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Abstract

We obtain 3 × 3 matrix Lax pairs for systems of ODEs that are solvable in terms of
the fourth, fifth and sixth Painlevé equations by considering similarity reductions of the
scattering Lax pair for the (2+1)-dimensional three-wave resonant interaction system.
These results allow us to construct new 3× 3 Lax representations for the fourth and fifth
Painlevé equations, together with the previously known 3× 3 Lax representation for the
sixth Painlevé equation. By comparing these Lax pairs we obtain explicit formulas for
the self-similar solutions of the three-wave system in terms of the associated Painlevé
equations. Finally, we give a practical application of the 3×3 system associated with the
fifth Painlevé equation by using it to derive an Okamoto-type Bäcklund transformation
for P5.

1 Introduction

The Painlevé equations are classical nonlinear second-order ordinary differential equa-
tions. They have been the subject of intensive investigation in the last three decades,
primarily due to the fact that they appear in connection with a wide range of physical
problems, including soliton systems, quantum gravity, string theory and random matrix
theory. In this paper we will concentrate on the fourth, fifth and sixth Painlevé equations,
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the standard forms of which are, respectively
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where α, β, γ, δ are arbitrary complex parameters.
It is well known that the Painlevé equations Pn govern the isomonodromic deforma-

tions of linear 2× 2 matrix equations of the form [1]–[3]

dY

dx
= An(x; t)Y, (1.4)

where x and t are independent complex variables and An(x; t) is a 2 × 2 matrix that is
rational in x. For the equations listed above, namely P4, P5 and P6, Jimbo and Miwa
[1]–[3] showed that the matrix An(x; t) has the following particular forms:

A4(x; t) =
A4

0(t)
x

+A4
1(t) + xA4

2(t), (1.5a)

A5(x; t) =
A5

0(t)
x

+
A5

1(t)
x− 1

+A5
2(t), (1.5b)

A6(x; t) =
A6

0(t)
x

+
A6

t (t)
x− t

+
A6

1(t)
x− 1

. (1.5c)

It has recently been observed that the Painlevé equations also govern the isomon-
odromic deformations of matrix equations of order greater than two. In particular, it was
shown in [4], and then later in [5] by different means, that the sixth Painlevé equation
P6 also governs the isomonodromic deformations of a 3× 3 system

dΦ
dλ

= Bn(λ; t)Φ, (1.6)

where λ is the new spectral variable and, for n = 6, B6(λ; t) is a 3 × 3 matrix that is
rational in λ and has the form

B6(λ; t) =
B6

0(t)
λ

+B6
1(t). (1.7)

The question of whether or not the other Painlevé equations P1–P5 can also be seen to
arise directly as monodromy preserving conditions for linear systems of order three or
greater has not been fully answered. We shall show in this paper that, in addition to the
generic sixth Painlevé equation, the fourth and the fifth Painlevé equations can also be
seen to govern isomonodromic deformations of certain 3 × 3 systems. In the context of
equation (1.6) above, we will see that the matrix Bn(λ; t) has the following form for P4

and P5, respectively,

B4(λ; t) = B4
0(t) + λB4

1(t), (1.8)

B5(λ; t) =
B5

0(t)
λ

+
B5

1(t)
λ− 1

+B5
2(t). (1.9)
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We will also show that there is a simple connection (via the generalized Laplace transform)
between these 3 × 3 representations for P4, P5 and P6 and the 2 × 2 representations of
Jimbo and Miwa given in (1.5).

The particular forms of Bn(λ; t) given above in relation to P4, P5 and P6 were obtained
by considering certain similarity reductions of the three-dimensional three-wave resonant
interaction (3WRI) system. The three-dimensional form of the 3WRI system is given in
characteristic coordinates by

∂uj

∂xj
= iu∗mu

∗
n,

∂u∗j
∂xj

= −iumun, i2 = −1, (1.10)

where (j,m, n) denotes any permutation of (1, 2, 3), uj , u
∗
j are the complex amplitudes of

the wave packets, and star denotes complex conjugation. A complete treatment of the
group theoretical properties of the 3WRI system was performed in [7], and all classical
similarity reductions for this system were obtained.

Among the various reductions to systems of ODEs, three have been linked to the
generic form of the fourth, the fifth and the sixth Painlevé equations, respectively. The
reduced systems were integrated in [7] in terms of second order, second degree (SD) type
equations which, using results from Bureau et al [8], were known to be solvable in terms
of the classical Painlevé equations.

In this paper we show how it is possible to integrate the reduced systems without
recourse to SD type equations by constructing monodromy Lax pairs. By analysing the
particular similarity reductions for P4, P5 and P6 in more detail, and in particular by
describing the action of each reduction on the scattering Lax pair for the 3WRI system,
we are able to obtain monodromy Lax pairs for the reduced systems and, by extension, for
the particular Painlevé equations under investigation also. Comparing these monodromy
Lax pairs we derive a direct link between the self-similar solutions to the 3WRI system
and the classical Painlevé equations.

The 2 × 2 systems of Jimbo and Miwa given in (1.5) have come to be identified as
model 2×2 equations which can be used to investigate analytic and asymptotic properties
of the associated Painlevé equations. An analogous interpretation should also be possible
for the 3× 3 systems (1.7)–(1.9). Since equations (1.7) and (1.8) each have a singularity
structure in the complex λ-plane that is distinct from the 2× 2 case of (1.5c) and (1.5a),
respectively, the 3 × 3 systems may in fact provide further insights into the asymptotic
properties of the classical Painlevé equations.

In the case of P5 the singularity structure of the 3 × 3 equation (1.9) is identical to
the 2× 2 case of (1.5b), and indeed it is elementary to show that the two representations
are related by a simple gauge transformation, see Section 4 below. We note, however,
that since (1.9) can also be mapped to the 2× 2 matrix system of [1] via the generalized
Laplace transform, our 3 × 3 Lax representation for P5 provides a new mechanism for
generating Bäcklund transformations for solutions of the P5 equation. In this paper, we
will show how to construct the following Bäcklund transformation between solutions of
P5. Assume y(t) and z(t) solve the following system

t
dy

dt
= ty − 2z(y − 1)2 − (y − 1)2

(
θ0 − θ1 + θ∞

2

)
+ (θ0 + θ1)(y − 1), (1.11)

t
dz

dt
= yz

(
z +

θ0 − θ1 + θ∞
2

)
− 1
y
(z + θ0)

(
z +

θ0 + θ1 + θ∞
2

)
, (1.12)

where θ0, θ1, θ∞ are arbitrary complex constants. Eliminating z(t) from this system it
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follows that y(t) is a solution of P5 with

α =
1
2

(
θ0 − θ1 + θ∞

2

)2

, β = −1
2

(
θ0 − θ1 − θ∞

2

)2

, γ = 1− θ0 − θ1, (1.13)

and where t has been rescaled so that δ = −1/2. Define ŷ(t) and ẑ(t) by

ŷ =
yz

z + (θ0 + θ1 + θ∞)/2
, (1.14)

ẑ = z +
θ0 − θ1 + θ∞

2
. (1.15)

Then ŷ(t) solves (1.2) with

α̂ =
θ21
2
, β̂ = −θ

2
0

2
, γ̂ = 1 + θ∞, δ̂ = −1

2
. (1.16)

We conclude this introduction with some remarks on other Lax representations for
the Painlevé equations of order three or greater which have appeared in the literature.
Recent work by Noumi and Yamada [9]–[10] has identified 3× 3 and 4× 4 matrix repre-
sentations (Lax pairs) for the symmetric forms of the fourth and fifth Painlevé equations,
respectively. The symmetry properties of these Lax pairs have been studied in detail by
Sen et al in [11]–[12], however the connection between these Lax pairs and the standard
forms for P4 and P5 has not yet been realised. The Lax pairs for the symmetric P4 and P5

equations were also derived in [13] by considering periodic reductions of Darboux chains
for a Schrödinger problem with quadratic eigenvalue dependence.

