GELFAND-KIRILLOV CONJECTURE AND HARISH-CHANDRA MODULES FOR FINITE W-ALGEBRAS

VYACHESLAV FUTORNY, ALEXANDER MOLEV, AND SERGE OVSIENKO

ABSTRACT. We address two problems regarding the structure and representation theory of finite W-algebras associated with the general linear Lie algebras. Finite W-algebras can be defined either via the Whittaker modules of Kostant or, equivalently, by the quantum Hamiltonian reduction. Our first main result is a proof of the Gelfand-Kirillov conjecture for the skew fields of fractions of the finite W-algebras. The second main result is a parametrization of finite families of irreducible Harish-Chandra modules by the characters of the Gelfand-Tsetlin subalgebra. As a corollary, we obtain a complete classification of generic irreducible Harish-Chandra modules for the finite W-algebras.

Mathematics Subject Classification 17B35, 17B37, 17B67, 16D60, 16D90, 16D70, 81R10

1. Introduction

The concept of finite W-algebras goes back to the original paper of Kostant [Ko] dealing with the study of Whittaker modules and to its generalization by Lynch [L]. An alternative construction of W-algebras can be given via the quantum Hamiltonian reduction which goes back to the works of Feigin and Frenkel [FF], Kac, Roan and Wakimoto [KRW], Kac and Wakimoto [KW] and De Sole and Kac [SK]. It was shown by D'Andrea, De Concini, De Sole, Heluani and Kac [SK, Appendix] and by Arakawa [A] that both definitions of finite W-algebras are equivalent.

Let $\mathfrak{g} = \mathfrak{gl}_m$ denote the general linear Lie algebra over an algebraically closed field \mathbbm{k} of characteristic 0 which will be fixed throughout the paper. A finite W-algebra can be associated to a fixed nilpotent element $f \in \mathfrak{g}$ as follows. A \mathbbm{Z} -grading $\mathfrak{g} = \bigoplus_{j \in \mathbbm{Z}} \mathfrak{g}_j$ is called a good grading for f if $f \in \mathfrak{g}_2$ and ad f is injective on \mathfrak{g}_j for $j \leq -1$ and surjective for $j \geq -1$. A complete classification of good gradings for simple Lie algebras was given by Elashvili and Kac [EK]. A non-degenerate invariant symmetric bilinear form (.,.) on \mathfrak{g} induces a non-degenerate skew-symmetric form on \mathfrak{g}_{-1} defined by $\langle x,y \rangle = ([x,y],f)$. Let $\mathcal{I} \subset \mathfrak{g}_{-1}$ be a maximal isotropic subspace and set $\mathfrak{t} = \bigoplus_{j \leq -2} \mathfrak{g}_j \oplus \mathcal{I}$. Now let $\chi : U(\mathfrak{t}) \to \mathbb{C}$ be the one-dimensional representation such that $x \mapsto (x,f)$ for any $x \in \mathfrak{t}$. Set $I_\chi = \operatorname{Ker} \chi$ and $Q_\chi = U(\mathfrak{g})/U(\mathfrak{g})I_\chi$. The

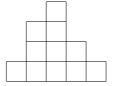
corresponding finite W-algebra is defined by

$$W(\chi) = \operatorname{End}_{U(\mathfrak{g})}(Q_{\chi})^{op}.$$

If the grading on \mathfrak{g} is *even*, i.e. $\mathfrak{g}_j = 0$ for all odd j, then $W(\chi)$ is isomorphic to the subalgebra of t-twisted invariants in $U(\mathfrak{p})$ for the parabolic subalgebra $\mathfrak{p} = \bigoplus_{j \geq 0} \mathfrak{g}_j$. Note that by the results of Elashvili and Kac [EK], it is sufficient to consider only even good gradings.

The growing interest to the theory of finite W-algebras is due, on the one hand, to their geometric realizations as quantizations of the Slodowy slices (see Premet [P] and Gan and Ginzburg [GG]), and, on the other hand, to their close connections with the Yangian theory which was originally observed by Ragoucy and Sorba [RS] and developed in full generality by Brundan and Kleshchev [BK1]. The latter results may well be regarded as a substantial step forward in understanding the structure of the finite W-algebras associated to \mathfrak{gl}_m . These algebras turn out to be isomorphic to certain quotients of the *shifted Yangians*, which provides their presentations in terms of generators and defining relations and thus opens the way for developing the representation theory for the finite W-algebras; see [BK2].

In more detail, following [EK], consider a pyramid π which is a unimodal sequence (q_1, q_2, \ldots, q_l) of positive integers with $q_1 \leqslant \cdots \leqslant q_k$ and $q_{k+1} \geqslant \cdots \geqslant q_l$ for some $0 \leqslant k \leqslant l$. Such a pyramid can be visualized as the diagram of bricks (unit squares) which consists of q_1 bricks stacked in the first (leftmost) column, q_2 bricks stacked in the second column, etc. The pyramid π defines the tuple (p_1, \ldots, p_n) of its row lengths, where p_i is the number of bricks in the *i*th row of the pyramid, so that $1 \leqslant p_1 \leqslant \cdots \leqslant p_n$. The figure illustrates the pyramid with the columns (1,3,4,2,1) and rows (1,2,3,5):



If the total number of bricks in the pyramid π is m, then the finite W-algebra $W(\pi)$ associated to \mathfrak{gl}_m corresponds to the nilpotent matrix $f \in \mathfrak{gl}_m$ of Jordan type (p_1, \ldots, p_n) ; see Section 2 for the precise definition and the relationship of $W(\pi)$ with the shifted Yangian. One of surprising consequences of the results of [BK1] is that the isomorphism class of $W(\pi)$ depends only on the sequence of row lengths (p_1, \ldots, p_n) of π .

The first problem we address in this paper is the Gelfand-Kirillov conjecture for the algebras $W(\pi)$. This celebrated conjecture states that the universal enveloping algebra of an algebraic Lie algebra over an algebraically closed field is "birationally" equivalent to some Weyl algebra over a purely transcendental extension of k, i.e. its skew field of fractions is a Weyl field. The conjecture was settled in the original paper

by Gelfand and Kirillov [GK1] for nilpotent Lie algebras, and for \mathfrak{gl}_m and \mathfrak{sl}_m ; see also [GK2], where its weaker form was proved. For solvable Lie algebras the conjecture was settled by Borho, Gabriel and Rentschler [BGR], Joseph [Jo] and McConnell [Mc]. Some mixed cases were considered by Nghiem [Ng], while Alev, Ooms and Van den Bergh [AOV1] proved the conjecture for all Lie algebras of dimension at most eight. On the other hand, counterexamples to the conjecture are known for certain semi-direct products; see e.g. [AOV2]. We refer the reader to the book by Brown and Goodearl [BG] and references therein for generalizations of the Gelfand-Kirillov conjecture for quantized enveloping algebras.

For an associative algebra A we denote by D(A) its skew filed of fractions, if it exists. Let A_k be the k-th Weyl algebra over k and $D_k = D(A_k)$ its skew field of fractions. Let \mathcal{F} be a pure transcendental extension of k of degree m and let $A_k(\mathcal{F})$ be the k-th Weyl algebra over \mathcal{F} . Denote by $D_{k,m}$ the skew field of fractions of $A_k(\mathcal{F})$.

Gelfand-Kirillov problem for $W(\pi)$: Does $D(W(\pi)) \simeq D_{k,m}$ for some k, m?

Our first main result is a positive solution of this problem.

Theorem I. The Gelfand-Kirillov conjecture holds for $W(\pi)$:

$$D(W(\pi)) \simeq D_{k,m},$$

where
$$k = \sum_{i=1}^{l} q_i(q_i - 1)/2$$
 and $m = q_1 + \ldots + q_l$.

Note that m is the number of bricks in the pyramid π , while k can be interpreted as the sum of all leg lengths of the bricks. Hence, k and m can be expressed in terms of the rows as $k = (n-1) p_1 + \ldots + p_{n-1}$ and $m = p_1 + \ldots + p_n$. In the case of the one-column pyramid $(1, \ldots, 1)$ of height m we recover the original result of [GK1] for \mathfrak{gl}_m . One of the key points in the proof of Theorem I is a positive solution of the noncommutative Noether problem for the symmetric group S_k :

Noncommutative Noether problem for S_k : Does $D_k^{S_k} \simeq D_k$?

Here S_k acts naturally on A_k and on D_k by simultaneous permutations of variables and derivations.

The second problem that we address in this paper is the classification problem of irreducible Harish-Chandra modules for finite W-algebras with respect to the Gelfand-Tsetlin subalgebra. Given a pyramid π , for each $k \in \{1, \ldots, n\}$ we let π_k denote the pyramid with the rows (p_1, \ldots, p_k) . We have the chain of natural subalgebras

$$(1.1) W(\pi_1) \subset W(\pi_2) \subset \cdots \subset W(\pi_n) = W(\pi).$$

Denote by Γ the (commutative) subalgebra of $W(\pi)$ generated by the centers of the subalgebras $W(\pi_k)$ for k = 1, ..., n. Note that the structure of the center of the algebra $W(\pi)$ is described in [BK2, Theorem 6.10]. Following the terminology of that paper, we call Γ the Gelfand-Tsetlin subalgebra of $W(\pi)$.

A finitely generated module M over $W(\pi)$ is called a Harish-Chandra module (with respect to Γ) if

$$M = \bigoplus_{\mathbf{m} \in \operatorname{Specm}\Gamma} M(\mathbf{m})$$

as a Γ -module, where

$$M(\mathbf{m}) = \{x \in M \mid \mathbf{m}^k x = 0 \text{ for some } k \geqslant 0\}$$

and Specm Γ denotes the set of maximal ideals of Γ . In the case of the one-column pyramids π this reduces to the definition of the Gelfand–Tsetlin modules for \mathfrak{gl}_m [DFO1]. Note also that the *admissible* $W(\pi)$ -modules of [BK2] are Harish-Chandra modules.

