions of the type xl,m+1 = 1/xl+d,m.

We establish the existence of the hierarchies by developing formulas that con-
struct a member of the hierarchy from the preceding, lower order member. However,
rather than iterating the equation or terms in the Lax pair directly, as has been
the procedure used for some other systems [3], we will derive formulas for iterating
a set of coefficients, introduced in equation (2.14), that describe the Lax pairs for
the equations in the hierarchy.

2.1. Hierarchy corresponding to reductions of the type xl,m+1 = xl+d,m.
Begin with the linear problem

v(l + 1, n) = L(l, n)v(l, n),
v(l, n + 1) = N(l, n)v(l, n). (2.1)

whose compatibility condition is L(l, n + 1) N(l, n) = N(l + 1, n)L(l, n). Hereafter
we adopt the notation v̄ = v(l + 1, n) and ṽ = v(l, n + 1). Now set

L =
(

x̄/x −k/(λx)
−kx̄/λ 1

)
, (2.2a)

N =
(

a0 + a2k
2 + ... + a2ρk

2ρ b1k + b3k
3 + ... + b2ρ±1k

2ρ±1

c1k + c3k
3 + ... + c2ρ±1k

2ρ±1 d0 + d2k
2 + ... + d2ρk

2ρ

)
(2.2b)

where k is associated with the spectral variable n such that k = k0q
n, and x, λ and

all of ai, bi, ci, di are functions of l alone. The diagonal entries of the N matrix in
the Lax pair contain only even powers of k, including a term constant in k, up to
k2ρ where ρ is a positive integer. The off-diagonals of N contain only odd powers
of k up to k2ρ±1 depending on which part of the hierarchy we are considering.
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Compatibility occurs when L̃N = NL. It is not difficult to show that the
compatibility condition can be written as follows

āi = ai +
1
λ

(xb̄i−1 − q
ci−1

x̄
), i even (2.3a)

xb̄i = x̄bi +
1
λ

(āi−1 − qdi−1), i odd (2.3b)

c̄i

x
=

ci

x̄
+

1
λ

(d̄i−1 − qai−1), i odd (2.3c)

d̄i = di +
1
λ

(
c̄i−1

x
− qx̄bi−1), i even (2.3d)

corresponding to entries (1, 1), (1, 2), (2, 1) and (2, 2) respectively. Some equiva-
lences may be found between equations (2.3) if, at this point, we introduce the
quantities

Ai =

{
ai, i even
x̄bi, i odd

(2.4)

Di =

{
di, i even
ci/x̄, i odd

(2.5)

so that equations (2.3) become
x
¯̄x
Ai−1 = λ(Ai −Ai) + qDi−1, i even (2.6a)

Ai−1 = λ(
x
¯̄x
Ai −Ai) + qDi−1, i odd (2.6b)

Di−1 = λ(
¯̄x
x

Di −Di) + qAi−1, i odd (2.6c)

¯̄x
x

Di−1 = λ(Di −Di) + qAi−1, i even (2.6d)

In equations (2.6) we may substitute

Xi =
( ¯̄x

x

) 1−(−1)i

2

=

{
¯̄x/x, i odd
1, i even

so that either equation (2.6a) or (2.6b), with i even or odd respectively, will become

Ai−1

Xi−1
= qDi−1 + λ(

Ai

Xi
−Ai), ∀i (2.7)

and similarly equations (2.6c) and (2.6d), with i odd or even respectively, become

Di−1Xi−1 = qAi−1 + λ(DiXi −Di), ∀i (2.8)

By repeated use of equations (2.7) and (2.8) respectively, we arrive at the following

Ai = Xi[qDi −
m∑

j=i+1

λj−i(Aj − qDj)] (2.9a)

Di =
1
Xi

[qAi −
m∑

j=i+1

λj−i(Dj − qAj)] (2.9b)

Where m is equal to the greatest degree of the polynomials in k located in the
entries of the N matrix (2.2b), i.e. m is either 2ρ or 2ρ+1. Now add q/Xi × (2.9a)
to Xi × (2.9b) so that

q

Xi
Āi + XiD̄i = q2Di + qAi +

m∑

j=i+1

(q2 − 1)λj−iDj (2.10)
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However, at i = 0, (2.6) shows that both A0 and D0 are constant, meaning that
(2.10) at i = 0 becomes

−D0 =
m∑

j=1

λjDj

which we can rearrange so that

−D1 = D0/λ +
m∑

j=2

λj−1Dj (2.11)

Similarly q(2.9a) + (2.9b) gives us an expression for A1

−A1 = A0/λ +
m∑

j=2

λj−1Aj (2.12)

These expressions for A1 and D1, (2.11) and (2.12), can be substituted back into
(2.7) and (2.8) to find expressions for A2 and D2 in terms of Ai, Di with i > 2. We
can continue this process to successively calculate all the terms in the Lax pair, Ai

and Di, thus resolving the Lax pair for a particular value of m. However, in the
interest of establishing the existence of a hierarchy of equations, we will proceed to
derive a formula for calculating successive iterates from previous ones. To do this
we first rewrite (2.9a) as

−Āi + qXiDi + Xi

m∑

j=i+1

λj−i(qDj −Aj) = 0 (2.13)

We aim to calculate each of the quantities in the Lax pair, Ai, Di, in terms of the
remaining quantities, Aj , Dj ∀j > i and A0,D0. In general any Ai of interest might
be found in terms of all Aj and Dj , ∀j > i. However, when the calculations are
performed, it is observed that terms Ai only depend terms Aj (not Dj) so it is
conjectured that we can write any Ai or Di as

−Ai = αi
0A0 +

m∑

j=i+1

αi
jAj (2.14a)

−Di = δi
0D0 +

m∑

j=i+1

δi
jDj (2.14b)

Where we have introduced a series of coefficients αi
j and δi

j that need to be found.
Substitute the expansion (2.14a) into (2.9a), noting that A0 = constant, to get