The work of Conte et al [14] and Kakei and Kikuchi [15] is also relevant since each have
obtained (independently) the 3×3 Lax representation for P6 by considering similarity re-
ductions of the (1+1)-dimensional 3WRI system. While our analysis is directly analogous
to the method of [14] and [15], it has the benefit that since it is for the (2+1)-dimensional
problem it extends easily to the two-dimensional similiarity reductions identified in [7]
and therefore provides a mechanism for generating monodromy Lax pairs for P4 and P5.

The paper is organised as follows. In Section 2 we recall the scattering Lax pair for
the 3WRI system (1.10). In Section 3 we give a similarity reduction of the 3WRI system
to the generic sixth Painlevé equation, P6. We then describe the action of this similarity
reduction on the associated scattering Lax pair and thereby construct a monodromy Lax
pair for the reduced system of ODEs. By comparing this Lax pair with the known 3× 3
Lax pair for P6 we obtain explicit formulas for the self-similar solutions of the three-
wave system in terms of solutions of P6. A similar analysis is presented in Sections 4
and 5 for similarity reductions of the 3WRI system to the fifth and the fourth Painlevé
equations, respectively, i.e. monodromy Lax pairs are constructed in each case and explicit
formulas for the self-similar solutions in terms of solutions of P5 and P4 are given. The
3× 3 monodromy Lax pairs for P5 and P4 that we construct appear to be new. In each
section, we also show how to construct the map between the 3×3 systems for P6, P5 and
P4 and the 2 × 2 monodromy Lax pairs of [1] via the generalized Laplace transform. In
Section 6 we provide a conclusion and describe the direction of future research. Finally,
we give two appendices relating to material presented in this paper. In Appendix A
we give a spectral interpretation of the Bäcklund transformations for P5 in terms of
formal monodromy data and characterise the transformation (1.14) given above. Then,
for completeness, in Appendix B we give a similarity reduction of the 3WRI system to the
third Painlevé equation and identify a connection between the 2× 2 mondoromy system
of Jimbo and Miwa [1] and a 3× 3 system with two regular singularities.
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2 Scattering Lax pair for the 3WRI system

System (1.10) admits a scattering Lax pair given by Kaup [20]

∂ψj

∂xm
− ikκmψj = −iu∗nψm

∂ψm

∂xj
− ikκjψm = iunψj

(2.1)

where (j,m, n) denotes any permutation of (1, 2, 3), ψj = ψj(xm, k) are scalar functions,
κj are real constants, and k ∈ C is the spectral parameter. We note that the inclusion
of the spectral parameter k comes from treating system (2.1) as a scattering problem
and hence making an assumption about the behaviour of the functions ψj as xm → ∞.
System (2.1) can be written in matrix form in the following way

D1Ψ = i
(
kK1 + U1

)
Ψ

D2Ψ = i
(
kK2 + U2

)
Ψ

(2.2)

where Ψ is a 3 × 3 matrix-valued function, the matrix operators D1,D2 are given by
D1 = diag[∂x2 , ∂x3 , ∂x1 ] and D2 = diag[∂x3 , ∂x1 , ∂x2 ], and the matrices K1,K2 and U1, U2

are given by

K1 =

κ2 0 0
0 κ3 0
0 0 κ1

 , U1 =

 0 −u∗3 0
0 0 −u∗1
−u∗2 0 0

 ,

K2 =

κ3 0 0
0 κ1 0
0 0 κ2

 , U2 =

 0 0 u2

u3 0 0
0 u1 0

 .

We note that, when written in standard cartesian coordinates, the linear system (2.2) is
equivalent to the scattering Lax pair identified by Fokas and Ablowitz in [21].

In the following sections we will investigate the particular similarity reductions found
in [7] that are linked to P4, P5 and P6, giving an explicit description of the action of each
reduction on the scattering Lax pair (2.2).

3 Similarity reduction to the sixth Painlevé equation

The following two-dimensional similarity reduction for system (1.10) was obtained in [6]
and [7]

vj(τ) = (xm − xn)1−iρjuj , τ =
x1 − x3

x2 − x3
, (3.1)

where ρ1, ρ2, ρ3 are real constants such that ρ1 + ρ2 + ρ3 = 0. Under this reduction,
system (1.10) becomes

τ1+iρ2(τ − 1)1+iρ3v′1 = iv∗2v
∗
3

τ iρ2(τ − 1)1+iρ3v′2 = −iv∗3v∗1
τ1+iρ2(τ − 1)iρ3v′3 = iv∗1v

∗
2 ,

(3.2)

where prime denotes differentiation with respect to τ .
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The above system was integrated directly in [7] in terms of a second order, second
degree (SD) equation which, in turn, is solvable in terms of the generic sixth Painlevé
equation, P6. The action of the similarity reduction (3.1) on the scattering Lax pair (2.2)
was not discussed in [6], [7]. In the remainder of this section we will show how to find
the reduced Lax pair and thereby integrate system (3.2) explicitly in terms of the sixth
Painlevé equation, i.e. without recourse to SD type equations.

3.1 A monodromy Lax pair

To compute the reduced Lax pair we introduce the monodromy variable λ in the following
way

λ = (x2 − x3)k. (3.3)

Writing Ψ(xj , k) = R(xj)Φ̃(τ, λ), where R(xj) is given by

R(x1, x2, x3) = diag
(
(x1 − x3)iθ12 , (x1 − x3)iθ23 , (x1 − x3)iθ31

)
, (3.4a)

and
θ12 − θ31 = ρ1, θ23 − θ12 = ρ2, θ31 − θ23 = ρ3, (3.4b)

we find that the scattering Lax pair (2.2) becomes

C1Φ̃τ + λD1Φ̃λ = i
(
λK1 + V1

)
Φ̃

C2Φ̃τ + λD2Φ̃λ = i
(
λK2 + V2

)
Φ̃,

where the matrices Cj , Dj ,Kj , Vj are given by

C1 = diag
(
− τ, τ − 1, 1

)
, C2 = diag

(
τ − 1, 1,−τ

)
,

D1 = diag
(
1,−1, 0

)
, D2 = diag

(
− 1, 0, 1

)
,

K1 = diag
(
κ2, κ3, κ1

)
, K2 = diag

(
κ3, κ1, κ2

)
,

V1 =

 0 −(1− τ)−1v∗3 0
0 τ−1θ31 −v∗1

−τ−1v∗2 0 −τ−1θ12

 , V2 =

 τ−1θ23 0 τ−1v2
(1− τ)−1v3 −τ−1θ31 0

0 v1 0

 .

After rearranging the above system, we find

Φ̃λ =
(
Q(1) +

Q(0)

λ

)
Φ̃ (3.5a)

Φ̃τ =
(
λP (1) + P (0)

)
Φ̃, (3.5b)

where the matrices Q(1), P (1), Q(0), P (0) are given by

Q(1) = idiag
(
− (τ − 1)κ2 − τκ3, (τ − 1)κ1 − κ3, τκ1 + κ2

)
, (3.6a)

P (1) = idiag
(
− κ2 − κ3, κ1, κ1

)
, (3.6b)

and

Q(0) = i

−θ23 −v∗3 −v2
−v3 −θ31 v∗1
−v∗2 v1 −θ12

 , (3.6c)

P (0) = −i

 τ−1θ23 (τ − 1)−1v∗3 τ−1v2
(τ − 1)−1v3 τ−1θ31 0
τ−1v∗2 0 τ−1θ12

 . (3.6d)
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In order to integrate the reduced system (3.2) in terms of P6 we compare the Lax repre-
sentation (3.5) with the 3× 3 Lax representation for P6 obtained in [4] and [5].

