
AUTOMATIC PROOF OF GRAPH NONISOMORPHISM

ARJEH M. COHEN, JAN WILLEM KNOPPER, AND SCOTT H. MURRAY

Abstract. We describe automated methods for constructing nonisomorphism proofs
for pairs of graphs. The proofs can be human-readable or machine-readable. We
have developed a proof generator for graph nonisomorphism, which allows users to
input graphs and construct a proof of (non)isomorphism.

1. Introduction

With the growth in computer power and internet access, an increasing number of prob-
lems are solved on remote machines by programs written by experts in a particular field.
In this situation, the user may have no knowledge of the algorithm used, its implementa-
tion, or indeed how the remote machine is maintained. A mere yes-or-no answer cannot
be trusted: we need additional verification that the answer is correct. For mathematical
problems, the most obvious form of verification is a proof of correctness. In this article,
we construct such proofs for the problem of graph isomorphism.

If two graphs are isomorphic, and we are given an isomorphism, then it is easy to
prove this by checking the isomorphism. Proving that a pair of graphs are not isomorphic
is more difficult. We show how to generate such a proof automatically. Our proofs are
intended to be human-readable but could be modified to give machine-readable proofs as
in

Cohen
[3]. We use a lot of computer time to find a short and understandable proof. Hence it

can take much longer to generate a proof than to determine nonisomorphism. Although
we are primarily interested in practical computations, we occasionally use the concept of
polynomial-time algorithms

Cormen1
[5, Chapter 36].

In Section
listinvariants
2, we look at invariants: functions that take the same value on isomorphic

graphs, but may take different values on nonisomorphic graphs. In many cases, invariants
give short and easy-to-verify proofs of nonisomorphism. For example, two graphs with
different numbers of vertices clearly cannot be isomorphic, so this is an easily-checked
invariant.

When no simple invariants can be found to distinguish two graphs, we resort to general
graph-isomorphism algorithms building on the methods of

CohenAutomated
[4]. We have implemented the

algorithm of Luks
Luks
[14], and modified it to output a human-readable proof. We have also

modified the nauty implementation
nauty
[15] of McKay’s algorithm

McKay81
[17] to produce such a proof.

We only discuss McKay’s algorith, since it gave a shorter proof than Luks’ in every case
we tried. The modified version of McKay’s algorithm can also prove the correctness of the
automorphism group of a graph.

We have developed a proof generator for graph nonisomorphism
pagnurl
[19], described in Sec-

tion
PAGN
4. This will automatically construct a proof of (non)isomorphism, and can also be

used to compose a proof interactively by choosing invariants or calling one of the modified
algorithms. The algorithms are implemented in GAP

GAP4
[6], apart from the modifications to

nauty, which is in C
Kernighan88a
[13]. The user interface is written in Java

java
[21]. The proof genera-

tor, with installation instructions, can be found online at
pagnurl
[19] or in the RIACA software

repository.

Date: June 22, 2007.

1

2 ARJEH M. COHEN, JAN WILLEM KNOPPER, AND SCOTT H. MURRAY

Because of the exponential growth in the lengths of the proofs produced, our modified
version of McKay’s algorithm is only practical for relatively small graphs. Invariants can
frequently distinguish much larger graphs, however.

The proofs have a hierarchical structure, with many small lemmas (see the example
in ???????). It is possible to hide the proof of certain lemmas to take into account the
different levels of mathematical expertise among users. The user can also click on a hidden
part of the proof to reveal it.

[Mentions analysis here, including nauty not known to be poly time]

2. Invariants
listinvariants

In order to check whether two graphs are isomorphic, the following invariants are
checked in order:

(1) number of vertices
(2) number of edges
(3) degree multiset
(4) diameter
(5) girth
(6) distance multiplicity
(7) subgraph invariance
(8) extended subgraph invariance
(9) characteristic polynomial of the adjacency matrix and Seidel matrix

(10) Smith normal form of the adjacency matrix
(11) powers of the adjacency matrix
(12) number of triangles per vertex, edge (multiset)
(13) number of K2,1,1-graphs per edge (multiset)
(14) edge distance multiplicity
(15) multiset of all edge invariants per edge

The precise definitions of these invariants can be found in
BrouwerCohenNeumaier
[2].

The order of the invariants is chosen to balance understandability with ease of calcula-
tion. In larger graphs some of the invariants high in the tree become harder to humanly
verify, but still can give information about the graph.

Note that some invariants are straightforward to calculate but harder to prove correct.
Some effort is made to reduce the output, for example if the number of vertices with a
certain degree differs in two graphs it is not needed to mention the number of vertices
with a different degree.

3. McKay’s algorithm
mckay

3.1. Introduction. The current implementation of McKay’s algorithm
McKay77,McKay81
[16, 17], called

nauty
nauty
[15], is one of the most efficient practical graph isomorphism solvers available. We

have modified this program to give additional output, which allows us to construct a
human-readable proof.