An irreducible Harish-Chandra module M is said to be extended from $\mathbf{m} \in \operatorname{Specm} \Gamma$ if $M(\mathbf{m}) \neq 0$. The set of isomorphism classes of irreducible Harish-Chandra modules extended from \mathbf{m} is called the fiber of $\mathbf{m} \in \operatorname{Specm} \Gamma$. Equivalently, this is the set of left maximal ideals of $W(\pi)$ containing \mathbf{m} . An important problem in the theory of Harish-Chandra modules is to determine the cardinality of the fiber of an arbitrary \mathbf{m} . In the case where the fibers consist of single isomorphism classes, the corresponding irreducible Harish-Chandra modules are parameterized by the elements of $\operatorname{Specm} \Gamma$. This problem was solved in the particular cases of one-column pyramids [O] and two-row rectangular pyramids $[\operatorname{FMO1}]$. The technique used in this paper is quite different, it is based on the properties of the Galois orders developed in the papers $[\operatorname{FO1}]$ and $[\operatorname{FO2}]$. Our second main result is the following theorem.

Theorem II. The fiber of any $\mathbf{m} \in \operatorname{Specm} \Gamma$ in the category of Harish-Chandra modules over $W(\pi)$ is non-empty and finite.

Clearly, the same irreducible Harish-Chandra module can be extended from different maximal ideals of Γ ; such ideals are called *equivalent*. Hence, Theorem II provides a parametrization of finite families of irreducible Harish-Chandra modules over $W(\pi)$ by the equivalence classes of characters of the Gelfand-Tsetlin subalgebra. Moreover, this gives a classification of the irreducible *generic* Harish-Chandra modules. In order to formulate the result, recall that a non-empty set $X \subset \operatorname{Specm} \Gamma$ is called *massive* if X contains the intersection of countably many dense open subsets. If the field \mathbbm{k} is uncountable, then a massive set X is dense in $\operatorname{Specm} \Gamma$.

Theorem III. There exists a massive subset $\widetilde{\Omega} \subset \operatorname{Specm} \Gamma$ such that

- (i) For any $\mathbf{m} \in \widetilde{\Omega}$, there exists a unique, up to isomorphism, irreducible module $L_{\mathbf{m}}$ over $W(\pi)$ in the fiber of \mathbf{m} .
- (ii) For any $\mathbf{m} \in \Omega$ the extension category generated by $L_{\mathbf{m}}$ contains all indecomposable modules whose support contains \mathbf{m} and is equivalent to the category of modules over the algebra of formal power series in $n p_1 + (n-1) p_2 + \ldots + p_n$ variables.

2. Shifted Yangians, finite W-algebras and their representations

As in [BK1], given a pyramid π with the rows $p_1 \leqslant \cdots \leqslant p_n$, introduce the corresponding shifted Yangian $Y_{\pi}(\mathfrak{gl}_n)$ as the associative algebra defined by generators

(2.2)
$$d_{i}^{(r)}, \quad i = 1, \dots, n, \qquad r \geqslant 1,$$
$$f_{i}^{(r)}, \quad i = 1, \dots, n - 1, \qquad r \geqslant 1,$$
$$e_{i}^{(r)}, \quad i = 1, \dots, n - 1, \qquad r \geqslant p_{i+1} - p_{i} + 1,$$

subject to the following relations:

$$\begin{split} [d_i^{(r)},d_j^{(s)}] &= 0, \\ [e_i^{(r)},f_j^{(s)}] &= -\delta_{ij} \sum_{t=0}^{r+s-1} d_i'^{(t)} \, d_{i+1}^{(r+s-t-1)}, \\ [d_i^{(r)},e_j^{(s)}] &= (\delta_{ij}-\delta_{i,j+1}) \sum_{t=0}^{r-1} d_i^{(t)} \, e_j^{(r+s-t-1)}, \\ [d_i^{(r)},f_j^{(s)}] &= (\delta_{i,j+1}-\delta_{ij}) \sum_{t=0}^{r-1} f_j^{(r+s-t-1)} \, d_i^{(t)}, \\ [e_i^{(r)},e_i^{(s+1)}] &- [e_i^{(r+1)},e_i^{(s)}] &= e_i^{(r)} e_i^{(s)} + e_i^{(s)} e_i^{(r)}, \\ [f_i^{(r+1)},f_i^{(s)}] &- [f_i^{(r)},f_i^{(s+1)}] &= f_i^{(r)} f_i^{(s)} + f_i^{(s)} f_i^{(r)}, \\ [e_i^{(r)},e_{i+1}^{(s+1)}] &- [e_i^{(r+1)},e_{i+1}^{(s)}] &= -e_i^{(r)} e_{i+1}^{(s)}, \\ [f_i^{(r+1)},f_{i+1}^{(s)}] &- [f_i^{(r)},f_{i+1}^{(s+1)}] &= -f_{i+1}^{(s)} f_i^{(r)}, \\ [e_i^{(r)},e_j^{(s)}] &= 0 & \text{if} \quad |i-j| > 1, \\ [f_i^{(r)},[e_i^{(s)},e_j^{(t)}]] &+ [e_i^{(s)},[e_i^{(r)},e_j^{(t)}]] &= 0 & \text{if} \quad |i-j| = 1, \\ [f_i^{(r)},[f_i^{(s)},f_i^{(t)}]] &+ [f_i^{(s)},[f_i^{(r)},f_i^{(t)}]] &= 0 & \text{if} \quad |i-j| = 1, \\ \end{cases} \end{split}$$

for all admissible i, j, r, s, t, where $d_i^{(0)} = 1$ and the elements $d_i^{\prime (r)}$ are found from the relations

$$\sum_{t=0}^{r} d_i^{(t)} d_i^{\prime (r-t)} = \delta_{r0}, \qquad r = 0, 1, \dots$$

Note that the algebra $Y_{\pi}(\mathfrak{gl}_n)$ depends only on the differences $p_{i+1} - p_i$ and our definition corresponds to the left-justified pyramid π , as compared to [BK1]. In the particular case of a rectangular pyramid π with $p_1 = \cdots = p_n$, the algebra $Y_{\pi}(\mathfrak{gl}_n)$ is isomorphic to the $Yangian Y(\mathfrak{gl}_n)$; see e.g. [M] for the description of its structure and

representations. Moreover, for an arbitrary pyramid π , the shifted Yangian $Y_{\pi}(\mathfrak{gl}_n)$ can be regarded as a natural subalgebra of $Y(\mathfrak{gl}_n)$.

Due to the main result of [BK1], the *finite W-algebra W*(π), associated to \mathfrak{gl}_m and the pyramid π , can be defined as the quotient of $Y_{\pi}(\mathfrak{gl}_n)$ by the two-sided ideal generated by all elements $d_1^{(r)}$ with $r \geq p_1 + 1$. We refer the reader to [BK1, BK2] for the description of the structure of the algebra $W(\pi)$, including analogues of the Poincaré–Birkhoff–Witt theorem and a construction of algebraically independent generators of the center.

2.1. Gelfand-Tsetlin basis for finite-dimensional representations. An important role in our arguments will be played by an explicit construction of a family of finite-dimensional irreducible representations of $W(\pi)$, given in [FMO2]. We reproduce some of the formulas here.

Introduce formal generating series in u^{-1} with coefficients in $W(\pi)$ by

$$d_i(u) = 1 + \sum_{r=1}^{\infty} d_i^{(r)} u^{-r}, \qquad f_i(u) = \sum_{r=1}^{\infty} f_i^{(r)} u^{-r},$$
$$e_i(u) = \sum_{r=p_{i+1}-p_i+1}^{\infty} e_i^{(r)} u^{-r}$$

and set

$$A_i(u) = u^{p_1} (u-1)^{p_2} \dots (u-i+1)^{p_i} a_i(u)$$
 for $i = 1, \dots, n$ with $a_i(u) = d_1(u) d_2(u-1) \dots d_i(u-i+1)$, and
$$B_i(u) = u^{p_1} (u-1)^{p_2} \dots (u-i+2)^{p_{i-1}} (u-i+1)^{p_{i+1}} a_i(u) e_i(u-i+1),$$

$$C_i(u) = u^{p_1} (u-1)^{p_2} \dots (u-i+1)^{p_i} f_i(u-i+1) a_i(u)$$

for $i=1,\ldots,n-1$. Then $A_i(u)$, $B_i(u)$, and $C_i(u)$ are polynomials in u, and their coefficients are generators of $W(\pi)$. Define the elements $a_r^{(k)}$ for $r=1,\ldots,n$ and $k=1,\ldots,p_1+\cdots+p_r$ by the expansion

$$A_r(u) = u^{p_1 + \dots + p_r} + \sum_{k=1}^{p_1 + \dots + p_r} a_r^{(k)} u^{p_1 + \dots + p_r - k}.$$

Then the elements $a_r^{(k)}$ generate the Gelfand–Tsetlin subalgebra Γ of $W(\pi)$ defined in the Introduction.

Recall some definitions and results from [BK2] regarding representations of $W(\pi)$. Fix an *n*-tuple $\lambda(u) = (\lambda_1(u), \ldots, \lambda_n(u))$ of monic polynomials in u, where $\lambda_i(u)$ has degree p_i . We let $L(\lambda(u))$ denote the irreducible highest weight representation of $W(\pi)$ with the highest weight $\lambda(u)$. Then $L(\lambda(u))$ is generated by a nonzero vector ξ (the highest vector) such that

$$B_i(u) \xi = 0$$
 for $i = 1, ..., n - 1$, and $u^{p_i} d_i(u) \xi = \lambda_i(u) \xi$ for $i = 1, ..., n$.

Write

$$\lambda_i(u) = (u + \lambda_i^{(1)}) (u + \lambda_i^{(2)}) \dots (u + \lambda_i^{(p_i)}), \qquad i = 1, \dots, n.$$

We will be assuming that the parameters $\lambda_i^{(k)}$ satisfy the conditions: for any value $k \in \{1, \dots, p_i\}$ we have

$$\lambda_i^{(k)} - \lambda_{i+1}^{(k)} \in \mathbb{Z}_+, \qquad i = 1, \dots, n-1,$$

where \mathbb{Z}_+ denotes the set of nonnegative integers. In this case the representation $L(\lambda(u))$ of $W(\pi)$ is finite-dimensional. We will only consider a certain family of representations of $W(\pi)$ by imposing the condition

$$\lambda_i^{(k)} - \lambda_j^{(m)} \notin \mathbb{Z}, \quad \text{for all } i, j \text{ and all } k \neq m.$$

The Gelfand-Tsetlin pattern $\mu(u)$ (associated with the highest weight $\lambda(u)$) is an array of rows $(\lambda_{r1}(u), \ldots, \lambda_{rr}(u))$ of monic polynomials in u for $r = 1, \ldots, n$, where

$$\lambda_{ri}(u) = (u + \lambda_{ri}^{(1)}) \dots (u + \lambda_{ri}^{(p_i)}), \qquad 1 \leqslant i \leqslant r \leqslant n,$$

with $\lambda_{ni}^{(k)} = \lambda_i^{(k)}$, so that the top row coincides with $\lambda(u)$, and

$$\lambda_{r+1,i}^{(k)} - \lambda_{ri}^{(k)} \in \mathbb{Z}_+$$
 and $\lambda_{ri}^{(k)} - \lambda_{r+1,i+1}^{(k)} \in \mathbb{Z}_+$

for $k = 1, ..., p_i$ and $1 \le i \le r \le n - 1$.