ᾱi
0A0 +

m∑

j=i+1

ᾱi
jĀj + qXiDi + Xi

m∑

j=i+1

λj−i(qDj −Aj) = 0

which, upon exploiting (2.9a) again to replace Aj , becomes

ᾱi
0A0 − qXiδ

i
0D0 +

m∑

j=i+1

ᾱi
jXj

m∑

k=j+1

λk−j(qDk −Ak)

+
m∑

j=i+1

{Djq[Xi(λj−i − δi
j) + ᾱi

jXj ]− λj−iAjXi} = 0
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Now we may rearrange the double sum to arrive at the following

ᾱi
0A0 − qXiδ

i
0D0 + Di+1q[Xi(λ− δi

i+1) + ᾱi
i+1Xi+1]− λAi+1Xi

+
m∑

j=i+2

{Djq[Xi(λj−i − δi
j) + ᾱi

jXj +
j−1∑

k=i+1

λj−kXkᾱi
k]

−Aj(λj−iXi +
j−1∑

k=i+1

λj−kXkᾱi
k)} = 0 (2.15)

A repeat of this process beginning with (2.9b) brings us to

δ̄i
0D0 − q

αi
0

Xi
A0 + Ai+1q[

1
Xi

(λ− αi
i+1) +

δ̄i
i+1

Xi+1
]− λDi+1

Xi

+
m∑

j=i+2

{Ajq[
1
Xi

(λj−i − αi
j) +

δ̄i
j

Xj
+

j−1∑

k=i+1

λj−k δ̄i
k

Xk
]

−Dj(
λj−i

Xi
+

j−1∑

k=i+1

λj−k δ̄i
k

Xk
)} = 0 (2.16)

To calculate the next sets of coefficients αi+1
j and δi+1

j , j = i + 2, ..., m, we must
combine equations (2.15) and (2.16) in the correct way. We claim that we can
eliminate the quantities Di by adding q(2.16)+δ̄i

0/(δi
0Xi) (2.15), which tallies to

A0(
ᾱi

0δ̄
i
0

Xiδi
0

− q2 αi
0

Xi
) + Ai+1{q2[

1
Xi

(λ− αi
i+1) +

δ̄i
i+1

Xi
]− λδ̄i

i+1

δi
0

}

+
m∑

j=i+2

Aj{q2[
1
Xi

(λj−i−αi
j)+

δ̄i
j

Xj
+

j−1∑

k=i+1

λj−k δ̄j
k

Xk
]−(

λj−iδ̄i
0

δi
0

+
j−1∑

k=i+1

λj−kXk δ̄i
0ᾱ

j
k

Xiδi
0

)} = 0

(2.17)

It is not obvious that every Di should be canceled out in the above sum but this
occurs in every calculation performed to date and we conjecture that it is always
the case. From here we can make −Ai+1 the subject and so find the sought after
coefficients

−Ai+1 = A0
ᾱi

0δ̄
i
0 − q2αi

0δ
i
0

q2[δi
0(λ− αi

0) + Xi

Xi+1
δi
0δ̄

i
i+1]− λXiδ̄i

0

+
m∑

j=i+2

Aj{
q2[δi

0(λ
j−i − αi

j) + δi
0δ̄i

j

Xj
+

∑j−1
k=i+1

λj−kδi
0δ̄j

kXi

Xk
]− (λj−iδ̄i

0Xi +
∑j−1

k=i+1 λj−k δ̄i
0ᾱ

j
k)

q2[δi
0(λ− αi

0) + Xi

Xi+1
δi
0δ̄

i
i+1]− λXiδ̄i

0

}

(2.18)

Comparing (2.18) with (2.14a) shows that

αi+1
0 =

ᾱi
0δ̄

i
0 − q2αi

0δ
i
0

q2δi
0[λ− αi

i+1 + Xi

Xi+1
δ̄i
i+1]− λXiδ̄i

0

(2.19a)

αi+1
j =

1
Gi(α,δ,X){q2δi

0[λ
j−i − αi

j + δ̄i
jXi

Xj
+

∑j−1
k=i+1

λj−k δ̄i
kXi

Xk
]

−δ̄i
0(λ

j−iXi +
∑j−1

k=i+1 λj−kᾱi
kXk)}

(2.19b)
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Where Gi in (2.19b) is the same as the denominator in (2.19a). In fact we shall
say

αi+1
0 =

Hi
0(α, δ,X)

Gi(α, δ,X)
(2.20a)

αi+1
j =

Hi
j(α, δ,X)

Gi(α, δ,X)
(2.20b)

The H and G quantities in (2.20) are defined by comparison with (2.19) where
we have introduced the bold face notation α to signify all α, ᾱ, etc, with any
superscripts and subscripts.

Naturally, we must also repeat the operations to find an expression for the other
coefficients δi

j , this begins with adding q(2.15)+ᾱi
0Xi/αi

0 (2.16), and leads to

δi+1
0 =

δ̄i
0ᾱ

i
0 − q2δi

0α
i
0

q2αi
0[λ− δi

i+1 + Xi+1
Xi

ᾱi
i+1]− λᾱi

0
Xi

(2.21a)

δi+1
j =

1
Gi(δ,α,1/X){q2αi

0[λ
j−i − δi

j + ᾱi
jXj

Xi
+

∑j−1
k=i+1

λj−kᾱi
kXk

Xi
]

−ᾱi
0(λ

j−i/Xi +
∑j−1

k=i+1
λj−k δ̄i

k

Xk
)}

(2.21b)

Notice that the quantities H and G from (2.20) arise again in equations (2.21) but
this time as

δi+1
0 =

Hi
0(δ, α, 1

X )
Gi(δ, α, 1

X )
(2.22a)

δi+1
j =

Hi
j(δ, α, 1

X )
Gi(δ,α, 1

X )
(2.22b)

Importantly, since α1
j = δ1

j , (2.20) and (2.22) indicate that αi
j(λ,x) = δi

j(λ, 1
x ) for

i > 1. Hence, we only need to calculate the coefficients αi
j in practice as δi

j follow
from these results.