Nauty’s default routine for establishing nonisomorphism involves computing a canonical
labelling for each graph. That is, a labelling of the vertices by integers with the property
that two graphs are isomorphic iff this labelling induces an isomorphism. The problem
with this for constructing a formal proof is that the definition of the canonical labelling
is almost as involved as the algorithm itself.

We chose instead to prove nonisomorphism by constructing automorphism groups. A
disadvantage of using the automorphism group is that a new graph must be constructed
from the two earlier graphs and that the resulting graph is twice as big as the original
graphs. Let G = (V, E, γ) and G′ = (V ′, E′, γ′) be two connected graphs. Let v ∈ V and
v′ ∈ V ′. We create a new graph G′′ by relabeling V ′ so that V and V ′ are disjoint, adding
an edge {v, v′} and creating a new coloring function γ′′ that colors the vertices in V like

AUTOMATIC PROOF OF GRAPH NONISOMORPHISM 3

γ and the vertices in V ′ like γ′ except for v and v′ which are given a new color c that is
different from all other colors. In other words, G′′ = (V ′′, E′′, γ′′) where V ′′ = V ∪ V ′,
E′′ = E ∪E′ ∪ {{v, v′}}, γ′′(u) = γ(u) for u ∈ V \ {v}, γ′′(u′) = γ′(u′) for u′ ∈ V ′ \ {v′},
and γ′′(v) = γ′′(v′) = c.

We can now determine whether there is an isomorphism G → G′ that takes v to v′, by
running the automorphism algorithm to compute the group of automorphisms of G′′ (they
leave the edge {v, v′} fixed). If the resulting group of automorphisms contains an element
that exchanges v and v′ then that element gives an isomorphism between G and G′.

Now fix a vertex v ∈ V . Suppose there exists an isomorphism between G and G′.
Let σ be such an isomorphism. Let v′ ∈ V ′ be the image of v under σ. Now construct
G′′. If the automorphism algorithm is called with G′′, then σ can be retrieved from the
automorphism group.

Suppose we want to prove that there exist no isomorphisms that transform G to G′.
We can then choose v ∈ V . If an isomorphism σ exists, then for some v′ ∈ V the computed
group of automorphisms of G′′ must contain an element that transfers v to v′. If we can
prove that for all v′ ∈ V ′ the automorphism group of the corresponding G′′ contains no
such element then this is a proof that the graphs are not isomorphic.

If we know automorphisms of G′ then we can use these to reduce the number of checks.
Suppose τ is an automorphism of G′, but not the identity and v′ ∈ V ′ is not fixed under
τ , then there is a u′ = τ(v′) 6= v′. Suppose G is a graph as above and v ∈ V fixed. Now
construct G′′ with v′ and calculate the group of automorphisms A. Now the group of
automorphisms for G′′ constructed with u′ is B = {τστ−1 | σ ∈ A}. It is easy to see
that the number of automorphisms that transform v to v′ in A is equal to the number of
automorphisms that transform v to u′ in B. This means that for a nonisomorphism proof
it is sufficient to prove the nonexistence only for one vertex in each orbit under a group
of known automorphisms of G′.

3.2. Algorithms and variables. Let G = (V, E) be a finite graph. A partition is defined
as a vertex coloring π : V → C with an ordering on π(V) = C. For example, by
π = [1 | 2 4 | 3], we mean π(1) < π(2) = π(4) < π(3). A set consisting of vertices
with the same color is called a cell . A partition is called discrete if all vertices have a
different color, for example [1 | 2 | 3 | 4] is discrete. Let π and π′ be partitions of a set
of vertices V . Then π is called finer than π′ if every cell of π is a subset of a cell in π′

and π′(v) > π′(v′) ⇒ π(v) > π(v′); π′ is then called coarser than π. Note that π is both
finer and coarser than itself. If π is finer (or coarser) than π′ and π 6= π′ then π is called
strictly finer (or strictly coarser) than π′. The number of cells of π is denoted by |π|. Let
v ∈ V and W ⊆ V . Define adjW (v) to be the number of elements of W which are adjacent
to v in G. A partition is equitable (with respect to G) if for all pairs of cells c, d ∈ π and
u, v ∈ c, adjd(u) = adjd(v).

The basic search tree. Let G = (V, E, γ) be a colored graph. A discrete partition gives a
labeling of G. With two discrete partitions of the same vertices it is possible to construct
the vertex map that takes a vertex to the vertex in the second partition with the same
index. It is then possible to check whether this map is an automorphism. Now let p be
a discrete partition finer than π0 = γ(V). If we check for each discrete partition p′ finer
than π0, whether the map between p and p′ is an automorphism then we have found all
automorphisms in the automorphism group of G.

Checking all discrete partitions is not efficient. Fortunately it is possible to reduce the
number of checks by refinement and further it is sufficient to not generate the full auto-
morphism group but only generate its generators. This means that known automorphisms
can be used to reduce the number of possibilities. In this subsection we describe the basic
search tree and the methods to reduce the number of checks.