The following theorem was proved in [FMO2]. Set $l_{ri}^{(k)} = \lambda_{ri}^{(k)} - i + 1$.

Theorem 2.1. The representation $L(\lambda(u))$ of the algebra $W(\pi)$ admits a basis $\{\xi_{\mu}\}$ parameterized by all patterns $\mu(u)$ associated with $\lambda(u)$ such that the action of the generators is given by the formulas

(2.3)
$$A_r(u) \xi_{\mu} = \lambda_{r1}(u) \dots \lambda_{rr}(u-r+1) \xi_{\mu},$$

for $r = 1, \ldots, n$, and

$$(2.4) B_r(-l_{ri}^{(k)}) \, \xi_{\mu} = -\lambda_{r+1,1}(-l_{ri}^{(k)}) \dots \lambda_{r+1,r+1}(-l_{ri}^{(k)} - r) \, \xi_{\mu+\delta_{ri}^{(k)}},$$

$$C_r(-l_{ri}^{(k)}) \, \xi_{\mu} = \lambda_{r-1,1}(-l_{ri}^{(k)}) \dots \lambda_{r-1,r-1}(-l_{ri}^{(k)} - r + 2) \, \xi_{\mu-\delta_{ri}^{(k)}},$$

for r = 1, ..., n-1, where $\xi_{\mu \pm \delta_{ri}^{(k)}}$ corresponds to the pattern obtained from $\mu(u)$ by replacing $\lambda_{ri}^{(k)}$ by $\lambda_{ri}^{(k)} \pm 1$, and the vector ξ_{μ} is considered to be zero, if $\mu(u)$ is not a pattern.

Note that the action of the operators $B_r(u)$ and $C_r(u)$ for an arbitrary value of u can be calculated by the Lagrange interpolation formula.

3. Skew group structure of finite W-algebras

3.1. Skew group rings. Let R be a ring, M a subgroup of Aut(R), and R * M the corresponding skew group ring, i.e., the free left R-module with the basis M and with the multiplication

$$(r_1m_1)\cdot (r_2m_2) = (r_1r_2^{m_1})(m_1m_2), \quad m_1, m_2 \in \mathcal{M}, \ r_1, r_2 \in R.$$

If $x \in R * M$ and $m \in M$ then denote by x_m the element in R such that $x = \sum_{m \in M} x_m m$. Set

$$\operatorname{supp} x = \{ m \in \mathcal{M} | x_m \neq 0 \}.$$

If a finite group G acts by automorphisms on R and by conjugations on M then G acts on R * M. Denote by $R * M^G$ the invariants under this action. Then $x \in R * M^G$ if and only if $x_{m^g} = x_m^g$ for $m \in M, g \in G$.

For $\varphi \in AutR$ and $a \in R$ set $H_{\varphi} = \{h \in G | \varphi^h = \varphi\}$ and

(3.5)
$$[a\varphi] := \sum_{g \in G/H_{\varphi}} a^g \varphi^g \in R * \mathfrak{M}^G.$$

3.2. Galois algebras. Let Γ be a commutative domain, K the field of fractions of Γ , $K \subset L$ a finite Galois extension, G = G(L/K) the corresponding Galois group, $\mathfrak{M} \subset \operatorname{Aut} L$ a subgroup. Assume that G belongs to the normalizer of \mathfrak{M} in $\operatorname{Aut} L$ and $\mathfrak{M} \cap G = \{e\}$. Then G acts on the skew group algebra $L * \mathfrak{M}$ by authomorphisms: $(am)^g = a^g m^g$ where the action on \mathfrak{M} is by conjugation. Denote by $(L * \mathfrak{M})^G$ the subalgebra of G-invariants in $L * \mathfrak{M}$.

Definition 3.1. [FO1] A finitely generated over Γ subring $U \subset (L * \mathcal{M})^G$ is called a Galois order over Γ if $KU = UK = (L * \mathcal{M})^G$.

We will always assume that both Γ and U are \mathbb{k} -algebras and that Γ is noetherian. In this case we will say that a Galois order U over Γ is a Galois algebra over Γ .

Denote by Γ the integral closure of Γ in L.

Proposition 3.2. [FO1, Theorem 7.1] Let $U \subset L * \mathfrak{M}$ be a Galois algebra over noetherian Γ , \mathfrak{M} a group of finite growth(\mathfrak{M}) such that for every finite dimensional \mathbb{k} -vector space $V \subset \overline{\Gamma}$ the set $\mathfrak{M} \cdot V$ is contained in a finite dimensional subspace of $\overline{\Gamma}$. Then

(3.6)
$$\operatorname{GKdim} U \geqslant \operatorname{GKdim} \Gamma + \operatorname{growth}(\mathfrak{M}).$$

3.3. **PBW Galois algebras.** Let U be an associative algebra over \mathbb{k} , endowed with an increasing exhausting finite-dimensional filtration $\{U_i\}_{i\in\mathbb{Z}}$, $U_{-1}=\{0\}$, $U_0=\mathbb{k}$, $U_iU_j\subset U_{i+j}$ and gr $U=\bigoplus_{i=0}^{\infty}U_i/U_{i-1}$ the associated graded algebra. An algebra U is called PBW algebra if gr U is commutative affine \mathbb{k} -algebra and it has a PBW type

basis. In particular, U is a noetherian affine k-algebra. For PBW algebras we have the following sufficient conditions to be a Galois algebra.

Theorem 3.3. [FO1, Theorem 8.1] Let U be a PBW algebra generated by the elements u_1, \ldots, u_k over Γ , gr U a polynomial ring in n variables, $\mathfrak{M} \subset \operatorname{Aut} L$ a group and $f: U \to (L * \mathfrak{M})^G$ a homomorphism such that \cup supp $f(u_i)$ generates \mathfrak{M} . If

$$\operatorname{GKdim} \Gamma + \operatorname{growth} \mathfrak{M} = n$$

then f is an embedding and U is a Galois algebra over Γ .

3.4. Finite W-algebras as Galois algebras. Let Λ be the polynomial algebra in the variables $x_{ri}^k, 1 \leq i \leq r \leq n, k = 1, \ldots, p_i$. Consider the k-homomorphism $i: \Gamma \to \Lambda$ defined by

$$(3.7) i(a_r^{(k)}) = \sigma_{r,k}(x_{r_1}^1, \dots, x_{r_1}^{p_1}, \dots, x_{r_r}^1, \dots, x_{r_r}^{p_r}), k = 1, \dots, p_1 + \dots + p_r,$$

where $\sigma_{r,j}$ is the j-th elementary symmetric polynomial in $p_1 + \ldots + p_r$ variables. If $i(\gamma) = 0$ for some $\gamma \in \Gamma$ then γ acts trivially on any module $L(\lambda(u))$ by Theorem 2.1, which is a contradiction. Thus i is injective and we will identify the elements of Γ with their images in Λ . Let $G = S_{p_1} \times S_{p_1+p_2} \times \ldots \times S_{p_1+\ldots+p_n}$. Then Γ consists of the invariants in Λ with respect to the natural action of G. Set $\mathcal{L} = \operatorname{Specm} \Lambda$ and identify it with \mathbb{k}^s , $s = np_1 + (n-1)p_2 + \ldots + p_n$.

Let $\mathcal{M} \subseteq \mathcal{L}$, $\mathcal{M} \simeq \mathbb{Z}^{(n-1)p_1+\ldots+p_{n-1}}$, be the free abelian group generated by the symbols $\delta_{ri}^k \in \mathbb{k}^{(n-1)p_1+\ldots+p_{n-1}}$ for $k=1,\ldots,p_i,\ 1\leqslant i\leqslant r\leqslant n-1$. Define an action of \mathcal{M} on \mathcal{L} by the shifts $\delta_{ri}^k(\ell):=\ell+\delta_{ri}^k$ so that x_{ri}^k is replaced with x_{ri}^k+1 , while all other coordinates remain unchanged. The group G acts on \mathcal{L} by permutations and on \mathcal{M} by conjugations.

Let K be the field of fractions of Γ , L the field of fractions of Λ . Then $K \subset L$ is a finite Galois extension with the Galois group G, $K = L^G$. Also note that \mathcal{L} is the integral closure of Γ in L. Similarly as above one defines the action of \mathcal{M} on L. Hence we can form the skew group algebra $L * \mathcal{M}$ and take the invariants $(L * \mathcal{M})^G$ which we simply write as $(L * \mathcal{M})^G$.

Consider polynomials $\tilde{A}_i(u)$, $\tilde{B}_k(u)$, $\tilde{C}_k(u)$ in u, i = 1, ..., n and k = 1, ..., n - 1, which have the same form as the respective polynomials $A_i(u)$, $B_k(u)$, $C_k(u)$ defined in Section 2.1, and introduce free associative algebra T over k generated by the coefficients of the polynomials $\tilde{A}_i(u)$, $\tilde{B}_k(u)$, $\tilde{C}_k(u)$. Let $L[u] * \mathcal{M}$ be the skew group algebra over the ring of polynomials L[u] and e the identity element of \mathcal{M} . Note that $A_i(u) \in L[u] * \mathcal{M}$, i = 1, ..., n. Introduce an algebra homomorphism $t : T \longmapsto L[u] * \mathcal{M}$ by

$$(3.8) \quad \mathsf{t}(\widetilde{A}_{j}(u)) = A_{j}(u)e, \ \mathsf{t}(\widetilde{B}_{r}(u)) = \sum_{(s,j)} X_{rsj}^{+}[u]\delta_{rj}^{s}, \ \mathsf{t}(\widetilde{C}_{r}(u)) = \sum_{(s,j)} X_{rsj}^{-}[u](\delta_{rj}^{s})^{-1},$$

where

$$X_{rsj}^{+}[u] = -\frac{\prod_{(k,i)\neq(s,j)}(u+x_{ri}^{k})}{\prod_{(k,i)\neq(s,j)}(x_{ri}^{k}-x_{rj}^{s})} \prod_{m,q} (x_{r+1,q}^{m}-x_{rj}^{s}),$$

$$X_{rsj}^{-}[u] = \frac{\prod_{(k,i)\neq(s,j)}(u+x_{ri}^{k})}{\prod_{(k,i)\neq(s,j)}(x_{ri}^{k}-x_{rj}^{s})} \prod_{m,q} (x_{r-1,q}^{m}-x_{rj}^{s}),$$

j changes from 1 to r, s changes from 1 to p_j and the products (k, i) associated with variables of the form x_{ri}^k run over the pairs with $i = 1, \ldots, r$ and $k = 1, \ldots, p_i$.

