
An automated proof theory approach to

computation with permutation groups

Arjeh M. Cohen
Department of Mathematics

Eindhoven University of Technology
Netherlands

Scott H. Murray
School of Mathematics and Statistics

University of Sydney
Australia

October 21, 2002

Abstract

This is an introduction to data structures for permutation groups
with a proof theoretic flavour.

1 Introduction

In this paper, we introduce the reader to computational permutation group
theory. We describe the basic concepts and first results in this area of math-
ematics, as well as the data structures required to do actual computations.
We follow [1]. Although our aim is to apply the theory to the graph isomor-
phism problem, in the present notes we only go as far as determining the
order of a group generated by a given set of permutations.

In the spirit of the Calculemus Autumn School, our approach will be
proof theoretic. Computer algebra has always had an emphasis on com-
plexity of algorithms, so that bigger and bigger problems could be solved
on a given machine. The internet will play an increasingly large role in the
exchange of mathematics between people, and we believe this will require
a different approach to computational mathematics. As the exchange of
mathematics across the World Wide Web becomes easier than solving all

1

problems locally, the management of mathematical queries becomes more
prominent. The problem of verifying the correctness of computations is
particularly acute when they are no longer done on local machines with
software the user trusts.

In this paper, our queries are invocations of permutation group algo-
rithms that have been developed over the years and are implemented as
part of the GAP computer algebra package. The response to a query is the
output of the algorithm, which may have been run on a remote computer
which the user knows nothing about. The user has reason to doubt the
validity of the response, and so will demand some kind of verification. Since
our queries are mathematical in nature, this verification should take the
form of (an encoding of) a proof.

A classical example is the factorization of a natural number. If a sequence
p1, p2, . . . , pt of numbers is returned as a response to the query “factor the
natural number n,” it is easy for the user to verify whether n = p1 · · · pt.
In order to verify that each pi is a prime number, it would be very useful
to receive additional data, such as the primality witnesses for each pi. This
example has been worked out by Olga Caprotti, Martijn Oostdijk and the
first author [3, 2].

We treat computational permutation group theory in a similar manner.
We give additional data that allows for a relatively easy check of the correct-
ness of the answer. Of course this requirement may prevent us from using
the most efficient possible algorithms and implementations. In general, we
use functions in the computer algebra system GAP, which are close to the
state of the art. However, on occasion we have been forced to implement
simpler methods that allow us to provide the data for a straightforward
verification of the result.

This paper will be concerned with providing human readable proofs that
could be transformed to a computer checkable proof without too much effort.
In this way, we contribute to the integration of computer algebra and proof
verification, which is the research focus of the Calculemus project.

2 Membership

We address the the question how to prove that the permutation g belongs
to the group G. In computational permutation group theory, a group G is
specified by a set of generating permutations A. Suppose that

A = {a1, a2, . . . , ak}

2

consists of permutations of the points Ω := {1, 2, . . . , n}, i.e., A is a subset
of the symmetric group Symn. Hence, by the definition of a generating set,
G is the unique smallest subgroup of Symn which contains A.

We define a word in A to be an expression of the form

ae1i1 a
e2
i2
· · · aemim

where the indices ij are in the range 1, . . . , k and the exponents ej are
integers. It is now easily shown that the set of words in A form a subgroup
of Symn, and it is obvious that there is no smaller subgroup containing A.
Hence a permutation g ∈ Symn is an element of G if, and only if, it can
be expressed as a word in A. (A note for those who know combinatorial
group theory: since we make little use of words, we are not making the
normal distinction between a word in the free group, and its evaluation in
the symmetric group).

Writing an arbitrary permutation g as a word in A is a difficult compu-
tational problem, which is beyond the scope of this tutorial. Instead we just
use the existing methods implemented in GAP without explaining how they
work. See Section 8, for a technique to show that a permutation is not an
element of G.

Example 2.1 The Mathieu group on 11 points, M11, has generating set
A = {a1, a2}, where:

a1 = (1, 10)(2, 8)(3, 11)(5, 7),
a2 = (1, 4, 7, 6)(2, 11, 10, 9).

Query input

• A permutation g.
• A list A of permutations generating G.
• We are given the fact that g ∈ 〈A〉.