We now define the search tree T (G, π) on the nodes labeled by partitions of V . The
root is π. A node in the tree with a discrete partition is a leaf. Let the partition π be a

4 ARJEH M. COHEN, JAN WILLEM KNOPPER, AND SCOTT H. MURRAY

Algorithm 1 Finding all isomorphisms (1)
FindAutomorphisms

Input: G is a graph (used to check automorphism), p is the reference discrete partition,
π is a partition finer than π0 and π̃ is the set of cells with which to refine

Returns: result is (the set of generators of) the group of automorphisms of G that fix π
1: function FindAutomorphisms(G, p, π)
2: var
3: c:cell . c is the first cell of π of maximal length
4: v:vertex . v ∈ c
5: π′:partition . a partition finer than π
6: end var
7: π′ := R(G, π, π)
8: result := ∅
9: if π′ is discrete then . p and π′ define a map

10: if the map from (p, π′) denotes an automorphism then
11: result := {that automorphism}
12: else
13: result := ∅
14: end if
15: else . recursion; this terminates since the number of cells in π will increase
16: c :=the first cell of π′ of maximal length
17: for v ∈ c do
18: result := result∪FindAutomorphisms(G, p, π′ ◦ v).
19: end for
20: end if
21: return result
22: end function

node in the tree that is not discrete. Then the children of π are the partitions π ⊥ w for
each w in the first cell of π with maximal length.

A leaf gives a labeling of the graph. From two discrete partitions on the same set of
points it is possible to construct a vertex map taking a vertex to the vertex in the second
partition with the same as index as the vertex in the first partition.

By comparing all leaves with the first leaf, the complete automorphism group can be
obtained.

Using an indicator function (or partition invariant). Let G = (V, E) be a graph. Let ρ be
the root node in a basic search tree of G with partition πρ. Let ν be a node in that basic
search tree with partition πν . Let σ ∈ Sym(V). Let Λ be a function on all combinations of
G, ρ, πρ and πν to an ordered set ∆. If Λ has the property that ΛGσ,πσ

ρ
(πσ

ν) = ΛG,πρ(πν)
then we call it an indicator function or partition invariant .Let ρ = ν1, . . . , νk = ν be
the path from the root node ρ to ν and let Λ be an indicator function. We can now
define another indicator function Λ̃G,π(ν) = (ΛG,π(ν1), ΛG,π(ν2), . . . , ΛG,π(νk)) to the set
∆+, with the lexicographic ordering induced by the ordering of ∆. ∆+ is here the set
∆ ∪∆×∆ ∪∆3 ∪ · · · .

Leaves with partitions with different values of Λ represent nonisomorphic labelings.
Therefore graphs colored according to nodes with different values of Λ̃ cannot be isomor-
phic. At the moment none of the partition invariants used by McKay are used. We use
something comparable though: we check if p and p′ are refined in the same way; if they
are not, they cannot result in an automorphism.

Refinement function. Let G = (V, E) be a graph. Let π = (V1, . . . , Vk) be a partition of
V . Let α = (Vi1 , . . . , Vil) be a sequence of distinct cells of π. Let RG,π(α) be a partition
of V , with the following properties:

AUTOMATIC PROOF OF GRAPH NONISOMORPHISM 5

Algorithm 2 Finding all isomorphisms (2)
FindAutomorphismsFull

Input: G is a graph (used to check automorphism), p is the reference discrete partition,
π is a partition finer than π0, π̃ is the set used to refine

Returns: result is (the set of generators of) the group of automorphisms that of G that
fix π.

1: function FindAutomorphisms(G, p, π, π̃)
2: var
3: c:cell . c is the first cell of π of maximal length
4: v:vertex . v ∈ c
5: π′:partition . π′ is finer than π
6: end var
7: result := ∅
8: π′ := R(G, π, π̃)
9: if π′ is discrete then . p and π′ define a map

10: if the map from (p, π′) denotes an automorphism then
11: result := {that automorphism}
12: else
13: result := ∅
14: end if
15: else . recursion; this terminates since the number of cells in
16: c :=the first cell of π′ of maximal length
17: for v ∈ c do
18: if an automorphism σ of G is known such that σ(π′) = π′ and such that

there exists a marked v′ ∈ c with σ(v′) = v then
19: do nothing . no new generator will be found, v does not have to be

marked
20: else
21: result := result∪FindAutomorphisms(G, p, π′ ◦ v, (v))
22: mark v
23: end if
24: end for
25: end if
26: return result
27: end function

(1) RG,π(α) is finer than π
(2) RGσ,πσ (ασ) = RG,π(α)σ, for all σ ∈ Sym(V).

A function defined this way is called a refinement function. Now we will give an example
of a refinement function (this is algorithm 1 from

McKay77
[16] and algorithm 2.5 in

McKay81
[17]). This is

the standard algorithm that is used in nauty. For some types of graphs other refinement
functions might give better results.