Using notation (3.5) we have

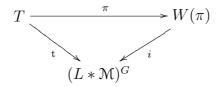
Lemma 3.4. $\operatorname{t}(\widetilde{B}_r(u)) = [X_{r11}^+[u]\delta_{r1}^1], \ \operatorname{t}(\widetilde{C}_r(u)) = [X_{r11}^-[u](\delta_{r1}^1)^{-1}], \ in \ particular, \ \operatorname{t} defines \ a \ homomorphism \ from \ T \ to \ (L * \mathfrak{M})^G.$

Proof. Note that $H_{\delta_{r1}^1} \subset G$ consists of permutations of G which fix 1, and that X_{r11}^{\pm} are fixed points of $H_{\delta_{r1}^1}$. Then for $g \in G$, such that $g(1) = p_1 + \ldots + p_{i-1} + k$, $0 < k \le p_i$, holds $(\delta_{r1}^1)^g = \delta_{ri}^k$ and $(X_{r11}^{\pm})^g = X_{rki}^+$, which implies the statement. \square

Denote by $\pi: T \longrightarrow W(\pi)$ the projection defined by

$$\widetilde{A}_r(u) \longmapsto A_r(u), \ \widetilde{B}_r(u) \longmapsto B_r(u), \ \widetilde{C}_r(u) \longmapsto C_r(u).$$

Lemma 3.5. There exists a homomorphism of algebras $i: W(\pi) \longrightarrow (L*\mathfrak{M})^G$, such that the diagram



commutes.

Proof. Let V be a finite-dimensional $W(\pi)$ -module with a basis $\{\xi_{\mu}\}$. It induces a module structure over T via the homomorphism π . Moreover, due to Theorem 2.1,

V has a right module structure over $t(T) \subset (L * \mathcal{M})^G$. If $z \in T$ and $t(z) = \sum_{i=1}^s [a_i m_i]$,

 $m_i \in \mathcal{M}, \ a_i \in L$, then $\xi_{\mu} \cdot \mathbf{t}(z) = \sum_{i=1}^s a_i(\mu) \xi_{m_i + \mu}$, where $a_i(\mu)$ means the evaluation

of the rational function $a_i \in L$ in μ . Suppose now that $z \in \text{Ker } \pi$ and consider t(z). There exists a dense subset $\Omega(z)$ consisting of μ 's, such that ξ_{μ} is a basis vector of some finite-dimensional $W(\pi)$ -module V and $\xi_{\mu} \cdot t(z)$ is defined. Moreover, for any $\mu \in \Omega(z)$, $\xi_{\mu} \cdot t(z) = 0$ and hence $a_i(\mu) = 0$ for all i. Since each a_i is a rational function on Specm Λ , it implies that $a_i = 0$, and hence $z \in \text{Ker } t$. Therefore, there exists a homomorphism $i: W(\pi) \longrightarrow (L * \mathcal{M})^G$ such that the diagram commutes.

Theorem 3.6. $W(\pi)$ is a Galois algebra over Γ .

Proof. First note that $W(\pi)$ is a PBW algebra and $\dim_{\mathbb{R}} \mathcal{M} \cdot v < \infty$ for any $v \in \Lambda$. Also,

GKdim
$$W(\pi) = (2n-1)p_1 + (2n-3)p_2 + \ldots + 3p_{n-1} + p_n =$$

= GKdim Γ + growth \mathcal{M} .

Since $\cup_r \operatorname{supp} \operatorname{t}(\widetilde{B}_r(u))$ and $\cup_r \operatorname{supp} \operatorname{t}(\widetilde{C}_r(u))$ contain all the generators of the group \mathcal{M} , all conditions of Theorem 3.3 are satisfied. Hence we conclude that $i:W(\pi)\longrightarrow (L*\mathcal{M})^G$ is embedding and $W(\pi)$ is a Galois algebra over Γ .

Recall that a commutative subalgebra $\Gamma \subset U$ is called *Harish-Chandra subalgebra* if for any $u \in U$, the Γ -bimodule $\Gamma u \Gamma$ if finitely generated both as a left and as a right Γ -module [DFO2].

Corollary 3.7. Γ is a Harish-Chandra subalgebra in $W(\pi)$.

Proof. Since $M \cdot \Lambda \subset \Lambda$ and $W(\pi)$ is a Galois algebra over Γ the statement follows from [FO1, Proposition 5.2].

Let $i: K \to L$ be a canonical embedding, $\phi \in \operatorname{Aut} L$, $j = \phi i$. Consider a K - L-bimodule $\widetilde{V}_{\phi} = KvL$, where $av = v\phi(a)$ for all $a \in K$. Let V_{ϕ} be the set of $\operatorname{St}(j)$ -invariant elements of \widetilde{V}_{ϕ} .

Corollary 3.8. Let $S = \Gamma \setminus \{0\}$. Then

(i) S is an Ore set and

$$W(\pi)[S^{-1}] \simeq (L * \mathfrak{M})^G \simeq [S^{-1}]W(\pi).$$

- (ii) $K \otimes_{\Gamma} W(\pi) \otimes_{\Gamma} K \simeq (L * \mathfrak{M})^G$ as K-bimodules.
- (iii) $W(\pi)[S^{-1}] \simeq \bigoplus_{\phi \in : \mathcal{M}/G} V_{\phi}$ as K-bimodules.

Proof. Follow from Theorem 3.6 and [FO1, Theorem 3.2(5)].

4. Noncommutative Noether Problem

If A is a noncommutative domain that satisfies the Ore conditions then it admits the skew field of fractions which we denote D(A).

The *n*-th Weyl algebra A_n is generated by $x_i, \partial_i, i = 1, \ldots, n$ subject to relations

$$x_i x_j = x_j x_i,$$

$$\partial_i \partial_j = \partial_j \partial_i,$$

(4.10)
$$\partial_i x_j - x_j \partial_i = \delta_{ij}, \ i, j = 1, \dots, n.$$

This algebra is a simple noetherian domain with the skew field of fractions $D_n = D(A_n)$. The symmetric group S_n acts on D_n by simultaneous permutations of x_i 's and ∂_i 's.

In this section we prove the noncommutative Noether problem for S_n :

Theorem 4.1.

$$D_n^{S_n} \simeq D_n$$
.

4.1. Symmetric differential operators. If $P = \mathbb{k}[x_1, \dots, x_n]$ then we identify the Weyl algebra A_n with the ring of differential operators $\mathcal{D}(P)$ on P by identifying x_i with the operator of multiplication on x_i and ∂_i with the operator of partial derivation by x_i , $i = 1, \dots, n$. If A is a localization of P then $\mathcal{D}(A)$ is generated over A by $\partial_1, \dots, \partial_n$ subject to obvious relations. The symmetric group S_n acts on A_n by permutations of the variables x_i 's and simultaneous permutation of ∂_i 's. This induces the action of S_n on $\mathcal{D}(P)$ by conjugations: for $\pi \in S_n$, $i, j = 1, \dots, n, f \in P$

(4.11)
$$(\pi v(x_i)\pi^{-1})(f) = \pi(x_i\pi^{-1}(f)) = x_{\pi(i)}f$$

$$(\pi \partial_i \pi^{-1})(x_j) = \pi \partial_i(x_{\pi^{-1}(j)}) = \partial_{\pi(i)}(x_j).$$

It is well known that $A_n^{S_n}$ is not isomorphic A_n and hence $\mathcal{D}(P)^{S_n}$ is not isomorphic to $\mathcal{D}(P^{S_n})$ if n > 1. For any $i = 1, \ldots, n$ let σ_i denotes the i-th symmetric polynomial in the variables x_1, \ldots, x_n . Then $P^{S_n} = \mathbb{k}[\sigma_1, \ldots, \sigma_n] \subset P$. Set $\delta = \prod_{1 \le i < j \le n} (x_i - x_j)$

and $\Delta = \delta^2 \in P^{S_n}$. Denote by P_{Δ} and $P_{\Delta}^{S_n}$ the localizations of corresponding algebras by the multiplicative set generated by Δ . The canonical embedding $i: P_{\Delta}^{S_n} \to P_{\Delta}$ induces a homomorphism of algebras $i_{\Delta}: \mathcal{D}(P_{\Delta})^{S_n} \to \mathcal{D}(P_{\Delta}^{S_n})$.

Proposition 4.2. i_{Δ} is an isomorphism.

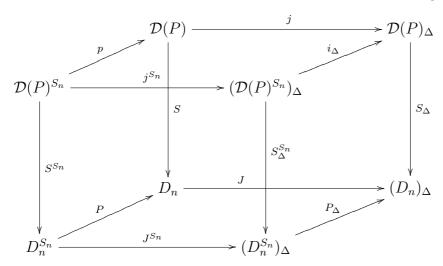
Proof. Let $X = \operatorname{Specm} P_{\Delta} \subset \mathbb{A}^k$. Then X is open and S_k -invariant. Then the induced projection $p: X \to X/S_k$ is etale. Note that the geometric quotient $X/S_k = \operatorname{Specm} \mathbb{k}[\sigma_1, \dots, \sigma_k]_{\Delta}$ is rational. Applying [Kn, Theorem 3.1, Proposition 3.2], we conclude that $\mathcal{D}(X)^{S_k} \simeq \mathcal{D}(X/S_k)$. Of course this comes as no surprise since the action of S_n is free on X.