Because these coefficients exactly describe a Lax pair and an associated nonlin-
ear equation, we have shown that this system does indeed constitute a hierarchy
by constructing a general operation that takes the members at any level of the
hierarchy to the next level. To find a particular Lax pair in the hierarchy, we trun-
cate the series at some point Am, Dm say, and use the coefficients to calculate each
of the terms Ai, Di that appear in the N matrix of the Lax pair, the L matrix
is always the same. The equation associated with any Lax pair can be found via
the compatibility condition. We may also continue to find higher order members
of the hierarchy by subsequently reinstating some of the terms Aι, Dι with ι > m
and calculating the coefficients needed to describe those terms, αi

j and δi
j , through

equations (2.19) and (2.21).

2.2. Hierarchy corresponding to reductions of the type xm+1,l = 1/xm,l+d.
The formulas for the coefficients that were found in the preceding section corre-
sponded to equations that can be obtained from the LMKdV equation via the
reduction x̂ = xl+d. However, in [2] it was shown that reductions of the type
x̂ = 1/xl+d can also be used and that these reductions lead to q-discrete Painlevé
equations as well. The hierarchy of equations that springs from this type of reduc-
tion has Lax pairs that are very similar to the ones used in section 2.1 and fit easily
into the present framework. The main difference between the two sets of Lax pairs
can be described in terms of the spectral parameter k. The Lax pairs in section 2.1



HIERARCHIES OF q-DIFFERENCE EQUATIONS 7

all have the following form:

N =
(

a0 + a2k
2 + ... + a2ρk

2ρ b1k + b3k
3 + ... + b2ρ±1k

2ρ±1

c1k + c3k
3 + ... + c2ρ±1k

2ρ±1 d0 + d2k
2 + ... + d2ρk

2ρ

)

Observe that the terms that contain the lowest power of k, that is terms that are
constant in k, appear in the diagonal entries of N . Also note that the other half of
the Lax pair, the L matrix from equation (2.2a) remains the same for both types
of reduction.

Moving now to the hierarchy associated with reductions of the type x̂ = 1/xl+d,
we find that the associated Lax pairs have a form similar to the former case, except
here the lowest powers of k appear in the off diagonal entries. This can be achieved
simply by removing the constant terms from the diagonal entries.

N =
(

a2k
2 + ... + a2ρk

2ρ b1k + b3k
3 + ... + b2ρ±1k

2ρ±1

c1k + c3k
3 + ... + c2ρ±1k

2ρ±1 d2k
2 + ... + d2ρk

2ρ

)

We can find the hierarchy that arises from this case in a congruent manner to
the last with only minor alterations. The differences here arise because A1 is now
the first term in the series but it is not a constant, as was A0 in the previous case.
Instead A1 = β1xx̄, β1 = constant, which introduces additional factors of X1 = ¯̄x/x
into the equations after (2.14a). Following the same procedure as in section 2.1, it
is not difficult to show that in this case the formulas analogous to (2.19) are

αi+1
1 =

ᾱi
1δ̄

i
1X

2
i − q2αi

1δ
i
1

q2δi
1[λ− αi

i+1 + Xi

Xi+1
δ̄i
i+1]− λX1Xiδ̄i

1

(2.23a)

αi+1
j =

1
Gi
{q2δi

1[λ
j−i − αi

j + δ̄i
jXi

Xj
+

∑j−1
k=i+1

λj−k δ̄i
kXi

Xk
]

−δ̄i
1(λ

j−iX1Xi +
∑j−1

k=i+1 λj−kᾱi
kX1Xk)}

(2.23b)

Where Gi in (2.23b) is the same as the denominator in (2.23a). We will present
the first few equations in this hierarchy in section 4.2

2.3. General Coefficients. It is conjectured that all the coefficients for the hier-
archy of equations that arise from reductions of the type xm+1,l = xm,l+d are given
by the following equations

αk
j =

j−k∑

i1=0

j−k−I1∑

i2=0

...

j−k−Ik−2∑

ik−1=0




∏k−2
h=1,h odd

h

XIh−Ik−1

∏k−2
g=0,g even

g

XIg−Ik−1




(−1)k

k−1∏

f=0

f

λif (2.24a)

αk
0 =

(
k−1∏

h=0

h

λ

)−1 (
k−2∏
g=0

g

Xk+g+1

)−1

(2.24b)

Where Ik =
∑k

ς=1 iς , i0 = j − k − Ik−1,

Xi =
( ¯̄x

x

) 1−(−1)i

2

=

{
¯̄x/x, i odd
1, i even

and we use the notation
f

λ = λl+f .
These formulas can be used to find any coefficient of interest, which vastly de-

creases the number of calculations required to find an equation of any order in the
hierarchy.
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We obtain similar results for the coefficients for the hierarchy corresponding to
reductions of the type xm+1,l = 1/xm,l+d.

αk+1
j+1 =

j−k∑

i1=0

j−k−I1∑

i2=0

...

j−k−Ik−2∑

ik−1=0




∏k−2
g=0,g even

g

XIg−Ik−1

∏k−2
h=1,h odd

h

XIh−Ik−1




(−1)k

k−1∏

f=0

f

λif (2.25a)

αk+1
1 =

(
k−1∏

h=0

h

λ

)−1 k−2∏
g=0

g

Xk+g+1 (2.25b)

These coefficients αk+1
j+1 are equal to δk

j from the first hierarchy.

3. A Known Example

In this section we will implement the formulas (2.24) to explicitly find a known
example. The procedure runs as follows:

- First, we decide how many terms we will keep in the Lax pair, i.e. we decide
which Ai, and Di will be nonzero, up to i = m say.

- Second, use equation (2.24) to calculate all the coefficients αi
j up to αm−1

m .
It is necessary to calculate every αi

j with j ≤ m and i ≤ m− 1 in order to
specify the Lax pair.

- Third, calculate the terms Ai and Di from equations (2.14a) and (2.14b),
noting that any δi

j is equal to αi
j with Xi, Xi, Xi, . . . replaced with 1/Xi,

1/Xi, 1/Xi, . . . . We may then find the corresponding nonlinear equation
using the compatibility conditions (2.7) and (2.8).

For our example we shall retain only those terms Ai, Di with 0 ≤ i ≤ 3, which
causes there to be two terms in each entry of the N matrix of the Lax pair (see
(2.2b)). A Lax pair of this form was already presented in [2] where it was shown
to correspond to qPII , we expect the same to occur here.