The idea behind the algorithm is looking at the number of edges between cells of a
partition. Let Vi be cells of a partition π. Let Vj be another cell of π. Now calculate the
value of adjVi

(·) for the points in Vj . If the value is not the same for all points, then it is
possible to make a finer partition, in which Vj is split according to the different values.

This function can be used to narrow down the number of possibilities. The number
of cells can be increased in a way that is invariant under automorphisms. When using a
reference discrete partition it is also possible to check if the adjv(·) values are the same.
If they are not, then no map from a partition finer than the current partition and the
reference partition can be an automorphism. This has been implemented in the proof
assistant.

Define π ⊥ v to be the refinement R(G, π ◦ v, ({v})). If |Vi| = 1 then π ◦ v is π.

6 ARJEH M. COHEN, JAN WILLEM KNOPPER, AND SCOTT H. MURRAY

1 2

3 45

6 7

8

Figure 1. A graph and the corresponding new labeling resulting from
the partition [1|5|3|7|2|4|6|8]

3.3. Implementation and our modifications. A pair of discrete partitions of the same
graph gives a map from V to V . If such a map keeps the edges invariant it is an automor-
phism. Note that it is possible to generate the automorphism group by fixing one discrete
partition and letting the other run through the possibilities.

These possibilities can be narrowed down by using the refinement function R. Let π
and π′ be partitions of the same graph. Suppose there exists an automorphism σ such that
for every vertex v π(v) = π′(σ(v)), then because of the nature of the refinement function
(R(π))(v) = (R(π′))(σ(v)). In general it is not necessary to prove the full refinement
procedure. It is enough to show that the step, in which the partitions are made finer goes
parallel (if it doesn’t then there cannot be an automorphism and we’re finished).

For the children of the node, it is enough to look at vertices in different orbits. Suppose
π is a partition in the tree and u1 and u2 are vertices to split and a is an automorphism
such that a(u1) = u2, then for every vertex v : a((π ⊥ u1)(v)) = (π ⊥ u2)(v). This means
that the node π ⊥ u2 has only leaves as descendants that are either not isomorphic or
isomorphic with an automorphism already calculated from the descendants of π ⊥ u1.

Each leaf, or discrete partition in the search tree, is compared with the fixed partition.
If the resulting map is an automorphism it is added to the generators of the automorphism
group.

McKay has written an implementation of his algorithm called nauty
nauty
[15]. This imple-

mentation is in C
Kernighan88a
[13]. Included in the implementation is an interactive program called

dreadnaut. It has options to give more information. We have extended these options
so that with new options turned on dreadnaut will produce output needed to construct a
proof. In particular, we display which node of the search tree we are currently working on.
We also display the partition computed in line 15 of Algorithm

Refinement
3, whenever this partition

is strictly finer than the existing one.
This modified dreadnaut program is called from GAP. The data from the calculation

in dreadnaut is sent to standard output in XML form and parsed using the XML parser

AUTOMATIC PROOF OF GRAPH NONISOMORPHISM 7

Algorithm 3 Refinement algorithm
Refinement

Input: G is a graph (used to calculate d), π is the partition that needs to be refined and
α = (W1 . . . WM) is a list of cells, with which the partition will be refined.

Returns: π̃, a partition finer than π . more can be said, but this is not needed to
generate a proof

1: function R(G, π, α)
2: var
3: π̃:partition . a partition finer than π
4: π′:partition . a partition finer than π
5: α̃:partition . a partition finer than α
6: m:integer . index of α̃
7: t:integer . position in π′

8: end var
9: π̃ := π . π̃ is finer than π

10: α̃ := α
11: m := 1 . M = α̃ only grows if π̃ becomes strictly finer.
12: while m ≤ |α̃| and π̃ is not discrete do
13: k := 1 . Let |π̃| = K. Then K − k decreases and is nonnegative.
14: while k ≤ |π̃| do
15: calculate the partition π′ = (X1, . . . , Xs) of π̃[k] ordered by adjα̃[m].
16: let t be the index of the first set in π′ with maximal size

17: if π̃[k] = α̃[j], for any j then
18: replace α̃[j] by π′[t]
19: end if

20: for i := 1 to t− 1 do
21: append π′[i] to α̃
22: end for
23: for i := t + 1 to |π′[i]| do
24: append π′[i] to α̃
25: end for

26: update π̃ by splitting the cell π̃[k] into the cells X1, . . . , Xs in that order.
. π̃ becomes finer.

27: k := k + 1
28: end while
29: m := m + 1
30: end while
31: return π̃
32: end function

in the GAPDoc package. The resulting tree is then traversed recursively and transformed
into a human readable proof. At the moment a lot of information is sent from dreadnaut
to GAP in this way. It should be possible to reduce this to improve performance. Some of
the calculations in the refinement function turn out not to be necessary in the final proof,
but know beforehand that they are necessary. These calculations are removed

3.4. Example. We want to check whether the two graphs are isomorphic, but the part
of nauty that we use gives the automorphism group of a colored graph. It is then possible
to check whether a vertex can be mapped to a vertex of the other graph by creating a
new graph by adding an edge between two vertices of the same color of different graphs,

8 ARJEH M. COHEN, JAN WILLEM KNOPPER, AND SCOTT H. MURRAY

coloring these two vertices in a new color and running the algorithm on that graph and
that edge. It is clear that if for all pairs of vertices there are no automorphisms that
exchange the graphs, there is no graph isomorphism. It is sufficient to fix a vertex in one
of the graphs and to only use one vertex in an orbit of the other graph.