3.2 Solution in terms of the sixth Painlevé equation

We consider the following 3× 3 system of matrix equations

Φλ =
(
B6

1 +
B6

0 − I
λ

)
Φ (3.7a)

Φt =
(
λM6

1 +M6
0

)
Φ, (3.7b)

where the matrices B6
1 ,M

6
1 , B

6
0 ,M

6
0 are given by

B6
1 = diag

(
t, 1, 0

)
, (3.8a)

M6
1 = diag

(
1, 0, 0

)
, (3.8b)

and

B6
0 =

−θ2 w̃3 w2

w3 −θ3 w̃1

w̃2 w1 −θ1

 , (3.8c)

M6
0 =

 −t−1θ2 (t− 1)−1w̃3 t−1w2

(t− 1)−1w3 −t−1θ3 0
t−1w̃2 0 −t−1θ1

 , (3.8d)

where {wj , w̃j} are functions of t and θ1, θ2, θ3 are arbitrary constants. If we adopt the
parametrisation of [5], then the matrix B6

0(t) has eigenvalues

µ1 =
1
2

( 3∑
j=1

θj + θ∞

)
, µ2 =

1
2

( 3∑
j=1

θj − θ∞

)
, µ3 = 0,

where θ∞ is an arbitrary constant. It was shown in [5] that P6 arises as the compatibility
condition for this system if the functions {wj , w̃j} are given by

w1 = f

(
θ1 + (t− 1)y′

2y
+

1 + θ3(t− 1)− θ1t+ θ∞(y − 1)− y

2t

)
, (3.9a)

w̃1 = f−1

(
−θ3y − ty′

2(y − 1)
+
θ1t+ (θ∞ − 1)y

2(t− 1)

)
, (3.9b)

w2 =
g

f

(
−θ2y + ty′

2(y − t)
− θ1 + θ∞y

2(t− 1)
+

y(y − 1)
2(t− 1)(y − t)

)
, (3.9c)

w̃2 =
f

g

(
t(θ1 + (t− 1)y′)

2y
+

1− θ1 − θ2(t− 1) + θ∞(y − t)− y

2

)
, (3.9d)

w3 = g−1

(
−θ3(y − t) + t(t− 1)y′

2(y − 1)
+
θ2t− θ∞(y − t) + y

2

)
, (3.9e)

w̃3 = g

(
− (t− 1)y′ + θ2(y − 1)

2(y − t)
+
θ3 − θ∞(y − 1)

2t
+
y(y − 1)
2t(y − t)

)
, (3.9f)

where y(t) is a solution of P6 with

α =
(θ∞ − 1)2

2
, β = −θ

2
1

2
, γ =

θ23
2
, δ =

1− θ22
2

,
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and f, g can be found by quadratures.
In order to solve the reduced 3WRI system (3.2) in terms of P6 we take κ1 = 0, κ2 =

0, κ3 = i in (2.2), and then compare matrix entries in the monodromy Lax pair (3.5) with
τ = t with those in system (3.7) to obtain the following correspondence:

v1(t) = −iw1(t), v2(t) = iw2(t), v3(t) = iw3(t), (3.10a)
v∗1(t) = −iw̃1(t), v∗2(t) = iw̃2(t), v∗3(t) = iw̃3(t), (3.10b)

and
iρ1 = θ1 − θ3, iρ2 = θ2 − θ1, iρ3 = θ3 − θ2. (3.10c)

Remark 3.1. We note that the parametrisation that was adopted in [5] to write system
(3.7) explicitly in terms of y where y(t) is a solution of P6 is not unique. Alternate
parametrisations have been identified by Boalch [16]–[17] in his investigations of a 3× 3
Lax pair with Fuchsian singularities. Since this system can be mapped to the irregular
3 × 3 Lax pair of [4] and [5] via the generalized Laplace transform, see equation (3.14)
below, it follows that these parametrisations are equivalent to system (3.7) up to gauge
transformation.

3.3 Reduction to the 2× 2 monodromy Lax pair for P6

In this section we reconstruct the map from the irregular 3 × 3 Lax representation for
P6 given in (3.7a) to the Fuchsian 2× 2 system of Jimbo and Miwa given in (1.5c). We
follow the method of [5] using the generalized Laplace transform and appropriate gauge
transformations to map equation (3.7a) to another 3× 3 system, which is then reducible
to the 2× 2 system (1.5c). Starting with (3.7a) written in the following form

λΦλ =
(
λB6

1(t) +B6
0(t)− I

)
Φ,

we introduce the function Ỹ (x, t) via the generalized Laplace transform

Φ(λ, t) =
∫

C

eλxỸ (x, t)dx. (3.11)

Substituting (3.11) into the above equation, and assuming that the contour C can be
chosen to eliminate any remainder terms that arise from integration-by-parts, we find

(
B6

1(t)− xI
)dỸ
dx

= B6
0(t)Ỹ . (3.12)

We now assume that B6
0(t) is diagonalisable (which we can do without loss of generality

for P6, see [5]) and, letting G be the diagonalising matrix of B6
0(t), i.e. G−1B6

0(t)G =
diag [µ1, µ2, µ3], we make the gauge transformation Ỹ = G−1Ŷ to find

dŶ

dx
= G−1

(
B6

1(t)− xI
)−1

GB̂6
0 Ŷ , (3.13)

where B̂6
0 = diag [µ1, µ2, 0]. We note that multiplication on B̂6

0 is from the left and so,
after an elementary calculation, it follows that this equation can be written as a Fuchsian
system

dŶ

dx
=

(
Â6

0(t)
x

+
Â6

t (t)
x− t

+
Â6

1(t)
x− 1

)
Ŷ , (3.14)
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where the 3× 3 matrices Â6
j all have the form

Â6
j =

∗ ∗ 0
∗ ∗ 0
∗ ∗ 0

 .

Since the third column of each Â6
j is zero, the system for Ŷ reduces to a system for the

first two components

dY

dx
=
(
A6

0(t)
x

+
A6

t (t)
x− t

+
A6

1(t)
x− 1

)
Y, Y =

(
Ŷ1

Ŷ2

)
, (3.15)

and a quadrature for the third component. The eigenvalues of the matrices A6
0, A

6
t and

A6
1 are (θ1, 0), (θ2, 0) and (θ3, 0), respectively, see [5]. Equation (3.15) is equivalent (up to

gauge transformation) to the 2× 2 system of Jimbo and Miwa given in [1], i.e. equation
(1.5c).

4 Similarity reduction to the fifth Painlevé equation

In this section we investigate a two-dimensional similarity reduction of the 3WRI system
to a system of ODEs that is solvable in terms of the fifth Painlevé equation, P5. The
similarity reduction, which was derived in [7], is given by

v1(τ) = xiρ1
3 exp[ix2x3]u1

v2(τ) = xiρ2
3 exp[−ix3x1]u2

v3(τ) = (x1 − x2)1−iρ3u3, τ = (x1 − x2)x3,

(4.1)

where ρ1, ρ2, ρ3 are real constants such that ρ1 + ρ2 + ρ3 = 0. Under this reduction,
system (1.10) becomes

τ1+iρ3eiτv′1 = iv∗2v
∗
3

τ1+iρ3eiτv′2 = −iv∗3v∗1
τ iρ3eiτv′3 = iv∗1v

∗
2 .

(4.2)

where prime denotes differentiation with respect to τ . This system was integrated directly
in [7] in terms of an SD function and shown to be solvable in terms of the generic fifth
Painlevé equation, P5. Following the approach outlined in the previous section we will
use (4.1) to construct a monodromy Lax pair for the reduced system (4.2) and then carry
out the explicit integration in terms of P5.

4.1 A monodromy Lax pair

To compute the reduced Lax pair we introduce the monodromy variable λ in the following
way

λ = (x1 + x2)x3. (4.3)

Writing Ψ̃ = Ψ exp[ik(κ1x1 + κ2x2 + κ3x3)] and then Ψ̃(xj , k) = R(xj)Φ̃(τ, λ) where
R(xj) is given by

R(x1, x2, x3) = diag
(
x−iθ23

3 eix1x3 , x−iθ31
3 eix2x3 , x−1−iθ12

3

)
, (4.4a)



10 N. Joshi et al

and
θ12 − θ31 = ρ1, θ23 − θ12 = ρ2, θ31 − θ23 = ρ3, (4.4b)

the scattering Lax pair (2.2) becomes

τ Φ̃τ +D1Φ̃λ = i
(
− 1

2 (λ− τ)S2 + V1

)
Φ̃

τ Φ̃τ +D2Φ̃λ = i
(
− 1

2 (λ+ τ)S1 + V2

)
Φ̃,

where the matrices Dj , Sj , Vj are given by

D1 = diag
(
− τ, λ, τ

)
, D2 = diag

(
λ, τ,−τ

)
,

S1 = diag
(
1, 0, 0

)
, S2 = diag

(
0, 1, 0

)
,

V1 =

 0 τ−iρ3e−iτv∗3 0
0 θ31 −v∗1

−τv∗2 0 0

 , V2 =

 θ23 0 v2
τ iρ3eiτv3 0 0

0 −τv1 0

 .