The next step is to calculate the coefficients αi
j , δi

j up to i = 2 and j = 3. We
begin with the coefficients α1

j and δ1
j , for which inspection of equations (2.11) and

(2.12) indicates

α1
j = δ1

j = λj−1 (3.1)

Directly from (2.24) we find

α2
0 = −1/(λλ̄X1) (3.2a)

α2
3 = λ + λ̄/X1 (3.2b)

We have now calculated all the coefficients needed for the present example but we
will list the next four as well, for future reference.

α2
4 = λ2 + λλ̄/X1 + λ̄2 (3.3a)

α2
5 = λ3 + λ2λ̄/X1 + λλ̄2 + λ̄3/X1 (3.3b)

α2
6 = λ4 + λ3λ̄/X1 + λ2λ̄2 + λλ̄3/X1 + λ̄4 (3.3c)

α2
7 = λ5 + λ4λ̄/X1 + λ3λ̄2 + λ2λ̄3/X1 + λ4λ̄ + λ̄5/X1 (3.3d)

At this point we use the coefficients to calculate the values of the nonzero terms
in the N matrix. Since A0 and A3 are at the ends of the sequence, we can calculate
their values directly from (2.7), using the appropriate values of i in that equation.
Trivially, these are found to be A0 = a0 = constant and A3 = x̄b3 = T2σx̄/x where
T2 is an arbitrary period two function of l and σ = ql. The lower case a0 and b3
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are the original variables in the N matrix, see (2.2b). Using (2.14a)

−A2 = α2
0A0 + α2

3A3

= − a0x

λλ̄¯̄x
+ (λ +

λ̄x
¯̄x

)
T2σx̄

x
(3.4)

We then use the coefficients from the previous step to calculate A1

−A1 = α1
0A0 + α1

2A2 + α1
3A3

= a0(
1
λ

+
x

λ̄¯̄x
)− λλ̄T2σx̄

¯̄x
(3.5)

Finally, we can obtain the related equation by substituting these values into (2.7)
at i = 3 whence we recover qPII as expected. The form of the equation is

ȳy =
1− T2ry

y(γy − T 2r)
(3.6)

where log r = γ0 + γ1(−1)l − ql/2, γ, γi = constant, and y = ¯̄x/x̄. Actually this
version of qPII contains more parameters than those found in [1, 2] as γ and T2,
which are described after the Lax pair below, were not present in those papers. The
corresponding Lax pair is

L =
(

x̄/x −k/(λx)
−kx̄/λ 1

)
,

N =

(
a0 + k2 a0x

λλ̄¯̄x
− (λ + λ̄x

¯̄x )T2σx̄
x k2 k(−a0

x̄ ( 1
λ + x

λ̄¯̄x
) + λλ̄T2σ

¯̄x ) + k3 T2σ
x

k(−d0x̄( 1
λ + ¯̄x

λ̄x
) + λλ̄T 2σ ¯̄x) + T 2σxk3 d0 + k2 d0 ¯̄x

λλ̄x
− k2(λ + λ̄¯̄x

x )T 2σx
x̄

)

The terms in the N matrix are related to those in (3.6) by γ = d0/a0, T2 is an
arbitrary, period-two function of l and r = λλ̄¯̄λσ/a0 where σ = ql. The spectral
parameter is n and it enters the Lax pair via k = qn.

4. Higher Order Equations

Now that the formulas for finding all the equations in the hierarchy have been
derived and their use explained, we will write down some higher order equations
and their associated Lax pairs. Section 4.1 will deal with equations obtained from
the LMKdV equations via reductions of the type xm+1,l = xm,l+d and 4.2 will deal
with the type xm+1,l = 1/xm,l+d.

4.1. Equations Corresponding to Reductions of the Type xm+1,l = xm,l+d.
This subsection pertains to higher order equations that can be obtained from the
LMKDV equation by using a reduction of the type x̂ = xl+d where d is some
positive integer. The coefficients, α3

j , that will be required for all of the equations
presented in this section are calculated using (2.24) and are listed below.

α3
0 = 1/(λλ̄¯̄λX1)

α3
4 = λ + λ̄X1 +

¯̄λX1

X1

α3
5 = λ2 + λλ̄X1 +

λ̄¯̄λ
X1

+
λ¯̄λX1

X1

+ λ̄2 + ¯̄λ2

α3
6 = λ3 + λ2λ̄X1 +

λ2 ¯̄λX1

X1

+ λλ̄2 +
λλ̄¯̄λ
X1

λ¯̄λ2 + λ̄3X1 +
λ̄2 ¯̄λX1

X1

+ λ̄¯̄λ2X1 +
¯̄λ3X1

X1
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The Lax pair and associated equation that is achieved by truncating the series Ai

at A4 was derived in [2]. The equation is qPV, which can be obtained from the
LMKdV equation via the reduction x̂ = ¯̄̄x [1, 2].

qPV : ww̄ =
1 + T2rw

T 2r + γw
(4.2)

Where w = ¯̄̄x/x̄, γ = constant, T2 is an arbitrary period-two function and log r =
γ0 +γ1j

l
3 +γ2j

2l
3 − ql/3, with γι = constant. Noting that X1 = ¯̄x/x, we can use the

coefficients αi
j to find the Lax pair for this qPV equation through (2.14a). The Lax

pair lies below and the relationships between the terms in the Lax pair and those
in the equation (4.2) follow.