Figure 2. Two graphs nauty1

Now look at the graphs in Figure
nauty1
2. We use the upper left vertex of the right graph

and look at the orbits of the left graph. All vertices are in the same orbit (under rotation).
So it is sufficient to do the construction on the upper right vertex: see Figure

nauty2
3.

Figure 3. The two graphs connected by an edge nauty2

The search tree in Figure
nautyTree
4 is formed by refining and case distinction. The root of

the search tree is the starting partition [15|234678]. From looking ahead at the algorithm
output, we get the reference partition p = [1|5|3|7|2|4|6|8]. The starting partition can be
refined to [1|5|3|7|24|68] in a number of steps. Since there has not been case distinction
yet, all discrete partitions p′ finer than the starting partition can be refined in the same
way and we will not prove this for each refining step.

If we look at how the cell 234678 is connected to 15 we see that 3 and 7 are the only
two vertices that have no connection to 15 and we can therefore split the partition to
[15|37|2468]. Now we look at how 2468 is connected to itself. The vertices 6 and 8 are
connected to another vertex in 2468 but 2 and 4 are not. The partition can now be split
further to [15|37|24|68]. Now we look at how 15 is connected to 24. 1 is connected to 24,
but 5 is not. The partition can therefore be split to [15|37|24|68]. Finally we look at how
37 is connected to 24. 3 is connected to two vertices of 24 and 7 is connected to none. So
we end get the partition [1|5|3|7|24|68].

Since this partition cannot be split further by refinement (it is not necessary to prove
this, we would just be doing more work), the tree is split by case distinction of 24: we can
color 24 so that γ(2) < γ(4) or so that γ(4) < γ(2) (where γ is the coloring).

In the left branch we have a case distinction again for the cell 68 and we get our first two
end-nodes. The graphs represented by these end-nodes are isomorphic with isomorphism
(6, 8). The first leaf we get is [1|5|3|2|4|6|8] which is our reference partition p. If p′ = p we

AUTOMATIC PROOF OF GRAPH NONISOMORPHISM 9

get the identity. The second leaf is p′ = [1|5|3|7|2|4|8|6], which leads to the automorphism
(6, 8).

Now we return to the case γ(4) < γ(2). Since we know that 6 and 8 are in the same
orbit under permutations that stabilize 2 and 4 we can to assume γ(6) < γ(8). This gives
us another end-node p′ = [1|5|3|7|4|2|6|8], which gives another isomorphism with the first
end-node: (2, 4).

The automorphism group now becomes 〈(2, 4), (6, 8)〉. There are no automorphisms
that interchange 1 and 5, and therefore the graphs are not isomorphic.

[15|234678]

[15|37|2468]

[15|37|24|68]

[1|5|37|24|68]

[1|5|3|7|24|68]

�
�����

HHHH
HH

[1|5|3|7|2|4|68]

�
���

H
HHH

[1|5|3|7|2|4|6|8] [1|5|3|7|2|4|8|6]

[1|5|3|7|4|2|68]

[1|5|3|7|4|2|6|8]

Figure 4. The search tree in McKay’s algorithm nautyTree

4. Towards a proof assistant
PAGN

We have developed a software package for automatically constructing a proof of (non)isomorphism
of two given graphs. It is possible to ask for a specific proof by choosing invariants, calling
Luks’ algorithm, or calling McKay’s algorithm. Conceivable the package be made more
interactive by, for example, by using a vertex invariant as the coloring in the first step of
MacKay’s algorithm.

The software can derive the automorphism group of a single graph by calling the
algorithm from Section

mckay
3. It can further derive a proof of graph nonisomorphism by using

the graph automorphism algorithm from Section
mckay
3 in the following way.

The proof assistant and most of the algorithms assume that the graphs are connected.
For example Luks’s algorithm fails if the graphs are not connected. However it is rela-
tively easy to reduce graph (non-) isomorphism of unconnected graphs to graph (non-)
isomorphism of the connected components.

Because of the recursive nature of our proof, it is possible to modify the output for
the level of mathematical sophistication of the user by removing low-level lemmas. The
following example, using the graphs above, has been modified in this way.
Proposition: the graph G with vertices [1, 2, 3, 4] and edges [[1, 2], [1, 4], [2, 3], [3, 4]] and

the graph H with vertices [1, 2, 3, 4] and edges [[1, 2], [1, 4], [2, 3], [2, 4], [3, 4]] are not5
isomorphic.