Proposition 4.3. The following isomorphisms hold

- (i) $\mathcal{D}(P)_S \simeq \mathcal{D}(P_S)$ for a multiplicative set S.
- (ii) $\mathcal{D}(P_{\Lambda})^{S_n} \simeq (\mathcal{D}(P)^{S_n})_{\Lambda}$.
- (iii) $(P^{S_n})_{\Delta} \simeq (P_{\Delta})^{S_n}$.
- (iv) $\mathcal{D}(P_{\Delta})^{S_n} \simeq \mathcal{D}((P^{S_n}))_{\Delta}$.

Proof. The first statement can be found in [MCR, Theorem 15.1.25]. If $d \in \mathcal{D}(P_{\Delta})^{S_n}$ then $d_1 = \Delta^k d \in \mathcal{D}(P)^{S_n}$ for some $k \geq 0$ implying (4.3). The third statement is obvious and (4.3) follows from the previous statements and Proposition 4.2.

4.2. **Proof of Theorem 4.1.** Consider the commutative diagram



All horizontal arrows in the diagram are just embeddings in the localizations by Δ . The arrow $S: \mathcal{D}(P) \longrightarrow D_n$ is an embedding into the skew field of fractions. Other vertical arrows are induced by localizations and taking S_n -invariants. Since $D_n^{S_n} \simeq D(A_n^{S_n})$, the arrow $S^{S_n}: \mathcal{D}(P)^{S_n} \longrightarrow D_n^{S_n}$ is just an embedding into the skew field of fractions. On the other hand $\mathcal{D}(P)^{S_n}$ and $(\mathcal{D}(P)^{S_n})_{\Delta}$ have the same skew field of fractions. Both J and J_{S_n} are isomorphisms, since they are embeddings into localizations by an invertible element Δ . Hence the skew field of fractions of $(\mathcal{D}(P)^{S_n})_{\Delta}$ is isomorphic to $D_n^{S_n}$. Hence

$$(4.12) (\mathcal{D}(P)^{S_n})_{\Delta} \simeq (\mathcal{D}(P)_{\Delta})^{S_n} \simeq \mathcal{D}(P_{\Delta})^{S_n} \simeq \mathcal{D}((P_{\Delta})^{S_n}) \simeq$$

$$\mathcal{D}(\mathbb{k}[\sigma_1, \dots, \sigma_n]_{\Delta}) \simeq \mathcal{D}(\mathbb{k}[\sigma_1, \dots, \sigma_n])_{\Delta}.$$

It implies that $(\mathcal{D}(P)^{S_n})_{\Delta}$ is just a localization of the Weyl algebra A_n , and thus its skew field of fractions is isomorphic to D_n . Hence $D_n^{S_n} \simeq D_n$.

5. Gelfand-Kirillov Conjecture

Since $W(\pi)$ is a noetherian integral domain with a polynomial graded algebra, then it satisfies the Ore conditions by the Goldie theorem. Hence $W(\pi)$ has a skew field of fractions $D_{\pi}(n) = D(W(\pi))$. Recall the structure of $W(\pi)$ as a Galois algebra over Γ : $W(\pi) \subset (L*\mathcal{M})^G$, where L is a field of rational functions in x_{ij}^k , $j=1,\ldots,i,k=1,\ldots,p_i,$ $i=1,\ldots,n$. Then $D_{\pi}(n) \simeq D((L*\mathcal{M})^G)$. Moreover, we will see below that $L*\mathcal{M}$ has a skew field of fractions and thus $D_{\pi}(n) \simeq D(L*\mathcal{M})^G$ [Fa, Theorem 1]. Since Γ is a Harish-Chandra subalgebra (Corollary 3.7) then by [FO1, Theorem 8.2], we have

Proposition 5.1. The center \mathcal{Z} of $D_{\pi}(n)$ is isomorphic to $K^{\mathfrak{M}}$.

Let Λ be the polynomial ring in variables x_{ij}^k , $j=1,\ldots,i, k=1,\ldots,p_j$, $i=1,\ldots,n$. Denote by L_i (respectively Λ_i) the field of rational functions (respectively the polynomial ring) in x_{ij}^k with fixed i. Then

$$\Lambda * \mathcal{M}^G \simeq \bigotimes_{i=1}^{n-1} (\Lambda_i * \mathbb{Z}^{p_1 + \dots + p_i})^{S_{p_1 + \dots + p_i}} \otimes \Lambda_n^{S_{p_1 + \dots + p_n}}.$$

Proposition 5.2. For every i = 1, ..., n

$$D(L_i * \mathbb{Z}^{p_1 + \dots + p_i}) \simeq D(A_{n_1 + \dots + n_i}(\mathbb{k})).$$

Proof. Consider a skew group algebra $B = \mathbb{k}[t_1, \dots, t_k] * \mathbb{Z}^k$, where \mathbb{Z}^k is generated by σ_i , $i = 1, \dots, n$ and $\sigma_i(t_j) = t_j - \delta_{ij}$. Then

$$B \simeq \mathcal{A}_k$$

where A_k is a localization of the k-th Weyl algebra with respect to x_1, \ldots, x_k . This isomorphism is given as follows:

$$x_i \mapsto \sigma_i, \ \partial_i \mapsto t_i \sigma_i^{-1}.$$

Hence, a subring $\Lambda_i * \mathbb{Z}^{p_1 + \ldots + p_i}$ of $L_i * \mathbb{Z}^{p_1 + \ldots + p_i}$ is isomorphic to a localization of $A_{p_1 + \ldots + p_i}(\mathbb{k})$. We conclude that $L_i * \mathbb{Z}^{p_1 + \ldots + p_i}$ has the skew field of fractions which is isomorphic to $D(A_{p_1 + \ldots + p_i}(\mathbb{k}))$.

Since $D(A_k)^{S_k} \simeq D(A_k^{S_k})$ then we have the isomorphism

$$D((L*\mathcal{M})^G) = D(\Lambda * \mathcal{M}^G) \simeq \bigotimes_{i=1}^{n-1} D((A_{p_1+\dots+p_i}(\mathbb{k}))^{S_{p_1+\dots+p_i}} \otimes D(T_n)),$$

where $T_n = \Lambda_n^{S_{p_1+...+p_n}}$ is a polynomial ring isomorphic Λ_n . Moreover, applying Theorem 4.1 we have the isomorphism

$$D((L * \mathcal{M})^G) \simeq D(\bigotimes_{i=1}^{n-1} (A_{p_1 + \dots + p_i}(\mathbb{k})) \otimes D(T_n)) \simeq D(A_{(n-1)p_1 + \dots + p_{n-1}}(\mathbb{k}) \otimes D(T_n)).$$

Since $D(T_n)$ is a pure transcendental extension of \mathbb{k} of degree $p_1 + \ldots + p_n$, and since $D((L * \mathfrak{M})^G) \simeq D(W(\pi))$, we have thus proved the Gelfand-Kirillov conjecture (Theorem I):

$$D(W(\pi)) \simeq D(A_{(n-1)p_1+\dots+p_{n-1}}(D(T_n))) = D_{k,m},$$

$$k = (n-1)p_1 + \ldots + p_{n-1}, m = p_1 + \ldots + p_n.$$

Recall that the Miura transform [BK2] is an injective homomorphism

$$\tau: W(\pi) \to \bigotimes_{i=1}^l U(\mathfrak{gl}_{q_i}).$$

Observe that $D(\bigotimes_{i=1}^l U(\mathfrak{gl}_{q_i})) \simeq D_{k,m}$, since $k = \sum_{i=1}^l q_i (q_i - 1)/2$ and $m = \sum_{i=1}^l q_i$. Hence we have proved the following corollary.

Corollary 5.3. The Miura transform extends to an isomorphism of the corresponding skew fields of fractions.

6. Fibers of Characters

6.1. Integral Galois algebras. Let $U \subset (L*\mathcal{M})^G$ be a Galois order over an integral domain Γ .

Definition 6.1. [FO1] A Galois order U over Γ is called *integral* if for any finite dimensional right (respectively left) K-subspace $W \subset U[S^{-1}]$ (respectively $W \subset [S^{-1}]U$), $W \cap U$ is a finitely generated right (respectively left) Γ -module.

A concept of an integral Galois order over Γ is a natural noncommutative generalization of a classical notion of Γ -order in skew group ring $(L * \mathcal{M})^G$. If Γ is a noetherian \mathbb{k} -algebra then an integral Galois order over Γ will be called *integral Galois algebra*. Note that in particular a Galois order U over Γ is right (left) integral if U is a projective right (left) Γ -module.

The following criterion of integrality for Galois algebras was established in [FO1, Corollary 5.4].

Proposition 6.2. Let $U \subset L * M$ be a Galois algebra over a noetherian normal k-algebra Γ . Then the following statements are equivalent

- (i) U is integral Galois algebra over Γ .
- (ii) Γ is a Harish-Chandra subalgebra and, if for $u \in U$ there exists a nonzero $\gamma \in \Gamma$ such that $\gamma u \in \Gamma$ or $u\gamma \in \Gamma$, then $u \in \Gamma$.

Suppose now that U is a PBW Galois algebra over Γ with the polynomial associated graded algebra gr U=A. Then both U and A are endowed with degree function deg with obvious properties. For $u\in U$ denote by $\bar{u}\in A$ the corresponding homogeneous element. Also denote by $\operatorname{gr}\Gamma$ the image of Γ in A. Then we have the following graded version of Proposition 6.2.

Lemma 6.3. Let $U \subset L * M$ be a PBW Galois algebra over a noetherian normal k-algebra Γ with a polynomial graded algebra $\operatorname{gr} U$. Then the following statements are equivalent

- (i) U is integral Galois algebra over Γ .
- (ii) Γ is a Harish-Chandra subalgebra and for $\gamma, \gamma' \in \Gamma \setminus \{0\}$ from $\bar{\gamma'} = \bar{\gamma}a, a \in A$ follows $a \in \operatorname{gr}\Gamma$.

Proof. Suppose $\gamma' = \gamma u \neq 0$, $\gamma', \gamma \in \Gamma$, $u \in U \setminus \Gamma$ and $\deg \gamma'$ is the minimal possible. Then $\bar{\gamma}' = \bar{\gamma}\bar{u} \neq 0$ in A. By the assumption $\bar{u} = \bar{\gamma}''$ for some in $\gamma'' \in \Gamma$ and hence either $\gamma'' = u$, or $\gamma_2 = \gamma u_1 \in \Gamma$, where $u_1 = u - \gamma''$, $\gamma_2 = \gamma' - \gamma \gamma''$. Since in the second case $\deg \gamma_2 < \deg \gamma_1$ this contradicts the minimality assumption. Therefore, $\gamma'' = u \in \Gamma$. The case $\gamma' = u\gamma \neq 0$ is considered analogously. Hence the statement (6.2) of Proposition 6.2 holds, which implies the integrality of the Galois algebra U.