After rearranging, the above system can be written as

Φ̃λ =
( Q̃(0)

λ+ τ
+

Q̃(1)

λ− τ
+ Q̃(2)

)
Φ̃ (4.5a)

Φ̃τ =
( P̃ (0)

λ+ τ
+

P̃ (1)

λ− τ
+ P̃ (2)

)
Φ̃ (4.5b)

where the matrices Q(0), P (0), Q(1), P (1) and Q(2), P (2) are given by

Q(0) = P (0) = i

θ23 −τ−iρ3e−iτv∗3 v2
0 0 0
0 0 0

 (4.6a)

Q(1) = −P (1) = i

 0 0 0
−τ iρ3eiτv3 θ31 −v∗1

0 0 0

 (4.6b)

and

Q(2) = − i
2

 1 0 0
0 1 0
v∗2 −v1 0

 , (4.6c)

P (2) = − i
2

 1 −2τ−1−iρ3e−iτv∗3 0
−2τ−1+iρ3eiτv3 −1 0

v∗2 v1 0

 . (4.6d)

4.2 Solution in terms of the fifth Painlevé equation

In order to be able to use the monodromy Lax pair (4.5) to integrate the reduced system
(4.2) in terms of P5 we must first construct a 3×3 Lax pair that admits the fifth Painlevé
equation directly as the compatibility condition. To do this we make the assumption that
the general form of the monodromy Lax pair (4.5) gives the correct rational λ-dependence
required for a 3 × 3 monodromy representation of the associated Painlevé equation, P5.
This assumption is based upon the observation that, in the case of P6, the singularity
structure of the 3× 3 monodromy Lax pair (3.5) coincides with the singularity structure
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of the 3× 3 system for P6 identified in [4] and [5]. This leads us to consider the following
3× 3 system of matrix equations

Φλ =

(
B̃5

0

λ+ t
+

B̃5
1

λ− t
+ B̃5

2

)
Φ (4.7a)

Φt =

(
M̃5

0

λ+ t
+

M̃5
1

λ− t
+ M̃5

2

)
Φ, (4.7b)

where the matrices B̃5
j , M̃

5
j are given by

B̃5
0 = M̃5

0 =

m̃ w̃3 w2

0 0 0
0 0 0

 (4.8a)

B̃5
1 = −M̃5

1 =

 0 0 0
w3 m w̃1

0 0 0

 , (4.8b)

and

B̃5
2 =

1
2

 1 0 0
0 1 0
w̃2 w1 0

 (4.8c)

M̃5
2 =

1
2

 1 −2t−1w̃3 0
−2t−1w3 −1 0

w̃2 −w1 0

 , (4.8d)

and {wj , w̃j} are all functions of t. Compatibility of equations (4.7a) and (4.7b) gives the
following system of equations

m′ = 0, m̃′ = 0, (4.9)

and

tw′1 = w̃2w̃3, tw̃′1 = −w2w3,

tw′2 = −w̃1w̃3, tw̃′2 = w1w3, (4.10)
tw′3 = −[t− (m− m̃)]w3 − tw̃1w̃2, tw̃′3 = [t− (m− m̃)]w̃3 + tw1w2,

This system admits first integrals

m = c1, m̃ = c2, w1w̃1 + w2w̃2 = c3

w1w2w3 + w̃1w̃2w̃3 + w3w̃3 − m̃w1w̃1 −mw2w̃2 = c4,
(4.11)

where cj are constants. Without loss of generality, we choose

c1 = −
(
θ0 + θ1 + θ∞

)
/2, c2 = −

(
θ0 + θ1 − θ∞

)
/2

c3 = θ0, c4 = (θ0 + θ1 − θ∞)(θ0 + θ1 + θ∞)/4,
(4.12)

where θ0, θ1, θ∞ are arbitrary constants. If we define the function y(t) as follows

y(t) = ν
(z + θ0)(

z + (θ0 − θ1 + θ∞)/2
) , (4.13a)
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where
z + θ0 = w2w̃2, ν =

w̃3 + w1w2

w1w2
, (4.13b)

then, from system (4.10), we have

ty′ = ty − 2z(y − 1)2 + (y − 1)
(
θ0 + θ1 − θ∞

2
y +

θ0 + θ1 + θ∞
2

)
, (4.14a)

tz′ = y

(
z − θ0

2

)(
z − θ1 − θ∞

2

)
− 1
y

(
z +

θ0
2

)(
z +

θ1 + θ∞
2

)
, (4.14b)

tν′ = tν + θ∞ (ν − 1)− (2z + θ0) (ν − 1)2 , (4.14c)

and it follows that y(t) satisfies the classical P5 equation with δ scaled to δ = −1/2 and

α =
1
2

(
θ0 − θ1 + θ∞

2

)2

, β = −1
2

(
θ0 − θ1 − θ∞

2

)2

, γ = 1− θ0 − θ1. (4.15)

We note that, with the change of variables λ 7→ t(2λ− 1), equation (4.7a) gives the form
for B(λ; t) specified in equation (1.9).

Using the parametrisation for y(t) given in (4.13) we obtain the following expressions
for the functions {wj(t), w̃j(t)}:

w1 = −gz1/2(z + θ0)1/2, (4.16a)

w̃1 =
1
g

z1/2

(z + θ0)1/2
, (4.16b)

w2 =
1
f

(z + θ0)1/2

z1/2
, (4.16c)

w̃2 = fz1/2(z + θ0)1/2, (4.16d)

w3 =
f

g

(
1
y

(
z +

θ0 + θ1 + θ∞
2

)
− z

)
, (4.16e)

w̃3 =
g

f

(
−y
(
z +

θ0 − θ1 + θ∞
2

)
+ z + θ0

)
, (4.16f)

where, from system (4.10), the functions f(t), g(t) satisfy the following equations

t(log f)′ = −z +
yz

(z + θ0)

(
z +

θ0 − θ1 + θ∞
2

)
+

θ0tz
′

2z3/2(z + θ0)1/2
, (4.17a)

t(log g)′ = z + θ0 +
(z + θ0)
yz

(
z +

θ0 + θ1 + θ∞
2

)
+

θ0tz
′

2z1/2(z + θ0)3/2
. (4.17b)

In order to solve the reduced 3WRI system (4.2) in terms of P5 we compare matrix
entries in the monodromy system (4.5) with τ = t with those in (4.7) to get the following
correspondence:

v1(t) = −iw1(t), v2(t) = −iw3(t), v3(t) = it−iρ3e−itw3(t), (4.18a)

v∗1(t) = iw̃1(t), v∗2(t) = iw̃2(t), v∗3(t) = itiρ3eitw̃3(t), (4.18b)

and

iθ23 = −
(
θ0 + θ1 − θ∞

2
+ 1
)
, iθ31 = −

(
θ0 + θ1 + θ∞

2
+ 1
)
. (4.18c)
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Note that if we assume θ12 = 0 in equation (4.4b) then ρ1, ρ2, ρ3 can be expressed in
terms of θ0, θ1, θ∞ as

iρ1 =
(
θ0 + θ1 + θ∞

2
+ 1
)
, iρ2 = −

(
θ0 + θ1 − θ∞

2
+ 1
)
, iρ3 = −θ∞. (4.19)

4.3 Reductions to the 2× 2 monodromy Lax pair for P5

In this section we show how to reduce the 3 × 3 monodromy Lax pair for P5, system
(4.7a), to the 2× 2 linear system of [1] given in (1.5b). The first approach we take is to
use the generalized Laplace transform (3.11). We start by writing (4.7a) in the form

(λB̂5
2 + B̂5

1)Φλ =
(
(λB̂5

2 + B̂5
1) + B̂5

0

)
Φ, (4.20)

where

B̂5
2 =

1 0 0
0 1 0
0 0 0

 , B̂5
1 =

1
2

t 0 0
0 −t 0
0 0 1

 , B̂5
0 =

 m̃ w̃3 w2

w3 m w̃1
1
2 w̃2

1
2w1 − 1

2

 . (4.21)