Proof:

Suppose that p is an isomorphism that transforms G to H. Let v = 1^p. For all vertices v of H we show that

there are no isomorphisms transforming 1 to v.

To prove this we can use information about the orbits of H under automorphisms on H. If a is an automorphism10
and v^a=v’, then 1^p = v’ if and only if 1^p^(a^-1) = v. In other words it is enough to verify for all v in

different orbits.

Let A be the group generated by (2,4) and (1,3). It is straightforward to verify that A is a group of

automorphisms of H. Then we calculate the orbits.

Proposition: The orbits of A are [1, 3] and [2, 4]. (proof hidden)15
It suffices to consider one vertex for each orbit i.e. the cases for v = 1 and v = 2.

case v = 1

From G and H we now construct a new graph F by relabelling G with (), relabelling H with

(1,5)(2,6)(3,7)(4,8) and by joining the images of 1 of G and 1 of H with a new edge.

10 ARJEH M. COHEN, JAN WILLEM KNOPPER, AND SCOTT H. MURRAY

The resulting graph F has vertices [1 .. 8], edges [[1, 2], [1, 4], [1, 5], [2, 3], [3, 4], [20
5, 6], [5, 8], [6, 7], [6, 8], [7, 8]] and new coloring [1 5 | 2:4 6:8].

We now calculate the automorphism group of F and check whether there exists an automorphism that

transforms 1 to 5.

The automorphism group of the coloured graph G with vertices [1 .. 8] and edges [[1, 2], [1, 4], [

1, 5], [2, 3], [3, 4], [5, 6], [5, 8], [6, 7], [6, 8], [7, 8]] and colored by the25
partition [1 5 | 2:4 6:8] is generated by the permutations [(6,8), (2,4)].

Proof:

Lemma: The permutations [(6,8), (2,4)] are automorphisms. (This is straightforward to verify.)

Any automorphism can be written in the form p^-1 p’, with p a fixed permutation and p’ a variable

permutation.30
Let p be [1 | 5 | 3 | 7 | 2 | 4 | 6 | 8] i.e. (2,5)(4,7,6) in cycle notation.

If [1 2 | 3:8]^p’ = [1 5 | 2:4 6:8] then [1 | 2 | 3 | 4 | 5 6 | 7 8]^p’ =[1 | 5 | 3 | 7 | 2 4 | 6

8].

Proof:

Lemma (refine part)35
If [1 2 | 3:8]^p’ = [1 5 | 2:4 6:8] then [1 2 | 3 4 | 5:8]^p’ = [1 5 | 3 7 | 2 4 6 8].

Proof:

Look at [1 2]^pi and how it is connected to [3:8]^pi, for pi=p,p’.

First for p

[1 2]^p = [1 5].40
[3:8]^p = [2:4 6:8].

The vertices 3 7 are not connected to any vertices of [1 5].

The vertices 2 4 6 8 are each connected to 1 vertex of [1 5].

QED(p)

Then for p’45
[1 2]^p’ = [1 5].

[3:8]^p’ = [2:4 6:8].

The vertices 3 7 are not connected to any vertices of [1 5].

The vertices 2 4 6 8 are each connected to 1 vertex of [1 5].

QED(p’)50
If p^-1p’ is an automorphism then it transfers [1 5] to [1 5] and [2:4 6:8] to [2:4 6:8] and

must therefore transfer [3 7] to [3 7] and [2 4 6 8] to [2 4 6 8].

Since [1 2 | 3 4 | 5:8]^p = [1 5 | 3 7 | 2 4 6 8], we now know that [1 2 | 3 4 | 5:8]^p’ = [1

5 | 3 7 | 2 4 6 8].55
QED(refine part)

Lemma (refine part)

If [1 2 | 3 4 | 5:8]^p’ = [1 5 | 3 7 | 2 4 6 8] then [1 2 | 3 4 | 5 6 | 7 8]^p’ = [1 5 | 3 7

| 2 4 | 6 8].

Proof:60
Look at [5:8]^pi and how it is connected to [5:8]^pi, for pi=p,p’.

First for p

[5:8]^p = [2 4 6 8].

The vertices 2 4 are not connected to any vertices of [2 4 6 8].

The vertices 6 8 are each connected to 1 vertex of [2 4 6 8].65
QED(p)

Then for p’

[5:8]^p’ = [2 4 6 8].

The vertices 2 4 are not connected to any vertices of [2 4 6 8].

The vertices 6 8 are each connected to 1 vertex of [2 4 6 8].70
QED(p’)

If p^-1p’ is an automorphism then it transfers [2 4 6 8] to [2 4 6 8] and must therefore

transfer [2 4] to [2 4] and [6 8] to [6 8].

Since [1 2 | 3 4 | 5 6 | 7 8]^p = [1 5 | 3 7 | 2 4 | 6 8], we now know that [1 2 | 3 4 | 5 6 |75
7 8]^p’ = [1 5 | 3 7 | 2 4 | 6 8].