L =
(

x̄/x −k/(λx)
−kx̄/λ 1

)
(4.3)

N11 = a0 + k2a0(
x

λλ̄¯̄x
+

x̄

λ̄¯̄λ ¯̄̄x
+

xx̄

λ¯̄λ¯̄x ¯̄̄x
)

+T 2σ(
λλ̄¯̄x
x

+
λ¯̄λx̄¯̄x
x ¯̄̄x

+
λ̄¯̄λx̄
¯̄̄x

) + k4T 2σ

N12 = −ka0(
1
λx̄

+
x

λ̄x̄¯̄x
+

x
¯̄λ¯̄x ¯̄̄x

)− kT 2σ
λλ̄¯̄λ
¯̄̄x

− k3a0

λλ̄¯̄λ ¯̄̄x
+ T 2σ(

λ

x̄
+

λ̄¯̄x
xx̄

+
¯̄λ¯̄x
x ¯̄̄x

)

N21 = −kd0(
x̄

λ
+

x̄¯̄x
λ̄x

+
¯̄x ¯̄̄x
¯̄λx

)− kT2σλλ̄¯̄λ ¯̄̄x− k3d0
¯̄̄x

λλ̄¯̄λ
+ T2σ(λx̄ +

λ̄xx̄
¯̄x

+
¯̄λx ¯̄̄x
¯̄x

)

N22 = d0 + k2d0(
¯̄x

λλ̄x
+

¯̄̄x

λ̄¯̄λx̄
+

¯̄x ¯̄̄x

λ¯̄λxx̄
)

+T2σ(
λλ̄x
¯̄x

+
λ¯̄λx ¯̄̄x
x̄¯̄x

+
λ̄¯̄λ ¯̄̄x
x̄

) + k4T2σ

Where λ = λ(l), k = k0q
n, n being the spectral parameter, and σ = ql. The

compatibility condition for this Lax pair produces a series of equations that are
either identities or one of two slightly different copies of qPV. These two copies of
qPV are equal if q

¯̄̄
λ = λ, there are no other restrictions on the parameters. To get

from the form of qPV that comes directly from the Lax pair to the form as listed in
(4.2), we set r = λλ̄¯̄λ¯̄̄

λσ/a0, γ = d0/a0 and T2 remains as is. This type of condition
on λ is common to every equation that has been calculated by the author. Indeed
it is expected that, when considering a Lax pair with N matrix truncated at Aj , λ

must satisfy qλ(l + j − 1) = λ(l) and r = σ
a0

∏j
h=0 λ(l + h).

We also point out that if one were only interested in this Lax pair and equa-
tion, the coefficients α3

j with j > 4 would be superfluous, they are written above
because they are required to find subsequent Lax pairs and equations listed below.
Continuing to the next level in the hierarchy, we obtain the coefficients:

α4
0 = −1/(λλ̄¯̄λ¯̄̄

λX1X1)

α4
5 = λ +

λ̄

X1
+

¯̄λX1

X1
+

¯̄̄
λX1

X1X1

α4
6 = λ2 +

λλ̄

X1
+

λ¯̄λX1

X1
+

λ
¯̄̄
λX1

X1X1

+ λ̄2 + λ̄¯̄λX1 +
λ̄
¯̄̄
λX1

X1

+ ¯̄λ2 +
¯̄λ¯̄̄
λ

X1

+ ¯̄̄
λ2

Ceasing at A5 yields a new Lax pair for a fourth order equation also written in
[2]. The associated equation, given below, is a reduction of the LMKDV equation

under x̂ =
4
x. The notation

4
x = xl+4 is used instead of ¯̄̄̄x because too many bars
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become difficult to read.

¯̄yȳyyy =
1− T2rȳyy

γȳyy − T 2r

where y = ¯̄̄x/¯̄x, log r = γ0 + γ1i
l + γ2(−1)l + γ3(−i)l − ql/4 and γι = constant.

The relationship between r and quantities in the Lax pair for this equation is

r = λλ̄¯̄λ¯̄̄
λ

4

λσ/a0 and q
4

λ = λ to ensure compatibility. The L matrix in the Lax pair,
as always, is as in (4.3) and components of the N matrix in the Lax pair are

N11 = a0 + k2a0(
x

λλ̄¯̄x
+

xx̄

λ¯̄λ¯̄x ¯̄̄x
+

x¯̄x

λ
¯̄̄
λ ¯̄̄x

4
x

+
x̄

λ̄¯̄λ ¯̄̄x
+

x̄¯̄x

λ̄
¯̄̄
λ ¯̄̄x

4
x

+
¯̄x

¯̄λ¯̄̄
λ

4
x

)

−k2T 2σ(λλ̄¯̄λ
¯̄̄x
x

+ λλ̄
¯̄̄
λ

¯̄x ¯̄̄x

x
4
x

+ λ¯̄λ¯̄̄
λ

x̄¯̄x

x
4
x

+ λ̄¯̄λ¯̄̄
λ

x̄
4
x

)

k4a0x

λλ̄¯̄λ¯̄̄
λ

4
x
− k4T 2σ(

λx̄

x
+

λ̄x̄
¯̄x

+
¯̄λ ¯̄̄x
¯̄x

+
¯̄̄
λ ¯̄̄x
4
x

)

N12 = −ka0(
1
λx̄

+
x

λ̄x̄¯̄x
+

x
¯̄λ¯̄x ¯̄̄x

+
x

¯̄̄
λ ¯̄̄x

4
x

) + kT 2σλλ̄¯̄λ¯̄̄
λ

1
4
x

−k3a0(
1

λλ̄¯̄λ ¯̄̄x
+

¯̄x

λλ̄
¯̄̄
λ ¯̄̄x

4
x

+
¯̄x

λ¯̄λ¯̄̄
λx̄

4
x

+
x

λ̄¯̄λ¯̄̄
λx̄

4
x

)

+k3T 2σ(
λλ̄
¯̄x

+
λ¯̄λ ¯̄̄x
x̄¯̄x

+
λ
¯̄̄
λ ¯̄̄x

x̄
4
x

+
λ̄¯̄λ ¯̄̄x
xx̄

+
λ̄
¯̄̄
λ¯̄x ¯̄̄x

xx̄
4
x

+
¯̄λ¯̄̄
λ¯̄x

x
4
x

) +
k5T 2σ

x

N21 = −kd0(
x̄

λ
+

x̄¯̄x
λ̄x

+
¯̄x ¯̄̄x
¯̄λx

+
¯̄̄x

4
x

¯̄̄
λx

) + kT2σλλ̄¯̄λ¯̄̄
λ

4
x

−k3d0(
¯̄̄x

λλ̄¯̄λ
+

¯̄̄x
4
x

λλ̄
¯̄̄
λ¯̄x

+
x̄

4
x

λ¯̄λ¯̄̄
λ¯̄x

+
x̄

4
x

λ̄¯̄λ¯̄̄
λx

)