Representation theory of Galois algebras was developed in [FO2]. For $\mathbf{m} \in \operatorname{Specm} \Gamma$ denote by $F(\mathbf{m})$ the fiber of \mathbf{m} consisting of isomorphism classes of irreducible Harish-Chandra with respect to Γ *U*-modules M with $M(\mathbf{m}) \neq \mathbf{0}$.

Let E be the integral extension of Γ such that $\Gamma = E^G$ and assume that Γ is noetherian. Then the fibers of the surjective map $\varphi : \operatorname{Specm} E \to \operatorname{Specm} \Gamma$ are finite. Let $\mathbf{m} \in \operatorname{Specm} \Gamma$ and $l_{\mathbf{m}} \in \operatorname{Specm} E$ such that $\varphi(l_{\mathbf{m}}) = \mathbf{m}$. Denote

$$\operatorname{St}_{\mathfrak{M}}(\mathbf{m}) = \{ x \in \mathfrak{M} | x \cdot l_{\mathbf{m}} = l_{\mathbf{m}} \}.$$

Clearly the set $St_{\mathcal{M}}(\mathbf{m})$ does not depend on the choice of $l_{\mathbf{m}}$.

Theorem 6.4. Let U be an integral Galois algebra over noetherian Γ , $\mathbf{m} \in \operatorname{Specm} \Gamma$.

- (i) The fiber $F(\mathbf{m})$ is non-trivial;
- (ii) If the set $St_{\mathfrak{M}}(\mathbf{m})$ is finite then the fiber $F(\mathbf{m})$ is finite.

Proof. The first statement is [FO2, Theorem A] and the second statement is [FO2, Theorem B]. \Box

6.2. Finite W-algebras as integral Galois algebras. Following [BK2, Section 2.2], for $1 \le i \le j \le n$ define the higher root elements $e_{ij}^{(r)}$ and $f_{ji}^{(r)}$ of $W(\pi)$ inductively by the formulas $e_{i,i+1}^{(r)} = e_i^{(r)}$ for $r \ge p_{i+1} - p_i + 1$,

$$e_{ij}^{(r)} = [e_{i,j-1}^{(r-p_j+p_{j-1})}, e_{j-1}^{(p_j-p_{j-1}+1)}]$$
 for $r \geqslant p_j - p_i + 1$,

and

$$f_{i+1,i}^{(r)} = f_i^{(r)}, \qquad f_{j,i}^{(r)} = [f_{j-1}^{(1)}, f_{j-1,i}^{(r)}] \qquad \text{for} \quad r \geqslant 1.$$

Furthermore, set

$$e_{ij}(u) = \sum_{r=p_j-p_i+1}^{\infty} e_{ij}^{(r)} u^{-r}, \qquad f_{ji}(u) = \sum_{r=1}^{\infty} f_{ji}^{(r)} u^{-r},$$

and define a power series

$$t_{ij}(u) = \sum_{r \ge 0} t_{ij}^{(r)} u^{-r} = \sum_{k=1}^{\min\{i,j\}} f_{ik}(u) d_k(u) e_{kj}(u)$$

for some elements $t_{ij}^{(r)} \in W(\pi)$. Due to [BK2, Lemma 3.6], an ascending filtration on $W(\pi)$ can be defined by setting $\deg t_{ij}^{(k)} = k$. Let $\overline{W}(\pi) = \operatorname{gr} W(\pi)$ denote the associated graded algebra and let $\overline{t}_{ij}^{(r)}$ denote the image of $t_{ij}^{(r)}$ in the rth component of $\operatorname{gr} W(\pi)$. Then $\overline{W}(\pi)$ is a polynomial algebra in the variables

 $\bar{t}_{ij}^{(r)}$ with $i \geqslant j$, $1 \leqslant r \leqslant p_j$ and $\bar{t}_{ij}^{(r)}$ with i < j, $p_j - p_i + 1 \leqslant r \leqslant p_j$. By [BK2, Theorem 3.5], the series

$$T_{ij}(u) = u^{p_j} t_{ij}(u), \qquad 1 \leqslant i, j \leqslant n,$$

are polynomials in u. Introduce the matrix $T(u) = (T_{ij}(u-j+1))_{i,j=1}^n$ and consider its column determinant

(6.14)
$$\operatorname{cdet} T(u) = \sum_{\sigma \in S_n} \operatorname{sgn} \sigma \cdot T_{\sigma(1)1}(u) T_{\sigma(2)2}(u-1) ... T_{\sigma(n)n}(u-n+1).$$

This is a polynomial in u, and the coefficients $d_s \in W(\pi)$ of the powers $u^{p_1+\ldots+p_n-s}$, $s=1,\ldots,p_1+\ldots+p_n$ are algebraically independent generators of the center of $W(\pi)$; see [BB].

For $F = \sum_i f_i u^i \in W(\pi)[u]$ denote $\overline{F} = \sum_i \overline{f}_i u^i \in \overline{W}(\pi)[u]$. Also we denote $X_{ij}^k = \overline{t}_{ij}^{(k)}, \ X_{ij}(u) = \overline{T}_{ij}(u)$ and $X(u) = (X_{ij}(u))_{i,j=1}^n$. Since $\overline{T}_{ij}(u-\lambda) = X_{ij}(u)$ for any $\lambda \in \mathbb{k}$, one can easily check that $\operatorname{gr} \operatorname{cdet} T(u) = \operatorname{det} X(u)$.

Then

(6.15)
$$\overline{d}_s = \sum_{k_1 + \dots + k_n = s} \sum_{\sigma \in S_n} \operatorname{sgn} \sigma \cdot X_{\sigma(1)1}^{k_1} \dots X_{\sigma(n)n}^{k_n}$$

is just the coefficient of u^{np-s} in det X(u). So all monomials in \overline{d}_s have the form

(6.16)
$$X_{i_1 i_2}^{k_1} \dots X_{i_{n-1} i_n}^{k_{n-1}} X_{i_n i_1}^{k_n}, \quad 1 \leqslant i_1, \dots, i_n \leqslant n, \quad 1 \leqslant k_i \leqslant p_i, i = 1, \dots, n,$$
$$k_1 + \dots + k_n = s.$$

Fix $r, 1 \leq r \leq n$ and consider $X_r(u) = (X_{ij}(u))_{i,j=1}^r$. Then

(6.17)
$$d_{rs} = \sum_{k_1 + \dots + k_r = s} \sum_{\sigma \in S_r} \operatorname{sgn} \sigma \cdot X_{\sigma(1)1}^{k_1} \dots X_{\sigma(t)t}^{k_t}$$

is the coefficient by $u^{p_1+...+p_r-s}$ in det $X_r(u)$ and the elements

$$\{d_{rs}, s = 1, \dots, p_1 + \dots + p_n, r = 1, \dots, n\}$$

are the generators of the algebra gr Γ .

Let $S = \{X_{ij}^k | i, j = 1, ..., n; k = 1, ..., p_j\}$, $w : S \to \mathbb{N}$ be a function, z a free monomial generated by S. The degree on the monomial $\deg_w(z) \in \mathbb{N}$ associated with w, is defined as

(6.18)
$$\deg_w \prod_{i,j=1}^n \prod_{k=1}^p (X_{ij}^k)^{s_{ij}^k} = \sum_{i,j=1}^n \sum_{k=1}^p s_{ij}^k w(X_{ij}^k).$$

It coincides with the usual polynomial degree if $w(X_{ij}^k) = 1$ for all i, j, k. Also it coincides with the degree in $\overline{W}(\pi)$ if $w(X_{ij}^k) = k$ for all i, j. For the monomials m_1 and m_2 define $m_1 >_w m_2$, provided that $\deg_w(m_1) > \deg_w(m_2)$ or $\deg_w(m_1) = \deg_w(m_2)$ and $m_1 > m_2$ in the lexicographical order (comparing the degrees of the indeterminates in the monomials m_1 and m_2).

If the monomial order is fixed then we will denote by lm and lt the functions of the leading monomial and the leading term respectively.

Define a function v on S with values in \mathbb{Z} satisfying the following conditions:

- (i) $v(X_{i+1}^{p_i}) = i+1, i=1,\ldots,n-1;$
- (ii) $v(X_{ij}^k) = -N$, where $N > 2n^2$, if i < j, i, j = 1, ..., n;
- (iii) $v(X_{ii}^{k})$ are much more negative than those above, $v(X_{ii}^{k}) > v(X_{jj}^{(l)})$ if i > j or i = j, k > l;
- (iv) $v(X_{ij}^k)$ are much more negative than those above for $i-j \ge 2$ or $j=i-1, k < p_{i-1}$.

Choose a sufficiently large integer l > 0 such that $v(x_{ij}^k) + kl \in \mathbb{N}$ for all possible i, j, k. Let $w: S \to \mathbb{N}$ is defined by $w(x_{ij}^k) = v(x_{ij}^k) + kl$.

Lemma 6.5. For any r = 1, ..., n and $s = 1, ..., p_1 + ... + p_r$ there exists a unique leading monomial in d_{rs} with respect to the degree \deg_w .

Proof. We will construct a required monomial z for the weight function v. Since d_{rs} are homogeneous, their leading monomials do not change after the shift of gradation.

Fix $r \in \{1, \ldots, n\}$ and $s \in \{1, \ldots, p_1 + \ldots + p_r\}$. Suppose $s \leq p_1$. Then set

$$y_{r,s} = X_{r\,r}^s$$
.