GAP input

G := Group(A);
IsIn_Proof(g,G);

GAP output A word in A that is equal to g.

Query output By definition, G is generated by A and so G consists of
those elements that can be expressed as a word in A. In particular
g = IsIn Proof(g,G), and so belongs to G.

3

3 Subgroup

Suppose H is another permutation group with generating set B. How to
prove that H is a subgroup of G? From the definition of a generating set
it follows that H is a subgroup of G if, and only if, every element of B is
contained in G.

Query input

• A list A of permutations which generate G.

• A list B of permutations which generate H.

• We are given the fact that H is a subgroup of G.

GAP input

G := Group(A);
H := Group(B);
IsSubgroup_Proof(H,G);

GAP output A list of words in A indexed by B.

Query output In order to show that H is a subgroup of G, it suffices
to show that each element of the generating set B belongs to G.
IsSubgroup Proof(H,G) presents, for each element b of B, how it
can be expressed as a word in A. This establishes that each element
of B belongs to G, and so H is a subgroup of G.

4 Orbit

The concept of an orbit is used in the construction of sets of coset repre-
sentatives for stabilisers. Let G be a permutation group on {1, . . . , n}. The
orbit of x under the action of G is

xG = {xg : g ∈ G} .

Suppose G has generating set A = {a1, a2, . . . , ak} and let X be an orbit
of G. Then the orbit graph G (on X) has vertex set X, label set {1, 2, . . . , k}
and labeled edges

y
i−→ z where yai = z.

4

�
�
�

@
@
@�

�
�

@
@
@

�
�
� @

@
@

�
�
�@

@
@

1 10

9

2

11

3

8

4

7

6

5

Figure 1: Orbit graph of M11

Example 4.1 Consider M11 = 〈s1, s2〉, where s1 and s2 are defined in Ex-
ample 2.1. The action of {s1, s2} on the orbit X = {1, 2, . . . , 11} is shown
in Figure 1, where the dotted lines are labeled by 1 and solid lines by 2.

Algorithm 4.1 Calculate orbit

(∗ input: x ∈ Ω, generating set A = {a1, a2, . . . , ak}.
output: X = xG. ∗)

begin
let X = {x};
for y ∈ X, for a ∈ A do

let y = ya;
if y 6∈ X then

add y to X;
end if;

end for;
return X;

end

This algorithm terminates after it has applied every generator to every point
in X.

Query Input

• A list A of permutations generating G.

• A point x.

5

GAP input

G := Group(A);
Orbit_Proof(G,x);

GAP output A set of points X and a list B of words in A indexed by X.
The set X is just the orbit xG. The word in A corresponding to y ∈ X
maps x to y.

Query output In order to show that X is the G-orbit of x, we need to
show two statements:

1. Each element of A leaves the setX invariant. This is a straightfor-
ward check that the cycles containing points of X do not contain
any points not in X.

2. Each element of X is image of x under an element of G. These
elements are produced by the table Orbit Proof(Group(A), x).

5 Schreier tree

Stabiliser subgroups are of fundamental importance to both theoretical and
computational permutation group theory. The stabiliser subgroup in G of x
is

Gx = {g ∈ G : xg = x}.

It is not immediately clear how to compute with this subgroup, since the
definition gives us a test for whether g is an element of Gx, but does not
give us for example a generating set.

The following lemma gives us a one-to-one correspondence between the
orbit of a point and the set of cosets of its stabiliser.

Lemma 5.1 (Orbit Lemma) If y ∈ xG, then {g ∈ G : xg = y} is a coset
of Gx. In particular, |xG| = |G|/|Gx|.

Proof: Choose h ∈ G such that xh = y; then

{g ∈ G : xg = y} = {g ∈ G : xg = xh}
=

{
g ∈ G : xgh−1 = x

}
=

{
g ∈ G : gh−1 ∈ Gx

}
= Gxh.

Hence there is a one-to-one correspondence between the orbit and the cosets,
and the second result follows. �

6

@
@
@�

�
�

@
@
@

�
�
� @

@
@

�
�
�

1 10

9

2

11

3

8

4

7

6

5

Figure 2: Schreier tree T for M11

Suppose that for every element y of the orbit xG, we choose t(y) ∈ G with
the property that xt(y) = y. Then it follows immediately from the Orbit
Lemma 5.1 that all such t(y) form a set of coset representatives for Gx in
G.