+k3T2σ(λλ̄¯̄x +
λ¯̄λx̄¯̄x

¯̄̄x
+

λ
¯̄̄
λx̄

4
x

¯̄̄x
+

λ̄¯̄λxx̄
¯̄̄x

+
λ̄
¯̄̄
λxx̄

4
x

¯̄x ¯̄̄x
+

¯̄λ¯̄̄
λx

4
x

¯̄x
) + k5T2σx

N22 = d0 + k2d0(
¯̄x

λλ̄x
+

¯̄x ¯̄̄x

λ¯̄λxx̄
+

¯̄̄x
4
x

λ
¯̄̄
λx¯̄x

+
¯̄̄x

λ̄¯̄λx̄
+

¯̄̄x
4
x

λ̄
¯̄̄
λx̄¯̄x

+
4
x

¯̄λ¯̄̄
λ¯̄x

)

−k2T2σ(λλ̄¯̄λ
x
¯̄̄x

+ λλ̄
¯̄̄
λ

x
4
x

¯̄x ¯̄̄x
+ λ¯̄λ¯̄̄

λ
x

4
x

x̄¯̄x
+ λ̄¯̄λ¯̄̄

λ

4
x

x̄
)

k4d0
4
x

λλ̄¯̄λ¯̄̄
λx

− k4T2σ(
λx

x̄
+

λ̄¯̄x
x̄

+
¯̄λ¯̄x
¯̄̄x

+
¯̄̄
λ

4
x
¯̄̄x

)

We will list one more higher order equation. The next set of coefficients that we
require are

α5
0 = 1/(λλ̄¯̄λ¯̄̄

λ
4

λX1X1)

α5
6 = λ + λ̄X1 +

¯̄λX1

X1

+
¯̄̄
λX1X1

X1

+

4

λX1X1

X1X1

(4.5a)
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Where X1 = ¯̄x/x as usual. These coefficients lead to a Lax pair with the L matrix
as before (see (4.3)) and the N matrix below.

N11 = a0 + k2a0(
xx̄

λ
4

λ
4
x

5
x

+
x

λλ̄¯̄x
+

¯̄x
¯̄λ¯̄̄
λ

4
x

+
x̄¯̄x

λ̄
4

λ
4
x

5
x

+
x̄

λ̄¯̄λ ¯̄̄x
+

xx̄

λ
¯̄̄
λ ¯̄̄x

4
x

+
¯̄̄x

¯̄̄
λ

4

λ
5
x

+
xx̄

λ¯̄λ¯̄x ¯̄̄x
+

x̄¯̄x

λ̄
¯̄̄
λ ¯̄̄x

4
x

+
¯̄̄x

¯̄̄
λ

4

λ
5
x

) + k2T 2σ(λλ̄¯̄λ¯̄̄
λ

4
x

x
+ λ̄¯̄λ¯̄̄

λ
4

λ
x̄
5
x

+ λ¯̄λ¯̄̄
λ

4

λ
x̄¯̄x

x
5
x

+λλ̄¯̄λ
4

λ
¯̄̄x

4
x

x
5
x

+ λλ̄
¯̄̄
λ

4

λ
¯̄x ¯̄̄x

x
5
x

) + k4a0(
x

λλ̄¯̄λ¯̄̄
λ

4
x

+
x̄

λ̄¯̄λ¯̄̄
λ

4

λ
5
x

+
xx̄

λ¯̄λ¯̄̄
λ

4

λ¯̄x
5
x

+
x ¯̄̄x

λλ̄¯̄λ
4

λ
4
x

5
x

+
x ¯̄̄x

λλ̄
¯̄̄
λ

4

λ¯̄x
5
x

) + k4T 2σ(
λ

4

λx̄
4
x

x
5
x

+
¯̄λ¯̄̄
λ

4
x

¯̄x
+

λ̄
4

λx̄
4
x

¯̄x
5
x

+
λλ̄¯̄x
x

+
λ¯̄λx̄
¯̄̄x

+
λ
¯̄̄
λx̄

4
x

x
4
x

+
λ̄
¯̄̄
λx̄

4
x

¯̄x ¯̄̄x
+

λ¯̄λx̄¯̄x
x ¯̄̄x

+
¯̄̄
λ

4

λ ¯̄̄x
5
x

+
¯̄λ

4

λ ¯̄̄x
4
x

¯̄x
5
x

) + k6T 2σ

N12 = −ka0(
1
λx̄

+
x

λ̄x̄¯̄x
+

x
¯̄λ¯̄x ¯̄̄x

+
x

¯̄̄
λ ¯̄̄x

4
x

+
x

4

λ
4
x

5
x

)− kT 2σλλ̄¯̄λ¯̄̄
λ

4

λ
x̄
5
x

−k3a0(
x

λ̄¯̄λ¯̄̄
λx̄

4
x

+
x

¯̄λ¯̄̄
λ

4

λ¯̄x
5
x

+
¯̄x

λ¯̄λ¯̄̄
λx̄

4
x

+
¯̄x

λλ̄
4

λ
4
x

5
x

+
1

λλ̄¯̄λ ¯̄̄x
+

¯̄x

λλ̄
¯̄̄
λ ¯̄̄x

4
x

+
¯̄̄x

λ
¯̄̄
λ

4

λx̄
5
x

x ¯̄̄x

λ̄¯̄λ
4

λx̄
4
x

5
x

+
¯̄x ¯̄̄x

λ¯̄λ
4

λx̄
4
x

5
x

+
x ¯̄̄x

λ̄
¯̄̄
λ

4

λx̄¯̄x
5
x

)− k3T 2σ(
λ̄¯̄λ¯̄̄

λ
4
x

xx̄
+

λ¯̄λ¯̄̄
λ

4
x

x̄¯̄x

+
λλ̄

4

λ
4
x

¯̄x
5
x

+
¯̄λ¯̄̄
λ

4

λ¯̄x

x
5
x

+
λλ̄¯̄λ
¯̄̄x

+
λλ̄

¯̄̄
λ

4
x

¯̄x ¯̄̄x
+

λ
¯̄̄
λ

4

λ ¯̄̄x

x̄
5
x

+
λ¯̄λ

4

λ ¯̄̄x
4
x

xx̄
5
x

+
λ¯̄λ

4

λ ¯̄̄x
4
x

x̄¯̄x
5
x

+
λ̄
¯̄̄
λ

4

λ¯̄x ¯̄̄x

xx̄
5
x

)