Substituting the formula for Φ(λ, t) from equation (3.11) into equation (4.20), and as-
suming that the contour C can be suitably chosen to eliminate any remainder terms that
arise from integration-by-parts, we find

(x− 1)B̂5
2

dỸ

dx
=
(
(x− 1)B̂5

1 − (B̂5
2 + B̂5

0)
)
Ỹ . (4.22)

Since the diagonal matrix B̂5
2 has a zero in the (33) position, it follows that the third row

of this expression gives a relationship between the elements of Ỹ :

xỸ3 = w̃2Ỹ1 + w1Ỹ2. (4.23)

Using this relation to eliminate Ỹ3 from (4.22) we obtain the following 2× 2 system:

dY

dx
=
[
t

2

(
1 0
0 −1

)
+

1
x

(
A0 + 1 B0

C0 D0 + 1

)
+

1
x− 1

(
A1 B1

C1 D1

)]
Y, Y =

(
Ỹ1

Ỹ2

)
,

(4.24)
where

A0 = w2w̃2, B0 = w1w2, C0 = w̃1w̃2, D0 = w1w̃1,

A1 = −
(
w2w̃2 + m̃

)
, B1 = −

(
w̃3 + w1w2

)
,

C1 = −
(
w3 + w̃1w̃2

)
, D1 = −

(
w1w̃1 +m

)
.

(4.25)

System (4.24) is equivalent (up to a gauge transformation) to the 2× 2 system of Jimbo–
Miwa given in [1], i.e. equation (1.5b). Adopting the parametrisation used by Jimbo–
Miwa, it follows that y(t) given by (4.13) is a solution of the fifth Painlevé equation.

There is also an alternate reduction of (4.7) to the Jimbo–Miwa system (1.5b) which
makes use of suitable gauge transformations rather than the generalized Laplace trans-
form. Starting with equation (4.20) we note that choosing the constant c4 as in (4.12)
implies that the matrix B̂5

0 has zero determinant. Indeed, from the above expression for
B̂5

0 we have

det (B̂5
0) = w1w2w3 + w̃1w̃2w̃3 + w3w̃3 − m̃w1w̃1 −mw2w̃2 −mm̃,
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which is zero from (4.11) and (4.12). It follows that B̂5
0 has eigenvalues (µ1, µ2, 0), and

so there exists a matrix G such that

G−1B̂5
0G =

µ1 0 0
0 µ2 0
0 0 0

 .

If we now make the gauge transformation Φ = GỸ then equation (4.20) becomes

dỸ
dλ

=
(
I +G−1(λB̂5

2 + B̂5
1)−1G ˆ̃B5

0

)
Ỹ,

where ˆ̃B5
0 = diag [µ1, µ2, 0]. Since multiplication on ˆ̃B5

0 is from the left if follows that this
can be rewritten further as

dỸ
dλ

=

[
I + Ã5

2 +
Ã5

1

λ− t
+

Ã5
0

λ+ t

]
Ỹ,

where

Ã2 =
1

det(G)

(G12G23 −G13G22)G31µ1 (G12G23 −G13G22)G32µ2 0
(G13G21 −G11G23)G31µ1 (G13G21 −G11G23)G32µ2 0
(G11G22 −G12G21)G31µ1 (G11G22 −G12G21)G32µ2 0

 ,

Ã1 =
1

det(G)

(G13G32 −G12G33)G21µ1 (G13G32 −G12G33)G22µ2 0
(G11G33 −G13G31)G21µ1 (G11G33 −G13G31)G22µ2 0
(G12G31 −G11G32)G21µ1 (G12G31 −G11G32)G22µ2 0

 ,

Ã0 =
1

det(G)

(G22G33 −G23G32)G11µ1 (G22G33 −G23G32)G12µ2 0
(G23G31 −G21G33)G11µ1 (G23G31 −G21G33)G12µ2 0
(G21G32 −G22G31)G11µ1 (G21G32 −G22G31)G12µ2 0

 ,

and Gij are the entries of G. The zeros in the (13) and (23) entries of these coefficient
matrices imply that this system is equivalent to a 2×2 system for the first two components
of Ỹ,

dŶ
dλ

=
(
Â5

2 +
Â5

1

λ− t
+

Â5
0

λ+ t

)
Ŷ, Ŷ =

(
Ỹ1

Ỹ2

)
,

and a quadrature for the third component. The eigenvalues of the matrices Â5
2, Â

5
1 and

Â5
0 are (1/2, 0), (−(θ0 + θ1 + θ∞)/2, 0) and (−(θ0 + θ1 − θ∞)/2, 0), respectively.

We now make a gauge transformation Ŷ = HY, where H is the diagonalising matrix
for Â5

2, and introduce a change of variables x = (λ+ t)/2t, to get

dY
dx

=
[
t

2

(
1 0
0 −1

)
+

1
x

(
Â0 B̂0

Ĉ0 D̂0

)
+

1
x− 1

(
Â1 B̂1

Ĉ1 D̂1

)]
Y, (4.26)

where

Â0 + D̂0 = −θ0 + θ1 − θ∞
2

, Â0D̂0 − B̂0Ĉ0 = 0,

Â1 + D̂1 = −θ0 + θ1 + θ∞
2

, Â1D̂1 − B̂1Ĉ1 = 0,

Â0 + Â1 = −θ1.

(4.27)
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System (4.26) is equivalent (up to a gauge transformation) to the 2× 2 system of Jimbo–
Miwa given in [1], i.e. equation (1.5b). Adopting the parametrisation used by Jimbo–
Miwa, it follows that ŷ(t) given by

ŷ(t) =
(Â0 − m̃)B̂1

Â1B̂0

=
w̃1[mw2 − w̃1w̃3]
w2[m̃w̃1 − w2w3]

(
1 +

(m+ θ0)w̃1

(m+ θ0)w̃1 + w2w3

(
1− w̃1[mw2 − w̃1w̃3]

w2[m̃w̃1 − w2w3]

))
, (4.28)

is a solution of the fifth Painlevé equation with δ̂ scaled to δ̂ = −1/2 and

α̂ =
1
2

(
θ̂0 − θ̂1 + θ̂∞

2

)2

, β̂ = −1
2

(
θ̂0 − θ̂1 − θ̂∞

2

)2

, γ̂ = 1− θ̂0 − θ̂1,

where θ̂0, θ̂1, θ̂∞ are given by

θ̂0 =
θ0 + θ1 − θ∞

2
, θ̂1 = −θ0 + θ1 + θ∞

2
, θ̂∞ = θ1 − θ0.

Simplifying the above expressions for α̂, β̂, γ̂ and substituting the expressions for {wj , w̃j}
in (4.16) into (4.28) we obtain the Bäcklund transformation for P5 given in (1.14).

5 Similarity reduction to the fourth Painlevé equation

The following similarity reduction was derived in [7] and reduces system (1.10) to a
system of ODEs that are solvable in terms of the fourth Painlevé equation. The similarity
reduction is given by

vj(τ) = e−iθjuj , (5.1)

where

θ1 = −ρ1x3 + 1
4x

2
3 + x2x3, θ3 = ρ3(x1 + x2) + 1

2 (x1 + x2)2,

θ2 = −ρ2x3 + 1
4x

2
3 + x3x1, τ = x1 + x2 + x3,

(5.2)

and ρ1, ρ2, ρ3 are real constants such that ρ1 + ρ2 + ρ3 = 0. Under this reduction, system
(1.10) becomes

eiθv′1 = iv∗2v
∗
3 ,

eiθv′2 = iv∗3v
∗
1 ,

eiθv′3 = iv∗1v
∗
2 , θ = ρ3τ + 1

2τ
2,

(5.3)

where prime denotes differentiation with respect to τ . This system was integrated directly
in [7] in terms of SD functions and shown to be solvable in terms of the generic fourth
Painlevé equation, P4. Following the approach outlined in the previous sections, we will
use (5.1) to construct a monodromy Lax pair for the reduced system (5.3) and then carry
out the explicit integration in terms of P4.
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5.1 A monodromy Lax pair

To compute the reduced Lax pair we introduce the monodromy variable λ in the following
way

λ = x1 − x2. (5.4)

Writing Ψ̃ = Ψ exp[ik(κ1x1 + κ2x2 + κ3x3)] and then Ψ̃(xj , k) = R(xj)Φ̃(τ, λ) where
R(xj) is given by

R(x1, x2, x3) = diag
(
eiθ2 , e−iθ1 , 1

)
,

the scattering Lax pair (2.2) becomes

Φ̃τ +D1Φ̃λ = i
(
− 1

2 (λ− τ)S2 + V1

)
Φ̃

Φ̃τ +D2Φ̃λ = i
(
− 1

2 (λ+ τ)S1 + V2

)
Φ̃,

where the matrices Dj , Sj , Vj are given by

D1 = diag
(
− 1, 0, 1

)
, D2 = diag

(
0, 1,−1

)
,

S1 = diag
(
1, 0, 0

)
, S2 = diag

(
0, 1, 0

)
,

V1 =

 0 −e−iθv∗3 0
0 −ρ1 −v∗1
−v∗2 0 0

 , V2 =

 ρ2 0 v2
eiθv3 0 0

0 v1 0

 .