It would be inefficient to store all the elements t(y), so instead we con-
struct a Schreier tree rooted at x. That is, a subgraph T of the orbit graph
G containing x which is a tree (when we view the edges as being undirected)
with root x. For every y ∈ X, there is a unique minimal path in T from x
to y (again, disregarding the fact that the labeled edges are directed).

Example 5.1 Consider M11 with the generating set of Example 2.1. Then
G is the graph shown in Figure 1, where dotted lines are labeled by 1 and
solid lines by 2. A Schreier tree T rooted at 1 is shown in Figure 2.

In practice, we store this tree in a linearized form, using two vectors
v : X → {−m, . . . ,−1, 0, 1, . . . ,m} and ω : X → X ∪ {0} defined by:

ω(z) =
{
y if y is adjacent to z and on the minimal path from z to x
0 if z = x

v(z) =

l if y = ω(z) and y

l−→ z is in T
−l if y = ω(z) and y

l←− z is in T
0 if z = x

We call v the Schreier vector and ω the backpointers. They can be
computed by a modified version of the orbit algorithm.

Algorithm 5.1 Calculate orbit

7

(∗ input: x ∈ Ω, generating set A = {a1, a2, . . . , ak}.
output: X = xG, Schreier vector v, vector of backward pointers ω. ∗)

begin
let X = {x};
let v (x) = ω (x) = 0;
for x ∈ X, for j = 1, . . . , k do

let y = xaj;
if y 6∈ X then

add y to X;
let v(y) = j, ω(y) = x;

end if;
let y = xaj

−1;
if y 6∈ X then

add y to X;
let v(y) = −j, ω(y) = x;

end if;
end for;
return X, v, ω;

end

Example 5.2 The linearized version of the Schreier tree in Figure 2, rooted
at 1, is given in the following table.

1 2 3 4 5 6 7 8 9 10 11
v 0 2 1 2 1 2 2 1 2 1 2
ω 0 9 11 1 7 7 4 2 10 1 2

We can also choose the root in Figure 2 to be 5. This results in the following
linearized version of the Schreier tree rooted at 5.

1 2 3 4 5 6 7 8 9 10 11
v −2 2 1 −2 0 2 −1 1 −2 1 2
ω 4 9 11 7 0 7 5 2 10 1 2

Query Input

• A list A = [a1, . . . , ak] of permutations generating G.

• A point x.

GAP input

8

G := Group(A);
SchreierData(G,x);

GAP output A triple [X, v, ω] of integer sequences consisting of the orbit,
the Schreier vector, and the backpointers.

Query output Consider the table SchreierData(G, x). It has three rows,
the first of which represents the orbit X = xG. In order to show that
X is indeed the G-orbit containing x, see Section 4. To show that v
is a Schreier vector and ω its backpointers, consider a column of the
table, say xj , vj , ωj . It suffices to show that xja−vj = ωj if vj < 0
and that xja−1

vj = ωj if vj > 0. This is a (perhaps tedious but) trivial
check.

The Schreier tree enables us to create a set U of coset representatives for
Gx inG and a map t : G→ U sending an element g ofG to the representative
of Gxg as follows. For g ∈ G, there is a minimal path x = x0, x1, . . . , xm =
xg in the Schreier tree T from x to xg. Write bj = av(xj) if v(xj) > 0 and
bj = a−1

−v(xj)
if v(xj) < 0. Then t(g) = b1 · · · bm satisfies xt(g) = xg and

t(g) = t(hg) whenever h ∈ Gx. So, taking U to be the image of the map
t : G→ G, we find that U and t are as required.

Example 5.3 The values of t depend only on the coset of Gx in which the
argument lies. Hence we can also give t as a function on the orbit X of G
with the understanding that t(g) = t(xg).

For the group M11 with generators as introduced in Example 2.1, with
the Schreier tree rooted at 1 as discussed in Example 5.2, the values of t on
X = {1, . . . , 11}, written as words in A = [a1, a2], are as follows.

y 1 2 3 4 5 6 7 8 9 10 11
t(y) 1 a1a

2
2 a1a

−1
2 a1 a2 a2

2a1 a−1
2 a2

2 a1a
2
2a1 a1a2 a1 a1a

−1
2

As suggested by the example, the set U of values of t can be used to
construct the table in part 2 of the proof in the end of Section 4 that X is
a G-orbit.

