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Abstract
This paper considers large deviation results for sums of indepen-

dent random variables, generalizing the result of Petrov (1968) by us-
ing a weaker and more natural condition on bounds of the cumulant
generating functions of the sequence of random variables.
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1 Introduction

The classical Cramér limit theorem on large deviations has the following
formulation: Suppose that X1, X2, · · · is a sequence of independent random
variables having a common distribution such that

EehX1 < ∞ in the interval −H < h < H for some H > 0 (1)
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(the Cramér condition). Suppose EX1 = 0, EX2
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j=1 Xj, Zn = Sn/(σ
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where Φ(x) is the standard normal distribution function, λ(t) =
∑∞

k=0 akt
k

is a power series with coefficients depending only on the cumulants of X1,
which converges for all sufficiently small |t|. This is a strengthening of Cramér
(1938), first given in Petrov (1954) together with a generalization to the case
of non-identically distributed random variables. A detailed proof of Cramér’s
theorem can be found in Petrov (1995).

Cramér’s theorem was extended by Feller (1943) to sequences of not nec-
essarily identically distributed random variables under restrictive conditions
(Feller considered only random variables taking values in finite intervals),
thus Cramér’s theorem does not follow from Feller’s theorem.

The following result from Petrov (1954) (see also Petrov (1961) for some
minor improvement of formulation) is a generalization of Cramér’s theorem.

Theorem 1 Suppose that X1, X2, · · · is a sequence of independent random
variables with zero means satisfying the following condition: there exist pos-
itive numbers H, G and g such that

g ≤ |EehXn| ≤ G in the circle |h| < H, n = 1, 2, · · · . (4)

Also suppose that

lim inf Bn/n > 0, (5)

where Bn =
∑n

j=1 EX2
j . Put Sn =

∑n
j=1 EXj, Zn = Sn/

√
Bn and Fn(x) =

P (Zn ≤ x). If x > 1, x = o(
√

n) as n →∞, then

1− Fn(x)

1− Φ(x)
= exp
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where λn(t) =
∑∞

k=0 aknt
k is a power series convergent for all sufficiently

small t, uniformly in n.
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The coefficient akn of this series is expressed in terms of the cumulants
of the random variables X1, · · · , Xn of order up to and including k + 3. In
particular, if γkj is the cumulant of order k of Xj and

Γkn =
n∑

j=1

γkj/n, (8)

then

a0n =
Γ3n

6Γ
3/2
2n

, a1n =
Γ4nΓ2n − 3Γ2

3n

24Γ3
2n

, a2n =
Γ5nΓ2

2n − 10Γ4nΓ3nΓ2n + 15Γ3
3n

120Γ
9/2
2n

.

If the variables X1, X2, · · · have identical distributions then Γkn = γk and
λn(t) coincides with λ(t) in Cramér’s theorem which has coefficients inde-
pendent of n. Therefore, Cramér’s theorem follows from Theorem 1.

It is possible to replace condition (4) by a weaker condition. Let us
formulate a result from Petrov (1968) (see also Theorem 2 of Chapter 8 of
Petrov (1975)).

Use the notation of Theorem 1. Assume that there exists a circle cen-
tered at z = 0 within which the cumulant generating functions Lj(z) =
log E exp(zXj) are analytic for all j (here log denotes the principal value of
the logarithm, so that Lj(0) = 0 for every j). Within this circle Lj(z) can
be expanded in a convergent power series

Lj(z) =
∞∑

k=1

γkjz
k/k!, (9)

where γkj is the cumulant of Xj of order k. We have γ1j = EXj = 0 and
γ2j = EX2

j for every j.

Theorem 2 Suppose there exist positive constants c1, c2, · · · such that

|Lj(z)| ≤ cj in the circle |z| < H, n = 1, 2, · · · , (10)

lim sup
n∑

j=1

c
3/2
j /n < ∞. (11)
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If condition (5) is satisfied and if x ≥ 0, x = o(
√

n) as n →∞, then

1− Fn(x)

1− Φ(x)
= exp

{ x3

√
n

λn

( x√
n

)}[
1 + O

(x + 1√
n

)]
, (12)

Fn(−x)

Φ(−x)
= exp

{
− x3

√
n

λn

(
− x√
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)}[
1 + O

(x + 1√
n

)]
, (13)

where λn(t) =
∑∞

k=0 aknt
k is the same power series (convergent for all suffi-

ciently small t, uniformly in n) as in Theorem 1.

We shall prove a generalization of all the above mentioned results.

2 Results

Theorem 3 Let X1, X2, · · · be a a sequence of independent random variables
with zero means satisfying the conditions of Theorem 2 with condition (11)
replaced by the condition

lim sup
n∑

j=1

cj/n < ∞. (14)

Then the assertion of Theorem 2 holds for x ≥ 0, x = o(
√

n) as n →∞.

Condition (14) is obviously weaker than (11) so Theorem 3 generalizes
Theorem 1 of Petrov (1968). We note that the results of Sections 3 and 4 of
Petrov (1968) hold with condition (11) replaced by (14).