After rearranging, the above system can be written in the form

Φ̃λ =
(
λQ(1) +Q(0)

)
Φ̃ (5.5a)

Φ̃τ =
(
λP (1) + P (0)

)
Φ̃, (5.5b)

where the matrices Q(1), P (1), Q(0), P (0) are given by

Q(1) = − i
2
diag

(
1,−1, 0

)
,

P (1) = − i
2
diag

(
1, 1, 0

)
,

and

Q(0) = i

ρ1 − 1
2τ e−iθv∗3 v2

eiθv3 ρ2 − 1
2τ v∗1

− 1
2v
∗
2 − 1

2v1 0

 ,

P (0) = i

ρ1 − 1
2τ 0 v2

0 −ρ2 + 1
2τ −v∗1

− 1
2v
∗
2

1
2v1 0

 .

5.2 Solution in terms of the fourth Painlevé equation

We consider the following 3× 3 system of matrix equations

Φλ =
(
λB4

1 +B4
0

)
Φ (5.7a)

Φt =
(
λM4

1 +M4
0

)
Φ, (5.7b)
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where the matrices B4
1 ,M

4
1 , B

4
0 ,M

4
0 are given by

B4
1 = −diag

(
1,−1, 0

)
, (5.8a)

M4
1 = −diag

(
1, 1, 0

)
, (5.8b)

and

B4
0 =

−t w̃3 w2

w3 −t w̃1

w̃2 w1 0

 , (5.8c)

M4
0 =

−t 0 w2

0 t −w̃1

w̃2 −w1 0

 , (5.8d)

and {wj , w̃j} are all functions of t. Compatibility of equations (5.7a) and (5.7b) gives the
following system of equations

w′1 = −w̃2w̃3, w̃′1 = w2w3,

w′2 = −w̃1w̃3, w̃′2 = w1w3, (5.9)
w′3 = −2tw3 − 2w̃1w̃2, w̃′3 = 2tw̃3 + 2w1w2.

This system admits first integrals

w1w̃1 − w2w̃2 = 2θ0,
w1w̃1 + w2w̃2 − w3w̃3 = −2θ1,

(5.10)

with θ0 and θ1 constants. Elementary computation now shows that the functions y and
ỹ, given by

y(t) = −2w1w2

w̃3
, ỹ(t) = −2w̃1w̃2

w3
, (5.11)

satisfy the classical P4 equation (1.1),

d2y

dt2
=

1
2y

(dy
dt

)2

+
3
2
y3 + 4ty2 + 2(t2 − α)y +

β

y
,

d2ỹ

dt2
=

1
2ỹ

(dỹ
dt

)2

+
3
2
ỹ3 + 4tỹ2 + 2(t2 − α̃)ỹ +

β̃

ỹ
,

with α = −2θ1 + 1 and β = −8θ20 for the y equation, and α̃ = −2θ1 − 1 and β̃ = −8θ20
for the ỹ equation.

Using the parametrisation for y(t), ỹ(t) given by equation (5.11) we obtain the follow-
ing expressions for the functions {wj(t), w̃j(t)}:

(logw1)′ = −
2ỹ
(
ỹ′ − 2tỹ − ỹ2 + 4θ1

)(
ỹ′ − 2tỹ − ỹ2 + 4θ0

) , (log w̃1)′ =
2y
(
y′ + 2ty + y2 + 4θ1

)(
y′ + 2ty + y2 + 4θ0

) , (5.12a)

(logw2)′ = −
ỹ
(
ỹ′ − 2tỹ − ỹ2 + 4θ1

)(
ỹ′ − 2tỹ − ỹ2 − 4θ0

) , (log w̃2)′ =
y
(
y′ + 2ty + y2 + 4θ1

)(
y′ + 2ty + y2 − 4θ0

) , (5.12b)

(logw3)′ = −(ỹ + 2t), (log w̃3)′ = y + 2t. (5.12c)
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In order to solve the reduced 3WRI system (5.3) in terms of P4 we compare the
monodromy systems (5.5) and (5.7) to get the following correspondence:

v1(t) = 2iw1, v2(t) = −iw2, v3(t) = −ie−i(2t2−ρ2
3/2)w3, (5.13a)

v∗1(t) = −iw̃1, v∗2(t) = 2iw̃2, v∗3(t) = −iei(2t2−ρ2
3/2)w̃3, (5.13b)

where we have chosen ρ1 = ρ2 = −ρ3/2 and made the change of variables t = (τ + ρ3)/2.

5.3 Reduction to the 2× 2 monodromy Lax pair for P4

In this section we use the generalized Laplace transform (3.11) to construct the map
between the 3× 3 Lax representation for P4 given in (5.7) and the 2× 2 system of Jimbo
and Miwa given in (1.5a). Substituting the formula for Φ(λ, t) from equation (3.11) into
equation (5.7a), and assuming that the contour C is suitably chosen to eliminate any
remainder terms that arise from integration-by-parts, we find

B4
1

dỸ

dx
=
(
− xI +B4

0

)
Ỹ , (5.14)

where the matrices B4
1 , B

4
0 are given in (5.8a) and (5.8c), respectively. We note that,

because the diagonal matrix B4
1 has a zero in the (33) entry, the third row of this equation

gives the following relationship between the components of Ỹ

xỸ3 = w̃2Ỹ1 + w1Ỹ2.

Using this expression to eliminate Ỹ3 from (5.14) we are able to reduce equation (5.14)
to the following 2× 2 system

dŶ

dx
=
(
xA4

2(t) +A4
1(t) +

A4
0(t)
x

)
Ŷ , Ŷ =

(
Ỹ1

Ỹ2

)
, (5.15)

where

A4
0(t) =

(
−w2w̃2 −w2w1

w̃2w̃1 w1w̃1

)
, A4

1(t) =
(
t −w̃3

w3 −t

)
, A4

2(t) =
(

1 0
0 −1

)
. (5.16)

We note that this system is related to the Jimbo-Miwa system of [1] by a simple gauge
transformation.

6 Conclusion

In this paper we have constructed linear 3× 3 matrix representations (Lax pairs) for the
generic fourth and fifth Painlevé equations, respectively, see equations (5.7) and (4.7).
The 3×3 systems are directly analogous to the 3×3 Lax pair associated with the generic
sixth Painlevé equation, P6, which was first derived in [4], and then later in [5] and [14],
[15] by different means. Indeed, as we have shown here, all three Lax representations
arise from classical similarity reductions of the full three-dimensional three-wave resonant
interaction system.

The existence of the 3 × 3 systems for P4 and P5 raises the question of alternate
monodromy Lax pair representations for the Painlevé equations which are distinct from
the 2 × 2 cases identified in [1] by Jimbo and Miwa. In the case of P6, the connection
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between the 2 × 2 Lax pair of [1] and the 3 × 3 Lax pair of [4] has been established
by two different methods (by factorization of a residue [4], and by Laplace transform in
λ-space [5]). We have shown that a similar connection can be established between our
monodromy Lax representations for P4 and P5 and the 2× 2 systems of Jimbo and Miwa
[1] via the Laplace transform in λ-space.