6 Stabiliser

Now that we have a set of coset representatives for Gx, we can use it to
compute a generating set, with the following lemma.

9

Lemma 6.1 (Schreier’s lemma) Suppose G is a group with generating
set A, and H is a subgroup of G. If U is a set of coset representatives
for H in G, and the function t : G → U maps an element g of G to the
representative of Hg, then a generating set for H is given by{

ua t(ua)−1 : u ∈ U, a ∈ A
}
.

Proof: Throughout the proof we shall use the fact that, for g, h ∈ G, we
have t(g) = t(h) if and only if Hg = Hh.

Let h be an element of H. It can be written in the form b1b2 · · · bl, where
each bi, or its inverse, is in A. Let ui = t(b1b2 · · · bi), so that Hb1b2 · · · bi =
Hui for i = 0, 1, . . . , l. Then u0 = t(1) = 1 and ul = t(h) = 1, so

h = u0hu
−1
l = (u0b1u

−1
1)(u1b2u

−1
2) · · · (ul−1blu

−1
l).

Therefore, it suffices to show each ui−1biu
−1
i is of the form

(
ua t(ua)−1

)ε
where u ∈ U, a ∈ A, ε ∈ {±1}. Consider ui−1biu

−1
i , for i = 1, 2, . . . , l. Now

ui = t(b1b2 · · · bi) = t(ui−1bi), since Hb1b2 · · · bi = Hui−1bi. Let u = ui−1 ∈
U and b = bi; we can now write

ui−1biu
−1
i = ub t(ub)−1.

This has the desired form if b ∈ A (with ε = 1); otherwise, b = a−1 for some
a ∈ A and let v = t(ua−1) ∈ U . Since Hva = Hua−1a = Hu, we have
t(va) = u, and so the inverse of ub t(ub)−1 can be written

t(ua−1) au−1 = va t(va)−1,

which has the desired form (with ε = −1). The result now follows. �

Observe that for x ∈ Ω and H = Gx, the function t : G → U does
not depend on the choice of element in a coset Hg, so the map t : Ω → G
given by t(xg) = t(g), is well defined. This indicates how to apply Schreier’s
lemma 6.1 to permutation groups.

Query Input

• A list A of permutations generating G.

• A point x.

GAP input

10

G := Group(A);
H := Stabilizer(G,x);
IsStabiliser Proof(G,x,H);

GAP output

• A proof that H is a subgroup of G (see Section 3).

• A triple [X, v, ω] of integer sequences consisting of the orbit, the
Schreier vector, and the backpointers.

• A sequence of quadruples (y, i, g, h) consisting of a point y ∈ X,
an index i = 1, . . . , |A|, the Schreier generator t(y)ait(t(y)ai)−1,
where ai is the i-th element of A, written as a word g in the
generators A of G, and as a word h in the generators of H.

Query output As in Section 3 we show that H is a subgroup of G. As in
Section 5 we determine the Schreier tree [X, v, ω] for G at x. From the
Schreier tree we find that the Schreier elements t(y) for y ∈ X. We
check that each Schreier generator is in H. By Schreier’s lemma 6.1,
we conclude that H is the stabiliser in G of x.

7 Base

Now that we have a stabiliser of a subgroup, we can repeat the process to
form a chain of subgroups. A base for G is a finite sequence B = [x1, . . . , xk]
of distinct points in Ω such that

Gx1,x2,...,xk = 1.

Hence, the only element of G which fixes all of the points x1, x2, . . . , xk is
the identity. Clearly every permutation group has a base, but not all bases
for a given group are of the same length. If we write G(i) = Gx1,x2,...,xi , then
we have a chain of stabilisers

G = G(0) ≥ G(1) ≥ · · · ≥ G(k−1) ≥ G(k) = 1.

We often require that a base has the additional property that G(i) 6= G(i+1).
A base can be constructed by starting with B = [x1], and recursively

choosing a letter xi in a nontrivial Gx1,...,xi−1-orbit and appending it to B.
The construction is finished when Gx1,...,xi = 1.