3 Proof

In the proof of Theorem 2 given in Petrov (1968), (11) is used only to prove
his inequality (30); that is that

sup
x
|F̄n(x)− Φ(x)| ≤ c/

√
n, (15)

for all sufficiently large n, where F̄n(x) is the distribution function of Z̄n

defined in (19) below. We give an alternative proof of (15) assuming (14)
in place of (11). The method used is related to methods used in Saulis and
Statulevičius (1991).
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We have

γkj = [dkLj(z)/dzk]z=0.

By the condition (10) and the Cauchy inequality for the derivatives of analytic
functions we obtain the inequalities

|γkj| ≤ k!cjH
−k

for every k and j. Therefore

|
n∑

j=1

γkj| ≤ k!C0nH−k, (16)

where C0 is a positive constant satisfying

n∑
j=1

cj ≤ C0n (17)

which follows from (14). Taking into account (5), we obtain

b1n ≤ Bn ≤ b2n, (18)

for all sufficiently large n, where b1 and b2 are positive constants.
Let X̄1, X̄2, · · · be a sequence of conjugate random variables with

P (X̄j ≤ x) = e−Lj(h)

∫ x

−∞
ehydP (Xj ≤ y), j = 1, 2, · · · ,

let L(h) =
∑n

j=1 Lj(h), S̄n =
∑n

j=1 X̄j, Ān = ES̄n,, B̄n = E(S̄n−ES̄n)2, and
let

Z̄n = (S̄n − Ān)/
√

B̄n. (19)

Choose h as the unique solution of the equation

x = Ān/
√

Bn

where

Ān =
dL(h)

dh
.
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The cumulant generating function of X̄j is L̄j(z) = Lj(h+z)−Lj(h). Further
let

γ̄kj = [dkLj(z)/dzk]z=h.

Then, for |h| < H/2, L̄j(z) is an analytic function for |z| < H/2, and using
the Cauchy inequality for derivatives of analytic functions we have

|γ̄kj| ≤ k!cj(H/2)−k. (20)

Then letting

Γ̄kn =
n∑

j=1

γ̄kj/n (21)

and using (20) and (21), we have

|Γ̄kn| ≤ k!C(H/2)−k for |h| < H/2. (22)

Also let L̄(z) =
∑n

j=1 L̄j(z).

If F̄n(u) and f̄n(t) are the distribution function and the characteristic
function, respectively, of Z̄n then

f̄n(t) =

∫ ∞

−∞
eitudF̄n(u)

=

∫ ∞

−∞
eitudP (S̄n ≤ u

√
B̄n + Ān)

=

∫ ∞

−∞
eit(y−Ān)/

√
B̄ndP (S̄n ≤ y)

= e−itĀn/
√

B̄n−L(h)

∫ ∞

−∞
e(h+it/

√
B̄n)ydP (Sn ≤ y)

= e−itĀn/
√

B̄n−L(h)+L(h+it/
√

B̄n).

So, for h < H/2 and |t| < H
√

B̄n/2

log f̄n(t) = −itĀn/
√

B̄n − L̄(it/
√

B̄n)

= −1

2
t2 +

1

6
(it/

√
B̄n)3

[d3L̄(z)

dz3

]
z=θit/

√
B̄n

,
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where 0 ≤ |θ| ≤ 1. Now[d3L̄(z)

dz3

]
z=θit/

√
B̄n

=
∞∑

k=3

nΓ̄kn

(k − 3)!
(θit/

√
B̄n)k−3.

So, noting that as for (18), b̄1n < B̄n < b̄2n, for all sufficiently large n, where
b̄1 and b̄2 are positive constants and using (22) we have∣∣∣[d3L̄(z)

dz3

]
z=θit/

√
B̄n

∣∣∣ ≤ CB̄n

(H/2)3

∞∑
k=3

k(k − 1)(k − 2)
[ |t|/√B̄n

H/2

]k−3

=
6CB̄n

(H/2)3

(
1−

[ |t|/√B̄n

H/2

])−4

.

So if 0 ≤ h < H/2 and |t| < δH
√

B̄n/2 with 0 < δ < 1, then∣∣∣[d3L̄(z)

dz3

]
z=θit/

√
B̄n

∣∣∣ <
6CB̄n

(H/2)3
(1− δ)−4.

Thus

| log f̄n(t) + t2/2| < |t|3C(1− δ)−4

(H/2)3
√

B̄n

. (23)

Recall the following theorem of Esseen quoted from Petrov (1995):

Theorem 4 Let F (x) and G(x) be distribution functions with characteristic
functions f(t) and g(t). Suppose that G(x) has a bounded derivative on the
real line, so that supx G′(x) ≤ K. Then for every T > 0 and every b > 1/(2π)
we have

sup
x
|F (x)−G(x)| ≤ b

∫ T

−T

|f(t)− g(t)|
|t|

dt + c(b)
K

T
, (24)

where c(b) is a positive constant depending only on b.

We can take b = 1/π and T = δH
√

B̄n/2, and note that for |t| < T we
have from (23),

|f̄n(t)− e−t2/2| < C ′|t|3e−t2/4/
√

n, (25)

so (15) holds. The remainder of the proof of the theorem is exactly as in the
proof of Theorem 1 in Petrov (1968).
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