As far as we are aware, the isomonodromy problems for the λ-part of equations (4.7)
and (5.7) have not been studied in detail. The fact that our 3×3 system for P4 possesses
an irregular singularity at infinity and no other singularities in the complex λ-plane
establishes a clear distinction between this system and the isomonodromy problem of
Jimbo and Miwa in [1], i.e. equation (1.5a). It will be interesting to determine the
monodromy data for equation (5.7) and to investigate whether or not it can be used to
determine all Bäcklund transformations for P4 and, hence, to see if it is possible to obtain
all hierarchies of exact solutions of P4.

Another direction for future research will be to evaluate the connection, if possible,
between our 3 × 3 systems and other alternate Lax pair representations for P4 and P5.
Thus, for instance, it may be possible to establish a link between the 3× 3 systems found
here and the order three and order four linear systems associated with the symmetric
Painlevé equations found by Noumi et al [9]–[10]. Similarly, the connection between our
monodromy Lax representation and the 2× 2 Lax pair for P4 found by Kitaev (see [22],
[23]) and later by Milne et al [24] is yet to be established.
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A On Spectral Interpretation of the Bäcklund Trans-
formations for P5

We recall the Bäcklund transformation for P5 was found in [25] (see also [26]):

ŷ = 1− 2
√
−2δty

ty′ −
√

2αy2 + (
√

2α−
√
−2β + t

√
−2δ)y +

√
−2β

, (A.1)

√
2α̂ =

1
2

(
γ√
−2δ

+ 1−
√
−2β −

√
2α
)
, (A.2)√

−2β̂ =
1
2

(
γ√
−2δ

− 1 +
√
−2β +

√
2α
)
, (A.3)

γ̂√
−2δ̂

=
√
−2β −

√
2α,

√
−2δ̂ =

√
−2δ 6= 0, (A.4)

where y = y(t) and ŷ = ŷ(t) solve P5 for the parameters α, β, γ, and δ and α̂, β̂, γ̂,
and δ̂, respectively. The important feature of this transformation is that the branches of
the square roots in equations (A.1)–(A.4) can be taken arbitrary but the same in all the
formulae.

Our goal here is to discuss the spectral interpretation of this transformation. For this
purpose we use the Jimbo-Miwa [1] isomonodromy representation of P5. Consider the
following linear matrix ODE:

dΨ
dλ

=
( t
2
σ3 +

A0

λ
+

A1

λ− 1
)
Ψ. (A.5)
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Here σ3 =
(

1 0
0 −1

)
and the matrices Ap (p = 0, 1) are independent of λ. Consider

the following parametrization of the matrices Ap,

A0 =
(
z + θ0

2 −u(z + θ0)
z/u −z − θ0

2

)
, A1 =

(
−z − θ0+θ∞

2 uy
(
z + θ0−θ1+θ∞

2

)
− 1

uy

(
z + θ0+θ1+θ∞

2

)
z + θ0+θ∞

2

)
.

Then, the isomonodromy deformations of equation (A.5) with respect to t are governed
by the following system of nonlinear ODEs, which we will call the Isomonodromy Defor-
mation System (IDS)

t
dy

dt
= ty − 2z(y − 1)2 − (y − 1)

(θ0 − θ1 + θ∞
2

y − 3θ0 + θ1 + θ∞
2

)
, (A.6)

t
dz

dt
= yz

(
z +

θ0 − θ1 + θ∞
2

)
− 1
y
(z + θ0)

(
z +

θ0 + θ1 + θ∞
2

)
, (A.7)

t
d

dt
log u = −2z − θ0 + y

(
z +

θ0 − θ1 + θ∞
2

)
+

1
y

(
z +

θ0 + θ1 + θ∞
2

)
. (A.8)

In this system θν (ν = 0, 1, ∞) are complex constants considered as parameters. Exclud-
ing the function z from equations (A.6)–(A.7) one finds that the function y satisfies the
fifth Painlevé equation (1.2) for the set of the coefficients (1.13).

We note that by rescaling t we may set the coefficients δ̂ = δ = −1/2, and hence we
may further put

√
−2δ =

√
−2δ̂ = ε = ±1

in equations (A.1)–(A.4). To take into account the possibility of different choices of
branches of the square roots in equations (A.1)–(A.4) we introduce the parameters ε1,
ε2, ε̂1, ε̂1, each taking the value ±1, in the following way

√
2α = ε1

θ0 − θ1 + θ∞
2

,
√
−2β = ε2

θ0 − θ1 − θ∞
2

, γ = 1− θ0 − θ1, (A.9)

√
2α̂ = ε̂1

θ̂0 − θ̂1 + θ̂∞
2

,

√
−2β̂ = ε̂2

θ̂0 − θ̂1 − θ̂∞
2

, γ̂ = 1− θ̂0 − θ̂1. (A.10)

By substituting equations (A.9) and (A.10) into formulae (A.2)–(A.4) we get the following
equations relating the formal monodromies:

θ̂∞ = ε
ε̂1 − ε̂2

2
(1− θ0 − θ1) +

ε̂1 + ε̂2
2

(
1− ε1 + ε2

2
(θ0 − θ1)−

ε1 − ε2
2

θ∞

)
, (A.11)

θ̂0 − θ̂1 = ε
ε̂1 + ε̂2

2
(1− θ0 − θ1) +

ε̂1 − ε̂2
2

(
1− ε1 + ε2

2
(θ0 − θ1)−

ε1 − ε2
2

θ∞

)
,

(A.12)

θ̂0 + θ̂1 = 1 + ε

(
ε1 − ε2

2
(θ0 − θ1) +

ε1 + ε2
2

θ∞

)
. (A.13)

Equations (A.11)-(A.13) define 25 = 32 different relations for the formal monodromies
θ̂’s, according to the number of tuples (ε, ε1, ε2, ε̂1, ε̂2). It is easy to notice that all these
formulae can be presented as the compositions of the actions on the θ-parameters of the
Schlesinger transformations “dressing” the infinity and zero points:

S±,± : θ∞ → θ∞ ± 1, θ0 → θ0 ± 1, θ1 → θ1, (A.14)
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with possibly the reflections:

R0 : θ0 → −θ0, θ1 → θ1, θ∞ → θ∞, (A.15)
R1 : θ0 → θ0, θ1 → −θ1, θ∞ → θ∞, (A.16)
R∞ : θ0 → θ0, θ1 → θ1, θ∞ → −θ∞, (A.17)
R01 : θ0 → θ1, θ1 → θ0, θ∞ → θ∞, (A.18)

and the following Okamoto-like transformations, mixing the θ-variables:

O := θ̂0 = ±θ0 + θ1 − θ∞
2

, θ̂1 = ∓θ0 + θ1 + θ∞
2

, θ̂∞ = θ1 − θ0. (A.19)

B Similarity reduction to the third Painlevé equation

The following similarity reduction was derived independently in [6] and [7] and transforms
system (1.10) into a system of ODEs that are solvable in terms of solutions of the generic
P3 equation

P3 :
d2y

dt2
=

1
y

(
dy

dt

)2

− 1
t

dy

dt
+

1
t

(
αy2 + β

)
+ γy3 +

δ

y
, (B.1)

where α, β, γ, δ are arbitrary complex parameters. The similarity reduction is given by

v1 = exp[− 1
2x3 + iρ1x3]u1

v2 = exp[− 1
2x3 + iρ2x3]u2

v3 = (x1 − x2)1−iρ3u3, τ = (x1 − x2)ex3 ,

(B.2)

where ρ1, ρ2, ρ3 are real constants related by ρ1 + ρ2 + ρ3 = 0. Under this reduction
system (1.10) becomes

τ1+iρ3v′1 = iv∗2v
∗
3

τ1+iρ3v′2 = −iv∗3v∗1
τ iρ3v′3 = iv∗1v

∗
2 .

(B.3)

It was shown in [7] that solutions of this system can be represented in terms of an SD-type
equation that is equivalent to the particular case of the fifth Painlevé equation (1.2) with
δ = 0. It is well known [25] that equation (1.2) with δ taken to be zero is equivalent to
the general P3 equation. As in the case of P4, P5 and P6 we will construct a monodromy
Lax pair for the reduced system (B.3) and then carry out the explicit integration in terms
of P3.