QED(refine part)

Lemma (refine part)

If [1 2 | 3 4 | 5 6 | 7 8]^p’ = [1 5 | 3 7 | 2 4 | 6 8] then p^-1p’ does not interchange 1 and 5.

Proof:80
Look at [7 8]^pi and how it is connected to [1 2]^pi, for pi=p,p’.

First for p

[7 8]^p = [6 8].

[1 2]^p = [1 5].

The vertex 1 is not connected to any vertices of [6 8].85
The vertex 5 is connected to 2 vertices of [6 8].

QED(p)

Then for p’

[7 8]^p’ = [6 8].

[1 2]^p’ = [1 5].90
The vertex 1 is not connected to any vertices of [6 8].

The vertex 5 is connected to 2 vertices of [6 8].

QED(p’)

If p^-1p’ is an automorphism then it transfers [6 8] to [6 8] and [1 5] to [1 5] and must

therefore transfer [1] to [1] and [5] to [5].95

Since [1 | 2 | 3 4 | 5 6 | 7 8]^p = [1 | 5 | 3 7 | 2 4 | 6 8], we now know that [1 | 2 | 3 4 |

5 6 | 7 8]^p’ = [1 | 5 | 3 7 | 2 4 | 6 8].

QED(refine part)

Lemma (refine part)100
If [1 | 2 | 3 4 | 5 6 | 7 8]^p’ = [1 | 5 | 3 7 | 2 4 | 6 8] then p^-1p’ does not interchange 1

and 5.

Proof:

Look at [7 8]^pi and how it is connected to [3 4]^pi, for pi=p,p’.

First for p105
[7 8]^p = [6 8].

[3 4]^p = [3 7].

The vertex 3 is not connected to any vertices of [6 8].

The vertex 7 is connected to 2 vertices of [6 8].

QED(p)110
Then for p’

[7 8]^p’ = [6 8].

[3 4]^p’ = [3 7].

The vertex 3 is not connected to any vertices of [6 8].

The vertex 7 is connected to 2 vertices of [6 8].115

AUTOMATIC PROOF OF GRAPH NONISOMORPHISM 11

QED(p’)

If p^-1p’ is an automorphism then it transfers [6 8] to [6 8] and [3 7] to [3 7] and must

therefore transfer [3] to [3] and [7] to [7].

Since [1 | 2 | 3 | 4 | 5 6 | 7 8]^p = [1 | 5 | 3 | 7 | 2 4 | 6 8], we now know that [1 | 2 | 3120
| 4 | 5 6 | 7 8]^p’ = [1 | 5 | 3 | 7 | 2 4 | 6 8].

QED(refine part)

QED(refinement)

Now we look at all the different possibilities for [1 | 2 | 3 | 4 | 5 6 | 7 8]^p’ = [1 | 5 | 3 | 7 |

2 4 | 6 8] by looking at different possibilities for 5^p’.125
Suppose that 5^p’ = 2.

Now [1 | 2 | 3 | 4 | 5 | 6 | 7 8]^p’ = [1 | 5 | 3 | 7 | 2 | 4 | 6 8].

Now we look at all the different possibilities for [1 | 2 | 3 | 4 | 5 | 6 | 7 8]^p’ = [1 | 5 | 3

| 7 | 2 | 4 | 6 8] by looking at different possibilities for 7^p’.

Suppose that 7^p’ = 6.130
Now [1 | 2 | 3 | 4 | 5 | 6 | 7 | 8]^p’ = [1 | 5 | 3 | 7 | 2 | 4 | 6 | 8].

So p’ = [1 | 5 | 3 | 7 | 2 | 4 | 6 | 8] or (2,5)(4,7,6).

Then p^-1p’ = () is an automorphism.

Further more it is included in H (it is the identity).

QED(case 7^p’ = 6)135
Suppose that 7^p’ = 8.

Now [1 | 2 | 3 | 4 | 5 | 6 | 7 | 8]^p’ = [1 | 5 | 3 | 7 | 2 | 4 | 8 | 6].

So p’ = [1 | 5 | 3 | 7 | 2 | 4 | 8 | 6] or (2,5)(4,7,8,6).

Then p^-1p’ = (6,8) is an automorphism.

Further more it is included in H (it is a generator of H).140
QED(case 7^p’ = 8)

QED(case distinction 7^p’)

QED(case 5^p’ = 2)

Suppose that 5^p’ = 4.

Now [1 | 2 | 3 | 4 | 5 | 6 | 7 8]^p’ = [1 | 5 | 3 | 7 | 4 | 2 | 6 8].145
Now we look at all the different possibilities for [1 | 2 | 3 | 4 | 5 | 6 | 7 8]^p’ = [1 | 5 | 3

| 7 | 4 | 2 | 6 8] by looking at different possibilities for 7^p’.

Suppose that 7^p’ = 6.

Now [1 | 2 | 3 | 4 | 5 | 6 | 7 | 8]^p’ = [1 | 5 | 3 | 7 | 4 | 2 | 6 | 8].