11

Example 7.1 The Mathieu group on 11 points, M11, has a base [1, 2, 3, 4].
The Schreier trees and backpointers for this stabiliser chain are given in the
following table

1 2 3 4 5 6 7 8 9 10 11
v1 0 2 1 2 1 2 2 1 2 1 2
ω1 0 9 11 1 7 7 4 2 10 1 2
v2 – 0 3 7 4 7 4 6 4 6 5
ω2 – 0 2 5 3 11 5 11 7 4 5
v3 – – 0 7 4 7 4 6 4 6 5
ω3 – – 0 5 3 11 5 11 7 4 5
v4 – – – 0 7 5 6 6 7 6 7
ω4 – – – 0 6 4 6 11 10 4 4

Query Input A list A of permutations generating G.

GAP input

G := Group(A);
B := BaseOfGroup(G);
IsBase Proof(G,B);

GAP output A base B = [x1, . . . , xk] and, for each i = 1, . . . , k, a set Ai
of generators of the stabiliser of xi in 〈Ai−1〉.

Query output Let l be the length of B. From IsBase Proof(G,B) we
read off, for i = 1, . . . , k,

• a sequence Ai of permutations;

• a proof that 〈Ai〉 is the stabiliser of xi in 〈Ai−1〉;
• the determination of the 〈Ai−1〉-orbit of xi.

Having checked that Ak = 1, we conclude that B is a base with sta-
biliser chain the groups 〈Ai〉 for i = 1, . . . , k.

8 Nonmembership

Here we deal with the complementary problem to the first one treated: Prove
that the permutation g does not belong to G. Given a base B = [x1, . . . , xk]
of G, we have a chain of subgroups

G = G(0) ≥ G(1) ≥ · · · ≥ G(k−1) ≥ G(k) = 1

12

and sets U (i) consisting of coset representatives for G(i+1) in G(i). For we
can take G(i) = Gx1,...,xi−1 and U (i) = t(G(i)) the set of Schreier elements
corresponding to a Schreier tree for G(i) rooted at xi−1.

An element g of G is contained in exactly one coset of G(1) in G(0), so
g = h1u0 for some unique h1 in G(1) and u0 in U (0). By induction, we can
show that

g = ukuk−1 · · · u1u0

where each ui ∈ U (i) is uniquely determined by g. This process, called sifting
an element, gives a canonical form for the elements of G and underpins most
of the more advanced applications of stabiliser chains.

On the other hand, if g is not in G, then sifting fails because at some
stage we get that xihi−1 is not in the orbit xiG(i−1), and so hi−1 is not in
G(i−1). This gives us our proof of nonmembership.

Query Input

• A list A of permutations generating G.

• A permutation g.

• The fact that g is not in G.

GAP input

G := Group(A);
IsNotIn_Proof(g,G)

GAP output

• A base B = [x1, . . . , xk] together with generators for the stabiliser
subgroups G(i) = Gx1,...,xi , the corresponding Schreier trees for
G(i−1) rooted at xi, and Schreier generators Ai for each base point
xi (so G(i) = 〈Ai〉).
• A sequence of permutations [h0, h1, . . . , hj−1] (where j ≤ k) such

that hi ∈ G(i) and xihi−1 · · ·h1h0 = xig for i = 1, . . . , j − 1 and
xjhj−1 · · ·h1h0 6∈ xjG(j−1).

Query output A proof that the base B and the corresponding stabiliser
chain is correct is given in Section 7. Let h = hj−1 · · ·h0. Then, as
can be straightforwardly checked, h is in G and gh−1 fixes x1, . . . , xj−1.
But xjgh−1 6∈ xjG(j−1), so gh−1 does not belong to G(j−1) whence not
to G. Since h ∈ G, it follows that g does not belong to G.

13

At the cost of engineering with B, we can be a little more efficient. For, a
closer look at the proof shows that we do not need the full base B, but only
the first j elements.

9 Order

The order of a permutation group can now be effectively computed.