We introduce the monodromy variable λ as follows

λ = e−x3k, (B.4)

and then, taking κ3 = 0 in (2.2) and writing Ψ(xj , k) = R(xj)Φ(τ, λ) where R(xj) is
given by

R(x1, x2, x3) = diag
(

exp[−iρ2x3], exp[iρ1x3], exp[− 1
2x3]

)
,
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we obtain the following monodromy Lax pair

MΦλ =
(
Q(1) +

Q(0)

λ

)
Φ (B.5a)

MΦτ =
(
λP (1) + P (0)

)
Φ, (B.5b)

where the matrices M,Q(1), P (1), Q(0), P (0) are given by

M = diag
(
1, 1, 0

)
,

Q(1) = idiag
(
− τκ2, τκ1, κ1 + κ2

)
,

P (1) = idiag
(
− κ2, κ1, 0

)
,

and

Q(0) = i

 −ρ2 −τ−iρ3v∗3 −v2
τ iρ3v3 ρ1 v∗1
−v∗2 v1 0

 ,

P (0) = i

 0 τ−1−iρ3v∗3 0
τ−1+iρ3v3 0 0

0 0 0

 .

We compare (B.5) with the following 3× 3 system1 0 0
0 1 0
0 0 0

Φλ =
(t/2 0 0

0 −t/2 0
0 0 −1

+
1
λ

−θ∞/2 −w̃3 −w2

w3 θ∞/2 −w̃1

w̃2 w1 0

)Φ (B.6a)

1 0 0
0 1 0
0 0 0

Φt =
(λ/2 0 0

0 −λ/2 0
0 0 0

+
1
t

 0 −w̃3 0
w3 0 0
0 0 0

)Φ, (B.6b)

where {wj , w̃j} are functions of t and θ∞ is an arbitrary constant. The compatibility
condition for (B.6) is

tw′1 = w̃2w̃3, tw̃′1 = w2w3,

tw′2 = −w̃1w̃3, tw̃′2 = −w1w3,

tw′3 = −θ∞w3 + tw̃1w̃2, tw̃′3 = θ∞w̃3 + tw1w2.

We note that the third row of (B.6a) gives the relation

λΦ3 = w̃2Φ1 + w1Φ2,

and so we can eliminate Φ3 from the above system. The resulting 2 × 2 system has the
form:

dφ

dλ
=
[
t

2

(
1 0
0 −1

)
+

1
λ

(
−θ∞/2 −w̃3

w3 θ∞/2

)
− 1
λ2

(
w2w̃2 w1w2

w̃1w̃2 w1w̃1

)]
φ, (B.7a)

dφ

dt
=
[
λ

2

(
1 0
0 −1

)
+

1
t

(
0 −w̃3

w3 0

)]
φ, φ =

(
Φ1

Φ2

)
. (B.7b)

Making the change of variables t 7→ t2, λ 7→ λ/t we find that system (B.7) is equivalent
(up to gauge transformation) to the Jimbo–Miwa system for P3 given in [1]
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Written in terms of the new variables the compatibility condition becomes

tw′1 = 2w̃2w̃3, tw̃′1 = 2w2w3,

tw′2 = −2w̃1w̃3, tw̃′2 = −2w1w3,

tw′3 = −2θ∞w3 + 2t2w̃1w̃2, tw̃′3 = 2θ∞w̃3 + 2t2w1w2,

(B.8)

for which we get first integrals

w1w̃1 + w2w̃2 = c1,

w1w2w3 − w̃1w̃2w̃3 +
1
2
θ∞
(
w1w̃1 − w2w̃2

)
= c2,

where c1 and c2 are constants. Without loss of generality we set c1 = 1 and c2 = θ0/2.
Elementary computation now shows that the functions y and ỹ, given by

y(t) =
w̃3

tw1w2
, ỹ(t) =

w3

tw̃1w̃2
, (B.9)

satisfy the classical P3 equation with α = 4θ0, β = 4(1 − θ∞), γ = 4, δ = −4 for the y
equation, and α̃ = 4θ0, β̃ = 4(1 + θ∞), γ̃ = 4, δ̃ = −4 for the ỹ equation.

In order to solve the reduced 3WRI system (B.3) in terms of P3 we compare the
monodromy system (B.5) with system (B.7) to find

v1(τ) = w1(τ), v2(τ) = w2(τ), v3(τ) = τ−iρ3w3(τ), (B.10a)

v∗1(τ) = w̃1(τ), v∗2(τ) = w̃2(τ), v∗3(τ) = τ iρ3w̃3(τ). (B.10b)

We will show that the functions {wj(τ), w̃j(τ)} can be expressed in terms of y(t), ỹ(t),
z(t) and w(t), where z = tw1w̃1, w = w1w2 and τ = t2. Using the expression for y
given in (B.9) and the compatibility conditions (B.8), we obtain the following system for
{y, z, w}

t
dy

dt
= (4z − 2t)y2 + (2θ∞ − 1)y + 2t, (B.11a)

t
dz

dt
= 4z(t− z)y − (2θ∞ − 1)z + (θ0 + θ∞)t, (B.11b)

t
d

dt
(lnw) = −(4z − 2t)y. (B.11c)

It follows from (B.8) and the above expressions that the functions {wj , w̃j} are given as

w1(t) = f

(
z

t− z

)1/2

, w̃1(t) =
1
ft

(
z(t− z)

)1/2

(B.12a)

w2(t) =
1
g

(
t− z

z

)1/2

, w̃2(t) =
g

t

(
z(t− z)

)1/2

, (B.12b)

where f and g are arbitrary functions such that w = f/g, and

t
d

dt
(lnw3) =

2t
ỹ
− 2θ∞, (B.12c)

t
d

dt
(ln w̃3) =

2t
y

+ 2θ∞. (B.12d)
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To conclude this appendix we state without proof an alternate reduction of system
(B.6) to a 2 × 2 system. Using the generalized Laplace transform (3.11) in (B.6a), the
resulting matrix equation has the formx− t/2 0 0

0 x+ t/2 0
0 0 1

 dỸ

dx
= −

−θ∞/2 + 1 −w̃3 −w2

w3 θ∞/2 + 1 −w̃1

w̃2 w1 0

 Ỹ . (B.13)

By choosing the determinant of the RHS matrix to be zero we can make a gauge trans-
formation Ỹ = GŶ where G is the diagonalizing matrix, to obtain

dŶ

dx
=
[
Â2 +

1
x− t/2

Â1 +
1

x+ t/2
Â0

]
Ŷ , (B.14)

where the Âj are all of the form

Âj =

∗ ∗ 0
∗ ∗ 0
∗ ∗ 0

 .

This can then be reduced (after a change of variables) to a 2× 2 system of the form

dY

dx
=
[
A2 +

1
x− t

A1 +
1
x
A0

]
Y. (B.15)

Isomonodromic deformations in t of this equation are parametrized by solutions of the
degenerate fifth Painlevé equation (1.2) with δ = 0, see [27], [28].

The Lax pair (B.7) has two irregular singularities at zero and infinity, while the Lax
pair (B.14) has two regular singularities at zero and t and an irregular singularity at
infinity. By comparing the two reductions given above it is possible to obtain a mapping
between these two systems and, as with the Bäcklund transformation for P5, a mapping
between two solutions of P3.
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[18] D.J. Benney, A.C. Newell, The propagation of nonlinear wave envelopes, J. Math.
and Phys., 46 (1967) 133–139.

[19] V.E. Zakharov, S.V. Manakov, The theory of resonance interaction of wave packets
in nonlinear media, Sov. Phys. JETP, 42 (1975) 842–850.

[20] D.J. Kaup, The inverse scattering solution for the full three-dimensional three-wave
resonant interaction, Phys. D, 1 (1980) 45–67.

[21] A.S. Fokas and M.J. Ablowitz, On the inverse scattering transform of multidimen-
sional nonlinear equations related to first-order systems in the plane, J. Math. Phys.,
25 (1984) 2494–2505.

[22] A.V. Kitaev, Self-similar solutions of the modified nonlinear Schrödinger equation,
Theor. Math. Phys., 64 (1985) 878–894.

[23] A.R. Its, V. Yu-Novokshenov, The Isomonodromic Deformation Method in the The-
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