− k5a0

λλ̄¯̄λ¯̄̄
λ

4

λ
5
x

− k5T 2σ(
λ

x̄
+

λ̄¯̄x
xx̄

+
¯̄λ¯̄x
x ¯̄̄x

+
¯̄̄
λ

4
x

x ¯̄̄x
+

4

λ
4
x

x
5
x

)

N21 = −kd0(
x̄

λ
+

x̄¯̄x
λ̄x

+
¯̄x ¯̄̄x
¯̄λx

+
¯̄̄x

4
x

¯̄̄
λx

+
4
x

5
x

4

λx

)− kT 2σλλ̄¯̄λ¯̄̄
λ

4

λ

5
x

x̄

−k3d0(
x̄

4
x

λ̄¯̄λ¯̄̄
λx

+
¯̄x

5
x

¯̄λ¯̄̄
λ

4

λx

+
x̄

4
x

λ¯̄λ¯̄̄
λ¯̄x

+
4
x

5
x

λλ̄
4

λ¯̄x
+

¯̄̄x

λλ̄¯̄λ
+

¯̄̄x
4
x

λλ̄
¯̄̄
λ¯̄x

+
x̄

5
x

λ
¯̄̄
λ

4

λ ¯̄̄x
+

x̄
4
x

5
x

λ̄¯̄λ
4

λx ¯̄̄x
+

x̄
4
x

5
x

λ¯̄λ
4

λ¯̄x ¯̄̄x
+

x̄¯̄x
5
x

λ̄
¯̄̄
λ

4

λx ¯̄̄x
)− k3T2σ(

λ̄¯̄λ¯̄̄
λxx̄
4
x

+
λ¯̄λ¯̄̄

λx̄¯̄x
4
x

+
λλ̄

4

λ¯̄x
5
x

4
x

+
¯̄λ¯̄̄
λ

4

λx
5
x

¯̄x
+ λλ̄¯̄λ ¯̄̄x +

λλ̄
¯̄̄
λ¯̄x ¯̄̄x
4
x

+
λ
¯̄̄
λ

4

λx̄
5
x

¯̄̄x
+

λ¯̄λ
4

λxx̄
5
x

¯̄̄x
4
x

+
λ¯̄λ

4

λx̄¯̄x
5
x

¯̄̄x
4
x

+
λ̄
¯̄̄
λ

4

λxx̄
5
x

¯̄x ¯̄̄x
)− k5d0

5
x

λλ̄¯̄λ¯̄̄
λ

4

λ

− k5T2σ(λx̄ +
λ̄xx̄
¯̄x

+
¯̄λx ¯̄̄x
¯̄x

+
¯̄̄
λx ¯̄̄x

4
x

+

4

λx
5
x

4
x

)
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N22 = d0 + k2d0(
4
x

5
x

λ
4

λxx̄

+
¯̄x

λ¯̄λx
+

4
x

¯̄λ¯̄̄
λ¯̄x

+
4
x

5
x

λ̄
4

λx̄¯̄x
+

¯̄̄x

λ̄¯̄λx̄
+

¯̄̄x
4
x

λ
¯̄̄
λxx̄

+
5
x

¯̄̄
λ

4

λ ¯̄̄x

+
¯̄x ¯̄̄x

λ¯̄λxx̄
+

¯̄̄x
4
x

λ̄
¯̄̄
λx̄¯̄x

+
5
x

¯̄̄
λ

4

λ ¯̄̄x
) + k2T2σ(λλ̄¯̄λ¯̄̄

λ
x
4
x

+ λ̄¯̄λ¯̄̄
λ

4

λ

5
x

x̄
+ λ¯̄λ¯̄̄

λ
4

λ
x

5
x

x̄¯̄x

+λλ̄¯̄λ
4

λ
x

5
x

¯̄̄x
4
x

+ λλ̄
¯̄̄
λ

4

λ
x

5
x

¯̄x ¯̄̄x
) + k4d0(

4
x

λλ̄¯̄λ¯̄̄
λx

+
5
x

λ̄¯̄λ¯̄̄
λ

4

λx̄

+
¯̄x

5
x

λ¯̄λ¯̄̄
λ

4

λxx̄

+
4
x

5
x

λλ̄¯̄λ
4

λx ¯̄̄x

+
¯̄x

5
x

λλ̄
¯̄̄
λ

4

λx ¯̄̄x
) + k4T2σ(

λ
4

λx
5
x

x̄
4
x

+
¯̄λ¯̄̄
λ¯̄x
4
x

+
λ̄

4

λ¯̄x
5
x

x̄
4
x

+
λλ̄x
¯̄x

+
λ¯̄λ ¯̄̄x
x̄

+
λ
¯̄̄
λx ¯̄̄x

x̄
4
x

+
λ̄
¯̄̄
λ¯̄x ¯̄̄x

x̄
4
x

+
λ¯̄λx ¯̄̄x
x̄¯̄x

+
¯̄̄
λ

4

λ
5
x

¯̄̄x
+

¯̄λ
4

λ¯̄x
5
x

¯̄̄x
4
x

) + k6T2σ

Incredibly this cumbersome Lax pair has as its compatibility condition the follow-
ing, rather simple, fourth order equation

ww =
1
w

1 + T2rww

γww + T 2r
(4.6)

where w =
4
x/¯̄x and log r = −ql/5 + γ0 + γ1j

l
5 + γ2j

2l
5 + γ3j

l3
5 + γ4j

4l
5 , with γi =

constant, j5 = 11/5, and T2 is an arbitrary, period-two function of l.