So p’ = [1 | 5 | 3 | 7 | 4 | 2 | 6 | 8] or (2,5,4,7,6).150
QED(case 7^p’ = 6)

QED(case distinction 7^p’)

QED(case 5^p’ = 4)

QED(case distinction 5^p’)

QED(automorphismgroup)155
QED(case v = 1)

case v = 2

From here on the proof is similar to the case v = 2 and hence deleted.

160
QED(case v = 2)

QED(case distinction)

QED(graphisomorphism)

The graphical frontend of our proof assistant is written in Java. Most of the algorithms
are written in GAP. From Java it is possible to call these through the RIACA GAP
Service by the corresponding RIACA GAP Link

gaplink
[7]. From GAP a modified local copy of

dreadnaut is called on demand. The information to dreadnaut is send in the format used
by dreadnaut, the information sent back to GAP is sent in a simple XML format. For
the link with GAP we use the OpenMath library

omlib
[18] and GAP phrasebook from RIACA.

They depend on the parsing library ANTLR
antlr
[1].

References

antlr [1] ANTLR Reference Manual, 2005. Available from World Wide Web: http://www.antlr.org/doc/
index.html.

BrouwerCohenNeumaier [2] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-regular graphs, volume 18 of Ergebnisse
der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].
Springer-Verlag, Berlin, 1989.

Cohen [3] Arjeh Cohen and Scott Murray. Certifying solutions to permutation group problems. Lecture notes
for the Calculemus Autumn School, Pisa, 23 Sep-4 Oct 2002. Available from World Wide Web:
http://www.win.tue.nl/∼amc/pub/permgp.pdf.

CohenAutomated [4] Arjeh Cohen, Scott Murray, Martin Pollet, and Volker Sorge. Certifying solutions to permutation
group problems. In Franz Baader, editor, 19th International Conference on Automated Deduction,
pages 258–273. Springer-Verlag, Berlin, 2003.

Cormen1 [5] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to algorithms. The
MIT Electrical Engineering and Computer Science Series. MIT Press, Cambridge, MA, 1990.

GAP4 [6] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4, 2004. Available
from World Wide Web: http://www.gap-system.org.

gaplink [7] RIACA GAP phrasebook, 2004. Available from World Wide Web: http://www.mathdox.org/
phrasebook/gap/.

gxlcore [8] GXL core 0.92 API, 2004. Available from World Wide Web: http://gxl.sourceforge.net/docs/
gxl/api/index.html.

gxl [9] Ric Holt, Andy Schrr, Susan Elliot Sim, and Andreas Winter. Graph exchange language 1.0 - dtd,
2001. Available from World Wide Web: http://www.gupro.de/GXL/.

jgraph [10] JGraph v5.7.2 API Specification, 2005. Available from World Wide Web: http://www.jgraph.com/
doc/jgraph/.

12 ARJEH M. COHEN, JAN WILLEM KNOPPER, AND SCOTT H. MURRAY

jgrapht [11] JGraphT: a free Java graph library, 2005. Available from World Wide Web: http://jgrapht.
sourceforge.net/javadoc/.

jlfgr [12] Java look and feel graph repository, 2000. Available from World Wide Web: http://java.sun.com/
developer/techDocs/hi/repository/.

Kernighan88a [13] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Second Edition. Prentice-
Hall, Englewood Cliffs, New Jersey, 1988.

Luks [14] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time. J.
Comput. System Sci., 25(1):42–65, 1982.

nauty [15] Brendan D. McKay. nauty User’s Guide. Computer Science Department Australian National Uni-
versity, ACT 0200, Australia. Available from World Wide Web: http://cs.anu.edu.au/∼bdm/nauty/
nug.pdf. version 2.2.

McKay77 [16] Brendan D. McKay. Computing automorphisms and canonical labellings of graphs. In Combina-
torial mathematics (Proc. Internat. Conf. Combinatorial Theory, Australian Nat. Univ., Can-
berra, 1977), volume 686 of Lecture Notes in Math., pages 223–232. Springer, Berlin, 1978.

McKay81 [17] Brendan D. McKay. Practical graph isomorphism. In Proceedings of the Tenth Manitoba Confer-
ence on Numerical Mathematics and Computing, Vol. I (Winnipeg, Man., 1980), volume 30,
pages 45–87, 1981.

omlib [18] RIACA OpenMath library, 2004. Available from World Wide Web: http://www.mathdox.org/omlib/.
pagnurl [19] Proof assistant for graph non-isomorphism, 2006. Available from World Wide Web: http://www.

mathdox.org/graphiso/.
mapplet [20] Erik Postma. RIACA mapplet, 2005. Available from World Wide Web: http://www.mathdox.org/

mapplet/.
java [21] Sun. Java 2 Platform, Standard Edition, v 1.4.2 API Specification, 2004. Available from World

Wide Web: http://java.sun.com/j2se/1.4.2/docs/api/.