Now consider the case $s > p_1$. Choose the least $q \ge 0$ for which there exists t, $q \le t \le r - 1$ such that

$$p_{r-q-1} + \ldots + p_{r-t} < s \leqslant p_{r-q} + \ldots + p_{r-t},$$

and

$$s \leqslant p_{r-q-1} + \ldots + p_{r-t-1},$$

if t < r - 1. Such q and t are uniquely defined. Then $s = p_{r-q-1} + \ldots + p_{r-t} + k$ for some $k \le p_{r-t-1}$ if t < r - 1 and $k \le p_{r-q}$ if t = r - 1. If $p_{r-q} - p_{r-t} + 1 \le k \le p_{r-q}$ then set

$$y_{r,s} = X_{r-q, r-q-1}^{p_{r-q-1}} X_{r-q-1, r-q-2}^{p_{r-q-2}} \dots X_{r-t+1, r-t}^{p_{r-t}} X_{r-t, r-q}^{k}.$$

Assume $k \leqslant p_{r-q} - p_{r-t}$. Then $t_{r-t, r-q}^{(k)}$ is not an element of $W(\pi)$. In this case we define the element $y_{r,s}$ as follows. If $k \leqslant p_{r-q} - p_{r-t} - \ldots - p_{r-q-1}$ then we set $y_{r,s} = X_{r-q, r-q}^s$. Note that $s \leqslant p_{r-q}$ in this case. Suppose

$$p_{r-q} - p_{r-t} - \dots - p_{r-t+l} < k \leqslant p_{r-q} - p_{r-t} - \dots - p_{r-t+l-1}$$

for some l, 0 < l < t - q. Then set

$$y_{r,s} = X_{r-q, r-q-1}^{p_{r-q-1}} \dots X_{r-t+l+1, r-t+l}^{p_{r-t+l}} X_{r-t+l, r-q}^{p_{r-q}-p_{r-t+l}+1} X_{r-q, r-q}^{\varepsilon},$$

where $\varepsilon = k - 1 - p_{r-q} + p_{r-t} + \ldots + p_{r-t+l}$. Note that $0 \le \varepsilon \le p_{r-q}$.

It is easy to see that the defined monomials $y_{r,s}$ belong to d_{rs} . The condition (6.2) shows that if a leading monomial in d_{rs} contains X_{ij}^k , where i > j, then i = j + 1 and $k = p_j$. Hence $\text{Im}(d_{rs}) = y_{r,s}$ if $s \leq p_1$. For the case $s > p_1$ the conditions (6.2) and

(6.2) show that $\text{Im}(d_{r\,s})$ contains only $X_{i+1\,i}^{p_i}$, X_{ij}^b for i < j and X_{ii}^a . By the condition (6.2) we have

$$v(X_{r-q\,r-q-1}^{p_{r-q-1}}) > v(X_{p-q-1\,p-q-2}^{p_{p-q-2}}) > \dots > v(X_{2\,1}^{p_1})$$

and hence $X_{i+1}^{p_i}$ will enter a leading monomial with a largest possible value of i. It is clear now $y_{r,s}$ is a unique leading monomial of d_{rs} .

Corollary 6.6. With respect to the function w, the elements

$$\{y_{r,s} \mid r = 1, \dots, n; s = 1, \dots, p_1 + \dots + p_r\}$$

are the leading monomials of the generators of $\Gamma \subset W(\pi)$.

Note that $\operatorname{lt}(\gamma) = \operatorname{lm}(\gamma)$ for any $\gamma \in \operatorname{gr}\Gamma$. Indeed, triple comparison of monomials with respect to the degree in Γ , degree \deg_w and lexicographical order defines uniquely the monomial $\operatorname{lm}(\gamma)$ for any $\gamma \in \Gamma$. The following lemma is obvious.

Lemma 6.7. If for $f, g \in \operatorname{gr} \Gamma$, $\operatorname{lm}(g) | \operatorname{lm}(f)$, then there exists $h \in \operatorname{gr} \Gamma$ such that $\deg_w(f) > \deg_w(f - gh)$.

Lemma 6.8. Assume for $a \in A$ and $\gamma \in \operatorname{gr}\Gamma$ holds $\gamma a \in \operatorname{gr}\Gamma$. Then $\operatorname{lt}(a) \in \operatorname{gr}\Gamma$.

Proof. Write $a = \operatorname{lt}(a) + a'$ and $\gamma = \operatorname{lm}(\gamma) + \gamma'$. Then $\gamma a = \operatorname{lm}(\gamma)\operatorname{lt}(a) + a''$, $a'' \in A$, $\deg_w a'' < \deg_w \operatorname{lm}(\gamma)\operatorname{lt}(a)$. Hence $\gamma_a = \operatorname{lm}(\gamma)\operatorname{lt}(a) \in \operatorname{gr}\Gamma$. Since A is a polynomial ring it implies $\operatorname{lt}(a) = \operatorname{lm}(a)$. Then by Lemma 6.7 there exists $h \in \operatorname{gr}\Gamma$ such that $\gamma_a - \operatorname{lm}(\gamma)h = \operatorname{lm}(\gamma)(\operatorname{lm}(a) - h) \in \operatorname{gr}\Gamma$ and $\deg_w(\gamma_a) > \deg_w(\gamma_a - \operatorname{lm}(\gamma)h)$. Since $\operatorname{lm}(\gamma)|\gamma_a - \operatorname{lm}(\gamma)h$ one can apply again Lemma 6.7 and find $h' \in \operatorname{gr}\Gamma$ such that $\deg_w(\gamma_a - \operatorname{lm}(\gamma)(h + h')) < \deg_w(\gamma_a - \operatorname{lm}(\gamma)h)$. Since degree \deg_w is decreasing the process will stop, proving that $\operatorname{lm}(a) \in \operatorname{gr}\Gamma$.

Theorem 6.9. Let $\Gamma \subset W(\pi)$ be the Gelfand-Tsetlin subalgebra of $W(\pi)$. Then $W(\pi)$ is an integral Galois algebra over Γ .

Proof. First recall that Γ is a Harish-Chandra subalgebra. Assume $\gamma a \in \operatorname{gr} \Gamma$ for some $\gamma \in \operatorname{gr} \Gamma$ and $a \in A$. Then $\operatorname{lt}(a) \in \operatorname{gr} \Gamma$ by Lemma 6.8. If $a = \operatorname{lt}(a) + a_1$ and $a_1 \in \Gamma$ then we are done. Assume $a = \operatorname{lt}(a) + a_1$, $a_1 \notin \Gamma$ and $\deg_w a_1 < \deg_w a$. Then $\gamma a_1 = \gamma a - \gamma \operatorname{lt}(a) \in \operatorname{gr} \Gamma$ and $\operatorname{lt}(a_1) \in \operatorname{gr} \Gamma$ by Lemma 6.8. Hence we can continue analogously and construct a sequence $a_1, a_2, \ldots, \in A$ such that $\gamma a_i \in \operatorname{gr} \Gamma$ and $\deg_w a_{i+1} < \deg_w a_i$ for all i. Since $\deg_w a$ is finite nonnegative then there exists k such that $a_k = \operatorname{lt}(a_k)$. Therefore $a_i, i = 1, \ldots, k$ and a belong to $\operatorname{gr} \Gamma$. It remains to apply Lemma 6.3.

Since $W(\pi)$ is integral Galois algebra over Γ and Γ is noetherian then $W(\pi) \cap K \subset L$ is an integral extension of Γ by [FO1, Theorem 5.2]. Since $W(\pi)$ is a Galois algebra over Γ then $K \cap W(\pi)$ is a maximal commutative k-subalgebra in $W(\pi)$ by [FO1, Theorem 4.1]. But Γ is integrally closed in K. Hence we obtain

Corollary 6.10. Γ is a maximal commutative subalgebra in $W(\pi)$.

We are in the position now to prove our main results on Gelfand-Tsetlin modules announced in Introduction. Since the Gelfand-Tsetlin subalgebra is a polynomial ring, $W(\pi)$ is integral Galois algebra by Theorem 6.9, and since for any $\mathbf{m} \in \operatorname{Specm} \Gamma$ the set $\operatorname{St}_{\mathfrak{M}}(\mathbf{m})$ is finite, then Theorem II follows immediately from Theorem 6.4,(i), (ii). Therefore every character $\chi:\Gamma\to \Bbbk$ of the Gelfand-Tsetlin subalgebra defines an irreducible Gelfand-Tsetlin module which is a quotient of $W(\pi)/W(\pi)\mathbf{m}$, $\mathbf{m}=\operatorname{Ker}\chi$. Of course different characters can give isomorphic irreducible modules. In such case we say that these characters are equivalent. Therefore we obtain a classification of irreducible Gelfand-Tsetlin modules up to a certain finiteness (determined by the fibers of characters) by the equivalence classes of characters of Γ .

7. CATEGORY OF HARISH-CHANDRA MODULES

Define a category \mathcal{A} with the set of objects $\operatorname{Ob} \mathcal{A} = \operatorname{Specm} \Gamma$ and with the space of morphisms $\mathcal{A}(\mathbf{m}, \mathbf{n})$ from \mathbf{m} to \mathbf{n} , where

(7.1)
$$\mathcal{A}(\mathbf{m}, \mathbf{n}) = \lim_{\leftarrow n, m} U/(\mathbf{n}^n U + U\mathbf{m}^m).$$

Consider the completion $\Gamma_{\mathbf{m}} = \lim_{\leftarrow n} \Gamma/\mathbf{m}^n$ of Γ by the ideal $\mathbf{m} \in \operatorname{Specm} \Gamma$. Then the space $\mathcal{A}(\mathbf{m}, \mathbf{n})$ has a natural structure of $\Gamma_{\mathbf{n}} - \Gamma_{\mathbf{m}}$ -bimodule. The category \mathcal{A} is naturally endowed with the topology of the inverse limit while the category \mathbb{k} -mod is endowed with the discrete topology. Consider the category \mathcal{A} -mod_d of continuous functors $M: \mathcal{A} \to \mathbb{k}$ -mod, [DFO2, Section 1.5].

Let $\mathbb{H}(W(\pi), \Gamma)$ denote the category of Harish-Chandra modules with respect to the Gelfand-Tsetlin subalgebra Γ for finite W-algebra $W(\pi)$. Since Γ is a Harish-Chandra subalgebra by Corollary 3.7 then by [DFO2, Theorem 17], the categories \mathcal{A} -mod_d and $\mathbb{G}T(W(\pi), \Gamma)$ are equivalent.