Lemma 9.1 (Order lemma) Suppose G is a permutation group and B =
[x1, . . . , xk] is a base for G. Then

|G| =
k∏
i=1

|xiG(i−1)|

Proof: Follows directly from repeated application of the Orbit lemma 5.1:

|G| = |x1G| · |G(1)|
= |x1G| · |x2G

(1)| · |G(2)|
= · · ·

as G(k) is trivial. �

Example 9.1 From Example 7.1 it immediately follows that the Mathieu
group on 11 points has order

|1M11| · |2M (1)
11 | · |3M

(2)
11 | · |4M

(3)
11 | = 11 · 10 · 9 · 8 = 7920.

Query Input A list A of permutations generating G.

GAP input

G := Group(A);
Order_Proof(G);

GAP output A base B = [x1, . . . , xk], the corresponding stabiliser chain
G(i), and the sizes of the orbits xiG(i−1).

Query output The proof that the base and the stabiliser chain are correct
is given in Section 7. By the Order lemma 9.1, the order of G is the
product of the orbit sizes |xiG(i−1)| for i = 1, . . . , k.

14

10 Exercises

The stars in front of an exercise indicate the level of difficulty. The more
stars, the more difficult the exercise. If you solve a * exercise, that’s fine,
you’re beginning to understand the material. If you solve a ** exercise
and you haven’t studied the permutation groups before, that’s something
to be proud of. If you solve a *** exercise, tell me about it. If you solve a
**** exercise, I am really interested in your solution. If you solve a *****
exercise, you are paving the road for the sequel to these notes (on graph
automorphism groups and graph isomorphisms).

Exercise 10.1 *. Let Γ = (Ω, E) be a graph. (Say, without loops, multiple
edges, undirected.) A permutation g of Ω is called an automorphism of Γ is
it preserves E. This means that E, viewed as a subset of Y2 (see Exercise
10.11) is a union of G-orbits. Show that the set of all automorphisms of Γ
is a permutation group.

Exercise 10.2 *. Write a proof generator in GAP for

〈A〉 = 〈B〉

where A and B are lists of permutations. (So, you asked to write an al-
gorithm that will provide a proof given the fact that the identity holds for
inputs A, B.)

Exercise 10.3 *. Similarly for

〈A〉 6= 〈B〉.

Exercise 10.4 **. A subgroup N of a group G is called normal if gNg−1 =
N for all g ∈ G. Write a proof generator in GAP for

〈B〉 is a normal subgroup of 〈A〉

where A and B are lists of permutations.

Exercise 10.5 **. Similarly for

〈B〉 is not a normal subgroup of 〈A〉.

Exercise 10.6 *. Let G be a finite group and let p be a prime. A subgroup
S of G is called a Sylow p-subgroup if the order |S| of S is a power of p and

15

the index of S in G, that is |S\G|, is not divisible by p. Such subgroups
always exist. Write a proof generator in GAP for

〈B〉 is a Sylow p-subgroup of 〈B〉

where A and B are lists of permutations.

Exercise 10.7 *. Two elements g, h ∈ G are called conjugate if there is
an element x of G such that xgx−1 = h; notation g ∼ h. Write a proof
generator in GAP for g ∼ h.

Exercise 10.8 *. Let G, H be groups. A homomorphism ϕ : G → H
is a map satisfying ϕ(gh) = ϕ(g)ϕ(h) for all g, h ∈ H. A permutation
representation of a group G is a homomorphism G→ Sym(X) for some set
X.

Show that each group G with subgroup H has a permutation represen-
tation ϕH : G→ Sym(H\G) given by ϕH(g) = Hg.

Exercise 10.9 *. Let Ω, Ξ be two sets. Two permutation representations
ϕ : G → Sym(Ω) and ψ : G → Sym(Ξ) are called equivalent if there is a
bijective map T : Ω→ Ξ such that, for each g ∈ G, we have ϕ(g)T = Tψ(g)
(writing T as a map that acts from the right, just like ϕ(g) and ψ(g)). Prove
that the name is justified: that equivalence is an equivalence relation on the
collection of permutation representations.

Equivalent representations can be considered ‘the same up to renaming
elements.’

Exercise 10.10 **. A permutation representation ϕ : G → Sym(Ω) is
called transitive if Ω is a single ϕ(G)-orbit.

Let H be a subgroup of G. Prove that the permutation representation
ϕH of Exercise 10.8 is transitive.