4.2. Equations corresponding to reductions of the type xm+1,l = 1/xm,l+d.
Here we will write down some equations, with their Lax pairs, from the hierarchy
that arises from the LMKdV equation via reductions of the type xm+1,l = 1/xm,l+d,
d = constant. The procedure used to obtain these results is just the same as
that explained in section 3. However, as outlined in section 2.2, now A1 = β1xx̄,
β1 = constant, is an end point of the series of terms in the Lax pairs, and the odd
and even powers of k have been redistributed. We will not list the coefficients used
in finding the results presented here because they are easily obtained from those
used in section 4.1. To find alkj as required with the present hierarchy, use αk−1

j−1

from section 4.1 and replace
h

Xi → 1/
h

Xi.
The first non-trivial equation in this part of the hierarchy is qPIII:

x¯̄x =
1 + T 2rx̄

2

γx̄2 + T2r
(4.7)

which was found with the following Lax pair in [2], except here the equation has two
extra free parameters coming from the T2 term which is an arbitrary, period-two
function of l, and γ = constant. The Lax pair has L as in (4.3) and

N =
(

k2(β1xx̄
λ + λT 2σ

x̄
x ) kβ1x + k3λT 2

σ
x

k β2
x + T2σx k2( β2

λxx̄ + λT2σ
x
x̄ )

)
(4.8)

and λ = qλ̄ for compatibility so r = λλ̄σ/β2 = γ0q
−l with γ0 = constant.

The next equation in the hierarchy is an alternative qPII. After setting y = ¯̄xx̄

ȳy = y
1− T 2ry

γy − T2r
(4.9)
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The N matrix of the Lax pair for this equation is

N11 = k2[β1x̄(
x

λ
+

¯̄x
λ̄

)− λλ̄T 2σ
¯̄x
x

] + k4T 2σ

N12 = kβ1x + k3[β1
x̄¯̄x
λλ̄

− (λ + λ̄
¯̄x
x

)T 2σ]

N21 = kβ2x + k3[
β2

λλ̄x̄¯̄x
− (λ + λ̄

x
¯̄x
)T 2σ]

N22 = k2[
β1

x̄
(

1
λx

+
1
λ̄¯̄x

)− λλ̄T 2σ
x
¯̄x
] + k4T 2σ

where β1, β2 = constant and to ensure compatibility λ = q ¯̄λ. We set r = λλ̄¯̄λσ/β2

causing log r = γ0 + γ1(−1)l − ql/2, since σ = ql.
The final Lax pair that will be presented from this part of the hierarchy is for

the fourth order equation

x
4
x =

1 + T 2rx̄¯̄x
γx̄¯̄x + T2r

(4.10)

Where γ = β1/β2 = constant and r = λλ̄¯̄λ¯̄̄
λσ/β2. The Lax pair for this equation

has the same L matrix again (4.3) and the components of the N matrix are

N11 = −k2[β1(
xx̄

λ
+

x̄¯̄x
λ̄

+
¯̄x ¯̄̄x
¯̄λ

) + λλ̄¯̄λT 2σ
¯̄̄x
x

]− k4[β1
x ¯̄̄x

λλ̄¯̄λ
+ (λ

x̄

x
+ λ̄

x̄
¯̄x

+ ¯̄λ
¯̄̄x
¯̄x
)T 2σ]

N12 = kβ1x + k3[β1(
¯̄x

λλ̄
+

x ¯̄̄x

λ̄¯̄λx̄
+

¯̄x ¯̄̄x

λ¯̄λx̄
) + (

λλ̄
¯̄x

+
λ¯̄λ ¯̄̄x
x̄¯̄x

+
λ̄¯̄λ ¯̄̄x
xx̄

)T 2σ] + k5T 2
σ

x

N21 = k
β2

x
+ k3[β2(

1
λλ̄¯̄x

+
x̄

λ̄¯̄λx ¯̄̄x
+

x̄

λ¯̄λ¯̄x ¯̄̄x
) + (λλ̄¯̄x +

λ¯̄λx̄¯̄x
¯̄̄x

+
λ̄¯̄λxx̄

¯̄̄x
)T2σ] + k5T2σx

N22 = −k2[β2(
1

λxx̄
+

1
λ̄x̄¯̄x

+
1

¯̄λ¯̄x ¯̄̄x
) + λλ̄¯̄λT2σ

x
¯̄̄x
]− k4[

β2

λλ̄¯̄λx ¯̄̄x
+ (

λx

x̄
+

λ̄¯̄x
x̄

+
¯̄λ¯̄x
¯̄̄x

)T2σ]

With this member of the hierarchy we require λ = q
¯̄̄
λ for compatibility, which

causes log r = γ0 + γ1j
l
3 + γ2j

2l
3 − ql/3, γι = constant.

5. Conclusion

In this paper we have presented two new hierarchies of nonlinear q-difference
equations, one of which includes qPII and qPV, the other of which includes qPIII in
addition to higher order equations. The relationship between the equations in each
hierarchy was found using a series of Lax pairs and, as such, a Lax pair accompanies
each equation in the hierarchy. All of the resulting equations are non-autonomous
and contain multiple free parameters while each Lax pair is 2× 2.

Even though these Lax pairs increase in complexity at each level of the hierarchy,
the equations retain the same simple structure while increasing in order and the
number of free parameters. The persistence of a simple structure in the equations
may facilitate the discovery of special solutions applicable to all members of the
hierarchy.

We must point out that some key features of the method used to establish the
hierarchy have not been proven in generality. We simply conjecture their validity
based on agreement with results.

We note that these hierarchies have their roots in reductions from the lattice
modified KdV equation, it remains to be seen whether similar results lie behind
other partial difference equations. It would eventually be interesting to find re-
ductions from lattice equations to the q-Garnier hierarchy constructed by Sakai in
[24].
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At this point there is still a significant deficiency in knowledge about the generic
solutions of q-Painlevé equations. The author is unaware of any instances where
Birkhoff’s theory of linear q-difference equations has been applied to deduce in-
formation about the solutions of q-Painlevé equations. The question of the global
properties of solutions remains completely open.
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