A functor that determines this equivalence can be defined as follows: For $N \in \mathcal{A}\text{-}\mathrm{mod}_d$ set

(7.2)
$$\mathbb{F}(N) = \bigoplus_{\mathbf{m} \in \operatorname{Specm} \Gamma} N(\mathbf{m}) \text{ and for } x \in N(\mathbf{m}), a \in U \text{ set } ax = \sum_{\mathbf{n} \in \operatorname{Specm} \Gamma} a_{\mathbf{n}} x,$$

where $a_{\mathbf{n}}$ is the image of a in $\mathcal{A}(\mathbf{m}, \mathbf{n})$. If $f: M \longrightarrow N$ is a morphism in $\mathcal{A} - \text{mod}_d$ then set $\mathbb{F}(f) = \bigoplus_{\mathbf{m} \in \text{Specm } \Gamma} f(\mathbf{m})$. Hence we obtain a functor

$$\mathbb{F}: \mathcal{A} - \text{mod}_d \longrightarrow \mathbb{H}(W(\pi), \Gamma).$$

For $\mathbf{m} \in \operatorname{Specm} \Gamma$ denote by $\hat{\mathbf{m}}$ the completion of \mathbf{m} . Consider the two-sided ideal $I \subseteq \mathcal{A}$ generated by the completions $\hat{\mathbf{m}}$ for all $\mathbf{m} \in \operatorname{Specm} \Gamma$ and set $\mathcal{A}_W = \mathcal{A}/I$.

Let $\mathbb{H}W(W(\pi),\Gamma)$ be the full subcategory of weight Harish-Chandra modules M such that $\mathbf{m}v=0$ for any $v\in M(\mathbf{m})$. Clearly, the categories $\mathbb{H}W(W(\pi),\Gamma)$ and \mathcal{A}_W -mod are equivalent.

For a given $\mathbf{m} \in \operatorname{Specm} \Gamma$ denote by $\mathcal{A}_{\mathbf{m}}$ the indecomposable block of the category \mathcal{A} which contains \mathbf{m} .

An embedding $i: \Gamma \to \Lambda$ induces an epimorphism

$$i^*: \mathcal{L} \to \operatorname{Specm} \Gamma.$$

Denote by $\Omega \subset \mathcal{L}$ the set of generic parameters $\mu = (\mu_{ij}^k, i = 1, \dots, n; j = 1, \dots; k = 1, \dots, p)$ such that

$$\mu_{ij}^k - \mu_{i,s}^q \notin \mathbb{Z}, \ \mu_{r+1,j}^{(m)} - \mu_{ri}^{(k)} \notin \mathbb{Z}$$

for all r, i, j, m, k.

Theorem 7.1. Let $\mathbf{m} \in \operatorname{Specm} \Gamma$, $\ell \in (i^*)^{-1}(\mathbf{m})$. Suppose $\ell \in \widetilde{\Omega}$. Then

- (i) $\mathcal{A}(\mathbf{m}, \mathbf{m})$ is a homomorphic image of $\hat{\Gamma}_{\mathbf{m}}$.
- (ii) Let $M_{\mathbf{m}} = \mathcal{A}_{\mathbf{m}}/\mathcal{A}_{\mathbf{m}}\hat{\mathbf{m}}$. Then $\mathbb{F}(M_{\mathbf{m}})$ is canonically isomorphic to $W(\pi)/W(\pi)\mathbf{m}$.
- (iii) For every $\mathbf{n} \in \mathcal{A}_{\mathbf{m}}$,

$$\mathcal{A}(\mathbf{n}, \mathbf{n}) \simeq \hat{\Gamma}_{\mathbf{n}},$$

and all objects of $A_{\mathbf{m}}$ are isomorphic.

(iv) The category $\mathbb{H}(W(\pi), \Gamma, \mathbf{m})$ which consists of modules whose support belongs to $\mathcal{A}_{\mathbf{m}}$, is equivalent to the extension category generated by module $\mathbb{F}(M_{\mathbf{m}})$. Moreover, this category is equivalent to the category $\hat{\Gamma}_{\mathbf{m}} - \text{mod}$.

Proof. Since \mathfrak{M} acts freely on $\widetilde{\Omega}$ and $\mathfrak{M} \cdot \ell \cap G \cdot \ell = \{\ell\}$ all statements follow from Theorem 6.9 and [FO2, Theorem 5.3, Theorem C].

Since for **m** from Theorem 7.1, $\hat{\Gamma}_{\mathbf{m}}$ is isomorphic to the algebra of formal power series in GKdim Γ variables, we immediately obtain the statements of Theorem III.

ACKNOWLEDGMENT

The authors acknowledge the support of the Australian Research Council. The first author is supported in part by the CNPq grant (processo 307812/2004-9) and by the Fapesp grant (processo 2005/60337-2). The first author is grateful to the University of Sydney for support and hospitality. The authors are grateful to T.Levasseur for helpful discussion on Noether problem.

REFERENCES

- [A] Arakawa T., Representation theory of W-algebras, arXiv:math/0506056.
- [AOV1] Alev J., Ooms A., Van den Bergh M., The Gelfand-Kirillov conjecture for Lie algebras of dimension at most eight, J. Algebra 227 (2000), 549-581. Corrigendum, J. Algebra 230 (2000), 749.
- [AOV2] Alev J., Ooms A., Van den Bergh M., A class of counterexamples to the Gelfand-Kirillov conjecture, Trans. Amer. Math. Soc. 348 (1996), 1709-1716.
- [BGR] Borho W., Gabriel P., Rentschler R., *Primideale in Einhullenden auflosbarer Lie-Algebren*, Lecture Notes in Math. vol 357, Springer, Berlin and New York, 1973.

- [BB] Brown J. and Brundan J., Elementary invariants for centralizers of nilpotent matrices, J. Austral. Math. Soc., to appear; arXiv:math/0611024.
- [BG] Brown K.A., Goodearl K.R., Lectures on algebraic quantum groups, Advance course in Math. CRM Barcelona, vol 2., Birkhauser Verlag, Basel, 2002.
- [BK1] Brundan J. and Kleshchev A., Shifted Yangians and finite W-algebras, Adv. Math. 200 (2006), 136–195.
- [BK2] Brundan J. and Kleshchev A., Representations of shifted Yangians and finite W-algebras, Memoirs AMS, to appear; arXiv:math/0508003.
- [DFO1] Drozd Yu.A., Ovsienko S.A., Futorny V.M. On Gelfand–Zetlin modules, Suppl. Rend. Circ. Mat. Palermo, 26 (1991), 143-147.
- [DFO2] Drozd Yu.A., Ovsienko S.A., Futorny V.M., Harish-Chandra subalgebras and Gelfand-Zetlin modules, in: "Finite dimensional algebras and related topics", NATO ASI Ser. C., Math. and Phys. Sci., 424, (1994), 79-93.
- [EK] Elashvili P., Kac V., Classification of good gradings of simple Lie algebras, Amer. Math. Soc. Transl., Ser.2, 213 (2005), 85-104.
- [Fa] Faith C., Galois subrings of Ore domains are Ore domains, Bull. AMS, 78 (1972), no.6 1077-1080.
- [FF] Feigin B., Frenkel E., Quantization of Drinfeld-Sokolov reduction, Phys. Lett. B, 246 (1990), 75-81.
- [FMO1] Futorny V., Molev A. and Ovsienko S., Harish-Chandra modules for Yangians, Represent. Theory 9 (2005), 426–454.
- [FMO2] Futorny V., Molev A. and Ovsienko S., Gelfand-Tsetlin bases for representations of finite W-algebras and shifted Yangians, arXiv:0711.0552.
- [FO1] Futorny V. and Ovsienko S., Galois orders, arXiv:math/0610069.
- [FO2] Futorny V. and Ovsienko S., Fibers of characters in Harish-Chandra categories, arXiv:math/0610071.
- [GG] Gan W.L., Ginzburg V., Quantization of Slodowy slices, Int. Math. Res. Notices 5 (2002), 243-255.
- [GK1] Gelfand I.M. et. Kirillov A.A., Sur les corps liés cor aux algèbres enveloppantes des algèbres de Lie, Publ. Inst. Hautes Sci., 31, (1966), 5-19.
- [GK2] Gelfand I.M. and Kirillov A.A., The structure of the Lie field connected with a split semisimple Lie algebra, Funktsional. Anal. i Prilozhen. 3 (1969), 6-21.
- [Jo] Joseph A., Proof of the Gelfand-Kirillov conjecture for solvable Lie algebras, Proc. Amer. Math. Soc. 45 (1974), 1-10.
- [KW] Kac V., Wakimoto M., Quantum reduction and representation theory of superconformal algebras, Adv. Math., 185 (2004), 400-458, Corrigendum, Adv. Math., 193 (2005), 453-455.
- [KRW] Kac V., Roan S.S., Wakimoto M., Quantum reduction for affine superalgebras, Comm. Math. Phys., 241 (2003), 307-342.
- [Kn] Knop F., Graded cofinite rings of differential operators, Michigan Math. J. 54 (2006), 3-23.
- [Ko] Kostant B. On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101-184.
- [L] Lynch T.E., Generalized Whittaker vectors and representation theory, PhD thesis, MIT, 1979.
- [MCR] McConnell J. C. and Robson J.C., *Noncommutative noetherian rings*, Chichester, Wiley, 1987.
- [Mc] McConnel J.C., Representations of solvable Lie algebras and the Gelfand-Kirillov conjecture, Proc. London Math. Soc., 29 (1974), 453-484.

- [M] Molev A., Yangians and classical Lie algebras, Mathematical Surveys and Monographs, 143. American Mathematical Society, Providence, RI, 2007.
- [Ng] Nghiem X.H., Reduction de produit semi-directs et conjecture de Gelfand et Kirillov, Bull. Soc. Math. France (1979), 241-267.
- [O] Ovsienko S., Finiteness statements for Gelfand-Tsetlin modules, in: "Algebraic Structures and Their Applications", Math. Inst., Kiev, 2002.
- [P] Premet A., Special transverse slices and their enveloping algebras, Advances Math. 170 (2002), 1-55.
- [RS] Ragoucy E., Sorba P., Yangian realizations from finite W-algebras, Comm. Math. Phys., 203 (1999), 551-576.
- [SK] De Sole A., Kac A., Finite vs affine W-algebras, Japanese J. Math., 1 (2006), 137-261.

Institute of Mathematics and Statistics, University of São Paulo, Caixa Postal 66281- CEP 05315-970, São Paulo, Brazil

E-mail address: futorny@ime.usp.br

SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SYDNEY, NSW 2006, AUSTRALIA *E-mail address*: alexm@maths.usyd.edu.au

FACULTY OF MECHANICS AND MATHEMATICS, KIEV TARAS SHEVCHENKO UNIVERSITY, VLADIMIRSKAYA 64, 00133, KIEV, UKRAINE

E-mail address: ovsienko@zeos.net