Conversely, show that each transitive permutation representation of G is
equivalent to one of the form ϕH for a subgroup H of G. (Hint: pick x ∈ Ω
and take H = Gx.)

Exercise 10.11 *. Let G be a permutation group on Ω = {1, . . . , n}. De-
note by Y the collection of subsets of Ω. For x = {x1, . . . , xk} ∈ Y , write

xϕ(g) = {x1g, . . . , xkg}.

Show that the resulting map ϕ : G→ Sym(Y) is a permutation representa-
tion.

16

Now, for k ∈ {1, . . . , n}, show that we can restrict ϕ to ϕk : G →
Sym(Yk), where Yk is the collection of subsets of Ω of size k. (Hint: this
means that Yk is a union of ϕ(G)-orbits.)

Exercise 10.12 ***. Let ϕ : G → Sym(X) be a permutation represen-
tation. Recall that kerϕ = {g ∈ G | ϕ(g) = 1}. Give an algorithm to
find generators for kerϕ if G is generated by a finite list A of permuta-
tions. (Hint: deal with stabilisers in G, Schreier elements, and so on, in this
greater generality, and identify kerϕ as the set of elements of G fixing a base
of Imϕ.)

Exercise 10.13 *. Let G be a permutation group on Ω. A subset B of Ω
is called a block if gB ∩B = B or ∅ for each g ∈ G.

Prove that if B is a block and G is transitive, we have a partition {B =
B1, . . . , Bk} of Ω which is preserved by G (that is, for each g ∈ G and
i ∈ {1, . . . , k}, there exists j such that gBi = Bj .)

Exercise 10.14 **. Let G be a permutation group on Ω. We say that G
is primitive if the only blocks of G on Ω (see Exercise 10.13) are of size 1 or
|Ω|. Give a proof generator in GAP for

〈A〉 is not primitive

where A is a finite list of permutations of Ω.

Exercise 10.15 ****. Let G be a permutation group on Ω. See Exercise
10.14 for the definition of primitivity. Give a proof generator in GAP for

〈A〉 is primitive

where A is a finite list of permutations of Ω.

Exercise 10.16 *. Let G be a group. Its center is

{x ∈ G | ∀g ∈ G gx = xg}.

Prove that this is a normal subgroup (cf. Exercise 10.4) of G. Give an
algorithm to find generators of the center of G in terms of generators of
G. (Hint: apply Exercise 10.12 to the permutation representation κ : G →
Sym(G) given by κ(g) : h 7→ g−1hg for g, h ∈ G.)

Exercise 10.17 **. Notation as in Exercise 10.7. Write a proof generator
in GAP for g 6∼ h. (Hint: Show that g and h are not in the same κ(G)-orbit
for κ as in Exercise 10.16.)

17

Exercise 10.18 **. Let H = 〈B〉 and K = 〈C〉 be subgroups of G = 〈A〉.
Give an algorithm to determine the size of the set

HK = {hk | h ∈ H, k ∈ K}.

(Hint: the answer equals |H|m, where m is the number of cosets Hk with
k ∈ K. This is the size of the ϕH(K)-orbit of H, with ϕH as in Exercise
10.8.)

Use |HK| · |H ∩ K| = |H| · |K| to determine a generating set for the
subgroup H ∩K of G.

Exercise 10.19 *****. Write a proof generator in GAP for

〈A〉 is the automorphism group of Γ

where Γ = (Ω, E) is a graph and A is a list of permutations of Ω.

Exercise 10.20 *. Write a proof generator in GAP for

Γ and ∆ are isomorphic.

Exercise 10.21 *****. Write a proof generator in GAP for

Γ and ∆ are not isomorphic.

References

[1] Cuypers, Soicher, and Sterk: Working with finite groups, in “Some
Tapas of Computer Algebra” (eds. A.M. Cohen, H. Cuypers, H. Sterk),
Springer, Heidelberg, 1999.

[2] A.M. Cohen, Communicating Mathematics across the Web, pp. 283–300
in “Mathematics Unlimited – 2001 and beyond” (eds. Björn Engquist
and Wilfried Schmid) Springer, Heidelberg, 2000.

[3] Caprotti & Oostdijk: Pocklington.

18

